1
|
Ota N, Nishida T, Standley DM, Sherif AA, Iwano S, Nugraha DK, Ueno T, Horiguchi Y. Lonidamine, a Novel Modulator for the BvgAS System of Bordetella Species. Microbiol Immunol 2024. [PMID: 39674913 DOI: 10.1111/1348-0421.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
The Gram-negative bacteria Bordetella pertussis, B. parapertussis, and B. bronchiseptica cause respiratory diseases in various mammals. They share the BvgAS two-component system, which regulates the phenotypic conversion between the virulent Bvg+ and avirulent Bvg- phases. In the BvgAS system, the sensor kinase BvgS senses environmental cues and transduces a phosphorelay signal to the response regulator BvgA, which leads to the expression of Bvg+ phase-specific genes, including virulence factor genes. Bacteria grown at 37°C exhibit the Bvg+ phenotype. In contrast, at lower than 26°C or in the presence of modulators, such as MgSO4 and nicotinic acid, the BvgAS system is inactivated, leading bacteria to the avirulent Bvg- phase. Therefore, effective modulators are expected to provide a therapeutic measure for Bordetella infection; however, no such modulators are currently available, and the mechanism by which modulators inactivate the BvgAS system is poorly understood. In the present study, we identified lonidamine as a novel modulator after screening an FDA-approved drug library using bacterial reporter systems with the Bvg+-specific and Bvg--specific promoters. Lonidamine directly bound to the VFT2 domain of BvgS and inactivated the BvgAS system at concentrations as low as 50 nM, which was at least 2000- to 20,000-fold lower than the effective concentrations of known modulators. Lonidamine significantly reduced the adherence of B. pertussis to cultured cells but unexpectedly exacerbated bacterial colonization of the mouse nasal septum. These results provide insights into the structural requirements for BvgAS modulators and the role of Bvg phenotypes in the establishment of infection.
Collapse
Affiliation(s)
- Natsuko Ota
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Aalaa Alrahman Sherif
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Satoshi Iwano
- Institute for Tenure Track Promotion, University of Miyazaki, Miyazaki, Japan
| | - Dendi Krisna Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Toshiya Ueno
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
2
|
McKay LS, Spandrio AR, Johnson RM, Sobran MA, Marlatt SA, Mote KB, Dedloff MR, Nash ZM, Julio SM, Cotter PA. Cytochrome oxidase requirements in Bordetella reveal insights into evolution towards life in the mammalian respiratory tract. PLoS Pathog 2024; 20:e1012084. [PMID: 38976749 PMCID: PMC11257404 DOI: 10.1371/journal.ppat.1012084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/18/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Little is known about oxygen utilization during infection by bacterial respiratory pathogens. The classical Bordetella species, including B. pertussis, the causal agent of human whooping cough, and B. bronchiseptica, which infects nearly all mammals, are obligate aerobes that use only oxygen as the terminal electron acceptor for electron transport-coupled oxidative phosphorylation. B. bronchiseptica, which occupies many niches, has eight distinct cytochrome oxidase-encoding loci, while B. pertussis, which evolved from a B. bronchiseptica-like ancestor but now survives exclusively in and between human respiratory tracts, has only three functional cytochrome oxidase-encoding loci: cydAB1, ctaCDFGE1, and cyoABCD1. To test the hypothesis that the three cytochrome oxidases encoded within the B. pertussis genome represent the minimum number and class of cytochrome oxidase required for respiratory infection, we compared B. bronchiseptica strains lacking one or more of the eight possible cytochrome oxidases in vitro and in vivo. No individual cytochrome oxidase was required for growth in ambient air, and all three of the cytochrome oxidases conserved in B. pertussis were sufficient for growth in ambient air and low oxygen. Using a high-dose, large-volume persistence model and a low-dose, small-volume establishment of infection model, we found that B. bronchiseptica producing only the three B. pertussis-conserved cytochrome oxidases was indistinguishable from the wild-type strain for infection. We also determined that CyoABCD1 is sufficient to cause the same level of bacterial burden in mice as the wild-type strain and is thus the primary cytochrome oxidase required for murine infection, and that CydAB1 and CtaCDFGE1 fulfill auxiliary roles or are important for aspects of infection we have not assessed, such as transmission. Our results shed light on the environment at the surface of the ciliated epithelium, respiration requirements for bacteria that colonize the respiratory tract, and the evolution of virulence in bacterial pathogens.
Collapse
Affiliation(s)
- Liliana S. McKay
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexa R. Spandrio
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard M. Johnson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - M. Ashley Sobran
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara A. Marlatt
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katlyn B. Mote
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Margaret R. Dedloff
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Zachary M. Nash
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Steven M. Julio
- Department of Biology, Westmont College, Santa Barbara, California, United States of America
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
3
|
Horiguchi Y. Current understanding of Bordetella-induced cough. Microbiol Immunol 2024; 68:123-129. [PMID: 38318657 DOI: 10.1111/1348-0421.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Typical pathogenic bacteria of the genus Bordetella cause respiratory diseases, many of which are characterized by severe coughing in host animals. In human infections with these bacteria, such as whooping cough, coughing imposes a heavy burden on patients. The pathophysiology of this severe coughing had long been uncharacterized because convenient animal models that reproduce Bordetella-induced cough have not been available. However, rat and mouse models were recently shown as useful for understanding, at least partially, the causative factors and the mechanism of Bordetella-induced cough. Many types of coughs are induced under various physiological conditions, and the neurophysiological pathways of coughing are considered to vary among animal species, including humans. However, the neurophysiological mechanisms of the coughs in different animal species have not been entirely understood, and, accordingly, the current understanding of Bordetella-induced cough is still incomplete. Nevertheless, recent research findings may open the way for the development of prophylaxis and therapeutic measures against Bordetella-induced cough.
Collapse
Affiliation(s)
- Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Dekker JP. Within-Host Evolution of Bacterial Pathogens in Acute and Chronic Infection. ANNUAL REVIEW OF PATHOLOGY 2024; 19:203-226. [PMID: 37832940 DOI: 10.1146/annurev-pathmechdis-051122-111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Bacterial pathogens undergo remarkable adaptive change in response to the selective forces they encounter during host colonization and infection. Studies performed over the past few decades have demonstrated that many general evolutionary processes can be discerned during the course of host adaptation, including genetic diversification of lineages, clonal succession events, convergent evolution, and balanced fitness trade-offs. In some cases, elevated mutation rates resulting from mismatch repair or proofreading deficiencies accelerate evolution, and active mobile genetic elements or phages may facilitate genome plasticity. The host immune response provides another critical component of the fitness landscapes guiding adaptation, and selection operating on pathogens at this level may lead to immune evasion and the establishment of chronic infection. This review summarizes recent advances in this field, with a special focus on different forms of bacterial genome plasticity in the context of infection, and considers clinical consequences of adaptive changes for the host.
Collapse
Affiliation(s)
- John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Hiramatsu Y, Nishida T, Ota N, Tamaki Y, Nugraha DK, Horiguchi Y. DAT, deacylating autotransporter toxin, from Bordetella parapertussis demyristoylates Gα i GTPases and contributes to cough. Proc Natl Acad Sci U S A 2023; 120:e2308260120. [PMID: 37748060 PMCID: PMC10556565 DOI: 10.1073/pnas.2308260120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
The pathogenic bacteria Bordetella pertussis and Bordetella parapertussis cause pertussis (whooping cough) and pertussis-like disease, respectively, both of which are characterized by paroxysmal coughing. We previously reported that pertussis toxin (PTx), which inactivates heterotrimeric GTPases of the Gi family through ADP-ribosylation of their α subunits, causes coughing in combination with Vag8 and lipid A in B. pertussis infection. In contrast, the mechanism of cough induced by B. parapertussis, which produces Vag8 and lipopolysaccharide (LPS) containing lipid A, but not PTx, remained to be elucidated. Here, we show that a toxin we named deacylating autotransporter toxin (DAT) of B. parapertussis inactivates heterotrimeric Gi GTPases through demyristoylation of their α subunits and contributes to cough production along with Vag8 and LPS. These results indicate that DAT plays a role in B. parapertussis infection in place of PTx.
Collapse
Affiliation(s)
- Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Natsuko Ota
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Yuki Tamaki
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Dendi K. Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
6
|
Badhai J, Das SK. Genomic evidence and virulence properties decipher the extra-host origin of Bordetella bronchiseptica. J Appl Microbiol 2023; 134:lxad200. [PMID: 37660236 DOI: 10.1093/jambio/lxad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Until recently, members of the classical Bordetella species comprised only pathogenic bacteria that were thought to live exclusively in warm-blooded animals. The close phylogenetic relationship of Bordetella with Achromobacter and Alcaligenes, which include primarily environmental bacteria, suggests that the ancestral Bordetellae were probably free-living. Eventually, the Bordetella species evolved to infect and live within warm-blooded animals. The modern history of pathogens related to the genus Bordetella started towards the end of the 19th century when it was discovered in the infected respiratory epithelium of mammals, including humans. The first identified member was Bordetella pertussis, which causes whooping cough, a fatal disease in young children. In due course, B. bronchiseptica was recovered from the trachea and bronchi of dogs with distemper. Later, a second closely related human pathogen, B. parapertussis, was described as causing milder whooping cough. The classical Bordetellae are strictly host-associated pathogens transmitted via the host-to-host aerosol route. Recently, the B. bronchiseptica strain HT200 has been reported from a thermal spring exhibiting unique genomic features that were not previously observed in clinical strains. Therefore, it advocates that members of classical Bordetella species have evolved from environmental sources. This organism can be transmitted via environmental reservoirs as it can survive nutrient-limiting conditions and possesses a motile flagellum. This study aims to review the molecular basis of origin and virulence properties of obligate host-restricted and environmental strains of classical Bordetella.
Collapse
Affiliation(s)
- Jhasketan Badhai
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| |
Collapse
|
7
|
First NJ, Pedreira-Lopez J, San-Silvestre MRF, Parrish KM, Lu XH, Gestal MC. Bordetella spp. utilize the type 3 secretion system to manipulate the VIP/VPAC2 signaling and promote colonization and persistence of the three classical Bordetella in the lower respiratory tract. Front Cell Infect Microbiol 2023; 13:1111502. [PMID: 37065208 PMCID: PMC10090565 DOI: 10.3389/fcimb.2023.1111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Bordetella are respiratory pathogens comprised of three classical Bordetella species: B. pertussis, B. parapertussis, and B. bronchiseptica. With recent surges in Bordetella spp. cases and antibiotics becoming less effective to combat infectious diseases, there is an imperative need for novel antimicrobial therapies. Our goal is to investigate the possible targets of host immunomodulatory mechanisms that can be exploited to promote clearance of Bordetella spp. infections. Vasoactive intestinal peptide (VIP) is a neuropeptide that promotes Th2 anti-inflammatory responses through VPAC1 and VPAC2 receptor binding and activation of downstream signaling cascades. Methods We used classical growth in vitro assays to evaluate the effects of VIP on Bordetella spp. growth and survival. Using the three classical Bordetella spp. in combination with different mouse strains we were able to evaluate the role of VIP/VPAC2 signaling in the infectious dose 50 and infection dynamics. Finally using the B. bronchiseptica murine model we determine the suitability of VPAC2 antagonists as possible therapy for Bordetella spp. infections. Results Under the hypothesis that inhibition of VIP/VPAC2 signaling would promote clearance, we found that VPAC2-/- mice, lacking a functional VIP/VPAC2 axis, hinder the ability of the bacteria to colonize the lungs, resulting in decreased bacterial burden by all three classical Bordetella species. Moreover, treatment with VPAC2 antagonists decrease lung pathology, suggesting its potential use to prevent lung damage and dysfunction caused by infection. Our results indicate that the ability of Bordetella spp. to manipulate VIP/VPAC signaling pathway appears to be mediated by the type 3 secretion system (T3SS), suggesting that this might serve as a therapeutical target for other gram-negative bacteria. Conclusion Taken together, our findings uncover a novel mechanism of bacteria-host crosstalk that could provide a target for the future treatment for whooping cough as well as other infectious diseases caused primarily by persistent mucosal infections.
