1
|
Takagi R, Takegaki J, Osana S, Kano Y, Konishi S, Fujita S. Cooling-promoted myogenic differentiation of murine bone marrow mesenchymal stem cells through TRPM8 activation in vitro. Physiol Rep 2023; 11:e15855. [PMID: 38086691 PMCID: PMC10716030 DOI: 10.14814/phy2.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 12/17/2023] Open
Abstract
TRPM8 agonist has been reported to promote osteogenic differentiation of mesenchymal stem cells (MSCs), therefore we evaluated whether cooling-induced activation of TRPM8 promotes myogenic differentiation of MSCs. We used 5-azacytidine as a myogenic differentiation inducer in murine bone marrow-derived MSCs. Addition of menthol, a TRPM8 agonist, to the differentiation induction medium significantly, increased the percentage of MyoD-positive cells, a specific marker of myogenic differentiation. We performed intracellular Ca2+ imaging experiments using fura-2 to confirm TRPM8 activation by cooling stimulation. The results confirmed that intracellular Ca2+ concentration ([Ca2+ ]i) increases due to TRPM8 activation, and TRPM8 antagonist inhibits increase in [Ca2+ ]i at medium temperatures below 19°C. We also examined the effect of cooling exposure time on myogenic differentiation of MSCs using an external cooling stimulus set at 17°C. The results showed that 60 min of cooling had an acceleratory effect on differentiation (2.18 ± 0.27 times). We observed that the TRPM8 antagonist counteracted the differentiation-promoting effect of the cooling. These results suggest that TRPM8 might modulate the multiple differentiation pathways of MSCs, and that cooling is an effective way of activating TRPM8, which regulates MSCs differentiation in vitro.
Collapse
Affiliation(s)
- Ryo Takagi
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Junya Takegaki
- Research Organization of Science and TechnologyRitsumeikan UniversityShigaJapan
| | - Shion Osana
- Graduate School of Informatics and EngineeringUniversity of Electro‐CommunicationsTokyoJapan
- Faculty of Physical Education, Department of Sport and Medical ScienceKokushikan UniversityTokyoJapan
| | - Yutaka Kano
- Graduate School of Informatics and EngineeringUniversity of Electro‐CommunicationsTokyoJapan
- Center for Neuroscience and Biomedical EngineeringUniversity of Electro‐CommunicationsTokyoJapan
| | - Satoshi Konishi
- Faculty of Science and EngineeringRitsumeikan UniversityShigaJapan
| | - Satoshi Fujita
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| |
Collapse
|
2
|
Mechanisms of Action of Mesenchymal Stem Cells in Metabolic-Associated Fatty Liver Disease. Stem Cells Int 2023; 2023:3919002. [PMID: 36644008 PMCID: PMC9839417 DOI: 10.1155/2023/3919002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is currently the most common chronic liver disease worldwide. However, its pathophysiological mechanism is complicated, and currently, it has no FDA-approved pharmacological therapies. In recent years, mesenchymal stem cell (MSC) therapy has attracted increasing attention in the treatment of hepatic diseases. MSCs are multipotent stromal cells that originated from mesoderm mesenchyme, which have self-renewal and multipotent differentiation capability. Recent experiments and studies have found that MSCs have the latent capacity to be used for MAFLD treatment. MSCs have the potential to differentiate into hepatocytes, which could be induced into hepatocyte-like cells (HLCs) with liver-specific morphology and function under appropriate conditions to promote liver tissue regeneration. They can also reduce liver tissue injury and reverse the development of MAFLD by regulating immune response, antifibrotic activities, and lipid metabolism. Moreover, several advantages are attributed to MSC-derived exosomes (MSC-exosomes), such as targeted delivery, reliable reparability, and poor immunogenicity. After entering the target cells, MSC-exosomes help regulate cell function and signal transduction; thus, it is expected to become an emerging treatment for MAFLD. In this review, we comprehensively discussed the roles of MSCs in MAFLD, main signaling pathways of MSCs that affect MAFLD, and mechanisms of MSC-exosomes on MAFLD.
Collapse
|
3
|
Molecular Crosstalk between Chromatin Remodeling and Tumor Microenvironment in Multiple Myeloma. Curr Oncol 2022; 29:9535-9549. [PMID: 36547163 PMCID: PMC9777166 DOI: 10.3390/curroncol29120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a complex disease driven by numerous genetic and epigenetic alterations that are acquired over time. Despite recent progress in the understanding of MM pathobiology and the availability of innovative drugs, which have pronounced clinical outcome, this malignancy eventually progresses to a drug-resistant lethal stage and, thus, novel therapeutic drugs/models always play an important role in effective management of MM. Modulation of tumor microenvironment is one of the hallmarks of cancer biology, including MM, which affects the myeloma genomic architecture and disease progression subtly through chromatin modifications. The bone marrow niche has a prime role in progression, survival, and drug resistance of multiple myeloma cells. Therefore, it is important to develop means for targeting the ecosystem between multiple myeloma bone marrow microenvironment and chromatin remodeling. Extensive gene expression profile analysis has indeed provided the framework for new risk stratification of MM patients and identifying novel molecular targets and therapeutics. However, key tumor microenvironment factors/immune cells and their interactions with chromatin remodeling complex proteins that drive MM cell growth and progression remain grossly undefined.
Collapse
|
4
|
Jahnavi S, Garg V, Vasandan AB, SundarRaj S, Kumar A, Prasanna S J. Lineage reprogramming of human adipose mesenchymal stem cells to immune modulatory i-Heps. Int J Biochem Cell Biol 2022; 149:106256. [PMID: 35772664 DOI: 10.1016/j.biocel.2022.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022]
Abstract
Pluripotent stem cell derived-hepatocytes depict fetal -hepatocyte characteristics/maturity and are immunogenic limiting their applications. Attempts have been made to derive hepatocytes from mesenchymal stem cells using developmental cocktails, epigenetic modulators and small molecules. However, achieving a stable terminally differentiated functional state had been a challenge. Inefficient hepatic differentiation could be due to lineage restrictions set during development. Hence a novel lineage reprogramming approach has been utilized to confer competence to adipose-mesenchymal stem cells (ADMSCs) to efficiently respond to hepatogenic cues and achieve a stable functional hepatic state. Lineage reprogramming involved co-transduction of ADMSCs with hepatic endoderm pioneer Transcription factor (TF)-FOXA2, HHEX-a homeobox gene and HNF4α-master TF indispensable for hepatic state maintenance. Lineage priming was evidenced by endogenous HFN4α promoter demethylation and robust responsiveness to minimal hepatic maturation cues. Induced hepatocytes (i-Heps) exhibited mesenchymal-to-epithelial transition and terminal hepatic signatures. Functional characterisation of i-Heps for hepatic drug detoxification systems, xenobiotic uptake/clearance, metabolic status and hepatotropic virus entry validated acquisition of stable hepatic state and junctional maturity Exhaustive analysis of MSC memory in i-Heps indicated loss of MSC-immunophenotype and terminal differentiation to osteogenic/adipogenic lineages. Importantly, i-Heps suppressed phytohemagglutinin-induced T-cell blasts, inhibited allogenic mixed-lymphocyte reactions (MLRs) and secreted immunomodulatory- indoleamine 2,3-dioxygenase in T-cell blast co-cultures akin to native ADMSCs. In a nutshell, the present study identifies a novel cocktail of TFs that reprogram ADMSCs to stable hepatic state. i-Heps exhibit adult hepatocyte functional maturity with robust immune-modulatory abilities rendering suitability for rigorous drug testing, hepatocyte-pathogen interaction studies and transplantation in allogenic settings.
Collapse
Affiliation(s)
- Sowmya Jahnavi
- Manipal Institute of Regenerative Medicine, MAHE, Bangalore, India
| | - Vaishali Garg
- Manipal Institute of Regenerative Medicine, MAHE, Bangalore, India
| | | | - Swathi SundarRaj
- Principal Scientist, Stempeutics Research Pvt. Ltd, Bangalore, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, MAHE, Bangalore, India
| | | |
Collapse
|
5
|
Jang S, Hwang J, Jeong HS. The Role of Histone Acetylation in Mesenchymal Stem Cell Differentiation. Chonnam Med J 2022; 58:6-12. [PMID: 35169553 PMCID: PMC8813658 DOI: 10.4068/cmj.2022.58.1.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/06/2022] Open
Abstract
The mechanism and action concerning epigenetic modifications, especially that of histone modifications, are not fully understood. However, it is clear that histone modifications play an essential role in several biological processes that are involved in cell proliferation and differentiation. In this article, we focused on how histone acetylation may result in differentiation into mesenchymal stem cells as well as histone acetylation function. Moreover, histone acetylation followed by the action of histone deacetylase inhibitors, which can result in the differentiation of stem cells into other types of cells such as adipocytes, chondrocytes, osteocytes, neurons, and other lineages, were also reviewed.
Collapse
Affiliation(s)
- Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun, Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun, Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
6
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Rashid S, Qazi REM, Malick TS, Salim A, Khan I, Ilyas A, Haneef K. Effect of valproic acid on the hepatic differentiation of mesenchymal stem cells in 2D and 3D microenvironments. Mol Cell Biochem 2020; 476:909-919. [PMID: 33111212 DOI: 10.1007/s11010-020-03955-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have multi-lineage differentiation potential which make them an excellent source for cell-based therapies. Histone modification is one of the major epigenetic regulations that play central role in stem cell differentiation. Keeping in view their ability to maintain gene expression essential for successful differentiation, it was interesting to examine the effects of valproic acid (VPA), a histone deacetylase inhibitor, in the hepatic differentiation of MSCs within the 3D scaffold. MSCs were treated with the optimized concentration of VPA in the 3D collagen scaffold. Analyses of hepatic differentiation potential of treated MSCs were performed by qPCR, immunostaining and periodic acid Schiff assay. Our results demonstrate that MSCs differentiate into hepatic-like cells when treated with 5 mM VPA for 24 h. The VPA-treated MSCs have shown significant upregulation in the expression of hepatic genes, CK-18 (P < 0.05), TAT (P < 0.01), and AFP (P < 0.001), and hepatic proteins, AFP (P < 0.05) and ALB (P < 0.01). In addition, acetylation of histones (H3 and H4) was significantly increased (P < 0.001) in VPA-pretreated cells. Further analysis showed that VPA treatment significantly enhanced (P < 0.01) glycogen storage, an important functional aspect of hepatic cells. The present study revealed the effectiveness of VPA in hepatic differentiation within the 3D collagen scaffold. These hepatic-like cells may have an extended clinical applicability in future for successful liver regeneration.
Collapse
Affiliation(s)
- Saman Rashid
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Rida-E-Maria Qazi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Tuba Shakil Malick
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Amber Ilyas
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
8
|
Afflerbach AK, Kiri MD, Detinis T, Maoz BM. Mesenchymal Stem Cells as a Promising Cell Source for Integration in Novel In Vitro Models. Biomolecules 2020; 10:E1306. [PMID: 32927777 PMCID: PMC7565384 DOI: 10.3390/biom10091306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
The human-relevance of an in vitro model is dependent on two main factors-(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.
Collapse
Affiliation(s)
- Ann-Kristin Afflerbach
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (A.-K.A.); (M.D.K.); (T.D.)
