1
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Boer LL, Winter E, Gorissen B, Oostra RJ. Phenotypically Discordant Anomalies in Conjoined Twins: Quirks of Nature Governed by Molecular Pathways? Diagnostics (Basel) 2023; 13:3427. [PMID: 37998563 PMCID: PMC10669976 DOI: 10.3390/diagnostics13223427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
A multitude of additional anomalies can be observed in virtually all types of symmetrical conjoined twins. These concomitant defects can be divided into different dysmorphological patterns. Some of these patterns reveal their etiological origin through their topographical location. The so-called shared anomalies are traceable to embryological adjustments and directly linked to the conjoined-twinning mechanism itself, inherently located within the boundaries of the coalescence area. In contrast, discordant patterns are anomalies present in only one of the twin members, intrinsically distant from the area of union. These dysmorphological entities are much more difficult to place in a developmental perspective, as it is presumed that conjoined twins share identical intra-uterine environments and intra-embryonic molecular and genetic footprints. However, their existence testifies that certain developmental fields and their respective developmental pathways take different routes in members of conjoined twins. This observation remains a poorly understood phenomenon. This article describes 69 cases of external discordant patterns within different types of otherwise symmetrical mono-umbilical conjoined twins and places them in a developmental perspective and a molecular framework. Gaining insights into the phenotypes and underlying (biochemical) mechanisms could potentially pave the way and generate novel etiological visions in the formation of conjoined twins itself.
Collapse
Affiliation(s)
- Lucas L. Boer
- Department of Medical Imaging, Section Anatomy and Museum for Anatomy and Pathology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Eduard Winter
- Pathologisch-Anatomische Sammlung im Narrenturm-NHM, 1090 Vienna, Austria
| | - Ben Gorissen
- Department of Medical Imaging, Section Anatomy and Museum for Anatomy and Pathology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Roelof-Jan Oostra
- Department of Medical Biology, Sections Clinical Anatomy & Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Tisler M, Ott T, Blum M, Schweickert A. Expression and cilia associated localization of Histone deacetylases 6 in Xenopus. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000919. [PMID: 37649557 PMCID: PMC10463039 DOI: 10.17912/micropub.biology.000919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Histone deacetylases (HDACs) are key posttranslational modulators of the proteome. We show that expression of histone deacetylase 6 ( hdac6 ) is dynamic and appears in a tissue specific manner throughout embryonic development of the frog Xenopus laevis . Interestingly, hdac6 transcripts often associate with ciliated tissues, like the left-right organizer at neurula stage or the pronephros. In the embryonic skin, Hdac6 protein localizes to the cilia base, suggesting a functional link.
Collapse
Affiliation(s)
- Matthias Tisler
- Department of Zoology, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Bavaria, Germany
| | - Tim Ott
- Department of Zoology, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| | - Martin Blum
- Department of Zoology, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| | - Axel Schweickert
- Department of Zoology, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| |
Collapse
|
4
|
Dsilva P, Pai P, Shetty MG, Babitha KS. The role of histone deacetylases in embryonic development. Mol Reprod Dev 2023; 90:14-26. [PMID: 36534913 DOI: 10.1002/mrd.23659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/16/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The basic units of chromatin are nucleosomes, that are made up of DNA wrapped around histone cores. Histone lysine residue is a common location for posttranslational modifications, with acetylation being the second most prevalent. Histone acetyltransferases (HATs/KATs) and histone deacetylases (HDACs/KDACs) regulate histone acetylation, which is important in gene expression control. HDACs/KDACs regulate gene expressions through the repression of the transcription machinery. HDAC/KDAC isoforms play a major role during various stages of embryo development and neurogenesis. In specific, class I and II HDACs/KDACs are involved in cardiac muscle differentiation and development. An insight into different pathways and genes associated with embryonic development, the effect of HDAC/KDAC activity during the embryonic stem cell differentiation, preimplantation, embryo development, gastrulation, and the role of different HDAC/KDAC inhibitors during the process of embryogenesis is summarized in the present review article.
Collapse
Affiliation(s)
- Priyanka Dsilva
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kampa S Babitha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Jiang TX, Li A, Lin CM, Chiu C, Cho JH, Reid B, Zhao M, Chow RH, Widelitz RB, Chuong CM. Global feather orientations changed by electric current. iScience 2021; 24:102671. [PMID: 34179734 PMCID: PMC8214094 DOI: 10.1016/j.isci.2021.102671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/18/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
During chicken skin development, each feather bud exhibits its own polarity, but a population of buds organizes with a collective global orientation. We used embryonic dorsal skin, with buds aligned parallel to the rostral-caudal body axis, to explore whether exogenous electric fields affect feather polarity. Interestingly, brief exogenous current exposure prior to visible bud formation later altered bud orientations. Applying electric pulses perpendicular to the body rostral-caudal axis realigned bud growth in a collective swirl, resembling an electric field pointing toward the anode. Perturbed buds show normal molecular expression and morphogenesis except for their altered orientation. Epithelial-mesenchymal recombination demonstrates the effects of exogenous electric fields are mediated through the epithelium. Small-molecule channel inhibitor screens show Ca2+ channels and PI3 Kinase are involved in controlling feather bud polarity. This work reveals the importance of bioelectricity in organ development and regeneration and provides an explant culture platform for experimentation.
Collapse
Affiliation(s)
- Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Ángeles, CA 90033, USA
| | - Ang Li
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Ángeles, CA 90033, USA
| | - Chih-Min Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Ángeles, CA 90033, USA
| | - Cathleen Chiu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Ángeles, CA 90033, USA
| | - Jung-Hwa Cho
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brian Reid
- Department of Ophthalmology & Vision Science, and Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - Min Zhao
- Department of Ophthalmology & Vision Science, and Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - Robert H. Chow
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Randall Bruce Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Ángeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Ángeles, CA 90033, USA
| |
Collapse
|
6
|
Ivashkin E, Melnikova V, Kurtova A, Brun NR, Obukhova A, Khabarova MY, Yakusheff A, Adameyko I, Gribble KE, Voronezhskaya EE. Transglutaminase Activity Determines Nuclear Localization of Serotonin Immunoreactivity in the Early Embryos of Invertebrates and Vertebrates. ACS Chem Neurosci 2019; 10:3888-3899. [PMID: 31291540 DOI: 10.1021/acschemneuro.9b00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serotonin (5-HT) is a key player in many physiological processes in both the adult organism and developing embryo. One of the mechanisms for 5-HT-mediated effects is covalent binding of 5-HT to the target proteins catalyzed by transglutaminases (serotonylation). Despite the implication in a variety of physiological processes, the involvement of serotonylation in embryonic development remains unclear. Here we tested the hypothesis that 5-HT serves as a substrate for transglutaminase-mediated transamidation of the nuclear proteins in the early embryos of both vertebrates and invertebrates. For this, we demonstrated that the level of serotonin immunoreactivity (5-HT-ir) in cell nuclei increases upon the elevation of 5-HT concentration in embryos of sea urchins, mollusks, and teleost fish. Consistently, pharmacological inhibition of transglutaminase activity resulted in the reduction of both brightness and nuclear localization of anti-5-HT staining. We identified specific and bright 5-HT-ir within nuclei attributed to a subset of different cell types: ectodermal and endodermal, macro- and micromeres, and blastoderm. Western blot and dot blot confirmed the presence of 5-HT-ir epitopes in the normal embryos of all the species examined. The experimental elevation of 5-HT level led to the enhancement of 5-HT-ir-related signal on blots in a species-specific manner. The obtained results demonstrate that 5-HT is involved in transglutaminase-dependent monoaminylation of nuclear proteins and suggest nuclear serotonylation as a possible regulatory mechanism during early embryonic development. The results reveal that this pathway is conserved in the development of both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Evgeny Ivashkin
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, United States
| | - Victoria Melnikova
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anastasia Kurtova
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nadja R. Brun
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Alexandra Obukhova
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina Yu. Khabarova
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander Yakusheff
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Molecular Neurosciences, Center of Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, United States
| | - Elena E. Voronezhskaya
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Abstract
Consistent asymmetries between the left and right sides of animal bodies are common. For example, the internal organs of vertebrates are left-right (L-R) asymmetric in a stereotyped fashion. Other structures, such as the skeleton and muscles, are largely symmetric. This Review considers how symmetries and asymmetries form alongside each other within the embryo, and how they are then maintained during growth. I describe how asymmetric signals are generated in the embryo. Using the limbs and somites as major examples, I then address mechanisms for protecting symmetrically forming tissues from asymmetrically acting signals. These examples reveal that symmetry should not be considered as an inherent background state, but instead must be actively maintained throughout multiple phases of embryonic patterning and organismal growth.