Collapse
Affiliation(s)
- Nicholas J. First
- Department of Microbiology and Immunology, Louisiana State University (LSU) Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Jose Pedreira-Lopez
- Department of Microbiology and Immunology, Louisiana State University (LSU) Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Manuel R. F. San-Silvestre
- Department of Microbiology and Immunology, Louisiana State University (LSU) Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Katelyn M. Parrish
- Department of Microbiology and Immunology, Louisiana State University (LSU) Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University (LSU) Health Sciences Center at Shreveport, Shreveport, LA, United States
| |
Collapse
|
8
|
Juscamayta-López E, Valdivia F, Soto MP, Nureña B, Horna H. A pangenome approach-based loop-mediated isothermal amplification assay for the specific and early detection of Bordetella pertussis. Sci Rep 2023; 13:4356. [PMID: 36928221 PMCID: PMC10018623 DOI: 10.1038/s41598-023-29773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
Despite widespread vaccination, Bordetella pertussis continues to cause pertussis infections worldwide, leaving infants at the highest risk of severe illness and death, while people around them are likely the main sources of infection and rapidly spread the disease. Rapid and less complex molecular testing for the specific and timely diagnosis of pertussis remains a challenge that could help to prevent the disease from worsening and prevent its transmission. We aimed to develop and validate a colorimetric loop-mediated isothermal amplification (LAMP) assay using a new target uvrD_2 informed by the pangenome for the specific and early detection of B. pertussis. Compared to that of multitarget quantitative polymerase chain reaction (multitarget qPCR) using a large clinical DNA specimen (n = 600), the diagnostic sensitivity and specificity of the uvrD_2 LAMP assay were 100.0% and 98.6%, respectively, with a 99.7% degree of agreement between the two assays. The novel colorimetric uvrD_2 LAMP assay is highly sensitive and specific for detecting B. pertussis DNA in nasopharyngeal swabs and showed similar diagnostic accuracy to complex and high-cost multitarget qPCR, but it is faster, simpler, and inexpensive, which makes it very helpful for the reliable and timely diagnosis of pertussis in primary health care and resource-limited settings.
Collapse
Affiliation(s)
- Eduardo Juscamayta-López
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú.
- Facultad de Salud Pública y Administración (GA, AGL), Universidad Peruana Cayetano Heredia, Lima, Perú.
| | - Faviola Valdivia
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - María Pía Soto
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Brenda Nureña
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Helen Horna
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| |
Collapse
|
9
|
Bridel S, Bouchez V, Brancotte B, Hauck S, Armatys N, Landier A, Mühle E, Guillot S, Toubiana J, Maiden MCJ, Jolley KA, Brisse S. A comprehensive resource for Bordetella genomic epidemiology and biodiversity studies. Nat Commun 2022; 13:3807. [PMID: 35778384 PMCID: PMC9249784 DOI: 10.1038/s41467-022-31517-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
The genus Bordetella includes bacteria that are found in the environment and/or associated with humans and other animals. A few closely related species, including Bordetella pertussis, are human pathogens that cause diseases such as whooping cough. Here, we present a large database of Bordetella isolates and genomes and develop genotyping systems for the genus and for the B. pertussis clade. To generate the database, we merge previously existing databases from Oxford University and Institut Pasteur, import genomes from public repositories, and add 83 newly sequenced B. bronchiseptica genomes. The public database currently includes 2582 Bordetella isolates and their provenance data, and 2085 genomes ( https://bigsdb.pasteur.fr/bordetella/ ). We use core-genome multilocus sequence typing (cgMLST) to develop genotyping systems for the whole genus and for B. pertussis, as well as specific schemes to define antigenic, virulence and macrolide resistance profiles. Phylogenetic analyses allow us to redefine evolutionary relationships among known Bordetella species, and to propose potential new species. Our database provides an expandable resource for genotyping of environmental and clinical Bordetella isolates, thus facilitating evolutionary and epidemiological research on whooping cough and other Bordetella infections.
Collapse
Affiliation(s)
- Sébastien Bridel
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France
| | - Bryan Brancotte
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Sofia Hauck
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Nathalie Armatys
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France
| | - Estelle Mühle
- Collection de l´Institut Pasteur, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sophie Guillot
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France.,Department of General Pediatrics and Pediatric Infectious Diseases, Université Paris Cité, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Keith A Jolley
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France. .,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France.
| |
Collapse
|
10
|
Abstract
Pertussis, also known as whooping cough, is a contagious respiratory disease caused by the Gram-negative bacterium Bordetella pertussis. This disease is characterized by severe and uncontrollable coughing, which imposes a significant burden on patients. However, its etiological agent and the mechanism are totally unknown because of a lack of versatile animal models that reproduce the cough. Here, we present a mouse model that reproduces coughing after intranasal inoculation with the bacterium or its components and demonstrate that lipooligosaccharide (LOS), pertussis toxin (PTx), and Vag8 of the bacterium cooperatively function to cause coughing. Bradykinin induced by LOS sensitized a transient receptor potential ion channel, TRPV1, which acts as a sensor to evoke the cough reflex. Vag8 further increased bradykinin levels by inhibiting the C1 esterase inhibitor, the major downregulator of the contact system, which generates bradykinin. PTx inhibits intrinsic negative regulation systems for TRPV1 through the inactivation of Gi GTPases. Our findings provide a basis to answer long-standing questions on the pathophysiology of pertussis cough.
Collapse
|
11
|
Pseudomonas aeruginosa Pangenome: Core and Accessory Genes of a Highly Resourceful Opportunistic Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:3-28. [DOI: 10.1007/978-3-031-08491-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
González-Delgado A, Mestre MR, Martínez-Abarca F, Toro N. Prokaryotic reverse transcriptases: from retroelements to specialized defense systems. FEMS Microbiol Rev 2021; 45:fuab025. [PMID: 33983378 PMCID: PMC8632793 DOI: 10.1093/femsre/fuab025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
Reverse transcriptases (RTs) catalyze the polymerization of DNA from an RNA template. These enzymes were first discovered in RNA tumor viruses in 1970, but it was not until 1989 that they were found in prokaryotes as a key component of retrons. Apart from RTs encoded by the 'selfish' mobile retroelements known as group II introns, prokaryotic RTs are extraordinarily diverse, but their function has remained elusive. However, recent studies have revealed that different lineages of prokaryotic RTs, including retrons, those associated with CRISPR-Cas systems, Abi-like RTs and other yet uncharacterized RTs, are key components of different lines of defense against phages and other mobile genetic elements. Prokaryotic RTs participate in various antiviral strategies, including abortive infection (Abi), in which the infected cell is induced to commit suicide to protect the host population, adaptive immunity, in which a memory of previous infection is used to build an efficient defense, and other as yet unidentified mechanisms. These prokaryotic enzymes are attracting considerable attention, both for use in cutting-edge technologies, such as genome editing, and as an emerging research topic. In this review, we discuss what is known about prokaryotic RTs, and the exciting evidence for their domestication from retroelements to create specialized defense systems.
Collapse
Affiliation(s)
- Alejandro González-Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Mario Rodríguez Mestre
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
| | - Francisco Martínez-Abarca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
13
|
Saedi S, Safarchi A, Moghadam FT, Heidarzadeh S, Nikbin VS, Shahcheraghi F. Fha Deficient Bordetella pertussis Isolates in Iran with 50 Years Whole Cell Pertussis Vaccination. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:1454-1462. [PMID: 34568185 PMCID: PMC8426785 DOI: 10.18502/ijph.v50i7.6636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022]
Abstract
Background: Bordetella pertussis, a highly contagious respiratory. Notably, the resurgence of pertussis has recently been associated with the lacking production of vaccine virulence factors. This study aimed to screen pertactin (Prn) and filamentous hemagglutinin (Fha) production in Iran with 50 years’ whole cell vaccine (WCV) immunization program. Methods: Overall, 130 B. pertussis isolates collected from Pertussis Reference Laboratory of Iran during 2005–2018. Real-time PCR was performed by targeting IS481, ptxP, IS1001 and IS1002 for species confirmation of B. pertussis. Western-blot was used to evaluate the expression of virulence factors (pertactin and filamentous hemagglutinin). Results: All tested B. pertussis isolates expressed Prn and all except two isolates expressed Fha. We have sequenced genomes of these strains and identified differences compared with genome reference B. pertussis Tohama I. Conclusion: Many countries reporting Prn and Fha-deficiency due to acellular vaccine (ACV) pressure. Our results demonstrate in a country with WCV history, Fha-deficient isolates may rise independently. However, Prn-deficient isolates are more under the ACV pressure in B. pertussis isolates. Continues surveillance will provide a better understanding of the effect of WCV on the evolution of the pathogen deficiency.
Collapse
Affiliation(s)
- Samaneh Saedi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Azadeh Safarchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Siamak Heidarzadeh
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Ma L, Dewan KK, Taylor-Mulneix DL, Wagner SM, Linz B, Rivera I, Su Y, Caulfield AD, Blas-Machado U, Harvill ET. Pertactin contributes to shedding and transmission of Bordetella bronchiseptica. PLoS Pathog 2021; 17:e1009735. [PMID: 34347835 PMCID: PMC8336816 DOI: 10.1371/journal.ppat.1009735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Whooping cough is resurging in the United States despite high vaccine coverage. The rapid rise of Bordetella pertussis isolates lacking pertactin (PRN), a key vaccine antigen, has led to concerns about vaccine-driven evolution. Previous studies showed that pertactin can mediate binding to mammalian cells in vitro and act as an immunomodulatory factor in resisting neutrophil-mediated clearance. To further investigate the role of PRN in vivo, we examined the functions of pertactin in the context of a more naturally low dose inoculation experimental system using C3H/HeJ mice that is more sensitive to effects on colonization, growth and spread within the respiratory tract, as well as an experimental approach to measure shedding and transmission between hosts. A B. bronchiseptica pertactin deletion mutant was found to behave similarly to its wild-type (WT) parental strain in colonization of the nasal cavity, trachea, and lungs of mice. However, the pertactin-deficient strain was shed from the nares of mice in much lower numbers, resulting in a significantly lower rate of transmission between hosts. Histological examination of respiratory epithelia revealed that pertactin-deficient bacteria induced substantially less inflammation and mucus accumulation than the WT strain and in vitro assays verified the effect of PRN on the induction of TNF-α by murine macrophages. Interestingly, only WT B. bronchiseptica could be recovered from the spleen of infected mice and were further observed to be intracellular among isolated splenocytes, indicating that pertactin contributes to systemic dissemination involving intracellular survival. These results suggest that pertactin can mediate interactions with immune cells and augments inflammation that contributes to bacterial shedding and transmission between hosts. Understanding the relative contributions of various factors to inflammation, mucus production, shedding and transmission will guide novel strategies to interfere with the reemergence of pertussis. B. pertussis strains lacking pertactin have been rising in prevalence especially in countries using acellular vaccines containing pertactin as a key, membrane-associated surface antigen. Previous in vivo studies revealed immunomodulatory properties of pertactin in conventional B. pertussis infection models in which roughly one million bacteria are delivered into lungs, leading to severe pneumonic disease and a strong immune response. However, natural infections begin in the nasopharyngeal region, progress slowly during a prolonged catarrhal stage, only later reaching the trachea and rarely involve the lungs. In this study, a more natural experimental system takes advantage of the ability of B. bronchiseptica, a closely related species, to naturally colonize mice with inocula as low as 5 colony forming units (CFU). In this system B. bronchiseptica can be observed to efficiently colonize, grow, spread within the respiratory tract, is shed from the nares, and transmits between hosts, allowing each of these steps to be measured and studied. Under these conditions, an isogenic pertactin deletion strain was indistinguishable from its parental strain in its abilities to colonize, grow in numbers and spread within the respiratory tract. However, the pertactin-deficient mutant was shed from these mice in lower numbers than wild type, and was defective in transmission between mice. These assays reveal novel roles of pertactin in the induction of inflammation, mucus production, shedding and transmission.
Collapse
Affiliation(s)
- Longhuan Ma
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Dawn L. Taylor-Mulneix
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Shannon M. Wagner
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Yang Su
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry, University of Georgia, Athens, Georgia, United States of America
| | - Amanda D. Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Uriel Blas-Machado
- Department of Pathology, Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
15
|
In vivo evolution of an emerging zoonotic bacterial pathogen in an immunocompromised human host. Nat Commun 2021; 12:4495. [PMID: 34301946 PMCID: PMC8302680 DOI: 10.1038/s41467-021-24668-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/24/2021] [Indexed: 11/08/2022] Open
Abstract
Zoonotic transfer of animal pathogens to human hosts can generate novel agents, but the genetic events following such host jumps are not well studied. Here we characterize the mechanisms driving adaptive evolution of the emerging zoonotic pathogen Bordetella hinzii in a patient with interleukin-12 receptor β1 deficiency. Genomic sequencing of 24 B. hinzii isolates cultured from blood and stool over 45 months revealed a clonal lineage that had undergone extensive within-host genetic and phenotypic diversification. Twenty of 24 isolates shared an E9G substitution in the DNA polymerase III ε-subunit active site, resulting in a proofreading deficiency. Within this proofreading-deficient clade, multiple lineages with mutations in DNA repair genes and altered mutational spectra emerged and dominated clinical cultures for more than 12 months. Multiple enzymes of the tricarboxylic acid cycle and gluconeogenesis pathways were repeatedly mutated, suggesting rapid metabolic adaptation to the human environment. Furthermore, an excess of G:C > T:A transversions suggested that oxidative stress shaped genetic diversification during adaptation. We propose that inactivation of DNA proofreading activity in combination with prolonged, but sub-lethal, oxidative attack resulting from the underlying host immunodeficiency facilitated rapid genomic adaptation. These findings suggest a fundamental role for host immune phenotype in shaping pathogen evolution following zoonotic infection. Bordetella hinzii is an emerging pathogen with zoonotic risk to humans, known to be able to cause respiratory tract infection, bacteremia and endocarditis. Here, applying whole genome sequencing to bacterial isolates, the authors characterize the mechanisms driving adaptive evolution in B. hinzii in a patient with interleukin-12 receptor β1 deficiency, suggesting a role for host immune phenotype in shaping within-host pathogen evolution following zoonotic infection.