- Faculty of Biosciences, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Mark D. Kiri
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (A.-K.A.); (M.D.K.); (T.D.)
| | - Tahir Detinis
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (A.-K.A.); (M.D.K.); (T.D.)
| | - Ben M. Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (A.-K.A.); (M.D.K.); (T.D.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Afshari A, Shamdani S, Uzan G, Naserian S, Azarpira N. Different approaches for transformation of mesenchymal stem cells into hepatocyte-like cells. Stem Cell Res Ther 2020; 11:54. [PMID: 32033595 PMCID: PMC7007672 DOI: 10.1186/s13287-020-1555-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/21/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
Due to the prominent role of the liver in the body and detoxification, its functionality can be affected in an irreversible manner by diseases. This phenomenon renders the liver to stop working, leading to morbidity and mortality. Therefore, liver transplantation is the only way to tackle this issue.In order to compensate for the lack of adequate healthy liver tissue for transplantation, therapeutic approaches such as hepatocyte transplantation have been proposed as an alternative. Recognizing the fact that mesenchymal stem cells are adult stem cells with the capacity to differentiate into several cell types, different methods have been invented to produce hepatocyte-like cells from mesenchymal stem cells. They can be divided into three main categories, such as addition of cytokines and growth factors, genetic modifications, and adjustment of microenvironment as well as physical parameters.In this review, we attempted to introduce diverse efficient methods for differentiating mesenchymal stem cells and their capability for transformation into hepatocyte-like cells.
Collapse
Affiliation(s)
- Afsoon Afshari
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili street, Shiraz, Iran
| | - Sara Shamdani
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institute of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, 94807, Villejuif, France.,SivanCell, Tehran, Iran.,CellMedEx, Saint Maur Des Fossés, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institute of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, 94807, Villejuif, France
| | - Sina Naserian
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institute of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, 94807, Villejuif, France.,SivanCell, Tehran, Iran.,CellMedEx, Saint Maur Des Fossés, France
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili street, Shiraz, Iran.
| |
Collapse
|
10
|
Ren J, Huang D, Li R, Wang W, Zhou C. Control of mesenchymal stem cell biology by histone modifications. Cell Biosci 2020; 10:11. [PMID: 32025282 PMCID: PMC6996187 DOI: 10.1186/s13578-020-0378-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered the most promising seed cells for regenerative medicine because of their considerable therapeutic properties and accessibility. Fine-tuning of cell biological processes, including differentiation and senescence, is essential for achievement of the expected regenerative efficacy. Researchers have recently made great advances in understanding the spatiotemporal gene expression dynamics that occur during osteogenic, adipogenic and chondrogenic differentiation of MSCs and the intrinsic and environmental factors that affect these processes. In this context, histone modifications have been intensively studied in recent years and have already been indicated to play significant and universal roles in MSC fate determination and differentiation. In this review, we summarize recent discoveries regarding the effects of histone modifications on MSC biology. Moreover, we also provide our insights and perspectives for future applications.
Collapse
Affiliation(s)
- Jianhan Ren
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Delan Huang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Runze Li
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Weicai Wang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Chen Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| |
Collapse
|
11
|
Pavathuparambil Abdul Manaph N, Sivanathan KN, Nitschke J, Zhou XF, Coates PT, Drogemuller CJ. An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther 2019; 10:293. [PMID: 31547868 PMCID: PMC6757413 DOI: 10.1186/s13287-019-1396-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
The field of regenerative medicine provides enormous opportunities for generating beta cells from different stem cell sources for cellular therapy. Even though insulin-secreting cells can be generated from a variety of stem cell types like pluripotent stem cells and embryonic stem cells, the ideal functional cells should be generated from patients' own cells and expanded to considerable levels by non-integrative culture techniques. In terms of the ease of isolation, plasticity, and clinical translation to generate autologous cells, mesenchymal stem cell stands superior. Furthermore, small molecules offer a great advantage in terms of generating functional beta cells from stem cells. Research suggests that most of the mesenchymal stem cell-based protocols to generate pancreatic beta cells have small molecules in their cocktail. However, most of the protocols generate cells that mimic the characteristics of human beta cells, thereby generating "beta cell-like cells" as opposed to mature beta cells. Diabetic therapy becomes feasible only when there are robust, functional, and safe cells for replacing the damaged or lost beta cells. In this review, we discuss the current protocols used to generate beta cells from mesenchymal cells, with emphasis on small molecule-mediated conversion into insulin-producing beta cell-like cells. Our data and the data presented from the references within this review would suggest that although mesenchymal stem cells are an attractive cell type for cell therapy they are not readily converted into functional mature beta cells.
Collapse
Affiliation(s)
- Nimshitha Pavathuparambil Abdul Manaph
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia. .,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia. .,Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Kisha N Sivanathan
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jodie Nitschke
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Patrick T Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Christopher John Drogemuller
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
12
|
Coronado RE, Somaraki-Cormier M, Ong JL, Halff GA. Hepatocyte-like cells derived from human amniotic epithelial, bone marrow, and adipose stromal cells display enhanced functionality when cultured on decellularized liver substrate. Stem Cell Res 2019; 38:101471. [PMID: 31163390 DOI: 10.1016/j.scr.2019.101471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/30/2019] [Accepted: 05/25/2019] [Indexed: 01/02/2023] Open
Abstract
Transplantation of primary hepatocytes has been used in treatments for various liver pathologies and end-stage liver disease. However, shortage of donor tissue and the inability of hepatocyte proliferation in vitro have lead to alternative methods such as stem cell-derived hepatocyte-like cells (HLCs). Mesenchymal stromal/stem cells, and amniotic epithelial cells were isolated from human bone marrow (BM-MSCs), lipoaspirates (ASCs), and amniotic tissue (AECs) respectively. All cells were differentiated into HLCs on plates coated with Type I collagen or Porcine Liver Extracellular Matrix (PLECM-AA) matrix. Flow cytometry of BM-MSCs and ASCs, and AECs showed high expression of MSC-specific and embryonic stem cell markers respectively. All cell types differentiated into osteocytes, chondrocytes, and adipocytes. All cell type-derived HLCs presented the typical cuboidal primary hepatocyte morphology on PLECM-AA and fewer vacuoles (AECs) compared to HLCs cultured on type I collagen. Gene analysis of all cell type-derived HLCs cultured on PLECM-AA revealed higher upregulation of genes involved in drug transportation and metabolism compared to HLCs cultured on type I collagen. Although, HLCs cultured on PLECM-AA displayed some hepatocyte-related function and bioactivity, overall gene expression was lower compared to that of primary hepatocytes suggesting that caution should be taken when considering using HLCs to replace total hepatocyte functionality.
Collapse
Affiliation(s)
- Ramon E Coronado
- Lester Smith Medical Research Institute, San Antonio, TX 78229, USA.
| | | | - Joo L Ong
- Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Glenn A Halff
- Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
13
|
Chaker D, Mouawad C, Azar A, Quilliot D, Achkar I, Fajloun Z, Makdissy N. Inhibition of the RhoGTPase Cdc42 by ML141 enhances hepatocyte differentiation from human adipose-derived mesenchymal stem cells via the Wnt5a/PI3K/miR-122 pathway: impact of the age of the donor. Stem Cell Res Ther 2018; 9:167. [PMID: 29921325 PMCID: PMC6009972 DOI: 10.1186/s13287-018-0910-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background Human adipose-derived mesenchymal stem cells (hADSCs) are promising cells that may promote hepatocyte differentiation (Hep-Dif) and improve liver function, but the involvement of Cdc42, a key small RhoGTPase which plays a crucial role in aging, is still not well established. We hypothesized that the inhibition of Cdc42 may rescue the hepatogenic potential of hADSCs derived from aged donors. Methods hADSCs isolated from 61 women of different ages were cultured for evaluation of the proliferation of cells, adherence, apoptosis, immunomodulation, immunophenotyping, multipotency, gene expression, and cell function during Hep-Dif. Inhibition of Cdc42 by ML141 was realized during two phases: initiation (days –2 to 14 (D–2/14)) from undifferentiated to hepatoblast-like cells, or maturation (days 14 to 28 (D14/28)) from undifferentiated to hepatocyte-like cells. Mechanistic insights of the Wnt(s)/MAPK/PI3K/miR-122 pathways were studied. Results Cdc42 activity in undifferentiated hADSCs showed an age-dependent significant increase in Cdc42-GTP correlated to a decrease in Cdc42GAP; the low potentials of cell proliferation, doubling, adherence, and immunomodulatory ability (proinflammatory over anti-inflammatory) contrary to the apoptotic index of the aged group were significantly reversed by ML141. Aged donor cells showed a decreased potential for Hep-Dif which was rescued by ML141 treatment, giving rise to mature and functional hepatocyte-like cells as assessed by hepatic gene expression, cytochrome activity, urea and albumin production, low-density lipoprotein (LDL) uptake, and glycogen storage. ML141-induced Hep-Dif showed an improvement in mesenchymal-epithelial transition, a switch from Wtn-3a/β-catenin to Wnt5a signaling, involvement of PI3K/PKB but not the MAPK (ERK/JNK/p38) pathway, induction of miR-122 expression, reinforcing the exosomes release and the production of albumin, and epigenetic changes. Inhibition of PI3K and miR-122 abolished completely the effects of ML141 indicating that inhibition of Cdc42 promotes the Hep-Dif through a Wnt5a/PI3K/miR-122/HNF4α/albumin/E-cadherin-positive action. The ML141(D–2/14) protocol had more pronounced effects when compared with ML141(D14/28); inhibition of DNA methylation in combination with ML141(D–2/14) showed more efficacy in rescuing the Hep-Dif of aged hADSCs. In addition to Hep-Dif, the multipotency of aged hADSC-treated ML141 was observed by rescuing the adipocyte and neural differentiation by inducing PPARγ/FABP4 and NeuN/O4 but inhibiting Pref-1 and GFAP, respectively. Conclusion ML141 has the potential to reverse the age-related aberrations in aged stem cells and promotes their hepatogenic differentiation. Selective inhibition of Cdc42 could be a potential target of drug therapy for aging and may give new insights on the improvement of Hep-Dif. Electronic supplementary material The online version of this article (10.1186/s13287-018-0910-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Chaker
- Lebanese University, Doctoral School for Sciences and Technology, Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and its Applications, Tripoli, Lebanon.,Reviva Regenerative Medicine Center, Human Genetic Center, Middle East Institute of Health Hospital, Bsalim, Lebanon.,Paris Saclay University, Doctoral School, Therapeutical Innovation, Inserm UMR935, Villejuif, France
| | | | - Albert Azar
- Reviva Regenerative Medicine Center, Human Genetic Center, Middle East Institute of Health Hospital, Bsalim, Lebanon
| | - Didier Quilliot
- Diabetologia-Endocrinology & Nutrition, CHRU Nancy, INSERM 954, University Henri Poincaré de Lorraine, Faculty of Medicine, Nancy, France
| | | | - Ziad Fajloun
- Lebanese University, Doctoral School for Sciences and Technology, Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and its Applications, Tripoli, Lebanon.,Lebanese University, Faculty of Sciences III, Department of Biology, Kobbe, Lebanon
| | - Nehman Makdissy
- Lebanese University, Doctoral School for Sciences and Technology, Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and its Applications, Tripoli, Lebanon. .,Lebanese University, Faculty of Sciences III, Department of Biology, Kobbe, Lebanon.