Collapse
Affiliation(s)
- Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
8
|
Zondag L, M Clarke R, Wilson MJ. Histone deacetylase activity is required for Botrylloides leachii whole-body regeneration. ACTA ACUST UNITED AC 2019; 222:jeb.203620. [PMID: 31253711 DOI: 10.1242/jeb.203620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
Abstract
The colonial tunicate Botrylloides leachii is exceptional at regenerating from a piece of vascular tunic after loss of all adults from the colony. Previous transcriptome analyses indicate a brief period of healing before regeneration of a new adult (zooid) in as little as 8-10 days. However, there is little understanding of how the resulting changes to gene expression, required to drive regeneration, are initiated and how the overall process is regulated. Rapid changes to transcription often occur in response to chromatin changes, mediated by histone modifications such as histone acetylation. Here, we investigated a group of key epigenetic modifiers, histone deacetylases (HDAC), which are known to play an important role in many biological processes such as development, healing and regeneration. Through our transcriptome data, we identified and quantified the expression levels of HDAC and histone acetyltransferase enzymes during whole-body regeneration (WBR). To determine whether HDAC activity is required for WBR, we inhibited its action using valproic acid and trichostatin A. HDAC inhibition prevented the final morphological changes normally associated with WBR and resulted in aberrant gene expression. Botrylloides leachii genes including Slit2, TGF-β, Piwi and Fzd4 all showed altered mRNA levels upon HDAC inhibition in comparison with the control samples. Additionally, atypical expression of Bl_Piwi was found in immunocytes upon HDAC inhibition. Together, these results show that HDAC function, specifically HDAC I/IIa class enzymes, are vital for B. leachii to undergo WBR successfully.
Collapse
Affiliation(s)
- Lisa Zondag
- Developmental Biology and Genomics Laboratory, Department of Anatomy, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Rebecca M Clarke
- Developmental Biology and Genomics Laboratory, Department of Anatomy, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Megan J Wilson
- Developmental Biology and Genomics Laboratory, Department of Anatomy, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Bérard A, Levin M, Sadler T, Healy D. Selective Serotonin Reuptake Inhibitor Use During Pregnancy and Major Malformations: The Importance of Serotonin for Embryonic Development and the Effect of Serotonin Inhibition on the Occurrence of Malformations. Bioelectricity 2019; 1:18-29. [PMID: 34471805 DOI: 10.1089/bioe.2018.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bioelectric signaling is transduced by neurotransmitter pathways in many cell types. One of the key mediators of bioelectric control mechanisms is serotonin, and its transporter SERT, which is targeted by a broad class of blocker drugs (selective serotonin reuptake inhibitors [SSRIs]). Studies showing an increased risk of multiple malformations associated with gestational use of SSRI have been accumulating but debate remains on whether SSRI as a class has the potential to generate these malformations. This review highlights the importance of serotonin for embryonic development; the effect of serotonin inhibition during early pregnancy on the occurrence of multiple diverse malformations that have been shown to occur in human pregnancies; that the risks outweigh the benefits of SSRI use during gestation in populations of mild to moderately depressed pregnant women, which encompass the majority of pregnant depressed women; and that the malformations seen in human pregnancies constitute a pattern of malformations consistent with the known mechanisms of action of SSRIs. We present at least three mechanisms by which SSRI can affect development. These studies highlight the relevance of basic bioelectric and neurotransmitter mechanism for biomedicine.
Collapse
Affiliation(s)
- Anick Bérard
- Faculty of Pharmacy, University of Montreal; Research Center, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, Department of Biology, Medford, Massachusetts
| | - Thomas Sadler
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah
| | - David Healy
- Department of Psychiatry, Hergest Unit, Bangor, United Kingdom
| |
Collapse
|
10
|
Kulkarni SS, Khokha MK. WDR5 regulates left-right patterning via chromatin-dependent and -independent functions. Development 2018; 145:dev.159889. [PMID: 30377171 DOI: 10.1242/dev.159889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/24/2018] [Indexed: 01/01/2023]
Abstract
Congenital heart disease (CHD) is a major cause of infant mortality and morbidity, yet the genetic causes and mechanisms remain opaque. In a patient with CHD and heterotaxy, a disorder of left-right (LR) patterning, a de novo mutation was identified in the chromatin modifier gene WDR5 WDR5 acts as a scaffolding protein in the H3K4 methyltransferase complex, but a role in LR patterning is unknown. Here, we show that Wdr5 depletion leads to LR patterning defects in Xenopus via its role in ciliogenesis. Unexpectedly, we find a dual role for WDR5 in LR patterning. First, WDR5 is expressed in the nuclei of monociliated cells of the LR organizer (LRO) and regulates foxj1 expression. LR defects in wdr5 morphants can be partially rescued with the addition of foxj1 Second, WDR5 localizes to the bases of cilia. Using a mutant form of WDR5, we demonstrate that WDR5 also has an H3K4-independent role in LR patterning. Guided by the patient phenotype, we identify multiple roles for WDR5 in LR patterning, providing plausible mechanisms for its role in ciliopathies like heterotaxy and CHD.
Collapse
Affiliation(s)
- Saurabh S Kulkarni
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Rao A, LaBonne C. Histone deacetylase activity has an essential role in establishing and maintaining the vertebrate neural crest. Development 2018; 145:dev.163386. [PMID: 30002130 DOI: 10.1242/dev.163386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
The neural crest, a progenitor population that drove vertebrate evolution, retains the broad developmental potential of the blastula cells it is derived from, even as neighboring cells undergo lineage restriction. The mechanisms that enable these cells to preserve their developmental potential remain poorly understood. Here, we explore the role of histone deacetylase (HDAC) activity in this process in Xenopus We show that HDAC activity is essential for the formation of neural crest, as well as for proper patterning of the early ectoderm. The requirement for HDAC activity initiates in naïve blastula cells; HDAC inhibition causes loss of pluripotency gene expression and blocks the ability of blastula stem cells to contribute to lineages of the three embryonic germ layers. We find that pluripotent naïve blastula cells and neural crest cells are both characterized by low levels of histone acetylation, and show that increasing HDAC1 levels enhance the ability of blastula cells to be reprogrammed to a neural crest state. Together, these findings elucidate a previously uncharacterized role for HDAC activity in establishing the neural crest stem cell state.