Collapse
|
16
|
Genomic Surveillance and Improved Molecular Typing of Bordetella pertussis Using wgMLST. J Clin Microbiol 2021; 59:JCM.02726-20. [PMID: 33627319 DOI: 10.1128/jcm.02726-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
Multilocus sequence typing (MLST) provides allele-based characterization of bacterial pathogens in a standardized framework. However, classical MLST schemes for Bordetella pertussis, the causative agent of whooping cough, seldom reveal diversity among the small number of gene targets and thereby fail to delineate population structure. To improve the discriminatory power of allele-based molecular typing of B. pertussis, we have developed a whole-genome MLST (wgMLST) scheme from 225 reference-quality genome assemblies. Iterative refinement and allele curation resulted in a scheme of 3,506 coding sequences and covering 81.4% of the B. pertussis genome. This wgMLST scheme was further evaluated with data from a convenience sample of 2,389 B. pertussis isolates sequenced on Illumina instruments, including isolates from known outbreaks and epidemics previously characterized by existing molecular assays, as well as replicates collected from individual patients. wgMLST demonstrated concordance with whole-genome single nucleotide polymorphism (SNP) profiles, accurately resolved outbreak and sporadic cases in a retrospective comparison, and clustered replicate isolates collected from individual patients during diagnostic confirmation. Additionally, a reanalysis of isolates from two statewide epidemics using wgMLST reconstructed the population structures of circulating strains with increased resolution, revealing new clusters of related cases. Comparison with an existing core genome (cgMLST) scheme highlights the stable gene content of this bacterium and forms the initial foundation for necessary standardization. These results demonstrate the utility of wgMLST for improving B. pertussis characterization and genomic surveillance during the current pertussis disease resurgence.
Collapse
|
17
|
Luu LDW, Zhong L, Kaur S, Raftery MJ, Lan R. Comparative Phosphoproteomics of Classical Bordetellae Elucidates the Potential Role of Serine, Threonine and Tyrosine Phosphorylation in Bordetella Biology and Virulence. Front Cell Infect Microbiol 2021; 11:660280. [PMID: 33928046 PMCID: PMC8076611 DOI: 10.3389/fcimb.2021.660280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
The Bordetella genus is divided into two groups: classical and non-classical. Bordetella pertussis, Bordetella bronchiseptica and Bordetella parapertussis are known as classical bordetellae, a group of important human pathogens causing whooping cough or whooping cough-like disease and hypothesized to have evolved from environmental non-classical bordetellae. Bordetella infections have increased globally driving the need to better understand these pathogens for the development of new treatments and vaccines. One unexplored component in Bordetella is the role of serine, threonine and tyrosine phosphorylation. Therefore, this study characterized the phosphoproteome of classical bordetellae and examined its potential role in Bordetella biology and virulence. Applying strict identification of localization criteria, this study identified 70 unique phosphorylated proteins in the classical bordetellae group with a high degree of conservation. Phosphorylation was a key regulator of Bordetella metabolism with proteins involved in gluconeogenesis, TCA cycle, amino acid and nucleotide synthesis significantly enriched. Three key virulence pathways were also phosphorylated including type III secretion system, alcaligin synthesis and the BvgAS master transcriptional regulatory system for virulence genes in Bordetella. Seven new phosphosites were identified in BvgA with 6 located in the DNA binding domain. Of the 7, 4 were not present in non-classical bordetellae. This suggests that serine/threonine phosphorylation may play an important role in stabilizing/destabilizing BvgA binding to DNA for fine-tuning of virulence gene expression and that BvgA phosphorylation may be an important factor separating classical from non-classical bordetellae. This study provides the first insight into the phosphoproteome of classical Bordetella species and the role that Ser/Thr/Tyr phosphorylation may play in Bordetella biology and virulence.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Pan Q, Cen S, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Niche-Specific Adaptive Evolution of Lactobacillus plantarum Strains Isolated From Human Feces and Paocai. Front Cell Infect Microbiol 2021; 10:615876. [PMID: 33489942 PMCID: PMC7817898 DOI: 10.3389/fcimb.2020.615876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
Lactobacillus plantarum, a widely used probiotic in the food industry, exists in diverse habitats, which has led to its niche-specific genetic evolution. However, the relationship between this type of genetic evolution and the bacterial phenotype remains unclear. Here, six L. plantarum strains derived from paocai and human feces were analyzed at the genomic and phenotypic levels to investigate the features of adaptive evolution in different habitats. A comparative genomic analysis showed that 93 metabolism-related genes underwent structural variations (SVs) during adaptive evolution, including genes responsible for carbohydrate, lipid, amino acid, inorganic ion and coenzyme transport and metabolism, and energy production and conversion. Notably, seven virulence factor-related genes in strains from both habitats showed SVs — similar to the pattern found in the orthologous virulence genes of pathogenic bacteria shared similar niches, suggesting the possibility of horizontal gene transfer. These genomic variations further influenced the metabolic abilities of strains and their interactions with the commensal microbiota in the host intestine. Compared with the strains from feces, those from paocai exhibited a shorter stagnation period and a higher growth rate in a diluted paocai solution because of variations in functional genes. In addition, opposite correlations were identified between the relative abundances of L. plantarum strains and the genus Bifidobacterium in two media inoculated with strains from the two habitats. Overall, our findings revealed that the niche-specific genetic evolution of L. plantarum strains is associated with their fermentation abilities and physiological functions in host gut health. This knowledge can help guiding the exploration and application of probiotics from the specific niches-based probiotic exploitation.
Collapse
Affiliation(s)
- Qiqi Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shi Cen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Rivera I, Linz B, Harvill ET. Evolution and Conservation of Bordetella Intracellular Survival in Eukaryotic Host Cells. Front Microbiol 2020; 11:557819. [PMID: 33178148 PMCID: PMC7593398 DOI: 10.3389/fmicb.2020.557819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/28/2020] [Indexed: 11/25/2022] Open
Abstract
The classical bordetellae possess several partially characterized virulence mechanisms that are studied in the context of a complete extracellular life cycle in their mammalian hosts. Yet, classical bordetellae have repeatedly been reported within dendritic cells (DCs) and alveolar macrophages in clinical samples, and in vitro experiments convincingly demonstrate that the bacteria can survive intracellularly within mammalian phagocytic cells, an ability that appears to have descended from ancestral progenitor species that lived in the environment and acquired the mechanisms to resist unicellular phagocytic predators. Many pathogens, including Mycobacterium tuberculosis, Salmonella enterica, Francisella tularensis, and Legionella pneumophila, are known to parasitize and multiply inside eukaryotic host cells. This strategy provides protection, nutrients, and the ability to disseminate systemically. While some work has been dedicated at characterizing intracellular survival of Bordetella pertussis, there is limited understanding of how this strategy has evolved within the genus Bordetella and the contributions of this ability to bacterial pathogenicity, evasion of host immunity as well as within and between-host dissemination. Here, we explore the mechanisms that control the metabolic changes accompanying intracellular survival and how these have been acquired and conserved throughout the evolutionary history of the Bordetella genus and discuss the possible implications of this strategy in the persistence and reemergence of B. pertussis in recent years.
Collapse
Affiliation(s)
- Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
20
|
Kamanova J. Bordetella Type III Secretion Injectosome and Effector Proteins. Front Cell Infect Microbiol 2020; 10:466. [PMID: 33014891 PMCID: PMC7498569 DOI: 10.3389/fcimb.2020.00466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Pertussis, also known as whooping cough, is a resurging acute respiratory disease of humans primarily caused by the Gram-negative coccobacilli Bordetella pertussis, and less commonly by the human-adapted lineage of B. parapertussis HU. The ovine-adapted lineage of B. parapertussis OV infects only sheep, while B. bronchiseptica causes chronic and often asymptomatic respiratory infections in a broad range of mammals but rarely in humans. A largely overlapping set of virulence factors inflicts the pathogenicity of these bordetellae. Their genomes also harbor a pathogenicity island, named bsc locus, that encodes components of the type III secretion injectosome, and adjacent btr locus with the type III regulatory proteins. The Bsc injectosome of bordetellae translocates the cytotoxic BteA effector protein, also referred to as BopC, into the cells of the mammalian hosts. While the role of type III secretion activity in the persistent colonization of the lower respiratory tract by B. bronchiseptica is well recognized, the functionality of the type III secretion injectosome in B. pertussis was overlooked for many years due to the adaptation of laboratory-passaged B. pertussis strains. This review highlights the current knowledge of the type III secretion system in the so-called classical Bordetella species, comprising B. pertussis, B. parapertussis, and B. bronchiseptica, and discusses its functional divergence. Comparison with other well-studied bacterial injectosomes, regulation of the type III secretion on the transcriptional and post-transcriptional level, and activities of BteA effector protein and BopN protein, homologous to the type III secretion gatekeepers, are addressed.
Collapse
Affiliation(s)
- Jana Kamanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
21
|
Prevalence, virulence genes, and antimicrobial resistance of Vibrio species isolated from diseased marine fish in South China. Sci Rep 2020; 10:14329. [PMID: 32868874 PMCID: PMC7459350 DOI: 10.1038/s41598-020-71288-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2020] [Indexed: 01/26/2023] Open
Abstract
Here, 70 potential Vibrio pathogens belonging to nine species, dominated by Vibrio harveyi, were isolated and identified from diseased aquacultured marine fish in South China. Subsequently, the prevalence of 11 virulence genes and the resistance to 15 antibiotics in these strains were determined. Most strains possessed atypical virulence genes in addition to typical virulence genes. Notably, hflk and chiA originating from V. harveyi, and flaC associated with V. anguillarum were detected in more than 40% of atypical host strains. Multidrug resistance was widespread: 64.29% strains were resistant to more than three antibiotics, and the multi-antibiotic resistance index ranged from 0.00 to 0.60. The proportions of strains resistant to the antibiotics vancomycin, amoxicillin, midecamycin, and furazolidone all exceeded 50%; nevertheless, all strains were sensitive to florfenicol, norfloxacin, and ciprofloxacin. Furthermore, both virulence genes and antibiotic resistance were more prevalent in Hainan than in Guangdong, owing to the warmer climate and longer annual farming time in Hainan. These results therefore suggest that warming temperatures and overuse of antibiotics are probably enhancing antibiotic resistance and bacterial infection. This study reveals that pathogenic Vibrio spp. with multi-antibiotic resistance are highly prevalent among marine fish in South China and thus warrant further attention. The results will provide helpful guidance for ecological regulation and local antibiotic use in the control of marine fish farming’ Vibrio diseases in South China, facilitating the implementation of national green and healthful aquaculture.