| |
Collapse
|
14
|
Sani M, Ebrahimi S, Aleahmad F, Salmannejad M, Hosseini SM, Mazarei G, Talaei-Khozani T. Differentiation Potential of Breast Milk-Derived Mesenchymal Stem Cells into Hepatocyte-Like Cells. Tissue Eng Regen Med 2017; 14:587-593. [PMID: 30603512 PMCID: PMC6171623 DOI: 10.1007/s13770-017-0066-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/17/2017] [Accepted: 06/16/2017] [Indexed: 12/28/2022] Open
Abstract
Human breast milk stem cells (hBSCs) contain a population of cells with the ability to differentiate into various cell lineages for cell therapy applications. The current study examined the differentiation potential of hBSCs into hepatocytes-like cells. The cells were isolated from the breast milk and were treated with hepatogenic medium containing hepatocyte growth factor, insulin-like growth factor and dexamethasone for 7 days subsequently; Oncostatin M was added to the culture media. RT-PCR and immunocytochemistry were performed to detect the hepatogenic markers. The glycogen storage and the ability of the cells to absorb and release indocynanin green were also tested. The data showed that most of the differentiated cells formed cell aggregates after the 30th day, with more cells accumulated to form spheroids. RT-PCR revealed the expression of the hepatic nuclear factor, albumin, cytokeratin 18 and 19, cytochrome P2B6, glucose-6-phospahtase and claudin. The functional assays also showed glycogen storage and omission of indicynine green. Our study demonstrated hBSCs are novel population that can differentiate into hepatocyte-like cells.
Collapse
Affiliation(s)
- Mahsa Sani
- Laboratory for Stem Cell Research, Anatomy Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Ebrahimi
- Department of Biochemistry, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Aleahmad
- Laboratory for Stem Cell Research, Anatomy Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahin Salmannejad
- Laboratory for Stem Cell Research, Anatomy Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mojtaba Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Cellular and Molecular Research Club, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gelareh Mazarei
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC Canada
| | - Tahereh Talaei-Khozani
- Laboratory for Stem Cell Research, Anatomy Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Guo Y, Chen B, Chen LJ, Zhang CF, Xiang C. Current status and future prospects of mesenchymal stem cell therapy for liver fibrosis. J Zhejiang Univ Sci B 2017; 17:831-841. [PMID: 27819130 DOI: 10.1631/jzus.b1600101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is the end-stage of many chronic liver diseases and is a significant health threat. The only effective therapy is liver transplantation, which still has many problems, including the lack of donor sources, immunological rejection, and high surgery costs, among others. However, the use of cell therapy is becoming more prevalent, and mesenchymal stem cells (MSCs) seem to be a promising cell type for the treatment of liver fibrosis. MSCs have multiple differentiation abilities, allowing them to migrate directly into injured tissue and differentiate into hepatocyte-like cells. Additionally, MSCs can release various growth factors and cytokines to increase hepatocyte regeneration, regress liver fibrosis, and regulate inflammation and immune responses. In this review, we summarize the current uses of MSC therapies for liver fibrosis and suggest potential future applications.
Collapse
Affiliation(s)
- Yang Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Bo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Li-Jun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chun-Feng Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
16
|
Gurgul A, Opiela J, Pawlina K, Szmatoła T, Bochenek M, Bugno-Poniewierska M. The effect of histone deacetylase inhibitor trichostatin A on porcine mesenchymal stem cell transcriptome. Biochimie 2017; 139:56-73. [PMID: 28552396 DOI: 10.1016/j.biochi.2017.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022]
Abstract
The use of histone deacetylase inhibitors such as trichostatin A (TSA) for epigenetic transformation of mesenchymal stem cells (MSCs), whose nuclei will be transferred into enucleated oocytes, is a novel approach in research involving somatic cell cloning of pigs and other mammalian species. Although the effectiveness of TSA in cloning applications was confirmed, processes and mechanisms underlying achieved effects are not yet fully understood, especially for pig MSCs. To contribute to this knowledge, in this study we performed a comprehensive transcriptome analysis using high-throughput sequencing of pig bone-marrow derived MSCs, both treated and untreated with TSA, and evaluated the effect of TSA administration on their transcription profile after 24 h of in vitro culture. The expression of selected positive and negative mesenchymal surface antigens was also evaluated in these cells by flow cytometry. Subsequently, the stability of induced expression changes was evaluated after another 55-72 h of culture without TSA. The results of this study showed that TSA does not affect the expression of the selected surface antigens related to MSC mesenchymal stemness origin, namely: CD90 (positive marker), CD31 and CD34 (negative markers) and has a wide stimulating effect on MSCs transcription, affecting genes across the whole genome with some minor signs of site-specific acting in regions on SSC2 and SSC6. TSA turned out to have a higher impact on already expressed genes with only minor abilities to induce expression of silenced genes. Genes with expression affected by TSA were related to a wide range of biological processes, however, we found some evidence for specific stimulation of genes associated with development, differentiation, neurogenesis or myogenesis. TSA also seemed to interfere with Wnt signaling pathways by upregulation of several engaged genes. The analysis of cell transcriptome after prolonged culture following the TSA removal, showed that the expression level of majority of genes affected by TSA is restored to the initial level. Nonetheless, the set of about six hundred genes responsible for e.g. adhesion, signal transduction and cell communication was altered even after 55-72 h of culture without TSA. TSA also enhanced expression of some of pluripotency marker genes (FGF2, LIF, TERT) but their expression was stabilized during further culture without TSA. The detailed analysis of factors connected with neuron-like differentiation allowed us to assume that TSA mostly stimulates neurogenic differentiation pathway in the pig MSCs possibly through interaction with Wnt-mediated signaling and thus triggers mechanisms conducive to epigenetic reprograming.
Collapse
Affiliation(s)
- Artur Gurgul
- National Research Institute of Animal Production, Department of Genomics and Molecular Biology, Krakowska 1, 32-083, Balice, Poland.
| | - Jolanta Opiela
- National Research Institute of Animal Production, Department of Biotechnology of Animal Reproduction, Krakowska 1, 32-083, Balice, Poland
| | - Klaudia Pawlina
- National Research Institute of Animal Production, Department of Genomics and Molecular Biology, Krakowska 1, 32-083, Balice, Poland
| | - Tomasz Szmatoła
- National Research Institute of Animal Production, Department of Genomics and Molecular Biology, Krakowska 1, 32-083, Balice, Poland
| | - Michał Bochenek
- National Research Institute of Animal Production, Department of Biotechnology of Animal Reproduction, Krakowska 1, 32-083, Balice, Poland
| | - Monika Bugno-Poniewierska
- National Research Institute of Animal Production, Department of Genomics and Molecular Biology, Krakowska 1, 32-083, Balice, Poland
| |
Collapse
|
17
|
Tsai WL, Yeh PH, Tsai CY, Ting CT, Chiu YH, Tao MH, Li WC, Hung SC. Efficient programming of human mesenchymal stem cell-derived hepatocytes by epigenetic regulations. J Gastroenterol Hepatol 2017; 32:261-269. [PMID: 27218433 DOI: 10.1111/jgh.13451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM In view of its unique properties of detoxification and involvement of metabolic and biochemical functions, in vitro hepatocyte culture serves as a valuable material for drug screening and mechanistic analysis for pathology of liver diseases. The restriction of rapid de-differentiation and inaccessibility of human hepatocytes from routine clinical procedure, however, limits its use. METHODS To address this issue, the effort to direct human mesenchymal stem cells (hMSCs) into hepatocytes using a modified protocol was proposed. With the additional treatment of histone deacetylase inhibitor (HDACi) and DNA methyltransferase inhibitor (DNMTi), in vitro hMSC-derived hepatocytes were cultivated and their hepatic characteristics were examined. RESULTS By using a modified protocol, it was shown that Trichostatin A and 5-aza-2-deoxycitidine protected differentiating cells from death and could sufficiently trigger a wide range of liver-specific markers as well as liver functions including albumin production, glycogen storage, and urea cycle in hMSC-derived hepatocytes. The increased mRNA expression for hepatitis C virus (HCV) entry including CD81, Occludin, LDL receptor, and scavenger receptor class B type I in hMSC-derived hepatocytes was also detected, implying its potential to be utilized as an in vitro model to analyze dynamic HCV infection. CONCLUSIONS The present study successfully established a protocol to direct hMSCs into hepatocyte-like cells suggesting the beneficial impact to apply HDACi and DNMTi as potent modulators for hMSCs to liver differentiation.
Collapse
Affiliation(s)
- Wei-Lun Tsai
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Medical School, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hung Yeh
- Stem Cell Laboratory, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Yun Tsai
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Tsung Ting
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastrointestinal Surgery, Department of Surgery, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Yen-Hui Chiu
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Shih-Chieh Hung
- Stem Cell Laboratory, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Integrative Stem Cell Center, Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
18
|
Cipriano M, Correia JC, Camões SP, Oliveira NG, Cruz P, Cruz H, Castro M, Ruas JL, Santos JM, Miranda JP. The role of epigenetic modifiers in extended cultures of functional hepatocyte-like cells derived from human neonatal mesenchymal stem cells. Arch Toxicol 2016; 91:2469-2489. [PMID: 27909741 DOI: 10.1007/s00204-016-1901-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/24/2016] [Indexed: 01/06/2023]
Abstract
The development of predictive in vitro stem cell-derived hepatic models for toxicological drug screening is an increasingly important topic. Herein, umbilical cord tissue-derived mesenchymal stem cells (hnMSCs) underwent hepatic differentiation using an optimized three-step core protocol of 24 days that mimicked liver embryogenesis with further exposure to epigenetic markers, namely the histone deacetylase inhibitor trichostatin A (TSA), the cytidine analogue 5-azacytidine (5-AZA) and dimethyl sulfoxide (DMSO). FGF-2 and FGF-4 were also tested to improve endoderm commitment and foregut induction during Step 1 of the differentiation protocol, being HHEX expression increased with FGF-2 (4 ng/mL). DMSO (1%, v/v) when added at day 10 enhanced cell morphology, glycogen storage ability, enzymatic activity and induction capacity. Moreover, the stability of the hepatic phenotype under the optimized differentiation conditions was examined up to day 34. Our findings showed that hepatocyte-like cells (HLCs) acquired the ability to metabolize glucose, produce albumin and detoxify ammonia. Global transcriptional analysis of the HLCs showed a partial hepatic differentiation degree. Global analysis of gene expression in the different cells revealed shared expression of gene groups between HLCs and human primary hepatocytes (hpHeps) that were not observed between HepG2 and hpHeps. In addition, bioinformatics analysis of gene expression data placed HLCs between the HepG2 cell line and hpHeps and distant from hnMSCs. The enhanced hepatic differentiation observed was supported by the presence of the hepatic drug transporters OATP-C and MRP-2 and gene expression of the hepatic markers CK18, TAT, AFP, ALB, HNF4A and CEBPA; and by their ability to display stable UGT-, EROD-, ECOD-, CYP1A1-, CYP2C9- and CYP3A4-dependent activities at levels either comparable with or even higher than those observed in primary hepatocytes and HepG2 cells. Overall, an improvement of the hepatocyte-like phenotype was achieved for an extended culture time suggesting a role of the epigenetic modifiers in hepatic differentiation and maturation and presenting hnMSC-HLCs as an advantageous alternative for drug discovery and in vitro toxicology testing.