Collapse
Affiliation(s)
- Anjali Rao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
12
|
Levin M, Martyniuk CJ. The bioelectric code: An ancient computational medium for dynamic control of growth and form. Biosystems 2018; 164:76-93. [PMID: 28855098 PMCID: PMC10464596 DOI: 10.1016/j.biosystems.2017.08.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022]
Abstract
What determines large-scale anatomy? DNA does not directly specify geometrical arrangements of tissues and organs, and a process of encoding and decoding for morphogenesis is required. Moreover, many species can regenerate and remodel their structure despite drastic injury. The ability to obtain the correct target morphology from a diversity of initial conditions reveals that the morphogenetic code implements a rich system of pattern-homeostatic processes. Here, we describe an important mechanism by which cellular networks implement pattern regulation and plasticity: bioelectricity. All cells, not only nerves and muscles, produce and sense electrical signals; in vivo, these processes form bioelectric circuits that harness individual cell behaviors toward specific anatomical endpoints. We review emerging progress in reading and re-writing anatomical information encoded in bioelectrical states, and discuss the approaches to this problem from the perspectives of information theory, dynamical systems, and computational neuroscience. Cracking the bioelectric code will enable much-improved control over biological patterning, advancing basic evolutionary developmental biology as well as enabling numerous applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Biology Department, Tufts University, 200 Boston Avenue, Suite 4600 Medford, MA 02155, USA.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
13
|
McLaughlin KA, Levin M. Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form. Dev Biol 2018; 433:177-189. [PMID: 29291972 PMCID: PMC5753428 DOI: 10.1016/j.ydbio.2017.08.032] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
The ability to control pattern formation is critical for the both the embryonic development of complex structures as well as for the regeneration/repair of damaged or missing tissues and organs. In addition to chemical gradients and gene regulatory networks, endogenous ion flows are key regulators of cell behavior. Not only do bioelectric cues provide information needed for the initial development of structures, they also enable the robust restoration of normal pattern after injury. In order to expand our basic understanding of morphogenetic processes responsible for the repair of complex anatomy, we need to identify the roles of endogenous voltage gradients, ion flows, and electric fields. In complement to the current focus on molecular genetics, decoding the information transduced by bioelectric cues enhances our knowledge of the dynamic control of growth and pattern formation. Recent advances in science and technology place us in an exciting time to elucidate the interplay between molecular-genetic inputs and important biophysical cues that direct the creation of tissues and organs. Moving forward, these new insights enable additional approaches to direct cell behavior and may result in profound advances in augmentation of regenerative capacity.
Collapse
Affiliation(s)
- Kelly A McLaughlin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States.
| | - Michael Levin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States
| |
Collapse
|
14
|
McDowell G, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0409. [PMID: 27821521 DOI: 10.1098/rstb.2015.0409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Gary McDowell
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Suvithan Rajadurai
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Michael Levin
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA .,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
15
|
Boutet A. The evolution of asymmetric photosensitive structures in metazoans and the Nodal connection. Mech Dev 2017; 147:49-60. [PMID: 28986126 DOI: 10.1016/j.mod.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/26/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023]
Abstract
Asymmetries are observed in a great number of taxa in metazoans. More particularly, functional lateralization and neuroanatomical asymmetries within the central nervous system have been a matter of intense research for at least two hundred years. While asymmetries of some paired structures/organs (e.g. eyes, ears, kidneys, legs, arms) constitute random deviations from a pure bilateral symmetry, brain asymmetries such as those observed in the cortex and epithalamus are directional. This means that molecular and anatomical features located on one side of a given structure are observed in most individuals. For instance, in humans, the neuronal tract connecting the language areas is enlarged in the left hemisphere. When asymmetries are fixed, their molecular mechanisms can be studied using mutants displaying different phenotypes: left or right isomerism of the structure, reversed asymmetry or random asymmetry. Our understanding of asymmetry in the nervous system has been widely enriched thanks to the characterization of mutants affecting epithalamus asymmetry. Furthermore, two decades ago, pioneering studies revealed that a specific morphogen, Nodal, active only on one side of the embryo during development is an important molecule in asymmetry patterning. In this review, I have gathered important data bringing insight into the origin and evolution of epithalamus asymmetry and the role of Nodal in metazoans. After a short introduction on brain asymmetries (chapter I), I secondly focus on the molecular and anatomical characteristics of the epithalamus in vertebrates and explore some functional aspects such as its photosensitive ability related to the pineal complex (chapter II). Third, I discuss homology relationship of the parapineal organ among vertebrates (chapter III). Fourth, I discuss the possible origin of the epithalamus, presenting cells displaying photosensitive properties and/or asymmetry in the anterior part of the body in non-vertebrates (chapter IV). Finally, I report Nodal signaling expression data and functional experiments performed in different metazoan groups (chapter V).
Collapse
Affiliation(s)
- Agnès Boutet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8227, Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique, F-29688 Roscoff, France.
| |
Collapse
|
16
|
Moore D, Walker SI, Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Sadler TW. Establishing the Embryonic Axes: Prime Time for Teratogenic Insults. J Cardiovasc Dev Dis 2017; 4:E15. [PMID: 29367544 PMCID: PMC5715709 DOI: 10.3390/jcdd4030015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/21/2023] Open
Abstract
A long standing axiom in the field of teratology states that the teratogenic period, when most birth defects are produced, occurs during the third to eighth weeks of development post-fertilization. Any insults prior to this time are thought to result in a slowing of embryonic growth from which the conceptus recovers or death of the embryo followed by spontaneous abortion. However, new insights into embryonic development during the first two weeks, including formation of the anterior-posterior, dorsal-ventral, and left-right axes, suggests that signaling pathways regulating these processes are prime targets for genetic and toxic insults. Establishment of the left-right (laterality) axis is particularly sensitive to disruption at very early stages of development and these perturbations result in a wide variety of congenital malformations, especially heart defects. Thus, the time for teratogenic insults resulting in birth defects should be reset to include the first two weeks of development.
Collapse
Affiliation(s)
- Thomas W Sadler
- Senior Fellow, Greenwood Genetics Center, Greenwood, SC 29646, USA.
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.
- Department of Anatomy, Quillen College of Medicine, East Tennessee State University, Johnson, TN 37614, USA.
- 78 Lemon Gulch Lane, Sheridan, MT 59749, USA.
| |
Collapse
|
18
|
Tisler M, Schweickert A, Blum M. Xenopus, an ideal model organism to study laterality in conjoined twins. Genesis 2017; 55. [PMID: 28132423 DOI: 10.1002/dvg.22993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/11/2022]
Abstract
Conjoined twins occur at low frequency in all vertebrates including humans. Many twins fused at the chest or abdomen display a very peculiar laterality defect: while the left twin is normal with respect to asymmetric organ morphogenesis and placement (situs solitus), the organ situs is randomized in right twins. Although this phenomenon has fascinated already some of the founders of experimental embryology in the 19th and early 20th century, such as Dareste, Fol, Warynsky and Spemann, its embryological basis has remained enigmatic. Here we summarize historical experiments and interpretations as well as current models, argue that the frog Xenopus is the only vertebrate model organism to tackle the issue, and outline suitable experiments to address the question of twin laterality in the context of cilia-based symmetry breakage.
Collapse
Affiliation(s)
- Matthias Tisler
- University of Hohenheim, Institute of Zoology, Stuttgart, D-70593, Germany
| | | | - Martin Blum
- University of Hohenheim, Institute of Zoology, Stuttgart, D-70593, Germany
| |
Collapse
|
19
|
Mathews J, Levin M. Gap junctional signaling in pattern regulation: Physiological network connectivity instructs growth and form. Dev Neurobiol 2017; 77:643-673. [PMID: 27265625 PMCID: PMC10478170 DOI: 10.1002/dneu.22405] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
Gap junctions (GJs) are aqueous channels that allow cells to communicate via physiological signals directly. The role of gap junctional connectivity in determining single-cell functions has long been recognized. However, GJs have another important role: the regulation of large-scale anatomical pattern. GJs are not only versatile computational elements that allow cells to control which small molecule signals they receive and emit, but also establish connectivity patterns within large groups of cells. By dynamically regulating the topology of bioelectric networks in vivo, GJs underlie the ability of many tissues to implement complex morphogenesis. Here, a review of recent data on patterning roles of GJs in growth of the zebrafish fin, the establishment of left-right patterning, the developmental dysregulation known as cancer, and the control of large-scale head-tail polarity, and head shape in planarian regeneration has been reported. A perspective in which GJs are not only molecular features functioning in single cells, but also enable global neural-like dynamics in non-neural somatic tissues has been proposed. This view suggests a rich program of future work which capitalizes on the rapid advances in the biophysics of GJs to exploit GJ-mediated global dynamics for applications in birth defects, regenerative medicine, and morphogenetic bioengineering. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 643-673, 2017.