Collapse
|
22
|
Bayram J, Malcova I, Sinkovec L, Holubova J, Streparola G, Jurnecka D, Kucera J, Sedlacek R, Sebo P, Kamanova J. Cytotoxicity of the effector protein BteA was attenuated in Bordetella pertussis by insertion of an alanine residue. PLoS Pathog 2020; 16:e1008512. [PMID: 32776984 PMCID: PMC7446853 DOI: 10.1371/journal.ppat.1008512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/20/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022] Open
Abstract
Bordetella bronchiseptica and Bordetella pertussis are closely related respiratory pathogens that evolved from a common bacterial ancestor. While B. bronchiseptica has an environmental reservoir and mostly establishes chronic infections in a broad range of mammals, B. pertussis is a human-specific pathogen causing acute pulmonary pertussis in infants and whooping cough illness in older humans. Both species employ a type III secretion system (T3SS) to inject a cytotoxic BteA effector protein into host cells. However, compared to the high BteA-mediated cytotoxicity of B. bronchiseptica, the cytotoxicity induced by B. pertussis BteA (Bp BteA) appears to be quite low and this has been attributed to the reduced T3SS gene expression in B. pertussis. We show that the presence of an alanine residue inserted at position 503 (A503) of Bp BteA accounts for its strongly attenuated cytotoxic potency. The deletion of A503 from Bp BteA greatly enhanced the cytotoxic activity of B. pertussis B1917 on mammalian HeLa cells and expression of Bp BteAΔA503 was highly toxic to Saccharomyces cerevisiae cells. Vice versa, insertion of A503 into B. bronchiseptica BteA (Bb BteA) strongly decreased its cytotoxicity to yeast and HeLa cells. Moreover, the production of Bp BteAΔA503 increased virulence of B. pertussis B1917 in the mouse model of intranasal infection (reduced LD50) but yielded less inflammatory pathology in infected mouse lungs at sublethal infectious doses. This suggests that A503 insertion in the T3SS effector Bp BteA may represent an evolutionary adaptation that fine-tunes B. pertussis virulence and host immune response. Pertussis remains the least-controlled vaccine-preventable infectious disease and the mechanisms by which Bordetella pertussis subverts defense mechanisms of human airway mucosa remain poorly understood. We found that B. pertussis had the cytotoxic activity of its type III secretion system-delivered effector BteA strongly attenuated by insertion of an alanine residue at position 503 as compared to the BteA homologue of the animal pathogen B. bronchiseptica. This functional adaptation reduced the capacity of B. pertussis to suppress host inflammatory response and may contribute to an acute course of the pulmonary form of human infant pertussis.
Collapse
Affiliation(s)
- Jan Bayram
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Malcova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Larisa Sinkovec
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gaia Streparola
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kucera
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Kamanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
23
|
Genotypic and phenotypic adaptation of pathogens: lesson from the genus Bordetella. Curr Opin Infect Dis 2020; 32:223-230. [PMID: 30921085 DOI: 10.1097/qco.0000000000000549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW To relate genomic changes to phenotypic adaptation and evolution from environmental bacteria to obligate human pathogens, focusing on the examples within Bordetella species. RECENT FINDINGS Recent studies showed that animal-pathogenic and human-pathogenic Bordetella species evolved from environmental ancestors in soil. The animal-pathogenic Bordetella bronchiseptica can hijack the life cycle of the soil-living amoeba Dictyostelium discoideum, surviving inside single-celled trophozoites, translocating to the fruiting bodies and disseminating along with amoeba spores. The association with amoeba may have been a 'training ground' for bacteria during the evolution to pathogens. Adaptation to an animal-associated life style was characterized by decreasing metabolic versatility and genome size and by acquisition of 'virulence factors' mediating the interaction with the new animal hosts. Subsequent emergence of human-specific pathogens, such as Bordetella pertussis from zoonoses of broader host range progenitors, was accompanied by a dramatic reduction in genome size, marked by the loss of hundreds of genes. SUMMARY The evolution of Bordetella from environmental microbes to animal-adapted and obligate human pathogens was accompanied by significant genome reduction with large-scale gene loss during divergence.
Collapse
|
24
|
Wang Z, Zhang Y, Wang L, Wei J, Liu K, Shao D, Li B, Liu L, Widén F, Ma Z, Qiu Y. Comparative genomic analysis of Bordetella bronchiseptica isolates from the lungs of pigs with porcine respiratory disease complex (PRDC). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104258. [PMID: 32087347 DOI: 10.1016/j.meegid.2020.104258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bordetella bronchiseptica (B. bronchiseptica), as an opportunistic pathogen, can cause respiratory diseases in a variety of animals, including humans. In additional to being involved in porcine atrophic rhinitis through coinfection with Pasteurella multocida, B. bronchiseptica is associated with porcine respiratory disease complex (PRDC). While there are genomic data available from different host species, little is known about B. bronchiseptica isolates from pig lungs, especially from lungs characterized as having PRDC. RESULTS A total of five B. bronchiseptica isolates were identified from pig lungs characterized as PRDC. The draft genomes of these strains were generated. In comparison with the other reported genomes, these five isolates showed the similar general characteristic including G+C content, rRNAs/tRNA, and clusters of orthologous groups of proteins (COGs). Phylogenetic analysis of all B. Bronchiseptica isolates of different species available at GenBank based on core genome multilocus sequence typing (cgMLST) classified them into two genogroups. All five isolates from this study, with the other isolates from pigs, were placed into a subclade of genogroup I consisting of only mammalian isolates. By contrast, genogroup II contained the isolates from an avian species (turkey) and some mammals (human and dog). Moreover, genome annotation revealed the presence of antibiotic resistance genes and virulence genes among these five genomes, consistent with the similarity and variety in genomic traits. Finally, comparative analysis of insertion sequence (IS) and prophages in five genomes further showed the similarity and variety in genomic characteristic. CONCLUSIONS This is the first study to provide comparative genomics of B. bronchiseptica strains from pig lungs characterized as having PRDC. Importantly, the findings presented in this study reveal novel genomic characteristic of B. bronchiseptica, which should provide insightful information on genome evolution.
Collapse
Affiliation(s)
- Zhitao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Yanbing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Lihong Liu
- Department of Virology, Immunobiology and Parasitology (VIP), The Notional Veterinary Institute (SVA), Uppsala, Sweden
| | - Frederik Widén
- Department of Virology, Immunobiology and Parasitology (VIP), The Notional Veterinary Institute (SVA), Uppsala, Sweden
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China.
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China.
| |
Collapse
|
25
|
Alai S, Ghattargi VC, Gautam M, Patel K, Pawar SP, Dhotre DP, Shaligram U, Gairola S. Comparative genomics of whole-cell pertussis vaccine strains from India. BMC Genomics 2020; 21:345. [PMID: 32381023 PMCID: PMC7204287 DOI: 10.1186/s12864-020-6724-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite high vaccination coverage using acellular (ACV) and whole-cell pertussis (WCV) vaccines, the resurgence of pertussis is observed globally. Genetic divergence in circulating strains of Bordetella pertussis has been reported as one of the contributing factors for the resurgence of the disease. Our current knowledge of B. pertussis genetic evolution in circulating strains is mostly based on studies conducted in countries using ACVs targeting only a few antigens used in the production of ACVs. To better understand the adaptation to vaccine-induced selection pressure, it will be essential to study B. pertussis populations in developing countries which are using WCVs. India is a significant user and global supplier of WCVs. We report here comparative genome analyses of vaccine and clinical isolates reported from India. Whole-genome sequences obtained from vaccine strains: WCV (J445, J446, J447 and J448), ACV (BP165) were compared with Tohama-I reference strain and recently reported clinical isolates from India (BPD1, BPD2). Core genome-based phylogenetic analysis was also performed using 166 isolates reported from countries using ACV. RESULTS Whole-genome analysis of vaccine and clinical isolates reported from India revealed high genetic similarity and conserved genome among strains. Phylogenetic analysis showed that clinical and vaccine strains share genetic closeness with reference strain Tohama-I. The allelic profile of vaccine strains (J445:ptxP1/ptxA2/prn1/fim2-1/fim3-1; J446: ptxP2/ptxA4/prn7/fim2-2/fim3-1; J447 and J448: ptxP1/ptxA1/ prn1/fim2-1/fim3-1), which matched entirely with clinical isolates (BPD1:ptxP1/ptxA1/prn1/fim2-1 and BPD2: ptxP1/ptxA1/prn1/fim2-1) reported from India. Multi-locus sequence typing (MLST) demonstrated the presence of dominant sequence types ST2 and primitive ST1 in vaccine strains which will allow better coverage against circulating strains of B. pertussis. CONCLUSIONS The study provides a detailed characterization of vaccine and clinical strains reported from India, which will further facilitate epidemiological studies on genetic shifts in countries which are using WCVs in their immunization programs.
Collapse
Affiliation(s)
- Shweta Alai
- Department of Health and Biological Sciences, Symbiosis International University, Pune, Maharashtra, 412115, India
| | - Vikas C Ghattargi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411021, India
| | - Manish Gautam
- Serum Institute of India Pvt. Ltd, Pune, Maharashtra, 411028, India
| | - Krunal Patel
- Serum Institute of India Pvt. Ltd, Pune, Maharashtra, 411028, India
| | - Shrikant P Pawar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411021, India
| | - Dhiraj P Dhotre
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411021, India
| | - Umesh Shaligram
- Serum Institute of India Pvt. Ltd, Pune, Maharashtra, 411028, India
| | - Sunil Gairola
- Serum Institute of India Pvt. Ltd, Pune, Maharashtra, 411028, India.
| |
Collapse
|
26
|
Safarchi A, Octavia S, Nikbin VS, Lotfi MN, Zahraei SM, Tay CY, Lamichhane B, Shahcheraghi F, Lan R. Genomic epidemiology of Iranian Bordetella pertussis: 50 years after the implementation of whole cell vaccine. Emerg Microbes Infect 2020; 8:1416-1427. [PMID: 31543006 PMCID: PMC6764348 DOI: 10.1080/22221751.2019.1665479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pertussis caused by Bordetella pertussis, remains a public health problem worldwide, despite high vaccine coverage in infants and children in many countries. Iran has been using whole cell vaccine for the last 50 years with more than 95% vaccination rate since 1988 and has experienced pertussis resurgence in recent years. Here, we sequenced 55 B. pertussis isolates mostly collected from three provinces with the highest number of pertussis cases in Iran, including Tehran, Mazandaran, and Eastern-Azarbayjan from the period of 2008-2016. Most isolates carried ptxP3/prn2 alleles (42/55, 76%), the same genotype as isolates circulating in acellular vaccine-administrating countries. The second most frequent genotype was ptxP3/prn9 (8/55, 14%). Only three isolates (5%) were ptxP1. Phylogenetic analysis showed that Iranian ptxP3 isolates can be divided into eight clades (Clades 1-8) with no temporal association. Most of the isolates from Tehran grouped together as one distinctive clade (Clade 8) with six unique single nucleotide polymorphisms (SNPs). In addition, the prn9 isolates were grouped together as Clade 5 with 12 clade-supporting SNPs. No pertactin deficient isolates were found among the 55 Iranian isolates. Our findings suggest that there is an ongoing adaptation and evolution of B. pertussis regardless of the types of vaccine used.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran.,School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| | - Vajihe Sadat Nikbin
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Masoumeh Nakhost Lotfi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Seyed Mohsen Zahraei
- Centre for Communicable Disease Control, Ministry of Health and Medical Education , Tehran , Islamic Republic of Iran
| | - Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia , Perth , Australia
| | - Binit Lamichhane
- Pathology and Laboratory Medicine, University of Western Australia , Perth , Australia
| | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| |
Collapse
|
27
|
Weigand MR, Peng Y, Batra D, Burroughs M, Davis JK, Knipe K, Loparev VN, Johnson T, Juieng P, Rowe LA, Sheth M, Tang K, Unoarumhi Y, Williams MM, Tondella ML. Conserved Patterns of Symmetric Inversion in the Genome Evolution of Bordetella Respiratory Pathogens. mSystems 2019; 4:e00702-19. [PMID: 31744907 PMCID: PMC6867878 DOI: 10.1128/msystems.00702-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Whooping cough (pertussis), primarily caused by Bordetella pertussis, has resurged in the United States, and circulating strains exhibit considerable chromosome structural fluidity in the form of rearrangement and deletion. The genus Bordetella includes additional pathogenic species infecting various animals, some even causing pertussis-like respiratory disease in humans; however, investigation of their genome evolution has been limited. We studied chromosome structure in complete genome sequences from 167 Bordetella species isolates, as well as 469 B. pertussis isolates, to gain a generalized understanding of rearrangement patterns among these related pathogens. Observed changes in gene order primarily resulted from large inversions and were only detected in species with genomes harboring multicopy insertion sequence (IS) elements, most notably B. holmesii and B. parapertussis While genomes of B. pertussis contain >240 copies of IS481, IS elements appear less numerous in other species and yield less chromosome structural diversity through rearrangement. These data were further used to predict all possible rearrangements between IS element copies present in Bordetella genomes, revealing that only a subset is observed among circulating strains. Therefore, while it appears that rearrangement occurs less frequently in other species than in B. pertussis, these clinically relevant respiratory pathogens likely experience similar mutation of gene order. The resulting chromosome structural fluidity presents both challenges and opportunity for the study of Bordetella respiratory pathogens.IMPORTANCE Bordetella pertussis is the primary agent of whooping cough (pertussis). The Bordetella genus includes additional pathogens of animals and humans, including some that cause pertussis-like respiratory illness. The chromosome of B. pertussis has previously been shown to exhibit considerable structural rearrangement, but insufficient data have prevented comparable investigation in related species. In this study, we analyze chromosome structure variation in several Bordetella species to gain a generalized understanding of rearrangement patterns in this genus. Just as in B. pertussis, we observed inversions in other species that likely result from common mutational processes. We used these data to further predict additional, unobserved inversions, suggesting that specific genome structures may be preferred in each species.