Collapse
Affiliation(s)
- M Cipriano
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - J C Correia
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - S P Camões
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - N G Oliveira
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - P Cruz
- ECBio S.A., Amadora, Portugal
| | - H Cruz
- ECBio S.A., Amadora, Portugal
| | - M Castro
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - J L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - J P Miranda
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
19
|
Zhou X, Cui L, Zhou X, Yang Q, Wang L, Guo G, Hou Y, Cai W, Han Z, Shi Y, Han Y. Induction of hepatocyte-like cells from human umbilical cord-derived mesenchymal stem cells by defined microRNAs. J Cell Mol Med 2016; 21:881-893. [PMID: 27874233 PMCID: PMC5387126 DOI: 10.1111/jcmm.13027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022] Open
Abstract
Generating functional hepatocyte‐like cells (HLCs) from mesenchymal stem cells (MSCs) is of great urgency for bio‐artificial liver support system (BALSS). Previously, we obtained HLCs from human umbilical cord‐derived MSCs by overexpressing seven microRNAs (HLC‐7) and characterized their liver functions in vitro and in vivo. Here, we aimed to screen out the optimal miRNA candidates for hepatic differentiation. We sequentially removed individual miRNAs from the pool and examined the effect of transfection with remainder using RT‐PCR, periodic acid—Schiff (PAS) staining and low‐density lipoprotein (LDL) uptake assays and by assessing their function in liver injury models. Surprisingly, miR‐30a and miR‐1290 were dispensable for hepatic differentiation. The remaining five miRNAs (miR‐122, miR‐148a, miR‐424, miR‐542‐5p and miR‐1246) are essential for this process, because omitting any one from the five‐miRNA combination prevented hepatic trans‐differentiation. We found that HLCs trans‐differentiated from five microRNAs (HLC‐5) expressed high level of hepatic markers and functioned similar to hepatocytes. Intravenous transplantation of HLC‐5 into nude mice with CCl4‐induced fulminant liver failure and acute liver injury not only improved serum parameters and their liver histology, but also improved survival rate of mice in severe hepatic failure. These data indicated that HLC‐5 functioned similar to HLC‐7 in vitro and in vivo, which have been shown to resemble hepatocytes. Instead of using seven‐miRNA combination, a simplified five‐miRNA combination can be used to obtain functional HLCs in only 7 days. Our study demonstrated an optimized and efficient method for generating functional MSC‐derived HLCs that may serve as an attractive cell alternative for BALSS.
Collapse
Affiliation(s)
- Xia Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lina Cui
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qiong Yang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lu Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Guanya Guo
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Hou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Weile Cai
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zheyi Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ying Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
20
|
Wang Y, Yu X, Chen E, Li L. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem Cell Res Ther 2016; 7:71. [PMID: 27176654 PMCID: PMC4866276 DOI: 10.1186/s13287-016-0330-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent an attractive cell type for research and therapy due to their ability to proliferate, differentiate, modulate immune reactions, and secrete trophic factors. MSCs exist in a multitude of tissues, including bone marrow, umbilical cord, and adipose tissues. Moreover, MSCs have recently been isolated from the liver. Compared with other MSC types, liver-derived human MSCs (LHMSCs) possess general morphologies, immune functions, and differentiation capacities. Interestingly, LHMCSs produce higher levels of pro-angiogenic, anti-inflammatory, and anti-apoptotic cytokines than those of bone marrow-derived MSCs. Thus, these cells may be a promising therapeutic source for liver diseases. This paper summarizes the biological characteristics of LHMSCs and their potential benefits and risks for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yini Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaopeng Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ermei Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
21
|
Effect of Chromatin-Remodeling Agents in Hepatic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells In Vitro and In Vivo. Stem Cells Int 2016; 2016:3038764. [PMID: 27242905 PMCID: PMC4876003 DOI: 10.1155/2016/3038764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/13/2016] [Accepted: 03/29/2016] [Indexed: 02/08/2023] Open
Abstract
Epigenetic events, including covalent histone modifications and DNA methylation, play fundamental roles in the determination of lineage-specific gene expression and cell fates. The aim of this study was to determine whether the DNA methyltransferase inhibitor (DNMTi) 5-aza-2′-deoxycytidine (5-aza-dC) and the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) promote the hepatic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) and their therapeutic effect on liver damage. 1 μM TSA and 20 μM 5-aza-dC were added to standard hepatogenic medium especially at differentiation and maturation steps and their potential function on hepatic differentiation in vitro and in vivo was determined. Exposure of rBM-MSCs to 1 μM TSA at both the differentiation and maturation steps considerably improved hepatic differentiation. TSA enhanced the development of the hepatocyte shape, promoted the chronological expression of hepatocyte-specific markers, and improved hepatic functions. In contrast, treatment of rBM-MSCs with 20 μM 5-aza-dC alone or in combination with TSA was ineffective in improving hepatic differentiation in vitro. TSA and/or 5-aza-dC derived hepatocytes-like cells failed to improve the therapeutic potential in liver damage. We conclude that HDACis enhance hepatic differentiation in a time-dependent manner, while DNMTis do not induce the hepatic differentiation of rBM-MSCs in vitro. Their in vivo function needs further investigation.
Collapse
|
22
|
Yarygin KN, Lupatov AY, Kholodenko IV. Cell-based therapies of liver diseases: age-related challenges. Clin Interv Aging 2015; 10:1909-24. [PMID: 26664104 PMCID: PMC4671765 DOI: 10.2147/cia.s97926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The scope of this review is to revise recent advances of the cell-based therapies of liver diseases with an emphasis on cell donor's and patient's age. Regenerative medicine with cell-based technologies as its integral part is focused on the structural and functional restoration of tissues impaired by sickness or aging. Unlike drug-based medicine directed primarily at alleviation of symptoms, regenerative medicine offers a more holistic approach to disease and senescence management aimed to achieve restoration of homeostasis. Hepatocyte transplantation and organ engineering are very probable forthcoming options of liver disease treatment in people of different ages and vigorous research and technological innovations in this area are in progress. Accordingly, availability of sufficient amounts of functional human hepatocytes is crucial. Direct isolation of autologous hepatocytes from liver biopsy is problematic due to related discomfort and difficulties with further expansion of cells, particularly those derived from aging people. Allogeneic primary human hepatocytes meeting quality standards are also in short supply. Alternatively, autologous hepatocytes can be produced by reprogramming of differentiated cells through the stage of induced pluripotent stem cells. In addition, fibroblasts and mesenchymal stromal cells can be directly induced to undergo advanced stage hepatogenic differentiation. Reprogramming of cells derived from elderly people is accompanied by the reversal of age-associated changes at the cellular level manifesting itself by telomere elongation and the U-turn of DNA methylation. Cell reprogramming can provide high quality rejuvenated hepatocytes for cell therapy and liver tissue engineering. Further technological advancements and establishment of national and global registries of induced pluripotent stem cell lines homozygous for HLA haplotypes can allow industry-style production of livers for immunosuppression-free transplantation.
Collapse
Affiliation(s)
| | - Alexei Y Lupatov
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Irina V Kholodenko
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
23
|
Alizadeh E, Eslaminejad MB, Akbarzadeh A, Sadeghi Z, Abasi M, Herizchi R, Zarghami N. Upregulation of MiR-122 via Trichostatin A Treatments in Hepatocyte-like Cells Derived from Mesenchymal Stem Cells. Chem Biol Drug Des 2015; 87:296-305. [PMID: 26360933 DOI: 10.1111/cbdd.12664] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
The miR-122 is a tissue-specific miRNA; its expression is abundant in liver. MiR-122 upregulation is crucial for differentiation, functionality, and maintenance of differentiated phenotype in hepatocytes. The improving effects of trichostatin A (TSA) on hepatic differentiation have been reported previously. The aim of this study was to determine whether TSA can affect the expression of miR-122 in hepatocyte-like cells (HLCs) generated from human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). The hepatic differentiation of hAT-MSCs induced by a mixture of growth factors and cytokines either with or without TSA treatments. The functionality of HLCs generated with or without TSA and the expression levels of miR-122 were studied. The expression levels of miR-122 in TSA-treated HLCs was significantly (p < 0.05) higher than those generated by growth factors and cytokines, only. The downregulation of a-fetoprotein (AFP) levels but enhanced albumin synthesis (p < 0.05) and upregulation of liver-enriched transcription factors (LETFs) HNF4α (hepatocyte nuclear factor 4α) and HNF6 (hepatocyte nuclear factor 6) were observed in TSA-treated HLCs (p < 0.05). In conclusion, administration of TSA in hepatogenic differentiation of hAT-MSCs resulted in higher expression levels of miR-122, facilitation of differentiation, and subsequently attenuation of AFP levels.
Collapse
Affiliation(s)
- Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran
| | - MohamadReza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology at Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Royan Institute, Tehran, I.R. Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran
| | - Zohre Sadeghi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran
| | - Mozghan Abasi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran
| | - Roya Herizchi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran.,The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran
| |
Collapse
|
24
|
Liao X, Liao Y, Zou Y, Li G, Liao C. Epigenetic modifications of histone H3 during the transdifferentiation of Thy-1(+) Lin(‑) bone marrow cells into hepatocytes. Mol Med Rep 2015; 12:7561-7. [PMID: 26459745 DOI: 10.3892/mmr.2015.4384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 08/25/2015] [Indexed: 11/06/2022] Open
Abstract
The epigenetic modifications during the transdifferentiation of adult stem cells remain to be fully elucidated. In the present study, the histone H3 modifications during the transdifferentiation of rat Thy‑1(+) Lin(‑) bone marrow cells into hepatocytes in vitro were examined, which involved performing hepatocyte growth factor-mediated transdifferentiation of bone marrow Thy-1(+) Lin(‑) cells into hepatic lineage cells. Subsequently, the hepatocyte-specific markers, cytokeratin‑18 (CK‑18), albumin (ALB) and α‑fetoprotein (AFP) were examined by immunofluorescence staining or reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Changes in the key pluripotency factor, octamer‑binding transcription factor 4 (OCT4) and histone modifications, including the dimethylation and acetylation of H3 at lysine 9 (H3K9me2 and H3K9ac), lysine 14 (H3K14me2 and H3K14ac) and lysine 27 (H3K27me2 and H3K27ac), were also investigated by RT-qPCR, immunofluorescence staining or western blot analysis The mRNA expression levels of AFP and ALB were detected in the bone marrow stem cell‑derived hepatic lineage cells on days 7 and 14 following induction, and CK‑18 was detected on day 14 following induction. During the transdifferentiation of the bone marrow Thy‑1(+) Lin(‑) cells into hepatocytes, the mRNA expression of OCT4 was significantly reduced, and the levels of H3K9me2, H3K9ac, H3K14me2, H3K14ac, H3K27me2 and H3K27ac were increased significantly, compared with the levels at baseline (P<0.05). Therefore, the results of the present study demonstrated that histone H3 modifications at lysine 9, 14 and 27 are involved in the regulation of transcription during the transdifferentiation of bone marrow stem cells to hepatic lineage cells.