Collapse
Affiliation(s)
- Juanita Mathews
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| | - Michael Levin
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| |
Collapse
|
20
|
Nardi I, De Lucchini S, Naef V, Ori M. Serotonin signaling contribution to an evolutionary success: the jaw joint of vertebrates. THE EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/11250003.2016.1269213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- I. Nardi
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | | | - V. Naef
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - M. Ori
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| |
Collapse
|
21
|
Sullivan KG, Emmons-Bell M, Levin M. Physiological inputs regulate species-specific anatomy during embryogenesis and regeneration. Commun Integr Biol 2016; 9:e1192733. [PMID: 27574538 PMCID: PMC4988443 DOI: 10.1080/19420889.2016.1192733] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022] Open
Abstract
A key problem in evolutionary developmental biology is identifying the sources of instructive information that determine species-specific anatomical pattern. Understanding the inputs to large-scale morphology is also crucial for efforts to manipulate pattern formation in regenerative medicine and synthetic bioengineering. Recent studies have revealed a physiological system of communication among cells that regulates pattern during embryogenesis and regeneration in vertebrate and invertebrate models. Somatic tissues form networks using the same ion channels, electrical synapses, and neurotransmitter mechanisms exploited by the brain for information-processing. Experimental manipulation of these circuits was recently shown to override genome default patterning outcomes, resulting in head shapes resembling those of other species in planaria and Xenopus. The ability to drastically alter macroscopic anatomy to that of other extant species, despite a wild-type genomic sequence, suggests exciting new approaches to the understanding and control of patterning. Here, we review these results and discuss hypotheses regarding non-genomic systems of instructive information that determine biological growth and form.
Collapse
Affiliation(s)
- Kelly G Sullivan
- Allen Discovery Center at Tufts University, Tufts University , Medford, MA, USA
| | - Maya Emmons-Bell
- Allen Discovery Center at Tufts University, Tufts University , Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Tufts University , Medford, MA, USA
| |
Collapse
|
22
|
Biocompatibility assessment of fibrous nanomaterials in mammalian embryos. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1151-9. [DOI: 10.1016/j.nano.2016.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/04/2015] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
|
23
|
Abstract
The central nervous system (CNS) underlies memory, perception, decision-making, and behavior in numerous organisms. However, neural networks have no monopoly on the signaling functions that implement these remarkable algorithms. It is often forgotten that neurons optimized cellular signaling modes that existed long before the CNS appeared during evolution, and were used by somatic cellular networks to orchestrate physiology, embryonic development, and behavior. Many of the key dynamics that enable information processing can, in fact, be implemented by different biological hardware. This is widely exploited by organisms throughout the tree of life. Here, we review data on memory, learning, and other aspects of cognition in a range of models, including single celled organisms, plants, and tissues in animal bodies. We discuss current knowledge of the molecular mechanisms at work in these systems, and suggest several hypotheses for future investigation. The study of cognitive processes implemented in aneural contexts is a fascinating, highly interdisciplinary topic that has many implications for evolution, cell biology, regenerative medicine, computer science, and synthetic bioengineering.
Collapse
Affiliation(s)
- František Baluška
- Department of Plant Cell Biology, IZMB, University of Bonn Bonn, Germany
| | - Michael Levin
- Biology Department, Tufts Center for Regenerative and Developmental Biology, Tufts University Medford, MA, USA
| |
Collapse
|
24
|
Oliveira-Nunes MC, Assad Kahn S, de Oliveira Barbeitas AL, E Spohr TCLDS, Dubois LGF, Ventura Matioszek GM, Querido W, Campanati L, de Brito Neto JM, Lima FRS, Moura-Neto V, Carneiro K. The availability of the embryonic TGF-β protein Nodal is dynamically regulated during glioblastoma multiforme tumorigenesis. Cancer Cell Int 2016; 16:46. [PMID: 27330409 PMCID: PMC4912793 DOI: 10.1186/s12935-016-0324-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common primary brain tumor presenting self-renewing cancer stem cells. The role of these cells on the development of the tumors has been proposed to recapitulate programs from embryogenesis. Recently, the embryonic transforming growth factor-β (TGF-β) protein Nodal has been shown to be reactivated upon tumor development; however, its availability in GBM cells has not been addressed so far. In this study, we investigated by an original approach the mechanisms that dynamically control both intra and extracellular Nodal availability during GBM tumorigenesis. Methods We characterized the dynamics of Nodal availability in both stem and more differentiated GBM cells through morphological analysis, immunofluorescence of Nodal protein and of early (EEA1 and Rab5) and late (Rab7 and Rab11) endocytic markers and Western Blot. Tukey’s test was used to analyze the prevalent correlation of Nodal with different endocytic markers inside specific differentiation states, and Sidak’s multiple comparisons test was used to compare the prevalence of Nodal/endocytic markers co-localization between two differentiation states of GBM cells. Paired t test was used to analyze the abundance of Nodal protein, in extra and intracellular media. Results The cytoplasmic distribution of Nodal was dynamically regulated and strongly correlated with the differentiation status of GBM cells. While Nodal-positive vesicle-like particles were symmetrically distributed in GBM stem cells (GBMsc), they presented asymmetric perinuclear localization in more differentiated GBM cells (mdGBM). Strikingly, when subjected to dedifferentiation, the distribution of Nodal in mdGBM shifted to a symmetric pattern. Moreover, the availability of both intracellular and secreted Nodal were downregulated upon GBMsc differentiation, with cells becoming elongated, negative for Nodal and positive for Nestin. Interestingly, the co-localization of Nodal with endosomal vesicles also depended on the differentiation status of the cells, with Nodal seen more packed in EEA1/Rab5 + vesicles in GBMsc and more in Rab7/11 + vesicles in mdGBM. Conclusions Our results show for the first time that Nodal availability relates to GBM cell differentiation status and that it is dynamically regulated by an endocytic pathway during GBM tumorigenesis, shedding new light on molecular pathways that might emerge as putative targets for Nodal signaling in GBM therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0324-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Cecília Oliveira-Nunes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, F2-01, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Suzana Assad Kahn
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 265 Campus Drive, Stanford, California 94305 USA ; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, F1-20, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Ana Luiza de Oliveira Barbeitas
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, F2-01, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Tania Cristina Leite de Sampaio E Spohr
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, F1-20, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil ; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Rezende, 156, Rio de Janeiro, Rio de Janeiro 20231-092 Brazil
| | - Luiz Gustavo Feijó Dubois
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, F1-20, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil ; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Rezende, 156, Rio de Janeiro, Rio de Janeiro 20231-092 Brazil
| | - Grasiella Maria Ventura Matioszek
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, B1-29, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - William Querido
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, F2-30, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Loraine Campanati
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, F1-20, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - José Marques de Brito Neto
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, F2-01, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Flavia Regina Souza Lima
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, F1-20, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Vivaldo Moura-Neto
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, F1-20, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil ; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Rezende, 156, Rio de Janeiro, Rio de Janeiro 20231-092 Brazil
| | - Katia Carneiro
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, F2-01, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| |
Collapse
|
25
|
Sullivan KG, Levin M. Neurotransmitter signaling pathways required for normal development in Xenopus laevis embryos: a pharmacological survey screen. J Anat 2016; 229:483-502. [PMID: 27060969 DOI: 10.1111/joa.12467] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 01/08/2023] Open
Abstract
Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, results are reported from a loss- and gain-of-function survey, using pharmacological modulators of several neurotransmitter pathways to examine possible roles for these pathways in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations, including craniofacial defects, hyperpigmentation, muscle mispatterning and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy.
Collapse
Affiliation(s)
- Kelly G Sullivan
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| | - Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
26
|
Durant F, Lobo D, Hammelman J, Levin M. Physiological controls of large-scale patterning in planarian regeneration: a molecular and computational perspective on growth and form. REGENERATION (OXFORD, ENGLAND) 2016; 3:78-102. [PMID: 27499881 PMCID: PMC4895326 DOI: 10.1002/reg2.54] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022]
Abstract
Planaria are complex metazoans that repair damage to their bodies and cease remodeling when a correct anatomy has been achieved. This model system offers a unique opportunity to understand how large-scale anatomical homeostasis emerges from the activities of individual cells. Much progress has been made on the molecular genetics of stem cell activity in planaria. However, recent data also indicate that the global pattern is regulated by physiological circuits composed of ionic and neurotransmitter signaling. Here, we overview the multi-scale problem of understanding pattern regulation in planaria, with specific focus on bioelectric signaling via ion channels and gap junctions (electrical synapses), and computational efforts to extract explanatory models from functional and molecular data on regeneration. We present a perspective that interprets results in this fascinating field using concepts from dynamical systems theory and computational neuroscience. Serving as a tractable nexus between genetic, physiological, and computational approaches to pattern regulation, planarian pattern homeostasis harbors many deep insights for regenerative medicine, evolutionary biology, and engineering.