Collapse
Affiliation(s)
- Michael R Weigand
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yanhui Peng
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dhwani Batra
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mark Burroughs
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jamie K Davis
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kristen Knipe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Vladimir N Loparev
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Taccara Johnson
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Phalasy Juieng
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lori A Rowe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mili Sheth
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yvette Unoarumhi
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M Williams
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M Lucia Tondella
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Deng Y, Xu H, Su Y, Liu S, Xu L, Guo Z, Wu J, Cheng C, Feng J. Horizontal gene transfer contributes to virulence and antibiotic resistance of Vibrio harveyi 345 based on complete genome sequence analysis. BMC Genomics 2019; 20:761. [PMID: 31640552 PMCID: PMC6805501 DOI: 10.1186/s12864-019-6137-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT), which is affected by environmental pollution and climate change, promotes genetic communication, changing bacterial pathogenicity and drug resistance. However, few studies have been conducted on the effect of HGT on the high pathogenicity and drug resistance of the opportunistic pathogen Vibrio harveyi. RESULTS V. harveyi 345 that was multidrug resistant and infected Epinephelus oanceolutus was isolated from a diseased organism in Shenzhen, Southern China, an important and contaminated aquaculture area. Analysis of the entire genome sequence predicted 5678 genes including 487 virulence genes contributing to bacterial pathogenesis and 25 antibiotic-resistance genes (ARGs) contributing to antimicrobial resistance. Five ARGs (tetm, tetb, qnrs, dfra17, and sul2) and one virulence gene (CU052_28670) on the pAQU-type plasmid p345-185, provided direct evidence for HGT. Comparative genome analysis of 31 V. harveyi strains indicated that 217 genes and 7 gene families, including a class C beta-lactamase gene, a virulence-associated protein D gene, and an OmpA family protein gene were specific to strain V. harveyi 345. These genes could contribute to HGT or be horizontally transferred from other bacteria to enhance the virulence or antibiotic resistance of 345. Mobile genetic elements in 71 genomic islands encoding virulence factors for three type III secretion proteins and 13 type VI secretion system proteins, and two incomplete prophage sequences were detected that could be HGT transfer tools. Evaluation of the complete genome of V. harveyi 345 and comparative genomics indicated genomic exchange, especially exchange of pathogenic genes and drug-resistance genes by HGT contributing to pathogenicity and drug resistance. Climate change and continued environmental deterioration are expected to accelerate the HGT of V. harveyi, increasing its pathogenicity and drug resistance. CONCLUSION This study provides timely information for further analysis of V. harveyi pathogenesis and antimicrobial resistance and developing pollution control measurements for coastal areas.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, 572426, China
| | - Haidong Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jinjun Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, 572426, China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, 572426, China.
| |
Collapse
|
29
|
Hiramatsu Y, Osada-Oka M, Horiguchi Y. Bordet-Gengou agar medium supplemented with albumin-containing biologics for cultivation of bordetellae. Microbiol Immunol 2019; 63:513-516. [PMID: 31489969 DOI: 10.1111/1348-0421.12742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/22/2019] [Accepted: 09/01/2019] [Indexed: 11/30/2022]
Abstract
Bordetella pertussis, B. parapertussis, and B. bronchiseptica cause respiratory infections in mammals, including humans, and are generally cultivated on Bordet-Gengou (BG) agar plates in laboratories. The medium requires animal blood as a supplement for better bacterial growth. However, using blood is problematic, as its constant supply is occasionally difficult because of the limited shelf-life. This study proposes modified BG agar plates supplemented with bovine serum albumin and fetal bovine serum as a simple and convenient medium that confers sufficient growth of bordetellae.
Collapse
Affiliation(s)
- Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mayuko Osada-Oka
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Food Hygiene and Environmental Health, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
30
|
Seth-Smith HMB, Egli A. Whole Genome Sequencing for Surveillance of Diphtheria in Low Incidence Settings. Front Public Health 2019; 7:235. [PMID: 31497588 PMCID: PMC6713046 DOI: 10.3389/fpubh.2019.00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Corynebacterium diphtheriae (C. diphtheriae) is a relatively rare pathogen in most Western countries. While toxin producing strains can cause pharyngeal diphtheria with potentially fatal outcomes, the more common presentation is wound infections. The diphtheria toxin is encoded on a prophage and can also be carried by Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Currently, across Europe, infections are mainly diagnosed in travelers and refugees from regions where diphtheria is more endemic, patients from urban areas with poor hygiene, and intravenous drug users. About half of the cases are non-toxin producing isolates. Rapid identification of the bacterial pathogen and toxin production is a critical element of patient and outbreak management. Beside the immediate clinical management of the patient, public health agencies should be informed of toxigenic C. diphtheriae diagnoses as soon as possible. The collection of case-related epidemiological data from the patient is often challenging due to language barriers and social circumstances. However, information on patient contacts, vaccine status and travel/refugee route, where appropriate, is critical, and should be documented. In addition, isolates should be characterized using high resolution typing, in order to identify transmissions and outbreaks. In recent years, whole genome sequencing (WGS) has become the gold standard of high-resolution typing methods, allowing detailed investigations of pathogen transmissions. De-centralized sequencing strategies with redundancy in sequencing capacities, followed by data exchange may be a valuable future option, especially since WGS becomes more available and portable. In this context, the sharing of sequence data, using public available platforms, is essential. A close interaction between microbiology laboratories, treating physicians, refugee centers, social workers, and public health officials is a key element in successful management of suspected outbreaks. Analyzing bacterial isolates at reference centers may further help to provide more specialized microbiological techniques and to standardize information, but this is also more time consuming during an outbreak. Centralized communication strategies between public health agencies and laboratories helps considerably in establishing and coordinating effective surveillance and infection control. We review the current literature on high-resolution typing of C. diphtheriae and share our own experience with the coordination of a Swiss-German outbreak.
Collapse
Affiliation(s)
- Helena M. B. Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Oviedo JM, Surmann K, Gorgojo JP, Valdez H, Dhople VM, Lamberti Y, Völker U, Rodriguez ME. Shotgun proteomic analysis of Bordetella parapertussis provides insights into the physiological response to iron starvation and potential new virulence determinants absent in Bordetella pertussis. J Proteomics 2019; 206:103448. [PMID: 31325608 DOI: 10.1016/j.jprot.2019.103448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Bordetella parapertussis is one of the pathogens that cause whooping cough. Even though its incidence has been rising in the last decades, this species remained poorly investigated. This study reports the first extensive proteome analysis of this bacterium. In an attempt to gain some insight into the infective phenotype, we evaluated the response of B. parapertussis to iron starvation, a critical stress the bacteria face during infection. Among other relevant findings, we observed that the adaptation to this condition involves significant changes in the abundance of two important virulence factors of this pathogen, namely, adenylate cyclase and the O-antigen. We further used the proteomic data to search for B. parapertussis proteins that are absent or classified as pseudogenes in the genome of Bordetella pertussis to unravel differences between both whooping cough causative agents. Among them, we identified proteins involved in stress resistance and virulence determinants that might help to explain the differences in the pathogenesis of these species and the lack of cross-protection of current acellular vaccines. Altogether, these results contribute to a better understanding of B. parapertussis biology and pathogenesis. SIGNIFICANCE: Whooping cough is a reemerging disease caused by both Bordetella pertussis and Bordetella parapertussis. Current vaccines fail to induce protection against B parapertussis and the incidence of this species has been rising over the years. The proteomic analysis of this study provided relevant insights into potential virulence determinants of this poorly-studied pathogen. It further identified proteins produced by B. parapertussis not present in B. pertussis, which might help to explain both the differences on their respective infectious process and the current vaccine failure. Altogether, the results of this study contribute to the better understanding of B. parapertussis pathogenesis and the eventual design of improved preventive strategies against whooping cough.
Collapse
Affiliation(s)
- Juan Marcos Oviedo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hugo Valdez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Vishnu M Dhople
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - María Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
32
|
Wu L, Gingery M, Abebe M, Arambula D, Czornyj E, Handa S, Khan H, Liu M, Pohlschroder M, Shaw KL, Du A, Guo H, Ghosh P, Miller JF, Zimmerly S. Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey. Nucleic Acids Res 2019; 46:11-24. [PMID: 29186518 PMCID: PMC5758913 DOI: 10.1093/nar/gkx1150] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/04/2017] [Indexed: 01/12/2023] Open
Abstract
Diversity-generating retroelements (DGRs) are novel genetic elements that use reverse transcription to generate vast numbers of sequence variants in specific target genes. Here, we present a detailed comparative bioinformatic analysis that depicts the landscape of DGR sequences in nature as represented by data in GenBank. Over 350 unique DGRs are identified, which together form a curated reference set of putatively functional DGRs. We classify target genes, variable repeats and DGR cassette architectures, and identify two new accessory genes. The great variability of target genes implies roles of DGRs in many undiscovered biological processes. There is much evidence for horizontal transfers of DGRs, and we identify lineages of DGRs that appear to have specialized properties. Because GenBank contains data from only 10% of described species, the compilation may not be wholly representative of DGRs present in nature. Indeed, many DGR subtypes are present only once in the set and DGRs of the candidate phylum radiation bacteria, and Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea archaea, are exceptionally diverse in sequence, with little information available about functions of their target genes. Nonetheless, this study provides a detailed framework for classifying and studying DGRs as they are uncovered and studied in the future.
Collapse
Affiliation(s)
- Li Wu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mari Gingery
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Abebe
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Diego Arambula
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth Czornyj
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sumit Handa
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Hamza Khan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Minghsun Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Kharissa L Shaw
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Amy Du
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Huatao Guo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Jeff F Miller
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Zimmerly
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
33
|
Abstract
This report provides evidence for motility and expression of flagella by B. pertussis, a bacterium that has been reported as nonmotile since it was first isolated and studied. As with B. bronchiseptica, B. pertussis cells can express and assemble a flagellum-like structure on their surface, which in other organisms has been implicated in several important processes that occur in vivo. The discovery that B. pertussis is motile raises many questions, including those regarding the mechanisms of regulation for flagellar gene and protein expression and, importantly, the role of flagella during infection. This novel observation provides a foundation for further study of Bordetella flagella and motility in the contexts of infection and transmission. Bordetella bronchiseptica encodes and expresses a flagellar apparatus. In contrast, Bordetella pertussis, the causative agent of whooping cough, has historically been described as a nonmotile and nonflagellated organism. The previous statements that B. pertussis was a nonmotile organism were consistent with a stop codon located in the flagellar biosynthesis gene, flhA, discovered when the B. pertussis Tohama I genome was sequenced and analyzed by Parkhill et al. in 2003 (J. Parkhill, M. Sebaihia, A. Preston, L. D. Murphy, et al., Nat Genet, 35:32–40, 2003, https://doi.org/10.1038/ng1227). The stop codon has subsequently been found in all annotated genomes. Parkhill et al. also showed, however, that B. pertussis contains all genetic material required for flagellar synthesis and function. We and others have determined by various transcriptomic analyses that these flagellar genes are differentially regulated under a variety of B. pertussis growth conditions. In light of these data, we tested for B. pertussis motility and found that both laboratory-adapted strains and clinical isolates can be motile. Upon isolation of motile B. pertussis, we discovered flagellum-like structures on the surface of the bacteria. B. pertussis motility appears to occur primarily in the Bvg(−) phase, consistent with regulation present in B. bronchiseptica. Motility can also be induced by the presence of fetal bovine serum. These observations demonstrate that B. pertussis can express flagellum-like structures, and although it remains to be determined if B. pertussis expresses flagella during infection or if motility and/or flagella play roles during the cycle of infection and transmission, it is clear that these data warrant further investigation.