Collapse
Affiliation(s)
- Xinxin Liao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yixin Liao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yantai Zou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guanhong Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Caixian Liao
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
25
|
Al Ghrbawy NM, Afify RAAM, Dyaa N, El Sayed AA. Differentiation of Bone Marrow: Derived Mesenchymal Stem Cells into Hepatocyte-like Cells. Indian J Hematol Blood Transfus 2015; 32:276-83. [PMID: 27429519 DOI: 10.1007/s12288-015-0581-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis is the end-stage liver fibrosis, whereby normal liver architecture is disrupted by fibrotic bands, parenchymal nodules and vascular distortion. Portal hypertension and hepatocyte dysfunction are the end results and give rise to major systemic complications and premature death. Mesenchymal stem cells (MSC) have the capacity of self-renew and to give rise to cells of various lineages, so MSC can be isolated from bone marrow (BM) and induced to differentiate into hepatocyte-like cells. MSC were induced to differentiate into hepatocyte-like cells by hepatotic growth factor (HGF) and fibroblast growth factor-4 (FGF-4). Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions. MSC were isolated. Flow cytometry analysis showed that they expressed the MSC-specific markers, reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that MSC expressed the hepatocyte-specific marker cytokeratin 18 (CK-18) following hepatocyte induction. This study demonstrates that BM-derived-MSC can differentiate into functional hepatocyte-like cells following the induction of HGF and FGF-4. MSC can serve as a favorable cell source for tissue engineering in the treatment of liver disease.
Collapse
Affiliation(s)
- Nesrien M Al Ghrbawy
- Clinical Pathology Department, Faculty of Medicine, Al kaser Al Aini, Cairo University, Cairo, Egypt
| | | | - Nehal Dyaa
- Clinical Pathology Department, Faculty of Medicine, Al kaser Al Aini, Cairo University, Cairo, Egypt
| | | |
Collapse
|
26
|
In vitro differentiation of human liver-derived stem cells with mesenchymal characteristics into immature hepatocyte-like cells. Transplant Proc 2015; 46:1633-7. [PMID: 24935339 DOI: 10.1016/j.transproceed.2013.12.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 12/17/2013] [Indexed: 02/08/2023]
Abstract
Liver transplantation is severely limited by donor shortage although it is the only effective treatment for end-stage liver disease. So the best alternative is hepatocyte transplantation. For obtaining human hepatocytes, some stem cells originating from extrahepatic or intraheptic tissues have been isolated and characterized. Previously we have reported that human liver-derived stem cells (HLSCs) could be isolated and expanded from donated livers unsuitable for transplantation; they expressed some markers of mesenchymal stem cells but neither hematopoietic nor oval cells. In this study, we isolated and expanded HLSCs with mesenchymal characteristics from another adult human liver. They showed mesenchymal morphology and grew well under serum condition similar to our previous reports. Also, they expressed some markers of mesenchymal stem cells, such as CD44, CD73, CD90, and CD105, through fluorescence-activated cell sorting analysis. When HLSCs were sequentially exposed to fibroblast growth factor-1 (FGF-1), FGF-4, and hepatocyte growth factor (HGF) followed by FGF-4, HGF, oncostatin M, and dexamethasone, they became round or polygonal, and expressed some hepatic markers such as albumin and α1-antitrypsin in the gene or protein level. Also, they showed urea synthesis activity 7 days after treatment of FGF-4, HGF, oncostatin M, and dexamethasone. These results provided that HLSCs would be a useful cell source in the field of regenerative medicine as well as liver cell biology.
Collapse
|
27
|
Liu WH, Song FQ, Ren LN, Guo WQ, Wang T, Feng YX, Tang LJ, Li K. The multiple functional roles of mesenchymal stem cells in participating in treating liver diseases. J Cell Mol Med 2014; 19:511-20. [PMID: 25534251 PMCID: PMC4369809 DOI: 10.1111/jcmm.12482] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/07/2014] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a group of stem cells derived from the mesodermal mesenchyme. MSCs can be obtained from a variety of tissues, including bone marrow, umbilical cord tissue, umbilical cord blood, peripheral blood and adipose tissue. Under certain conditions, MSCs can differentiate into many cell types both in vitro and in vivo, including hepatocytes. To date, four main strategies have been developed to induce the transdifferentiation of MSCs into hepatocytes: addition of chemical compounds and cytokines, genetic modification, adjustment of the micro-environment and alteration of the physical parameters used for culturing MSCs. Although the phenomenon of transdifferentiation of MSCs into hepatocytes has been described, the detailed mechanism is far from clear. Generally, the mechanism is a cascade reaction whereby stimulating factors activate cellular signalling pathways, which in turn promote the production of transcription factors, leading to hepatic gene expression. Because MSCs can give rise to hepatocytes, they are promising to be used as a new treatment for liver dysfunction or as a bridge to liver transplantation. Numerous studies have confirmed the therapeutic effects of MSCs on hepatic fibrosis, cirrhosis and other liver diseases, which may be related to the differentiation of MSCs into functional hepatocytes. In addition to transdifferentiation into hepatocytes, when MSCs are used to treat liver disease, they may also inhibit hepatocellular apoptosis and secrete various bioactive molecules to promote liver regeneration. In this review, the capacity and molecular mechanism of MSC transdifferentiation, and the therapeutic effects of MSCs on liver diseases are thoroughly discussed.
Collapse
Affiliation(s)
- Wei-hui Liu
- General Surgery Center, Chengdu Military General Hospital, Chengdu, Sichuan Province, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yin L, Zhu Y, Yang J, Ni Y, Zhou Z, Chen Y, Wen L. Adipose tissue-derived mesenchymal stem cells differentiated into hepatocyte-like cells in vivo and in vitro. Mol Med Rep 2014; 11:1722-32. [PMID: 25395242 PMCID: PMC4270341 DOI: 10.3892/mmr.2014.2935] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 07/22/2014] [Indexed: 01/03/2023] Open
Abstract
Cell-based therapy is a potential alternative to liver transplantation. The goal of the present study was to examine the in vivo and in vitro hepatic differentiation potential of adipose tissue-derived mesenchymal stem cells (AT-MSCs) and to explore its therapeutic use. AT-MSCs were isolated and cultured with hepatic differentiation medium. Bioactivity assays were used to study the properties of AT-MSCs. The morphology of differentiated AT-MSCs in serum-free hepatic differentiation medium changed into polygonal epithelial cells, while the morphology of AT-MSCs in a similar medium containing 2% fetal bovine serum remained unchanged. The differentiated cells cultured without serum showed hepatocyte-like cell morphology and hepatocyte-specific markers, including albumin (ALB) and α-fetoprotein. The bioactivity assays revealed that hepatocyte-like cells could take up low-density lipoprotein (LDL) and store glycogen. Furthermore, trichostatin A (TSA) enhanced ALB production and LDL uptake by the hepatocyte-like cells, analogous to the functions of human liver cells. ALB was detected in the livers of the CCl4-injured mice one month post-transplantation. This suggested that transplantation of the human AT-MSCs could relieve the impairment of acute CCl4-injured livers in nude mice. This therefore implied that adipose tissue was a source of multipotent stem cells which had the potential to differentiate into mature, transplantable hepatocyte-like cells in vivo and in vitro. In addition, the present study determined that TSA was essential to promoting differentiation of human MSC towards functional hepatocyte-like cells. The relief of liver injury following treatment with AT-MSCs suggested their potential as a novel therapeutic method for liver disorders or injury.
Collapse
Affiliation(s)
- Libo Yin
- Department of Traumatic Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yuhua Zhu
- Department of Traumatic Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Jiangang Yang
- Department of Traumatic Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yijiang Ni
- Department of Traumatic Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Zhao Zhou
- Department of Traumatic Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yu Chen
- Department of Traumatic Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Lixing Wen
- Department of Traumatic Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
29
|
Alizadeh E, Zarghami N, Eslaminejad MB, Akbarzadeh A, Barzegar A, Mohammadi SA. The effect of dimethyl sulfoxide on hepatic differentiation of mesenchymal stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:157-64. [PMID: 24978442 DOI: 10.3109/21691401.2014.928778] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are suitable choices in autologous stem cell treatment of liver-associated diseases due to their hepatic differentiation potential. Dimethyl sulfoxide (DMSO) is an amphipathic molecule with potential of delivering both lipophilic and hydrophilic agents into cells, also a common cryoprotectant for freezing of the cells. DMSO was used in some protocols for induction of AT-MSCs towards hepatocyte like cells. However, the effect of DMSO on hepatogenic differentiation of AT-MSCs were not surveyed, previously. In the present study, we aimed at evaluation of the effect of DMSO on differentiation of AT-MSCs into hepatic lineage. METHODS We isolated mesenchymal stem cells (MSCs) from adipose tissue, and then verifies multi-potency and surface markers of AT-MSCs . Isolated AT-MSCs randomly dispensed in four groups including Group 1: HGF treated, 2: HGF+ DMSO treated, 3: HGF+ DMSO+ OSM treated, and group control for a period of 3 weeks in the expansion medium without serum; EGF and bFGF were also included in the first days of inductions. The morphologic changes during induction period was observed with microscopy. The secretion of albumin (ALB) of the differentiating MSCs was investigated using ELISA, and urea production was evaluated using colorimetric assay. The qRT-PCR was performed for quantitation of hepatocyte marker genes including AFP, ALB, CK18, HNF4a, and HNF6. The glycogen storage of differentiated cells was visualized by periodic-acid Schiff‘s staining. RESULTS The results demonstrate that DMSO speeds up hepatic differentiation of AT-MSCs characterized by rapid changes in morphology; higher expression of hepatic marker gene (ALB) in both mRNA and protein level (P < 0.05); also increased transcriptional levels of other liver genes including CK18, HNF4a, and HNF6 (P < 0.01); and moreover, greater percentage of glycogen storage(p < 0.05) in DMSO-treated groups. CONCLUSION DMSO catalyzes hepatic differentiation; therefore, using DMSO for acceleration of the hepatogenic protocols of AT-MSCs appears advantageous.