Collapse
Affiliation(s)
- Fallon Durant
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Daniel Lobo
- Department of Biological SciencesUniversity of MarylandBaltimore County, 1000 Hilltop CircleBaltimoreMD21250USA
| | - Jennifer Hammelman
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| |
Collapse
|
27
|
Cabanel M, Brand C, Oliveira-Nunes MC, Cabral-Piccin MP, Lopes MF, Brito JM, de Oliveira FL, El-Cheikh MC, Carneiro K. Epigenetic Control of Macrophage Shape Transition towards an Atypical Elongated Phenotype by Histone Deacetylase Activity. PLoS One 2015. [PMID: 26196676 PMCID: PMC4509762 DOI: 10.1371/journal.pone.0132984] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Inflammatory chronic pathologies are complex processes characterized by an imbalance between the resolution of the inflammatory phase and the establishment of tissue repair. The main players in these inflammatory pathologies are bone marrow derived monocytes (BMDMs). However, how monocyte differentiation is modulated to give rise to specific macrophage subpopulations (M1 or M2) that may either maintain the chronic inflammatory process or lead to wound healing is still unclear. Considering that inhibitors of Histone Deacetylase (HDAC) have an anti-inflammatory activity, we asked whether this enzyme would play a role on monocyte differentiation into M1 or M2 phenotype and in the cell shape transition that follows. We then induced murine bone marrow progenitors into monocyte/macrophage differentiation pathway using media containing GM-CSF and the HDAC blocker, Trichostatin A (TSA). We found that the pharmacological inhibition of HDAC activity led to a shape transition from the typical macrophage pancake-like shape into an elongated morphology, which was correlated to a mixed M1/M2 profile of cytokine and chemokine secretion. Our results present, for the first time, that HDAC activity acts as a regulator of macrophage differentiation in the absence of lymphocyte stimuli. We propose that HDAC activity down regulates macrophage plasticity favoring the pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Mariana Cabanel
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Brand
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Marcela Freitas Lopes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Marques Brito
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Cury El-Cheikh
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Carneiro
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
28
|
Funk RHW. Endogenous electric fields as guiding cue for cell migration. Front Physiol 2015; 6:143. [PMID: 26029113 PMCID: PMC4429568 DOI: 10.3389/fphys.2015.00143] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
This review covers two topics: (1) "membrane potential of low magnitude and related electric fields (bioelectricity)" and (2) "cell migration under the guiding cue of electric fields (EF)."Membrane potentials for this "bioelectricity" arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the "electric" interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions.
Collapse
|
29
|
Carneiro K, de Brito JM, Rossi MID. Development by three-dimensional approaches and four-dimensional imaging: to the knowledge frontier and beyond. ACTA ACUST UNITED AC 2015; 105:1-8. [PMID: 25789860 DOI: 10.1002/bdrc.21089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many advances have been taken on elucidating embryonic development and tissue homeostasis and repair by the use of experimental strategies that preserve the three-dimensional (3D) organization and allow quantitative analysis of images over time (four-dimensional). Ranging from the understanding about the relationship between blastomeres and the events that take place during gastrulation by the use of time-lapse imaging through 3D cultures that mimic organogenesis, the advances in this area are of critical value. The studies on embryonic development without disrupting the original architecture and the development of 3D organoid cultures pave a new avenue for unprecedented experimental advances that will positively impact the emergence of new treatments applying regenerative principles for both tissue repair and organ transplant.
Collapse
Affiliation(s)
- Katia Carneiro
- Biomedical Institute of Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
30
|
Chernet BT, Levin M. Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget 2015; 5:3287-306. [PMID: 24830454 PMCID: PMC4102810 DOI: 10.18632/oncotarget.1935] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The microenvironment is increasingly recognized as a crucial aspect of cancer. In contrast and complement to the field's focus on biochemical factors and extracellular matrix, we characterize a novel aspect of host:tumor interaction - endogenous bioelectric signals among non-excitable somatic cells. Extending prior work focused on the bioelectric state of cancer cells themselves, we show for the first time that the resting potentials of distant cells are critical for oncogene-dependent tumorigenesis. In the Xenopus laevis tadpole model, we used human oncogenes such as mutant KRAS to drive formation of tumor-like structures that exhibited overproliferation, increased nuclear size, hypoxia, acidity, and leukocyte attraction. Remarkably, misexpression of hyperpolarizing ion channels at distant sites within the tadpole significantly reduced the incidence of these tumors. The suppression of tumorigenesis could also be achieved by hyperpolarization using native CLIC1 chloride channels, suggesting a treatment modality not requiring gene therapy. Using a dominant negative approach, we implicate HDAC1 as the mechanism by which resting potential changes affect downstream cell behaviors. Based on published data on the voltage-mediated changes of butyrate flux through the SLC5A8 transporter, we present a model linking resting potentials of host cells to the ability of oncogenes to initiate tumorigenesis. Antibiotic data suggest that the relevant butyrate is generated by a native bacterial species, identifying a novel link between the microbiome and cancer that is mediated by alterations in bioelectric signaling.
Collapse
Affiliation(s)
- Brook T Chernet
- Center for Regenerative and Developmental Biology and Department of Biology Tufts University 200 Boston Avenue,Suite 4600 Medford, MA 02155 U.S.A
| | | |
Collapse
|
31
|
Blackiston DJ, Anderson GM, Rahman N, Bieck C, Levin M. A novel method for inducing nerve growth via modulation of host resting potential: gap junction-mediated and serotonergic signaling mechanisms. Neurotherapeutics 2015; 12:170-84. [PMID: 25449797 PMCID: PMC4322068 DOI: 10.1007/s13311-014-0317-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major goal of regenerative medicine is to restore the function of damaged or missing organs through the implantation of bioengineered or donor-derived components. It is necessary to understand the signals and cues necessary for implanted structures to innervate the host, as organs devoid of neural connections provide little benefit to the patient. While developmental studies have identified neuronal pathfinding molecules required for proper patterning during embryogenesis, strategies to initiate innervation in structures transplanted at later times or alternate locations remain limited. Recent work has identified membrane resting potential of nerves as a key regulator of growth cone extension or arrest. Here, we identify a novel role of bioelectricity in the generation of axon guidance cues, showing that neurons read the electric topography of surrounding cells, and demonstrate these cues can be leveraged to initiate sensory organ transplant innervation. Grafts of fluorescently labeled embryological eye primordia were used to produce ectopic eyes in Xenopus laevis tadpoles. Depolarization of host tissues through anion channel activation or other means led to a striking hyperinnervation of the body by these ectopic eyes. A screen of possible transduction mechanisms identified serotonergic signaling to be essential for hyperinnervation to occur, and our molecular data suggest a possible model of bioelectrical control of the distribution of neurotransmitters that guides nerve growth. Together, these results identify the molecular components of bioelectrical signaling among cells that regulates axon guidance, and suggest novel biomedical and bioengineering strategies for triggering neuronal outgrowth using ion channel drugs already approved for human use.