Collapse
|
34
|
BspR/BtrA, an Anti-σ Factor, Regulates the Ability of Bordetella bronchiseptica To Cause Cough in Rats. mSphere 2019; 4:4/2/e00093-19. [PMID: 31019000 PMCID: PMC6483047 DOI: 10.1128/msphere.00093-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Whooping cough is a contagious respiratory disease caused by Bordetella pertussis. This disease is characterized by severe paroxysmal coughing, which becomes a heavy burden for patients and occasionally results in death; however, its pathogenesis remains largely unknown. The major obstacle to analyzing Bordetella-induced coughing is the lack of conventional animal models that replicate coughing. As Bordetella pertussis is highly adapted to humans, infection models in experimental animals are not considered to be well established. In the present study, we examined coughing in rats infected with B. bronchiseptica, which shares many virulence factors with B. pertussis. Using this rat model, we demonstrated that some of the major virulence factors of Bordetella are not involved in cough production, but an anti-σ factor, BspR/BtrA, of B. bronchiseptica regulates the production of unknown cough-causing bacterial factor(s). Our results provide important clues to understand the mechanism by which Bordetella induces cough. Bordetella pertussis, B. parapertussis, and B. bronchiseptica cause respiratory infections, many of which are characterized by coughing of the infected hosts. The pathogenesis of the coughing remains to be analyzed, mainly because there were no convenient infection models of small animals that replicate coughing after Bordetella infection. Here, we present a coughing model of rats infected with B. bronchiseptica. Rats, which are one of natural hosts of B. bronchiseptica, were readily infected with the organisms and showed frequent coughing. B. pertussis also caused coughing in rats, which is consistent with previous reports, but the cough response was less apparent than the B. bronchiseptica-induced cough. By using the rat model, we demonstrated that adenylate cyclase toxin, dermonecrotic toxin, and the type III secretion system are not involved in cough production, but BspR/BtrA (different names for the same protein), an anti-σ factor, regulates the production of unknown factor(s) to cause coughing. Rat coughing was observed by inoculation of not only the living bacteria but also the bacterial lysates. Infection with bspR (btrA)-deficient strains caused significantly less frequent coughing than the wild type; however, intranasal inoculation of the lysates from a bspR (btrA)-deficient strain caused coughing similarly to the wild type, suggesting that BspR/BtrA regulates the production of the cough factor(s) only when the bacteria colonize host bodies. Moreover, the cough factor(s) was found to be heat labile and produced by B. bronchiseptica in the Bvg+ phase. We consider that our rat model provides insight into the pathogenesis of cough induced by the Bordetella infection. IMPORTANCE Whooping cough is a contagious respiratory disease caused by Bordetella pertussis. This disease is characterized by severe paroxysmal coughing, which becomes a heavy burden for patients and occasionally results in death; however, its pathogenesis remains largely unknown. The major obstacle to analyzing Bordetella-induced coughing is the lack of conventional animal models that replicate coughing. As Bordetella pertussis is highly adapted to humans, infection models in experimental animals are not considered to be well established. In the present study, we examined coughing in rats infected with B. bronchiseptica, which shares many virulence factors with B. pertussis. Using this rat model, we demonstrated that some of the major virulence factors of Bordetella are not involved in cough production, but an anti-σ factor, BspR/BtrA, of B. bronchiseptica regulates the production of unknown cough-causing bacterial factor(s). Our results provide important clues to understand the mechanism by which Bordetella induces cough.
Collapse
|
35
|
Dewan KK, Harvill ET. Did new transmission cycles in anthropogenic, dense, host populations encourage the emergence and speciation of pathogenic Bordetella? PLoS Pathog 2019; 15:e1007600. [PMID: 30921446 PMCID: PMC6438446 DOI: 10.1371/journal.ppat.1007600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kalyan K. Dewan
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Eric T. Harvill
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
36
|
Wirojsirasak W, Kalapanulak S, Saithong T. Pan- and core- gene association networks: Integrative approaches to understanding biological regulation. PLoS One 2019; 14:e0210481. [PMID: 30625202 PMCID: PMC6326509 DOI: 10.1371/journal.pone.0210481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/25/2018] [Indexed: 02/06/2023] Open
Abstract
The rapid increase in transcriptome data provides an opportunity to access the complex regulatory mechanisms in cellular systems through gene association network (GAN). Nonetheless, GANs derived from single datasets generally allow us to envisage only one side of the regulatory network, even under the particular condition of study. The circumstance is well demonstrated by inconsistent GANs of individual datasets proposed for similar experimental conditions, which always leads to ambiguous interpretation. Here, pan- and core-gene association networks (pan- and core-GANs), analogous to the pan- and core-genome concepts, are proposed to increase the power of inference through the integration of multiple, diverse datasets. The core-GAN represents the consensus associations of genes that were inferred from all individual networks. On the other hand, the pan-GAN represents the extensive gene-gene associations that occurred in each individual network. The pan- and core-GANs prospects were demonstrated based on three time series microarray datasets in leaves of Arabidopsis thaliana grown under diurnal conditions. We showed the overall performance of pan- and core-GANs was more robust to the number of data points in gene expression data compared to the GANs inferred from individual datasets. In addition, the incorporation of multiple data broadened our understanding of the biological regulatory system. While the pan-GAN enabled us to observe the landscape of gene association system, core-GAN highlighted the basic gene-associations in essence of the regulation regulating starch metabolism in leaves of Arabidopsis.
Collapse
Affiliation(s)
- Warodom Wirojsirasak
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Saowalak Kalapanulak
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Treenut Saithong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- * E-mail:
| |
Collapse
|
37
|
How Genomics Is Changing What We Know About the Evolution and Genome of Bordetella pertussis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:1-17. [PMID: 31321755 DOI: 10.1007/5584_2019_401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolution of Bordetella pertussis from a common ancestor similar to Bordetella bronchiseptica has occurred through large-scale gene loss, inactivation and rearrangements, largely driven by the spread of insertion sequence element repeats throughout the genome. B. pertussis is widely considered to be monomorphic, and recent evolution of the B. pertussis genome appears to, at least in part, be driven by vaccine-based selection. Given the recent global resurgence of whooping cough despite the wide-spread use of vaccination, a more thorough understanding of B. pertussis genomics could be highly informative. In this chapter we discuss the evolution of B. pertussis, including how vaccination is changing the circulating B. pertussis population at the gene-level, and how new sequencing technologies are revealing previously unknown levels of inter- and intra-strain variation at the genome-level.
Collapse
|
38
|
The Eukaryotic Host Factor 14-3-3 Inactivates Adenylate Cyclase Toxins of Bordetella bronchiseptica and B. parapertussis, but Not B. pertussis. mBio 2018; 9:mBio.00628-18. [PMID: 30154257 PMCID: PMC6113625 DOI: 10.1128/mbio.00628-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bordetella pertussis, Bordetella bronchiseptica, and Bordetella parapertussis share highly homologous virulence factors and commonly cause respiratory infections in mammals; however, their host specificities and disease severities differ, and the reasons for this remain largely unknown. Adenylate cyclase toxin (CyaA) is a homologous virulence factor that is thought to play crucial roles in Bordetella infections. We herein demonstrate that CyaAs function as virulence factors differently between B. bronchiseptica/B. parapertussis and B. pertussis. B. bronchiseptica CyaA bound to target cells, and its enzyme domain was translocated into the cytosol similarly to B. pertussis CyaA. The hemolytic activity of B. bronchiseptica CyaA on sheep erythrocytes was also preserved. However, in nucleated target cells, B. bronchiseptica CyaA was phosphorylated at Ser375, which constitutes a motif (RSXpSXP [pS is phosphoserine]) recognized by the host factor 14-3-3, resulting in the abrogation of adenylate cyclase activity. Consequently, the cytotoxic effects of B. bronchiseptica CyaA based on its enzyme activity were markedly attenuated. B. parapertussis CyaA carries the 14-3-3 motif, indicating that its intracellular enzyme activity is abrogated similarly to B. bronchiseptica CyaA; however, B. pertussis CyaA has Phe375 instead of Ser, and thus, was not affected by 14-3-3. In addition, B. pertussis CyaA impaired the barrier function of epithelial cells, whereas B. bronchiseptica CyaA did not. Rat infection experiments suggested that functional differences in CyaA are related to differences in pathogenicity between B. bronchiseptica/B. parapertussis and B. pertussis. Bordetella pertussis, B. bronchiseptica, and B. parapertussis are bacterial respiratory pathogens that are genetically close to each other and produce many homologous virulence factors; however, their host specificities and disease severities differ, and the reasons for this remain unknown. Previous studies attempted to explain these differences by the distinct virulence factors produced by each Bordetella species. In contrast, we indicated functional differences in adenylate cyclase toxin, a homologous virulence factor of Bordetella. The toxins of B. bronchiseptica and presumably B. parapertussis were inactivated by the host factor 14-3-3 after phosphorylation in target cells, whereas the B. pertussis toxin was not inactivated because of the lack of the phosphorylation site. This is the first study to show that 14-3-3 inactivates the virulence factors of pathogens. The present results suggest that pathogenic differences in Bordetella are attributed to the different activities of adenylate cyclase toxins.
Collapse
|
39
|
Barbosa CS, Fonseca RRD, Batista TM, Barreto MA, Argolo CS, Carvalho MRD, Amaral DOJD, Silva EMDA, Arévalo-Gardini E, Hidalgo KS, Franco GR, Pirovani CP, Micheli F, Gramacho KP. Genome sequence and effectorome of Moniliophthora perniciosa and Moniliophthora roreri subpopulations. BMC Genomics 2018; 19:509. [PMID: 29969982 PMCID: PMC6029071 DOI: 10.1186/s12864-018-4875-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/18/2018] [Indexed: 12/03/2022] Open
Abstract
Background The hemibiotrophic pathogens Moniliophthora perniciosa (witches’ broom disease) and Moniliophthora roreri (frosty pod rot disease) are among the most important pathogens of cacao. Moniliophthora perniciosa has a broad host range and infects a variety of meristematic tissues in cacao plants, whereas M. roreri infects only pods of Theobroma and Herrania genera. Comparative pathogenomics of these fungi is essential to understand Moniliophthora infection strategies, therefore the detection and in silico functional characterization of effector candidates are important steps to gain insight on their pathogenicity. Results Candidate secreted effector proteins repertoire were predicted using the genomes of five representative isolates of M. perniciosa subpopulations (three from cacao and two from solanaceous hosts), and one representative isolate of M. roreri from Peru. Many putative effectors candidates were identified in M. perniciosa: 157 and 134 in cacao isolates from Bahia, Brazil; 109 in cacao isolate from Ecuador, 92 and 80 in wild solanaceous isolates from Minas Gerais (Lobeira) and Bahia (Caiçara), Brazil; respectively. Moniliophthora roreri showed the highest number of effector candidates, a total of 243. A set of eight core effectors were shared among all Moniliophthora isolates, while others were shared either between the wild solanaceous isolates or among cacao isolates. Mostly, candidate effectors of M. perniciosa were shared among the isolates, whereas in M. roreri nearly 50% were exclusive to the specie. In addition, a large number of cell wall-degrading enzymes characteristic of hemibiotrophic fungi were found. From these, we highlighted the proteins involved in cell wall modification, an enzymatic arsenal that allows the plant pathogens to inhabit environments with oxidative stress, which promotes degradation of plant compounds and facilitates infection. Conclusions The present work reports six genomes and provides a database of the putative effectorome of Moniliophthora, a first step towards the understanding of the functional basis of fungal pathogenicity. Electronic supplementary material The online version of this article (10.1186/s12864-018-4875-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ceslaine Santos Barbosa
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, Ilhéus, 45662-900, Bahia, Brazil.,Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC), Centro de Pesquisas do Cacau (CEPEC), Seção de Fitossanidade (SEFIT), Laboratório de Fitopatologia Molecular (FITOMOL), km 22 Rod. Ilhéus Itabuna, Ilhéus, 45600-970, Bahia, Brazil
| | - Rute R da Fonseca
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - Thiago Mafra Batista
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais/Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Araújo Barreto
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, Ilhéus, 45662-900, Bahia, Brazil.,Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC), Centro de Pesquisas do Cacau (CEPEC), Seção de Fitossanidade (SEFIT), Laboratório de Fitopatologia Molecular (FITOMOL), km 22 Rod. Ilhéus Itabuna, Ilhéus, 45600-970, Bahia, Brazil
| | - Caio Suzart Argolo
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, Ilhéus, 45662-900, Bahia, Brazil
| | - Mariana Rocha de Carvalho
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, Ilhéus, 45662-900, Bahia, Brazil.,Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC), Centro de Pesquisas do Cacau (CEPEC), Seção de Fitossanidade (SEFIT), Laboratório de Fitopatologia Molecular (FITOMOL), km 22 Rod. Ilhéus Itabuna, Ilhéus, 45600-970, Bahia, Brazil
| | - Daniel Oliveira Jordão do Amaral
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, Ilhéus, 45662-900, Bahia, Brazil
| | - Edson Mário de Andrade Silva
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, Ilhéus, 45662-900, Bahia, Brazil
| | | | - Karina Solis Hidalgo
- Instituto Nacional de Investigaciones Agropecuarias - INIAP, Departamento de Protección Vegetal, Quito, Ecuador
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais/Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, Ilhéus, 45662-900, Bahia, Brazil
| | - Fabienne Micheli
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, Ilhéus, 45662-900, Bahia, Brazil.,CIRAD, UMR AGAP, F-34398, Montpellier, France
| | - Karina Peres Gramacho
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, Ilhéus, 45662-900, Bahia, Brazil. .,Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC), Centro de Pesquisas do Cacau (CEPEC), Seção de Fitossanidade (SEFIT), Laboratório de Fitopatologia Molecular (FITOMOL), km 22 Rod. Ilhéus Itabuna, Ilhéus, 45600-970, Bahia, Brazil.