Collapse
Affiliation(s)
- Effat Alizadeh
- a Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nosratollah Zarghami
- a Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran.,b The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohamadreza Baghaban Eslaminejad
- c Department of Stem Cells and Developmental Biology at Cell Sciences Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Abolfazl Akbarzadeh
- d Department of Medical Nanotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Barzegar
- e Research Institute for Fundamental Sciences (RIFS), University of Tabriz , Tabriz , Iran
| | - Seyed Abolghasem Mohammadi
- f Department of Agronomy and Plant Breeding , Faculty of Agriculture, University of Tabriz , Tabriz , Iran
| |
Collapse
|
30
|
Lu DF, Yao Y, Su ZZ, Zeng ZH, Xing XW, He ZY, Zhang C. Downregulation of HDAC1 is involved in the cardiomyocyte differentiation from mesenchymal stem cells in a myocardial microenvironment. PLoS One 2014; 9:e93222. [PMID: 24690943 PMCID: PMC3972222 DOI: 10.1371/journal.pone.0093222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/28/2014] [Indexed: 02/06/2023] Open
Abstract
Under myocardial microenvironment, bone marrow-derived mesenchymal stem cells (MSCs) can transdifferentiate into cardiomyocytes (CMs). However, the role of histone deacetylase 1 (HDAC1) in this directed differentiation process remains unclear. The current study is to determine the acetylation regulatory mechanisms that may be involved in the directed CM differentiation from MSCs. MSCs isolated from male Sprague-Dawley (SD) rats were marked with Ad-EGFP and co-cultured with CMs. Flow cytometry was used to sort EGFP-positive (EGFP+) MSCs from the co-culture system. Then, the expression of cardiac troponin T (cTnT) in these MSCs was detected by immunofluorescence assay. In addition, HDAC1 levels at different co-culture times were measured by quantitative real-time polymerase chain reaction (QT-PCR) and Western blotting. At 4 days after co-culture with CMs, the MSCs began to expression detectable levels of cTnT. The expression of HDAC1 in CMs was much lower than that in MSCs. After co-culture with CMs, the expression of HDAC1 in MSCs was significantly decreased in a time dependent manner. In addition, our recent study has also identified that knockdown of the HDAC1 could promote the directed differentiation of MSCs into CMs. The results suggest that HDAC1 has a negative correlation with cardiac cell differentiation from MSCs under a myocardial microenvironment. HDAC1 might play an important role in the directed differentiation of MSCs into CMs in heart.
Collapse
Affiliation(s)
- Dong-feng Lu
- Department of Cardiology and Sino-US Cardiovascular Research Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- * E-mail: (CZ); (D-fL)
| | - Yan Yao
- Department of Cardiology and Sino-US Cardiovascular Research Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zi-zhuo Su
- Department of Cardiology and Sino-US Cardiovascular Research Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhao-hua Zeng
- Department of Cardiology and Sino-US Cardiovascular Research Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-wen Xing
- Department of Cardiology and Sino-US Cardiovascular Research Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi-yu He
- Department of Cardiology and Sino-US Cardiovascular Research Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiang Zhang
- Department of Pharmacology and Cardiovascular Research Center, Rush Medical College, Rush University, Chicago, Illinois, United States of America
- * E-mail: (CZ); (D-fL)
| |
Collapse
|
31
|
Effect of transplantation route on stem cell migration to fibrotic liver of rats via cellular magnetic resonance imaging. Cytotherapy 2014; 15:1266-74. [PMID: 23993301 DOI: 10.1016/j.jcyt.2013.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND AIMS Assessing mesenchymal stromal cells (MSCs) after grafting is essential for understanding their migration and differentiation processes. The present study sought to evaluate via cellular magnetic resonance imaging (MRI) if transplantation route may have an effect on MSCs engrafting to fibrotic liver of rats. METHODS Rat MSCs were prepared, labeled with superparamagnetic iron oxide and scanned with MRI. Labeled MSCs were transplanted via the portal vein or vena caudalis to rats with hepatic fibrosis. MRI was performed in vitro before and after transplantation. Histologic examination was performed. MRI scan and imaging parameter optimization in vitro and migration under in vivo conditions were demonstrated. RESULTS Strong MRI susceptibility effects could be found on gradient echo-weighted, or T2∗-weighted, imaging sequences from 24 h after labeling to passage 4 of labeled MSCs in vitro. In vivo, MRI findings of the portal vein group indicated lower signal in liver on single shot fast spin echo-weighted, or T2-weighted, imaging and T2∗-weighted imaging sequences. The low liver MRI signal increased gradually from 0-3 h and decreased gradually from 3 h to 14 days post-transplantation. The distribution pattern of labeled MSCs in liver histologic sections was identical to that of MRI signal. It was difficult to find MSCs in tissues near the portal area on day 14 after transplantation; labeled MSCs appeared in fibrous tuberculum at the edge of the liver. No MRI signal change and a positive histologic examination were observed in the vena caudalis group. CONCLUSIONS The portal vein route seemed to be more beneficial than the vena caudalis on MSC migration to fibrotic liver of rats via MRI.
Collapse
|
32
|
Lu DF, Wang Y, Su ZZ, Zeng ZH, Xing XW, He ZY, Zhang C. Knockdown of the HDAC1 promotes the directed differentiation of bone mesenchymal stem cells into cardiomyocytes. PLoS One 2014; 9:e92179. [PMID: 24686813 PMCID: PMC3970960 DOI: 10.1371/journal.pone.0092179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/19/2014] [Indexed: 12/13/2022] Open
Abstract
Failure of the directed differentiation of the transplanted stem cells into cardiomyocytes is still a major challenge of cardiac regeneration therapy. Our recent study has demonstrated that the expression of histone deacetylase 1 (HDAC1) is decreased in bone mesenchymal stem cells (BMSCs) during their differentiation into cardiomyocytes. However, the potential roles of HDAC1 in cardiac cell differentiation of BMSCs, as well as the mechanisms involved are still unclear. In current study, the expression of HDAC1 in cultured rat BMSCs is knocked down by lentiviral vectors expressing HDAC1-RNAi. The directed differentiation of BMSCs into cardiomyocytes is evaluated by the expression levels of cardiomyocyte-related genes such as GATA-binding protein 4 (GATA-4), Nirenberg, Kim gene 2 homeobox 5 (Nkx2.5), cardiac troponin T (CTnT), myosin heavy chain (MHC), and connexin-43. Compared with that in control BMSCs, the expression of these cardiomyocyte-related genes is significantly increased in these HDAC1 deficient stem cells. The results suggest that HDAC1 is involved in the cardiomyocyte differentiation of BMSCs. Knockdown of the HDAC1 may promote the directed differentiation of BMSCs into cardiomyocytes.
Collapse
Affiliation(s)
- Dong-feng Lu
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- * E-mail: (CZ); (DFL)
| | - Ying Wang
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zi-zhuo Su
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhao-hua Zeng
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-wen Xing
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi-yu He
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiang Zhang
- Department of Pharmacology and Cardiovascular Research Center, Rush Medical college of Rush University, Chicago, Illinois, United States of America
- * E-mail: (CZ); (DFL)
| |
Collapse
|
33
|
An SY, Han J, Lim HJ, Park SY, Kim JH, Do BR, Kim JH. Valproic acid promotes differentiation of hepatocyte-like cells from whole human umbilical cord-derived mesenchymal stem cells. Tissue Cell 2013; 46:127-35. [PMID: 24472423 DOI: 10.1016/j.tice.2013.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are mesoderm-derived cells that are considered a good source of somatic cells for treatment of many degenerative diseases. Previous studies have reported the differentiation of mesodermal MSCs into endodermal and ectodermal cell types beyond their embryonic lineages, including hepatocytes and neurons. However, the molecular pathways responsible for the direct or indirect cell type conversion and the functional ability of the differentiated cells remain unclear and need further research. In the present study, we demonstrated that valproic acid (VPA), which is a histone deacetylase inhibitor, induced an increase in the expression of endodermal genes including CXCR4, SOX17, FOXA1, FOXA2, GSC, c-MET, EOMES, and HNF-1β in human umbilical cord derived MSCs (hUCMSCs). In addition, we found that VPA is able to increase these endodermal genes in hUCMSCs by activating signal transduction of AKT and ERK. VPA pretreatment increased hepatic differentiation at the expense of adipogenic differentiation. The effects of VPA on modulating hUCMSCs fate were diminished by blocking AKT and ERK activation using specific signaling inhibitors. Together, our results suggest that VPA contributes to the lineage conversion of hUCMSCs to hepatic cell fate by upregulating the expression of endodermal genes through AKT and ERK activation.
Collapse
Affiliation(s)
- Su Yeon An
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Jiyou Han
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Hee-Joung Lim
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Seo-Young Park
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Ji Hyang Kim
- Biotechnology Research Institute, HurimBioCell Inc., Seoul 157-793, Republic of Korea
| | - Byung-Rok Do
- Biotechnology Research Institute, HurimBioCell Inc., Seoul 157-793, Republic of Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
34
|
Buyl K, De Kock J, Najar M, Lagneaux L, Branson S, Rogiers V, Vanhaecke T. Characterization of hepatic markers in human Wharton's Jelly-derived mesenchymal stem cells. Toxicol In Vitro 2013; 28:113-9. [PMID: 23820183 DOI: 10.1016/j.tiv.2013.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 05/17/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
Stem cell technology could offer a unique tool to develop human-based in vitro liver models that are applicable for testing of potential liver toxicity early during drug development. In this context, recent research has indicated that human Wharton's Jelly-derived mesenchymal stem cells (hWJs) represent an interesting stem cell population to develop human hepatocyte-like cells. Here, an in-depth analysis of the expression of liver-specific transcription factors and other key hepatic markers in hWJs is evaluated at both the mRNA and protein level. Our results reveal that transcription factors that are mandatory to acquire and maintain an adult hepatic phenotype (HNF4A and HNF1A), as well as adult hepatic markers (ALB, CX32, CYP1A1, CYP1A2, CYP2B6 and CYP3A4) are not expressed in hWJs with the exception of K18. On the contrary, transcription factors involved in liver development (GATA4, GATA6, SOX9 and SOX17) and liver progenitor markers (DKK1, DPP4, DSG2, CX43 and K19) were found to be highly expressed in hWJs. These findings provide additional indication that hWJs could be a promising stem cell source to generate hepatocyte-like cells necessary for the development of a functional human-based in vitro liver model.
Collapse
Affiliation(s)
- Karolien Buyl
- Department of Toxicology, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
35
|
Ji S, Zhang L, Hui L. Cell fate conversion: direct induction of hepatocyte-like cells from fibroblasts. J Cell Biochem 2013; 114:256-65. [PMID: 22948752 DOI: 10.1002/jcb.24380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/27/2012] [Indexed: 12/17/2022]
Abstract
One of the essential features of stem cells is their cellular plasticity to differentiate into daughter cells with defined functions. Recently, induction of pluripotent stem cells from somatic cells by defined transcription factors led to the focus on cellular plasticity of terminally differentiated cells. This approach is adopted by other studies to demonstrate the cell fate conversion between different lineages of terminally differentiated cells. We and others showed that induced hepatocyte-like (iHep) cells are directly converted from mouse fibroblasts by overexpression of liver-enriched transcription factors. iHep cells as well as pluripotent stem cell- or mesenchymal stem cell-derived hepatocyte-like cells provide potential cell sources for disease modeling, transplantation, and tissue engineering independent of donor organs. Here, we review the latest advances in generating hepatocyte-like cells and summarize general criteria for evaluating these cells. In addition, we propose a possible role of the p19(Arf) /p53 pathway in cell fate maintenance, which apparently limits the formation of induced pluripotent stem (iPS) cells and iHep cells.