Collapse
Affiliation(s)
- Douglas J. Blackiston
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| | - George M. Anderson
- Yale Child Study Center and Department of Laboratory Medicine, Yale University School of Medicine, 230 S. Frontage Rd., New Haven, CT 06519 USA
| | - Nikita Rahman
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| | - Clara Bieck
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| |
Collapse
|
32
|
Halstead AM, Wright CVE. Disrupting Foxh1-Groucho interaction reveals robustness of nodal-based embryonic patterning. Mech Dev 2014; 136:155-65. [PMID: 25511461 DOI: 10.1016/j.mod.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 12/12/2022]
Abstract
The winged-helix transcription factor Foxh1 is an essential regulator of Nodal signaling during the key developmental processes of gastrulation, anterior-posterior (A-P) patterning, and the derivation of left-right (L-R) asymmetry. Current models have Foxh1 bound to phospho-Smad2/3 (pSmad2/3) as a central transcriptional activator for genes targeted by Nodal signaling including Nodal itself, the feedback inhibitor Lefty2, and the positive transcriptional effector Pitx2. However, the conserved Engrailed homology-1 (EH1) motif present in Foxh1 suggests that modulated interaction with Groucho (Grg) co-repressors would allow Foxh1 to function as a transcriptional switch, toggling between transcriptional on and off states via pSmad2-Grg protein-switching, to ensure the properly timed initiation and suppression, and/or amplitude, of expression of Nodal and its target genes. We minimally mutated the Foxh1 EH1 motif, creating a novel Foxh1(mEH1) allele to test directly the contribution of Foxh1-Grg-mediated repression on the transient, dynamic pattern of Nodal signaling in mice. All aspects of Nodal and its target gene expression in Foxh1(mEH1/mEH1) embryos were equivalent to wild type. A-P patterning and organ situs in homozygous embryos and adult mice were also unaffected. The finding that Foxh1-Grg-mediated repression is not essential for Nodal expression during mouse embryogenesis suggests that other regulators compensate for the loss of repressive regulatory input that is mediated by Grg interactions. We suggest that the pervasive inductive properties of Nodal signaling exist within the context of a strongly buffered regulatory system that contributes to resilience and accuracy of its dynamic expression pattern.
Collapse
Affiliation(s)
- Angela M Halstead
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Stem Cell Biology, Vanderbilt University Medical School, 2213 Garland Ave., Nashville, TN 37232, United States
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Stem Cell Biology, Vanderbilt University Medical School, 2213 Garland Ave., Nashville, TN 37232, United States.
| |
Collapse
|
33
|
Blum M, Schweickert A, Vick P, Wright CVE, Danilchik MV. Symmetry breakage in the vertebrate embryo: when does it happen and how does it work? Dev Biol 2014; 393:109-23. [PMID: 24972089 PMCID: PMC4481729 DOI: 10.1016/j.ydbio.2014.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Asymmetric development of the vertebrate embryo has fascinated embryologists for over a century. Much has been learned since the asymmetric Nodal signaling cascade in the left lateral plate mesoderm was detected, and began to be unraveled over the past decade or two. When and how symmetry is initially broken, however, has remained a matter of debate. Two essentially mutually exclusive models prevail. Cilia-driven leftward flow of extracellular fluids occurs in mammalian, fish and amphibian embryos. A great deal of experimental evidence indicates that this flow is indeed required for symmetry breaking. An alternative model has argued, however, that flow simply acts as an amplification step for early asymmetric cues generated by ion flux during the first cleavage divisions. In this review we critically evaluate the experimental basis of both models. Although a number of open questions persist, the available evidence is best compatible with flow-based symmetry breakage as the archetypical mode of symmetry breakage.
Collapse
Affiliation(s)
- Martin Blum
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany.
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Philipp Vick
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-0494, USA
| | - Michael V Danilchik
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239-3098, USA
| |
Collapse
|
34
|
Alteration of bioelectrically-controlled processes in the embryo: a teratogenic mechanism for anticonvulsants. Reprod Toxicol 2014; 47:111-4. [PMID: 24815983 DOI: 10.1016/j.reprotox.2014.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/29/2014] [Accepted: 04/29/2014] [Indexed: 11/21/2022]
Abstract
Maternal use of anticonvulsants during the first trimester of pregnancy has been associated with an elevated risk of major congenital malformations in the offspring. Whether the increased risk is caused by the specific pharmacological mechanisms of certain anticonvulsants, the underlying epilepsy, or common genetic or environmental risk factors shared by epilepsy and malformations has been controversial. We hypothesize that anticonvulsant therapies during pregnancy that attain more successful inhibition of neurotransmission might lead to both better seizure control in the mother and stronger alteration of bioelectrically-controlled processes in the embryo that result in structural malformations. We propose that development of pharmaceuticals that do not alter cell resting transmembrane voltage levels could result in safer drugs.
Collapse
|
35
|
Tingler M, Ott T, Tözser J, Kurz S, Getwan M, Tisler M, Schweickert A, Blum M. Symmetry breakage in the frog Xenopus
: Role of Rab11 and the ventral-right blastomere. Genesis 2014; 52:588-99. [DOI: 10.1002/dvg.22766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/12/2014] [Accepted: 02/25/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Melanie Tingler
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Tim Ott
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Janos Tözser
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Sabrina Kurz
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Maike Getwan
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Matthias Tisler
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Axel Schweickert
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim; Stuttgart D-70593 Germany
| |
Collapse
|
36
|
Abstract
The satellite symposium on 'Making and breaking the left-right axis: implications of laterality in development and disease' was held in June 2013 in conjunction with the 17th International Society for Developmental Biology meeting in Cancún, Mexico. As we summarize here, leaders in the field gathered at the symposium to discuss recent advances in understanding how left-right asymmetry is generated and utilized across the animal kingdom.
Collapse
Affiliation(s)
- Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | |
Collapse
|
37
|
VANDENBERG LAURAN, BLACKISTON DOUGLASJ, REA ADAMC, DORE TIMOTHYM, LEVIN MICHAEL. Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2014; 58:799-809. [PMID: 25896280 PMCID: PMC10471180 DOI: 10.1387/ijdb.140215ml] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A number of processes operating during the first cell cleavages enable the left-right (LR) axis to be consistently oriented during Xenopus laevis development. Prior work showed that secondary organizers induced in frog embryos after cleavage stages (i.e. conjoined twins arising from ectopic induced primary axes) correctly pattern their own LR axis only when a primary (early) organizer is also present. This instructive effect confirms the unique LR patterning functions that occur during early embryogenesis, but leaves open the question: which mechanisms that operate during early stages are also involved in the orientation of later-induced organizers? We sought to distinguish the two phases of LR patterning in secondary organizers (LR patterning of the primary twin and the later transfer of this information to the secondary twin) by perturbing only the latter process. Here, we used reagents that do not affect primary LR patterning at the time secondary organizers form to inhibit each of 4 mechanisms in the induced twin. Using pharmacological, molecular-genetic, and photo-chemical tools, we show that serotonergic and gap-junctional signaling, but not proton or potassium flows, are required for the secondary organizer to appropriately pattern its LR axis in a multicellular context. We also show that consistently-asymmetric gene expression begins prior to ciliary flow. Together, our data highlight the importance of physiological signaling in the propagation of cleavage-derived LR orientation to multicellular cell fields.