| |
Collapse
|
40
|
Amman F, D'Halluin A, Antoine R, Huot L, Bibova I, Keidel K, Slupek S, Bouquet P, Coutte L, Caboche S, Locht C, Vecerek B, Hot D. Primary transcriptome analysis reveals importance of IS elements for the shaping of the transcriptional landscape of Bordetella pertussis. RNA Biol 2018; 15:967-975. [PMID: 29683387 PMCID: PMC6161684 DOI: 10.1080/15476286.2018.1462655] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a respiratory disease still considered as a major public health threat and for which recent re-emergence has been observed. Constant reshuffling of Bordetella pertussis genome organization was observed during evolution. These rearrangements are essentially mediated by Insertion Sequences (IS), a mobile genetic elements present in more than 230 copies in the genome, which are supposed to be one of the driving forces enabling the pathogen to escape from vaccine-induced immunity. Here we use high-throughput sequencing approaches (RNA-seq and differential RNA-seq), to decipher Bordetella pertussis transcriptome characteristics and to evaluate the impact of IS elements on transcriptome architecture. Transcriptional organization was determined by identification of transcription start sites and revealed also a large variety of non-coding RNAs including sRNAs, leaderless mRNAs or long 3' and 5'UTR including seven riboswitches. Unusual topological organizations, such as overlapping 5'- or 3'-extremities between oppositely orientated mRNA were also unveiled. The pivotal role of IS elements in the transcriptome architecture and their effect on the transcription of neighboring genes was examined. This effect is mediated by the introduction of IS harbored promoters or by emergence of hybrid promoters. This study revealed that in addition to their impact on genome rearrangements, most of the IS also impact on the expression of their flanking genes. Furthermore, the transcripts produced by IS are strain-specific due to the strain to strain variation in IS copy number and genomic context.
Collapse
Affiliation(s)
- Fabian Amman
- University of Vienna, Theoretical Biochemistry Group, Institute for Theoretical Chemistry, Vienna, Austria
| | - Alexandre D'Halluin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Rudy Antoine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Ludovic Huot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Ilona Bibova
- Institute of Microbiology of the ASCR; Laboratory of post-transcriptional control of gene expression, Prague, Czech Republic
| | - Kristina Keidel
- Institute of Microbiology of the ASCR; Laboratory of post-transcriptional control of gene expression, Prague, Czech Republic
| | - Stéphanie Slupek
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Peggy Bouquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Loïc Coutte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Ségolène Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Branislav Vecerek
- Institute of Microbiology of the ASCR; Laboratory of post-transcriptional control of gene expression, Prague, Czech Republic
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
41
|
Zomer A, Otsuka N, Hiramatsu Y, Kamachi K, Nishimura N, Ozaki T, Poolman J, Geurtsen J. Bordetella pertussis population dynamics and phylogeny in Japan after adoption of acellular pertussis vaccines. Microb Genom 2018; 4. [PMID: 29771235 PMCID: PMC5994715 DOI: 10.1099/mgen.0.000180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bordetella pertussis, the causative agent of whooping cough, has experienced a resurgence in the past 15 years, despite the existence of both whole-cell and acellular vaccines. Here, we performed whole genome sequencing analysis of 149 clinical strains, provided by the National Institute of Infectious Diseases (NIID), Japan, isolated in 1982–2014, after Japan became the first country to adopt acellular vaccines against B. pertussis. Additionally, we sequenced 39 strains provided by the Konan Kosei Hospital in Aichi prefecture, Japan, isolated in 2008–2013. The genome sequences afforded insight into B. pertussis genome variability and population dynamics in Japan, and revealed that the B. pertussis population in Japan was characterized by two major clades that divided more than 40 years ago. The pertactin gene was disrupted in about 20 % of the 149 NIID isolates, by either a deletion within the signal sequence (ΔSS) or the insertion of IS element IS481 (prn :: IS481). Phylogeny suggests that the parent clones for these isolates originated in Japan. Divergence dating traced the first generation of the pertactin-deficient mutants in Japan to around 1990, and indicated that strains containing the alternative pertactin allele prn2 may have appeared in Japan around 1974. Molecular clock data suggested that observed fluctuations in B. pertussis population size may have coincided with changes in vaccine usage in the country. The continuing failure to eradicate the disease warrants an exploration of novel vaccine compositions.
Collapse
Affiliation(s)
- Aldert Zomer
- 1Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nao Otsuka
- 2Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yukihiro Hiramatsu
- 2Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.,†Present address: Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazunari Kamachi
- 2Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Naoko Nishimura
- 3Department of Pediatrics, Konan Kosei Hospital, Takaya-cho, Konan, Aichi, Japan
| | - Takao Ozaki
- 3Department of Pediatrics, Konan Kosei Hospital, Takaya-cho, Konan, Aichi, Japan
| | - Jan Poolman
- 4Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Jeroen Geurtsen
- 4Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| |
Collapse
|
42
|
Hauck S, Maiden MCJ. Clonally Evolving Pathogenic Bacteria. MOLECULAR MECHANISMS OF MICROBIAL EVOLUTION 2018. [DOI: 10.1007/978-3-319-69078-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Taylor-Mulneix DL, Hamidou Soumana I, Linz B, Harvill ET. Evolution of Bordetellae from Environmental Microbes to Human Respiratory Pathogens: Amoebae as a Missing Link. Front Cell Infect Microbiol 2017; 7:510. [PMID: 29322035 PMCID: PMC5732149 DOI: 10.3389/fcimb.2017.00510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022] Open
Abstract
The genus Bordetella comprises several bacterial species that colonize the respiratory tract of mammals. It includes B. pertussis, a human-restricted pathogen that is the causative agent of Whooping Cough. In contrast, the closely related species B. bronchiseptica colonizes a broad range of animals as well as immunocompromised humans. Recent metagenomic studies have identified known and novel bordetellae isolated from different environmental sources, providing a new perspective on their natural history. Using phylogenetic analysis, we have shown that human and animal pathogenic bordetellae have most likely evolved from ancestors that originated from soil and water. Our recent study found that B. bronchiseptica can evade amoebic predation and utilize Dictyostelium discoideum as an expansion and transmission vector, which suggests that the evolutionary pressure to evade the amoebic predator enabled the rise of bordetellae as respiratory pathogens. Interactions with amoeba may represent the starting point for bacterial adaptation to eukaryotic cells. However, as bacteria evolve and adapt to a novel host, they can become specialized and restricted to a specific host. B. pertussis is known to colonize and cause infection only in humans, and this specialization to a closed human-to-human lifecycle has involved genome reduction and the loss of ability to utilize amoeba as an environmental reservoir. The discoveries from studying the interaction of Bordetella species with amoeba will elicit a better understanding of the evolutionary history of these and other important human pathogens.
Collapse
Affiliation(s)
- Dawn L Taylor-Mulneix
- Department of Infectious Diseases, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Illiassou Hamidou Soumana
- Department of Infectious Diseases, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Bodo Linz
- Department of Infectious Diseases, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
44
|
Branco Dos Santos F, Olivier BG, Boele J, Smessaert V, De Rop P, Krumpochova P, Klau GW, Giera M, Dehottay P, Teusink B, Goffin P. Probing the Genome-Scale Metabolic Landscape of Bordetella pertussis, the Causative Agent of Whooping Cough. Appl Environ Microbiol 2017; 83:e01528-17. [PMID: 28842544 PMCID: PMC5648915 DOI: 10.1128/aem.01528-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Whooping cough is a highly contagious respiratory disease caused by Bordetella pertussis Despite widespread vaccination, its incidence has been rising alarmingly, and yet, the physiology of B. pertussis remains poorly understood. We combined genome-scale metabolic reconstruction, a novel optimization algorithm, and experimental data to probe the full metabolic potential of this pathogen, using B. pertussis strain Tohama I as a reference. Experimental validation showed that B. pertussis secretes a significant proportion of nitrogen as arginine and purine nucleosides, which may contribute to modulation of the host response. We also found that B. pertussis can be unexpectedly versatile, being able to metabolize many compounds while displaying minimal nutrient requirements. It can grow without cysteine, using inorganic sulfur sources, such as thiosulfate, and it can grow on organic acids, such as citrate or lactate, as sole carbon sources, providing in vivo demonstration that its tricarboxylic acid (TCA) cycle is functional. Although the metabolic reconstruction of eight additional strains indicates that the structural genes underlying this metabolic flexibility are widespread, experimental validation suggests a role of strain-specific regulatory mechanisms in shaping metabolic capabilities. Among five alternative strains tested, three strains were shown to grow on substrate combinations requiring a functional TCA cycle, but only one strain could use thiosulfate. Finally, the metabolic model was used to rationally design growth media with >2-fold improvements in pertussis toxin production. This study thus provides novel insights into B. pertussis physiology and highlights the potential, but also the limitations, of models based solely on metabolic gene content.IMPORTANCE The metabolic capabilities of Bordetella pertussis, the causative agent of whooping cough, were investigated from a systems-level perspective. We constructed a comprehensive genome-scale metabolic model for B. pertussis and challenged its predictions experimentally. This systems approach shed light on new potential host-microbe interactions and allowed us to rationally design novel growth media with >2-fold improvements in pertussis toxin production. Most importantly, we also uncovered the potential for metabolic flexibility of B. pertussis (significantly larger range of substrates than previously alleged; novel active pathways allowing growth in minimal, nearly mineral nutrient combinations where only the carbon source must be organic), although our results also highlight the importance of strain-specific regulatory determinants in shaping metabolic capabilities. Deciphering the underlying regulatory mechanisms appears to be crucial for a comprehensive understanding of B. pertussis's lifestyle and the epidemiology of whooping cough. The contribution of metabolic models in this context will require the extension of the genome-scale metabolic model to integrate this regulatory dimension.
Collapse
Affiliation(s)
- Filipe Branco Dos Santos
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Brett G Olivier
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
| | - Joost Boele
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
| | | | | | - Petra Krumpochova
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Gunnar W Klau
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
- Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Giera
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bas Teusink
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Philippe Goffin
- GSK Vaccines, Rixensart, Belgium
- Laboratoire de Génétique et Physiologie Bactérienne, IBMM, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
45
|
Bouchez V, Douché T, Dazas M, Delaplane S, Matondo M, Chamot-Rooke J, Guiso N. Characterization of Post-Translational Modifications and Cytotoxic Properties of the Adenylate-Cyclase Hemolysin Produced by Various Bordetella pertussis and Bordetella parapertussis Isolates. Toxins (Basel) 2017; 9:toxins9100304. [PMID: 28954396 PMCID: PMC5666351 DOI: 10.3390/toxins9100304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 01/08/2023] Open
Abstract
Bordetella pertussis and Bordetella parapertussis are the causal agents of whooping cough in humans. They produce diverse virulence factors, including adenylate cyclase-hemolysin (AC-Hly), a secreted toxin of the repeat in toxins (RTX) family with cyclase, pore-forming, and hemolytic activities. Post-translational modifications (PTMs) are essential for the biological activities of the toxin produced by B. pertussis. In this study, we compared AC-Hly toxins from various clinical isolates of B. pertussis and B. parapertussis, focusing on (i) the genomic sequences of cyaA genes, (ii) the PTMs of partially purified AC-Hly, and (iii) the cytotoxic activity of the various AC-Hly toxins. The genes encoding the AC-Hly toxins of B. pertussis and B. parapertussis displayed very limited polymorphism in each species. Most of the sequence differences between the two species were found in the C-terminal part of the protein. Both toxins harbored PTMs, mostly corresponding to palmitoylations of the lysine 860 residue and palmoylations and myristoylations of lysine 983 for B. pertussis and AC-Hly and palmitoylations of lysine 894 and myristoylations of lysine 1017 for B. parapertussis AC-Hly. Purified AC-Hly from B. pertussis was cytotoxic to macrophages, whereas that from B. parapertussis was not.