Collapse
Affiliation(s)
- Shuyi Ji
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
| | | | | |
Collapse
|
36
|
Abstract
BACKGROUND Liver cell transplantation and bioartificial liver may provide metabolic support of liver function temporary and are prospective treatments for patients with liver failure. Mesenchymal stem cells (MSCs) are expected to be an ideal cell source for transplantation or liver tissue engineering, however the hepatic differentiation of MSCs is still insufficient for clinical application. DATA SOURCES A PubMed search on "mesenchymal stem cells", "liver cell" and "hepatocyte differentiation" was performed on the topic, and the relevant articles published in the past ten years were reviewed. RESULTS Hepatocyte-like cells differentiated from MSCs are a promising cell source for liver regeneration or tissue engineering. Although it is still a matter of debate as to whether MSC-derived hepatocytes may efficiently repopulate a host liver to provide adequate functional substitution, the majority of animal studies support that MSCs can become key players in liver-directed regenerative medicine. However the clinical application of human stem cells in the treatment of liver diseases is still in its infancy. CONCLUSIONS Future studies are required to improve the efficacy and consistency of hepatic differentiation from MSCs. It is necessary to better understand the mechanism to achieve transdifferentiation with high efficiency. More clinical trials are warranted to prove their efficacy in the management of patients with liver failure.
Collapse
|
37
|
De Kock J, Najar M, Bolleyn J, Al Battah F, Rodrigues RM, Buyl K, Raicevic G, Govaere O, Branson S, Meganathan K, Gaspar JA, Roskams T, Sachinidis A, Lagneaux L, Vanhaecke T, Rogiers V. Mesoderm-derived stem cells: the link between the transcriptome and their differentiation potential. Stem Cells Dev 2012; 21:3309-23. [PMID: 22651824 DOI: 10.1089/scd.2011.0723] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human adult stem cells (hASCs) have become an attractive source for autologous cell transplantation, tissue engineering, developmental biology, and the generation of human-based alternative in vitro models. Among the 3 germ cell layers, the mesoderm is the origin of today's most widely used and characterized hASC populations. A variety of isolated nonhematopoietic mesoderm-derived stem cell populations exist, and all of them show important differences in terms of function, efficacy, and differentiation potential both in vivo and in vitro. To better understand whether the intrinsic properties of these cells contribute to the overall differentiation potential of hASCs, we compared the global gene expression profiles of 4 mesoderm-derived stem cell populations: human adipose tissue-derived stromal cells, human bone marrow-derived stromal cells (hBMSCs), human (fore)skin-derived precursor cells (hSKPs), and human Wharton's jelly-derived mesenchymal stem cells (hWJs). Significant differences in gene expression profiles were detected between distinct stem cell types. hSKPs predominantly expressed genes involved in neurogenesis, skin, and bone development, whereas hWJs and, to some extent, hBMSCs showed an increased expression of genes involved in cardiovascular and liver development. Interestingly, the observed differential gene expression of distinct hASCs could be linked to existing differentiation data in which hASCs were differentiated toward specific cell types. As such, our data suggest that the intrinsic gene expression of the undifferentiated stem cells has an important impact on their overall differentiation potential as well as their application in stem cell-based research. Yet, the factors that define these intrinsic properties remain to be determined.
Collapse
Affiliation(s)
- Joery De Kock
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Petrakova OS, Chernioglo ES, Terskikh VV, Kalistratova EN, Vasiliev AV. The use of cellular technologies in treatment of liver pathologies. Acta Naturae 2012; 4:16-30. [PMID: 23150801 PMCID: PMC3491890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cell techniques find increasing application in modern clinical practice. The II and III phases of clinical trials are already under way for various cellular products used for the restoration of the functions of the cornea, larynx, skin, etc. However, the obtainment of functional cell types specific to different organs and tissues still remains a subject of laboratory research. Liver is one of the most important organs; the problems and prospects of cellular therapy for liver pathologies are currently being actively studied. Cellular therapy of liver pathologies is a complex multistage process requiring a thorough understanding of the molecular mechanisms occurring in liver cells during differentiation and regeneration. An analysis of the current cellular therapy for liver pathologies is presented, the use of various cell types is described, the main molecular mechanisms of hepatocyte differentiation are analyzed, and the challenges and prospects of cell therapy for liver disorders are discussed in this review.
Collapse
Affiliation(s)
- O S Petrakova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str., 26, Moscow, Russia, 119334
| | | | | | | | | |
Collapse
|
39
|
Ouyang J, Shao J, Zou H, Lou Y, Yu Y. Hepatic differentiation of rat mesenchymal stem cells by a small molecule. ChemMedChem 2012; 7:1447-52. [PMID: 22715131 DOI: 10.1002/cmdc.201200162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are capable of self-renewal and multilineage differentiation. A periodic acid-Schiff (PAS) stain-based assay was developed to screen for small-molecule inducers of hepatic differentiation of bone marrow MSCs. 2-(4-Bromophenyl)-N-(4-fluorophenyl)-3-propyl-3H-imidazo[4,5-b]pyridin-5-amine (SJA710-6) was identified as a novel small molecule able to induce the differentiation of rat MSCs (rMSCs) toward hepatocyte-like cells in vitro, where rMSCs treated with SJA710-6 have typical morphological and functional characteristics of hepatic cells, including glycogen storage, urea secretion, uptake of low density lipoprotein (LDL) and expression of hepatocyte-specific genes and proteins. Expression of FoxH1 (FAST1/2) induces the differentiation of rMSCs towards hepatocyte-like cells, suggesting that this gene plays an important role in the hepatic fate specification of rMSCs.
Collapse
Affiliation(s)
- Jingfeng Ouyang
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University, 866 YuHangTang Road, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
40
|
Gomez-Santos L, Vazquez-Chantada M, Mato JM, Martinez-Chantar ML. SAMe and HuR in liver physiology: usefulness of stem cells in hepatic differentiation research. Methods Mol Biol 2012; 826:133-49. [PMID: 22167646 DOI: 10.1007/978-1-61779-468-1_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
S-Adenosylmethionine, abbreviated as SAM, SAMe or AdoMet, is the principal methyl group donor in the mammalian cell and the first step metabolite of the methionine cycle, being synthesized by MAT (methionine adenosyltransferase) from methionine and ATP. About 60 years after its identification, SAMe is admitted as a key hepatic regulator whose level needs to be maintained within a specific range in order to avoid liver damage. Recently, in vitro and in vivo studies have demonstrated the regulatory role of SAMe in HGF (hepatocyte growth factor)-mediated hepatocyte proliferation through a mechanism that implicates the activation of the non-canonical LKB1/AMPK/eNOS cascade and HuR function. Regarding hepatic differentiation, cellular SAMe content varies depending on the status of the cell, being lower in immature than in adult hepatocytes. This finding suggests a SAMe regulatory effect also in this cellular process, which very recently was reported and related to HuR activity. Although in the last years this and other discoveries contributed to throw light into the tangle of regulatory mechanisms that govern this complex process, an overall understanding is still a challenge. For this purpose, the in vitro hepatic differentiation culture systems by using stem cells or fetal hepatoblasts are considered as valuable tools which, in combination with the methods used in current days to elucidate cell signaling pathways, surely will help to clear up this question.
Collapse
Affiliation(s)
- Laura Gomez-Santos
- Metabolomics Unit, CIC bioGUNE, Technology Park of Bizkaia, Bizkaia, Basque Country, Spain.
| | | | | | | |
Collapse
|
41
|
Wang J, Zong C, Shi D, Wang W, Shen D, Liu L, Tong X, Zheng Q, Gao C. Hepatogenic engineering from human bone marrow mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture. J Tissue Eng Regen Med 2012; 6:29-39. [DOI: 10.1002/term.393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
42
|
Petrakova OS, Ashapkin VV, Voroteliak EA, Bragin EY, Shtratnikova VY, Chernioglo ES, Sukhanov YV, Terskikh VV, Vasiliev AV. Effect of 3D Cultivation Conditions on the Differentiation of Endodermal Cells. Acta Naturae 2012; 4:47-57. [PMID: 23346379 PMCID: PMC3548173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cellular therapy of endodermal organs is one of the most important issues in modern cellular biology and biotechnology. One of the most promising directions in this field is the study of the transdifferentiation abilities of cells within the same germ layer. A method for anin vitroinvestigation of the cell differentiation potential (the cell culture in a three-dimensional matrix) is described in this article. Cell cultures of postnatal salivary gland cells and postnatal liver progenitor cells were obtained; their comparative analysis under 2D and 3D cultivation conditions was carried out. Both cell types have high proliferative abilities and can be cultivated for more than 20 passages. Under 2D cultivation conditions, the cells remain in an undifferentiated state. Under 3D conditions, they undergo differentiation, which was confirmed by a lower cell proliferation and by an increase in the differentiation marker expression. Salivary gland cells can undergo hepatic and pancreatic differentiation under 3D cultivation conditions. Liver progenitor cells also acquire a pancreatic differentiation capability under conditions of 3D cultivation. Thus, postnatal salivary gland cells exhibit a considerable differentiation potential within the endodermal germ layer and can be used as a promising source of endodermal cells for the cellular therapy of liver pathologies. Cultivation of cells under 3D conditions is a useful model for thein vitroanalysis of the cell differentiation potential.
Collapse
Affiliation(s)
- O. S. Petrakova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences,
Vavilova Str. 26, Moscow, Russia, 119334,Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory
1/12, Moscow, Russia, 119991
| | - V. V. Ashapkin
- Belozersky Institute, Moscow State University, Leninskie Gory, 1/40,
Moscow, Russia, 119991,Center of Innovation and Technology of Biologically Active Compounds and
Their Applications, Russian Academy of Sciences, Gubkina Str. 3/2, Moscow, Russia,
117312
| | - E. A. Voroteliak
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences,
Vavilova Str. 26, Moscow, Russia, 119334
| | - E. Y. Bragin
- Center of Innovation and Technology of Biologically Active Compounds and
Their Applications, Russian Academy of Sciences, Gubkina Str. 3/2, Moscow, Russia,
117312
| | - V. Y. Shtratnikova
- Center of Innovation and Technology of Biologically Active Compounds and
Their Applications, Russian Academy of Sciences, Gubkina Str. 3/2, Moscow, Russia,
117312
| | - E. S. Chernioglo
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences,
Vavilova Str. 26, Moscow, Russia, 119334
| | - Y. V. Sukhanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences,
Vavilova Str. 26, Moscow, Russia, 119334
| | - V. V. Terskikh
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences,
Vavilova Str. 26, Moscow, Russia, 119334
| | - A. V. Vasiliev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences,
Vavilova Str. 26, Moscow, Russia, 119334
| |
Collapse
|
43
|
Yang G, Tian J, Feng C, Zhao LL, Liu Z, Zhu J. Trichostatin a promotes cardiomyocyte differentiation of rat mesenchymal stem cells after 5-azacytidine induction or during coculture with neonatal cardiomyocytes via a mechanism independent of histone deacetylase inhibition. Cell Transplant 2011; 21:985-96. [PMID: 21944777 DOI: 10.3727/096368911x593145] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study was to investigate the effect of trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, on cardiac differentiation of bone marrow mesenchymal stem cells (MSCs) in vitro. Rat MSCs were isolated and divided into six groups: 1) control; 2) 5-azacytidine treatment (5-aza, 10 μM); 3) treatment with TSA (100, 300, and 500 nM); 4) treatment with 5-aza followed by incubation with TSA; 5) coculture with neonatal cardiomyocytes (CMs); and 6) treatment with TSA then coculture with CMs. HDAC activity was significantly inhibited in TSA-treated cells with the maximal inhibition after 24 h of exposure to TSA at 300 nM. No changes in HDAC activity were observed in control, 5-aza-treated, or coculture groups. Following 7 days of differentiation, the expression of early cardiac transcription factors GATA-4, NKx2.5, MEF2c, and cardiac troponin T (cTnT) was increased by 6-8 times in the cells in 5-aza-treated, coculture, or TSA-treated groups over control as determined using real-time PCR, immunofluorescence staining, and Western blotting. However, the percent cTnT-positive cells were dramatically different with 0.7% for control, 10% for 5-aza-treated, 25% for coculture, and 4% for TSA-treated group (500 nM). TSA treatment of the cells pretreated with 5-aza or cocultured with CMs dramatically increased the expression of GATA-4, NKx2.5, and MEF2c by 35-50 times over control. The cTnT protein expression was also significantly increased by over threefold by TSA treatment (500 nM) in both 5-aza-treated and coculture group over control. The percent cTnT-positive cells in both 5-aza-pre-treated and coculture groups were significantly increased by TSA treatment after 1 week of differentiation by up to 92.6% (from 10.3% to 19.8%) and 23.9% (from 24.5% to 30.2%), respectively. These data suggested that TSA enhanced the cardiac differentiation of MSCs after 5-aza induction or during coculture with CMs through a mechanism beyond the inhibition of HDAC activity.