Collapse
Affiliation(s)
- LAURA N. VANDENBERG
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
- Department of Public Health, Division of Environmental Health Sciences, University of Massachusetts – Amherst, Amherst, MA, USA
| | - DOUGLAS J. BLACKISTON
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| | - ADAM C. REA
- Department of Chemistry, University of Georgia, Athens, GA, USA and
| | - TIMOTHY M. DORE
- Department of Chemistry, University of Georgia, Athens, GA, USA and
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - MICHAEL LEVIN
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
38
|
Vandenberg LN, Lemire JM, Levin M. It's never too early to get it Right: A conserved role for the cytoskeleton in left-right asymmetry. Commun Integr Biol 2013; 6:e27155. [PMID: 24505508 PMCID: PMC3912007 DOI: 10.4161/cib.27155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/08/2023] Open
Abstract
For centuries, scientists and physicians have been captivated by the consistent left-right (LR) asymmetry of the heart, viscera, and brain. A recent study implicated tubulin proteins in establishing laterality in several experimental models, including asymmetric chemosensory receptor expression in C. elegans neurons, polarization of HL-60 human neutrophil-like cells in culture, and asymmetric organ placement in Xenopus. The same mutations that randomized asymmetry in these diverse systems also affect chirality in Arabidopsis, revealing a remarkable conservation of symmetry-breaking mechanisms among kingdoms. In Xenopus, tubulin mutants only affected LR patterning very early, suggesting that this axis is established shortly after fertilization. This addendum summarizes and extends the knowledge of the cytoskeleton's role in the patterning of the LR axis. Results from many species suggest a conserved role for the cytoskeleton as the initiator of asymmetry, and indicate that symmetry is first broken during early embryogenesis by an intracellular process.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA ; Current affiliation: Department of Public Health; Division of Environmental Health Sciences; University of Massachusetts, Amherst; Amherst, MA USA
| | - Joan M Lemire
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA
| | - Michael Levin
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA
| |
Collapse
|
39
|
Levin M. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:657-76. [PMID: 23897652 PMCID: PMC3841289 DOI: 10.1002/wsbm.1236] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 12/17/2022]
Abstract
Transformative impact in regenerative medicine requires more than the reprogramming of individual cells: advances in repair strategies for birth defects or injuries, tumor normalization, and the construction of bioengineered organs and tissues all require the ability to control large-scale anatomical shape. Much recent work has focused on the transcriptional and biochemical regulation of cell behavior and morphogenesis. However, exciting new data reveal that bioelectrical properties of cells and their microenvironment exert a profound influence on cell differentiation, proliferation, and migration. Ion channels and pumps expressed in all cells, not just excitable nerve and muscle, establish resting potentials that vary across tissues and change with significant developmental events. Most importantly, the spatiotemporal gradients of these endogenous transmembrane voltage potentials (Vmem ) serve as instructive patterning cues for large-scale anatomy, providing organ identity, positional information, and prepattern template cues for morphogenesis. New genetic and pharmacological techniques for molecular modulation of bioelectric gradients in vivo have revealed the ability to initiate complex organogenesis, change tissue identity, and trigger regeneration of whole vertebrate appendages. A large segment of the spatial information processing that orchestrates individual cells' programs toward the anatomical needs of the host organism is electrical; this blurs the line between memory and decision-making in neural networks and morphogenesis in nonneural tissues. Advances in cracking this bioelectric code will enable the rational reprogramming of shape in whole tissues and organs, revolutionizing regenerative medicine, developmental biology, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Tufts University, Department of Biology and Tufts Center for Regenerative and Developmental Biology, 200 Boston Ave., Suite 4600, Medford, MA 02155
| |
Collapse
|
40
|
Vandenberg LN, Levin M. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 2013; 379:1-15. [PMID: 23583583 PMCID: PMC3698617 DOI: 10.1016/j.ydbio.2013.03.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events' linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| |
Collapse
|
41
|
Tseng A, Levin M. Cracking the bioelectric code: Probing endogenous ionic controls of pattern formation. Commun Integr Biol 2013; 6:e22595. [PMID: 23802040 PMCID: PMC3689572 DOI: 10.4161/cib.22595] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patterns of resting potential in non-excitable cells of living tissue are now known to be instructive signals for pattern formation during embryogenesis, regeneration and cancer suppression. The development of molecular-level techniques for tracking ion flows and functionally manipulating the activity of ion channels and pumps has begun to reveal the mechanisms by which voltage gradients regulate cell behaviors and the assembly of complex large-scale structures. A recent paper demonstrated that a specific voltage range is necessary for demarcation of eye fields in the frog embryo. Remarkably, artificially setting other somatic cells to the eye-specific voltage range resulted in formation of eyes in aberrant locations, including tissues that are not in the normal anterior ectoderm lineage: eyes could be formed in the gut, on the tail, or in the lateral plate mesoderm. These data challenge the existing models of eye fate restriction and tissue competence maps, and suggest the presence of a bioelectric code-a mapping of physiological properties to anatomical outcomes. This Addendum summarizes the current state of knowledge in developmental bioelectricity, proposes three possible interpretations of the bioelectric code that functionally maps physiological states to anatomical outcomes, and highlights the biggest open questions in this field. We also suggest a speculative hypothesis at the intersection of cognitive science and developmental biology: that bioelectrical signaling among non-excitable cells coupled by gap junctions simulates neural network-like dynamics, and underlies the information processing functions required by complex pattern formation in vivo. Understanding and learning to control the information stored in physiological networks will have transformative implications for developmental biology, regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Aisun Tseng
- Department of Biology and Tufts Center for Regenerative and Developmental Biology; Medford, MA USA
| | | |
Collapse
|
42
|
Vandenberg LN, Morrie RD, Seebohm G, Lemire JM, Levin M. Rab GTPases are required for early orientation of the left-right axis in Xenopus. Mech Dev 2013; 130:254-71. [PMID: 23354119 PMCID: PMC10676213 DOI: 10.1016/j.mod.2012.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 02/04/2023]
Abstract
The earliest steps of left-right (LR) patterning in Xenopus embryos are driven by biased intracellular transport that ensures a consistently asymmetric localization of maternal ion channels and pumps in the first 2-4 blastomeres. The subsequent differential net efflux of ions by these transporters generates a bioelectrical asymmetry; this LR voltage gradient redistributes small signaling molecules along the LR axis that later regulate transcription of the normally left-sided Nodal. This system thus amplifies single cell chirality into a true left-right asymmetry across multi-cellular fields. Studies using molecular-genetic gain- and loss-of-function reagents have characterized many of the steps involved in this early pathway in Xenopus. Yet one key question remains: how is the chiral cytoskeletal architecture interpreted to localize ion transporters to the left or right side? Because Rab GTPases regulate nearly all aspects of membrane trafficking, we hypothesized that one or more Rab proteins were responsible for the directed, asymmetric shuttling of maternal ion channel or pump proteins. After performing a screen using dominant negative and wildtype (overexpressing) mRNAs for four different Rabs, we found that alterations in Rab11 expression randomize both asymmetric gene expression and organ situs. We also demonstrated that the asymmetric localization of two ion transporter subunits requires Rab11 function, and that Rab11 is closely associated with at least one of these subunits. Yet, importantly, we found that endogenous Rab11 mRNA and protein are expressed symmetrically in the early embryo. We conclude that Rab11-mediated transport is responsible for the movement of cargo within early blastomeres, and that Rab11 expression is required throughout the early embryo for proper LR patterning.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University Medford, MA 02155, United States
| | - Ryan D. Morrie
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University Medford, MA 02155, United States
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, Myocellular Electophysiology Group, University Hospital Münster, D-48149 Münster, Germany
| | - Joan M. Lemire
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University Medford, MA 02155, United States
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University Medford, MA 02155, United States
| |
Collapse
|
43
|
Adams DS, Levin M. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 2013; 352:95-122. [PMID: 22350846 PMCID: PMC3869965 DOI: 10.1007/s00441-012-1329-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/12/2012] [Indexed: 01/07/2023]
Abstract
Alongside the well-known chemical modes of cell-cell communication, we find an important and powerful system of bioelectrical signaling: changes in the resting voltage potential (Vmem) of the plasma membrane driven by ion channels, pumps and gap junctions. Slow Vmem changes in all cells serve as a highly conserved, information-bearing pathway that regulates cell proliferation, migration and differentiation. In embryonic and regenerative pattern formation and in the disorganization of neoplasia, bioelectrical cues serve as mediators of large-scale anatomical polarity, organ identity and positional information. Recent developments have resulted in tools that enable a high-resolution analysis of these biophysical signals and their linkage with upstream and downstream canonical genetic pathways. Here, we provide an overview for the study of bioelectric signaling, focusing on state-of-the-art approaches that use molecular physiology and developmental genetics to probe the roles of bioelectric events functionally. We highlight the logic, strategies and well-developed technologies that any group of researchers can employ to identify and dissect ionic signaling components in their own work and thus to help crack the bioelectric code. The dissection of bioelectric events as instructive signals enabling the orchestration of cell behaviors into large-scale coherent patterning programs will enrich on-going work in diverse areas of biology, as biophysical factors become incorporated into our systems-level understanding of cell interactions.