Collapse
Affiliation(s)
- Valérie Bouchez
- Institut Pasteur, Unité Prévention et Thérapie Moléculaires des Maladies Humaines, 25 rue du Dr Roux, 75724 Paris, CEDEX 15, France.
| | - Thibaut Douché
- Institut Pasteur, Unité de Spectrométrie de Masse pour la Biologie, CNRS/Institut Pasteur USR2000, CITECH, 28 rue du Dr Roux, 75724 Paris, CEDEX 15, France, (T.D.).
| | - Mélody Dazas
- Institut Pasteur, Unité Prévention et Thérapie Moléculaires des Maladies Humaines, 25 rue du Dr Roux, 75724 Paris, CEDEX 15, France.
| | - Sophie Delaplane
- Institut Pasteur, Unité Prévention et Thérapie Moléculaires des Maladies Humaines, 25 rue du Dr Roux, 75724 Paris, CEDEX 15, France.
| | - Mariette Matondo
- Institut Pasteur, Unité de Spectrométrie de Masse pour la Biologie, CNRS/Institut Pasteur USR2000, CITECH, 28 rue du Dr Roux, 75724 Paris, CEDEX 15, France, (T.D.).
| | - Julia Chamot-Rooke
- Institut Pasteur, Unité de Spectrométrie de Masse pour la Biologie, CNRS/Institut Pasteur USR2000, CITECH, 28 rue du Dr Roux, 75724 Paris, CEDEX 15, France, (T.D.).
| | - Nicole Guiso
- Institut Pasteur, Unité Prévention et Thérapie Moléculaires des Maladies Humaines, 25 rue du Dr Roux, 75724 Paris, CEDEX 15, France.
| |
Collapse
|
46
|
Characterization of Post-Translational Modifications and Cytotoxic Properties of the Adenylate-Cyclase Hemolysin Produced by Various Bordetella pertussis and Bordetella parapertussis Isolates. Toxins (Basel) 2017. [PMID: 28954396 DOI: 10.3390/toxins9100304.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bordetella pertussis and Bordetella parapertussis are the causal agents of whooping cough in humans. They produce diverse virulence factors, including adenylate cyclase-hemolysin (AC-Hly), a secreted toxin of the repeat in toxins (RTX) family with cyclase, pore-forming, and hemolytic activities. Post-translational modifications (PTMs) are essential for the biological activities of the toxin produced by B. pertussis. In this study, we compared AC-Hly toxins from various clinical isolates of B. pertussis and B. parapertussis, focusing on (i) the genomic sequences of cyaA genes, (ii) the PTMs of partially purified AC-Hly, and (iii) the cytotoxic activity of the various AC-Hly toxins. The genes encoding the AC-Hly toxins of B. pertussis and B. parapertussis displayed very limited polymorphism in each species. Most of the sequence differences between the two species were found in the C-terminal part of the protein. Both toxins harbored PTMs, mostly corresponding to palmitoylations of the lysine 860 residue and palmoylations and myristoylations of lysine 983 for B. pertussis and AC-Hly and palmitoylations of lysine 894 and myristoylations of lysine 1017 for B. parapertussis AC-Hly. Purified AC-Hly from B. pertussis was cytotoxic to macrophages, whereas that from B. parapertussis was not.
Collapse
|
47
|
Bordetella bronchiseptica exploits the complex life cycle of Dictyostelium discoideum as an amplifying transmission vector. PLoS Biol 2017; 15:e2000420. [PMID: 28403138 PMCID: PMC5389573 DOI: 10.1371/journal.pbio.2000420] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 03/14/2017] [Indexed: 12/02/2022] Open
Abstract
Multiple lines of evidence suggest that Bordetella species have a significant life stage outside of the mammalian respiratory tract that has yet to be defined. The Bordetella virulence gene (BvgAS) two-component system, a paradigm for a global virulence regulon, controls the expression of many “virulence factors” expressed in the Bvg positive (Bvg+) phase that are necessary for successful respiratory tract infection. A similarly large set of highly conserved genes are expressed under Bvg negative (Bvg-) phase growth conditions; however, these appear to be primarily expressed outside of the host and are thus hypothesized to be important in an undefined extrahost reservoir. Here, we show that Bvg- phase genes are involved in the ability of Bordetella bronchiseptica to grow and disseminate via the complex life cycle of the amoeba Dictyostelium discoideum. Unlike bacteria that serve as an amoeba food source, B. bronchiseptica evades amoeba predation, survives within the amoeba for extended periods of time, incorporates itself into the amoeba sori, and disseminates along with the amoeba. Remarkably, B. bronchiseptica continues to be transferred with the amoeba for months, through multiple life cycles of amoebae grown on the lawns of other bacteria, thus demonstrating a stable relationship that allows B. bronchiseptica to expand and disperse geographically via the D. discoideum life cycle. Furthermore, B. bronchiseptica within the sori can efficiently infect mice, indicating that amoebae may represent an environmental vector within which pathogenic bordetellae expand and disseminate to encounter new mammalian hosts. These data identify amoebae as potential environmental reservoirs as well as amplifying and disseminating vectors for B. bronchiseptica and reveal an important role for the Bvg- phase in these interactions. Bordetella species are infectious bacterial respiratory pathogens of a range of animals, including humans. Bordetellae grow in two phenotypically distinct “phases,” each specifically expressing a large set of genes. The Bvg+ phase is primarily associated with respiratory tract infection (RTI) and has been well studied. The similarly large set of genes specifically expressed in the Bvg- phase is poorly understood but has been proposed to be involved in some undefined environmental niche. Recently, we reported the presence of Bordetella species in many soil and water sources, indicating extensive exposure to predators. Herein, we show that the Bvg- phase mediates B. bronchiseptica interactions with the common soil predator D. discoideum. Surprisingly, the bacterium not only can evade predation but can propagate and disseminate via the complex developmental process of D. discoideum. After multiple passages and over a million-fold expansion in association with D. discoideum, B. bronchiseptica retained the ability to efficiently colonize mice. The conservation of the genes involved in these two distinct phases raises the possibility of potential environmental sources for the frequently unexplained outbreaks of diseases caused by this and other Bordetella species.
Collapse
|
48
|
Hamidou Soumana I, Linz B, Harvill ET. Environmental Origin of the Genus Bordetella. Front Microbiol 2017; 8:28. [PMID: 28174558 PMCID: PMC5258731 DOI: 10.3389/fmicb.2017.00028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023] Open
Abstract
Members of the genus Bordetella include human and animal pathogens that cause a variety of respiratory infections, including whooping cough in humans. Despite the long known ability to switch between a within-animal and an extra-host lifestyle under laboratory growth conditions, no extra-host niches of pathogenic Bordetella species have been defined. To better understand the distribution of Bordetella species in the environment, we probed the NCBI nucleotide database with the 16S ribosomal RNA (16S rRNA) gene sequences from pathogenic Bordetella species. Bacteria of the genus Bordetella were frequently found in soil, water, sediment, and plants. Phylogenetic analyses of their 16S rRNA gene sequences showed that Bordetella recovered from environmental samples are evolutionarily ancestral to animal-associated species. Sequences from environmental samples had a significantly higher genetic diversity, were located closer to the root of the phylogenetic tree and were present in all 10 identified sequence clades, while only four sequence clades possessed animal-associated species. The pathogenic bordetellae appear to have evolved from ancestors in soil and/or water. We show that, despite being animal-adapted pathogens, Bordetella bronchiseptica, and Bordetella hinzii have preserved the ability to grow and proliferate in soil. Our data implicate soil as a probable environmental origin of Bordetella species, including the animal-pathogenic lineages. Soil may further constitute an environmental niche, allowing for persistence and dissemination of the bacterial pathogens. Spread of pathogenic bordetellae from an environmental reservoir such as soil may potentially explain their wide distribution as well as frequent disease outbreaks that start without an obvious infectious source.
Collapse
Affiliation(s)
- Illiassou Hamidou Soumana
- Department of Infectious Diseases, University of GeorgiaAthens, GA, USA; Center for Vaccines and Immunology, University of GeorgiaAthens, GA, USA
| | - Bodo Linz
- Center for Vaccines and Immunology, University of GeorgiaAthens, GA, USA; Department of Veterinary and Biomedical Sciences, Pennsylvania State UniversityUniversity Park, PA, USA
| | - Eric T Harvill
- Department of Infectious Diseases, University of GeorgiaAthens, GA, USA; Center for Vaccines and Immunology, University of GeorgiaAthens, GA, USA; Department of Veterinary and Biomedical Sciences, Pennsylvania State UniversityUniversity Park, PA, USA
| |
Collapse
|
49
|
Hoffman C, Eby J, Gray M, Heath Damron F, Melvin J, Cotter P, Hewlett E. Bordetella adenylate cyclase toxin interacts with filamentous haemagglutinin to inhibit biofilm formation in vitro. Mol Microbiol 2016; 103:214-228. [PMID: 27731909 DOI: 10.1111/mmi.13551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
Bordetella pertussis, the causative agent of whooping cough, secretes and releases adenylate cyclase toxin (ACT), which is a protein bacterial toxin that targets host cells and disarms immune defenses. ACT binds filamentous haemagglutinin (FHA), a surface-displayed adhesin, and until now, the consequences of this interaction were unknown. A B. bronchiseptica mutant lacking ACT produced more biofilm than the parental strain; leading Irie et al. to propose the ACT-FHA interaction could be responsible for biofilm inhibition. Here we characterize the physical interaction of ACT with FHA and provide evidence linking that interaction to inhibition of biofilm in vitro. Exogenous ACT inhibits biofilm formation in a concentration-dependent manner and the N-terminal catalytic domain of ACT (AC domain) is necessary and sufficient for this inhibitory effect. AC Domain interacts with the C-terminal segment of FHA with ∼650 nM affinity. ACT does not inhibit biofilm formation by Bordetella lacking the mature C-terminal domain (MCD), suggesting the direct interaction between AC domain and the MCD is required for the inhibitory effect. Additionally, AC domain disrupts preformed biofilm on abiotic surfaces. The demonstrated inhibition of biofilm formation by a host-directed protein bacterial toxin represents a novel regulatory mechanism and identifies an unprecedented role for ACT.
Collapse
Affiliation(s)
- Casandra Hoffman
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Joshua Eby
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mary Gray
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - F Heath Damron
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jeffrey Melvin
- School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Peggy Cotter
- School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Erik Hewlett
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
50
|
Ivanov YV, Linz B, Register KB, Newman JD, Taylor DL, Boschert KR, Le Guyon S, Wilson EF, Brinkac LM, Sanka R, Greco SC, Klender PM, Losada L, Harvill ET. Identification and taxonomic characterization of Bordetella pseudohinzii sp. nov. isolated from laboratory-raised mice. Int J Syst Evol Microbiol 2016; 66:5452-5459. [PMID: 27707434 PMCID: PMC5244500 DOI: 10.1099/ijsem.0.001540] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bordetella hinzii is known to cause respiratory disease in poultry and has been associated with a variety of infections in immunocompromised humans. In addition, there are several reports of B. hinzii infections in laboratory-raised mice. Here we sequenced and analysed the complete genome sequences of multiple B. hinzii-like isolates, obtained from vendor-supplied C57BL/6 mice in animal research facilities on different continents, and we determined their taxonomic relationship to other Bordetella species. The whole-genome based and 16S rRNA gene based phylogenies each identified two separate clades in B. hinzii, one was composed of strains isolated from poultry, humans and a rabbit whereas the other clade was restricted to isolates from mice. Distinctly different estimated DNA–DNA hybridization values, average nucleotide identity scores, gene content, metabolic profiles and host specificity all provide compelling evidence for delineation of the two species, B. hinzii – from poultry, humans and rabbit – and Bordetella pseudohinzii sp. nov. type strain 8-296-03T (=NRRL B-59942T=NCTC 13808T) that infect mice.
Collapse
Affiliation(s)
- Yury V Ivanov
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Bodo Linz
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Karen B Register
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | | | - Dawn L Taylor
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Kenneth R Boschert
- Division of Comparative Medicine, Washington University, St. Louis, MO, USA
| | - Soazig Le Guyon
- Lee Kong Chian School of Medicine and Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Emily F Wilson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Ravi Sanka
- J. Craig Venter Institute, Rockville, MD, USA
| | - Suellen C Greco
- Division of Comparative Medicine, Washington University, St. Louis, MO, USA
| | - Paula M Klender
- Division of Comparative Medicine, Washington University, St. Louis, MO, USA
| | | | - Eric T Harvill
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,Lee Kong Chian School of Medicine and Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|