Collapse
Affiliation(s)
- Ge Yang
- Department of Cell and Molecular Biology, Pediatric Institute of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
44
|
Bone marrow mesenchymal stem cells differentiate into urothelial cells and the implications for reconstructing urinary bladder mucosa. Cytotechnology 2011; 63:531-9. [PMID: 21915725 DOI: 10.1007/s10616-011-9376-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/13/2011] [Indexed: 12/11/2022] Open
Abstract
To determine the ability of cultured bone marrow-derived mesenchymal stem cells (BMSCs) to differentiate into functional urothelium. BMSCs were isolated from the long bones of aborted fetal limbs by Percoll density gradient centrifugation and characterized by flow cytometry. Human fetal urinary bladders were cut into small pieces and cultured for 3-5 days until the growth of urothelial cells was established. BMSCs were then cocultured with neonatal urothelial cells and subsequently evaluated for antigen expression and ultramicrostructure, by immunocytochemistry and electron microscopy, respectively. A subset of BMSCs expressed the differentiation marker CD71. The BMSC markers CD34, CD45, and HLA-DR were barely detectable, confirming that these cells were not derived from hematopoietic stem cells or differentiated cells. In contrast, the stem cell markers CD29, CD44, CD105, and CD90 were highly expressed. BMSCs possessed the ability to differentiate into a variety of cellular subtypes, including osteocytes, adipocytes, and chondrocytes. The shapes of BMSCs changed, and the size of the cells increased, following in vitro coculture with urothelial cells. After 2 weeks of coculture, immunostaining of the newly differentiated BMSCs positively displayed the urothelial-specific keratin marker. Electron microscopy revealed that the cocultured BMSCs had microstructural features characteristic of epithelial cells. Pluripotent BMSCs can transdifferentiate into urothelial cells in response to an environment conditioned by neonatal urothelial cells, providing a means for the time-, labor- and cost-effective reconstruction of urinary bladder mucosa.
Collapse
|
45
|
Bolleyn J, Fraczek J, Vinken M, Lizarraga D, Gaj S, van Delft JHM, Rogiers V, Vanhaecke T. Effect of Trichostatin A on miRNA expression in cultures of primary rat hepatocytes. Toxicol In Vitro 2011; 25:1173-82. [PMID: 21513791 DOI: 10.1016/j.tiv.2011.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 03/01/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
In the present study, the effect of Trichostatin A (TSA), a histone deacetylase inhibitor, was investigated on the microRNA (miR, miRNA) expression profile in cultured primary rat hepatocytes by means of microarray analysis. Simultaneously, albumin secretory capacity and morphological features of the hepatocytes were evaluated throughout the culture time. In total, 25 out of 348 miRNAs were found to be differentially expressed between freshly isolated hepatocytes and 7-day cultured cells. Nineteen of these miRNAs were connected with 'general metabolism'. miR-21 and miR-126 were shown to be the most up and down regulated miRs upon cultivation and could be linked to the proliferative response triggered in the hepatocytes upon their isolation from the liver. miR-379 and miR-143, on the other hand, were found to be the most up and down regulated miRs upon TSA treatment. Together with the higher expression of miR-122 observed in TSA-treated versus non-treated cultures, we hypothesize that the changes observed for miR-122, miR-143 and miR-379 could be related to the inhibitory effects of TSA on hepatocellular proliferation.
Collapse
Affiliation(s)
- Jennifer Bolleyn
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Li J, Tao R, Wu W, Cao H, Xin J, Li J, Guo J, Jiang L, Gao C, Demetriou AA, Farkas DL, Li L. 3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes. Stem Cells Dev 2011; 19:1427-36. [PMID: 20055663 DOI: 10.1089/scd.2009.0415] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Liver tissue engineering with hepatic stem cells provides a promising alternative to liver transplantation in patients with acute and chronic hepatic failure. In this study, a three-dimensional (3D) bioscaffold was introduced for differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into hepatocytes. For hepatocyte differentiation, third passage BMSCs isolated from normal adult F344 rats were seeded into collagen-coated poly(lactic-co-glycolic acid) (C-PLGA) 3D scaffolds with hepatocyte differentiation medium for 3 weeks. Hepatogenesis in scaffolds was characterized by reverse transcript PCR, western blot, confocal laser scanning microscopy (CLSM), periodic acid-Schiff staining, histochemistry, and biochemical assays with hepatic-specific genes and markers. A monolayer culture system was used as a control differentiation group. The results showed that isolated cells possessed the basic features of BMSCs. Differentiated hepatocyte-like cells in C-PLGA scaffolds expressed hepatocyte-specific markers [eg, albumin (ALB), alpha-fetoprotein, cytokeratin 18, hepatocyte nuclear factor 4alpha, and cytochrome P450] at mRNA and protein levels. Most markers were expressed in C-PLGA group 1 week earlier than in the control group. Results of biocompatibility indicated that the differentiated hepatocyte-like cells grew more stably in C-PLGA scaffolds than that in controls during a 3-week differentiation period. The significantly higher metabolic functions in hepatocyte-like cells in the C-PLGA scaffold group further demonstrated the important role of the scaffold. CONCLUSION As the phenomenon of transdifferentiation is uncommon, our successful transdifferentiation rates of BMSCs to mature hepatocytes prove the superiority of the C-PLGA scaffold in providing a suitable environment for such a differentiation. This material can possibly be used as a bioscaffold for liver tissue engineering in future clinical therapeutic applications.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Snykers S, De Kock J, Tamara V, Rogiers V. Hepatic differentiation of mesenchymal stem cells: in vitro strategies. Methods Mol Biol 2011; 698:305-14. [PMID: 21431528 DOI: 10.1007/978-1-60761-999-4_23] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, evidence has been provided that mesenchymal stem/progenitor cells (MSC) from various sources (bone marrow, adipose tissue, skin, placenta, umbilical cord) could occasionally overcome lineage borders and differentiate into endodermal (hepatocytes) and ectodermal (neural cells) cell types in vitro. Whereas unidirectional differentiation into other mesenchymal cell types, including adipocytes, chondrocytes, and osteoblasts, readily occurs in the presence of a simple cocktail of growth factors and nutrients, successful bypassing of lineage borders mainly depends on multistep processes in a coordinated signaling network. Here, we provide a reproducible basic methodology to differentiate adult MSC into functional hepatocytes in a sequential and time-dependent way. In addition, focus lies on the functional characterization of MSC-derived hepatocyte-like cells. In particular, we provide a detailed modus operandi to measure the inducible cytochrome P450 (CYP)-dependent activity of MSC-derived hepatocyte-like cells.
Collapse
Affiliation(s)
- Sarah Snykers
- Department of Toxicology, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
48
|
Yoon HH, Jung BY, Seo YK, Song KY, Park JK. In vitro hepatic differentiation of umbilical cord-derived mesenchymal stem cell. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Harting MT, Jimenez F, Cox CS. Isolation of mesenchymal stem cells (MSCs) from green fluorescent protein positive (GFP+) transgenic rodents: the grass is not always green(er). Stem Cells Dev 2010; 18:127-35. [PMID: 18518666 DOI: 10.1089/scd.2008.0046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cellular therapy is under intense basic science and clinical investigation as a therapeutic intervention. One of the challenges lies in tracking these cells in vivo. While there are many ways to label and track cells--each with strengths and weaknesses--the green fluorescent protein (GFP) is a reporter gene commonly employed. We report a significant and consistent reduction in the expression of GFP with the culture of mesenchymal stem cells (MSCs) isolated from the bone marrow of GFP(+) transgenic rodents. After MSC isolation and immunophenotype characterization, along with co-localization with GFP, MSCs were evaluated for GFP expression through flow cytometry and fluorescent microscopy, revealing that only 50% of the cells expressed GFP. Differentiation of the cells to adipocytes did not alter the GFP expression significantly. Incubation with an anti-GFP antibody increased the fluorescent intensity of the GFP-expressing and some of the GFP nonexpressing cells. Incubation of MSCs with a histone deacetylase inhibitor, trichostatin A, did not significantly alter GFP expression, while incubation with a DNA demethylation reagent, 5-azacytidine, increased GFP expression, suggesting that epigenetic modification by DNA methylation may play a role in GFP expression among MSCs.
Collapse
Affiliation(s)
- Matthew T Harting
- Department of Pediatric Surgery and Trauma Research Center, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
50
|
Cytochrome P450 mRNA expressions along with in vitro differentiation of hepatocyte precursor cells from fetal, young and old rats. Folia Histochem Cytobiol 2010; 48:46-57. [PMID: 20529815 DOI: 10.2478/v10042-008-0085-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-differentiated cells are attractive targets for cell therapy. During liver regeneration oval cells intensively proliferate and differentiate extending their metabolic activity. Hepatic cytochromes P450 (CYPs) can be linked either with metabolic activation of toxic compounds or drug metabolism. We investigated the differentiation and biotransformative potential of non-differentiated cells in primary cell cultures isolated from livers of fetuses (16-days-old), young (4-months-old) and old (20-months-old) rats. Under the conditions of experimental hepatocarcinogenesis, adult rats were fed for three weeks with CDE diet. Liver cells were cultured and precursor cells were differentiated to hepatocytes following induction with sodium butyrate (SB) or dimethyl sulphoxide (DMSO) in culture on MesenCult medium. We identified a number of cells expressing Thy-1, CD34, alpha-fetoprotein, cytokeratines--CK18 or CK19 and glutathione transferases--GSTpi or GSTalpha. In vitro differentiation of these cells, isolated from CDE-treated rats begun earlier as compared to non-treated ones. Age-dependent changes in the cell differentiation sequence, as well as CYPmRNA expression sequence accompanying precursor cells differentiation, were also observed. mRNA expression of CYP1A2, CYP2B1/2 and CYP3A1 was higher in the cells of young rats, but in the case of CYP2E1--in the cells of old rats. It was concluded that both proliferation and differentiation potential of oval cells, decreased with age.
Collapse
|