Collapse
Affiliation(s)
- Dany S Adams
- Department of Biology, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave, Medford, MA 02155, USA
| | | |
Collapse
|
44
|
Chernet B, Levin M. Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer. JOURNAL OF CLINICAL & EXPERIMENTAL ONCOLOGY 2013; Suppl 1:S1-002. [PMID: 25525610 PMCID: PMC4267524 DOI: 10.4172/2324-9110.s1-002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cancer may be a disease of geometry: a misregulation of the field of information that orchestrates individual cells' activities towards normal anatomy. Recent work identified molecular mechanisms underlying a novel system of developmental control: bioelectric gradients. Endogenous spatio-temporal differences in resting potential of non-neural cells provide instructive cues for cell regulation and complex patterning during embryogenesis and regeneration. It is now appreciated that these cues are an important layer of the dysregulation of cell: cell interactions that leads to cancer. Abnormal depolarization of resting potential (Vmem) is a convenient marker for neoplasia and activates a metastatic phenotype in genetically-normal cells in vivo. Moreover, oncogene expression depolarizes cells that form tumor-like structures, but is unable to form tumors if this depolarization is artificially prevented by misexpression of hyperpolarizing ion channels. Vmem triggers metastatic behaviors at considerable distance, mediated by transcriptional and epigenetic effects of electrically-modulated flows of serotonin and butyrate. While in vivo data on voltages in carcinogenesis comes mainly from the amphibian model, unbiased genetic screens and network profiling in rodents and human tissues reveal several ion channel proteins as bona fide oncogene and promising targets for cancer drug development. However, we propose that a focus on specific channel genes is just the tip of the iceberg. Bioelectric state is determined by post-translational gating of ion channels, not only from genetically-specified complements of ion translocators. A better model is a statistical dynamics view of spatial Vmem gradients. Cancer may not originate at the single cell level, since gap junctional coupling results in multi-cellular physiological networks with multiple stable attractors in bioelectrical state space. New medical applications await a detailed understanding of the mechanisms by which organ target morphology stored in real-time patterns of ion flows is perceived or mis-perceived by cells. Mastery of somatic voltage gradients will lead to cancer normalization or rebooting strategies, such as those that occur in regenerating and embryonic organs, resulting in transformative advances in basic biology and oncology.
Collapse
Affiliation(s)
| | - Michael Levin
- Corresponding author: Michael Levin, Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155, USA, Tel: (617) 627-6161; Fax:(617) 627- 6121;
| |
Collapse
|
45
|
Vandenberg LN, Lemire JM, Levin M. Serotonin has early, cilia-independent roles in Xenopus left-right patterning. Dis Model Mech 2013; 6:261-8. [PMID: 22899856 PMCID: PMC3529356 DOI: 10.1242/dmm.010256] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/07/2012] [Indexed: 12/16/2022] Open
Abstract
Consistent left-right (LR) patterning of the heart and viscera is a crucial part of normal embryogenesis. Because errors of laterality form a common class of birth defects, it is important to understand the molecular mechanisms and stage at which LR asymmetry is initiated. Frog embryos are a system uniquely suited to analysis of the mechanisms involved in orientation of the LR axis because of the many genetic and pharmacological tools available for use and the fate-map and accessibility of early blastomeres. Two major models exist for the origin of LR asymmetry and both implicate pre-nervous serotonergic signaling. In the first, the charged serotonin molecule is instructive for LR patterning; it is redistributed asymmetrically along the LR axis and signals intracellularly on the right side at cleavage stages. A second model suggests that serotonin is a permissive factor required to specify the dorsal region of the embryo containing chiral cilia that generate asymmetric fluid flow during neurulation, a much later process. We performed theory-neutral experiments designed to distinguish between these models. The results uniformly support a role for serotonin in the cleavage-stage embryo, long before the appearance of cilia, in ventral right blastomeres that do not contribute to the ciliated organ.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Joan M. Lemire
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
46
|
Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry. Stem Cells Int 2012; 2012:353491. [PMID: 23346115 PMCID: PMC3544345 DOI: 10.1155/2012/353491] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (Vmem) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by Vmem. The ATP-sensitive K+ channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways.
Collapse
|
47
|
Lobikin M, Chernet B, Lobo D, Levin M. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo. Phys Biol 2012. [PMID: 23196890 DOI: 10.1088/1478-3975/9/6/065002] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors toward the patterning needs of the organism. Steady-state gradients of transmembrane voltage (V(mem)) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment's biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by 'instructor' cells-a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels, suggesting a strategy for cancer suppression that does not require gene therapy. Together, these data extend our understanding of the recently demonstrated role of transmembrane potential in tumor formation and metastatic cell behavior. V(mem) is an important non-genetic biophysical aspect of the microenvironment that regulates the balance between normally patterned growth and carcinogenesis.
Collapse
Affiliation(s)
- Maria Lobikin
- Biology Department and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | | | | | | |
Collapse
|
48
|
Nakamura T, Hamada H. Left-right patterning: conserved and divergent mechanisms. Development 2012; 139:3257-62. [PMID: 22912409 DOI: 10.1242/dev.061606] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The left-right (LR) asymmetry of visceral organs is fundamental to their function and position within the body. Over the past decade or so, the molecular mechanisms underlying the establishment of such LR asymmetry have been revealed in many vertebrate and invertebrate model organisms. These studies have identified a gene network that contributes to this process and is highly conserved from sea urchin to mouse. By contrast, some specific steps of the process, such as the symmetry-breaking event and situs-specific organogenesis, appear to have diverged during evolution. Here, we summarize the common and divergent mechanisms by which LR asymmetry is established in vertebrates.
Collapse
Affiliation(s)
- Tetsuya Nakamura
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| | | |
Collapse
|
49
|
Tseng AS, Levin M. Transducing bioelectric signals into epigenetic pathways during tadpole tail regeneration. Anat Rec (Hoboken) 2012; 295:1541-51. [PMID: 22933452 DOI: 10.1002/ar.22495] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/12/2012] [Accepted: 04/12/2012] [Indexed: 11/12/2022]
Abstract
One important component of the cell-cell communication that occurs during regenerative patterning is bioelectrical signaling. In particular, the regeneration of the tail in Xenopus laevis tadpoles both requires, and can be initiated at non-regenerative stages by, specific regulation of bioelectrical signaling (alteration in resting membrane potential and a subsequent change in sodium content of blastemal cells). Although standing gradients of transmembrane voltage and ion concentration can provide positional guidance and other morphogenetic cues, these biophysical parameters must be transduced into transcriptional responses within cells. A number of mechanisms have been described for linking slow voltage changes to gene expression, but recent data on the importance of epigenetic regulation for regeneration suggest a novel hypothesis: that sodium/butyrate transporters link ion flows to influx of small molecules needed to modify chromatin state. Here, we briefly review the data on bioelectricity in tadpole tail regeneration, present a technique for convenient alteration of transmembrane potential in vivo that does not require transgenes, show augmentation of regeneration in vivo by manipulation of voltage, and present new data in the Xenopus tail consistent with the hypothesis that the monocarboxlyate transporter SLC5A8 may link regeneration-relevant epigenetic modification with upstream changes in ion content.
Collapse
Affiliation(s)
- Ai-Sun Tseng
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, Medford, Massachusetts, USA
| | | |
Collapse
|
50
|
Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms. Proc Natl Acad Sci U S A 2012; 109:12586-91. [PMID: 22802643 DOI: 10.1073/pnas.1202659109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many types of embryos' bodyplans exhibit consistently oriented laterality of the heart, viscera, and brain. Errors of left-right patterning present an important class of human birth defects, and considerable controversy exists about the nature and evolutionary conservation of the molecular mechanisms that allow embryos to reliably orient the left-right axis. Here we show that the same mutations in the cytoskeletal protein tubulin that alter asymmetry in plants also affect very early steps of left-right patterning in nematode and frog embryos, as well as chirality of human cells in culture. In the frog embryo, tubulin α and tubulin γ-associated proteins are required for the differential distribution of maternal proteins to the left or right blastomere at the first cell division. Our data reveal a remarkable molecular conservation of mechanisms initiating left-right asymmetry. The origin of laterality is cytoplasmic, ancient, and highly conserved across kingdoms, a fundamental feature of the cytoskeleton that underlies chirality in cells and multicellular organisms.
Collapse
|