1
|
Tumas H, Ilska JJ, Gérardi S, Laroche J, A’Hara S, Boyle B, Janes M, McLean P, Lopez G, Lee SJ, Cottrell J, Gorjanc G, Bousquet J, Woolliams JA, MacKay JJ. High-density genetic linkage mapping in Sitka spruce advances the integration of genomic resources in conifers. G3 (BETHESDA, MD.) 2024; 14:jkae020. [PMID: 38366548 PMCID: PMC10989875 DOI: 10.1093/g3journal/jkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 02/18/2024]
Abstract
In species with large and complex genomes such as conifers, dense linkage maps are a useful resource for supporting genome assembly and laying the genomic groundwork at the structural, populational, and functional levels. However, most of the 600+ extant conifer species still lack extensive genotyping resources, which hampers the development of high-density linkage maps. In this study, we developed a linkage map relying on 21,570 single nucleotide polymorphism (SNP) markers in Sitka spruce (Picea sitchensis [Bong.] Carr.), a long-lived conifer from western North America that is widely planted for productive forestry in the British Isles. We used a single-step mapping approach to efficiently combine RAD-seq and genotyping array SNP data for 528 individuals from 2 full-sib families. As expected for spruce taxa, the saturated map contained 12 linkages groups with a total length of 2,142 cM. The positioning of 5,414 unique gene coding sequences allowed us to compare our map with that of other Pinaceae species, which provided evidence for high levels of synteny and gene order conservation in this family. We then developed an integrated map for P. sitchensis and Picea glauca based on 27,052 markers and 11,609 gene sequences. Altogether, these 2 linkage maps, the accompanying catalog of 286,159 SNPs and the genotyping chip developed, herein, open new perspectives for a variety of fundamental and more applied research objectives, such as for the improvement of spruce genome assemblies, or for marker-assisted sustainable management of genetic resources in Sitka spruce and related species.
Collapse
Affiliation(s)
- Hayley Tumas
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Joana J Ilska
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Sebastien Gérardi
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC GIV 0A6, Canada
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - Jerome Laroche
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - Stuart A’Hara
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Brian Boyle
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - Mateja Janes
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Paul McLean
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Gustavo Lopez
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Steve J Lee
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Joan Cottrell
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Gregor Gorjanc
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC GIV 0A6, Canada
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - John A Woolliams
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - John J MacKay
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
2
|
Gagalova KK, Warren RL, Coombe L, Wong J, Nip KM, Yuen MMS, Whitehill JGA, Celedon JM, Ritland C, Taylor GA, Cheng D, Plettner P, Hammond SA, Mohamadi H, Zhao Y, Moore RA, Mungall AJ, Boyle B, Laroche J, Cottrell J, Mackay JJ, Lamothe M, Gérardi S, Isabel N, Pavy N, Jones SJM, Bohlmann J, Bousquet J, Birol I. Spruce giga-genomes: structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1469-1485. [PMID: 35789009 DOI: 10.1111/tpj.15889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Spruces (Picea spp.) are coniferous trees widespread in boreal and mountainous forests of the northern hemisphere, with large economic significance and enormous contributions to global carbon sequestration. Spruces harbor very large genomes with high repetitiveness, hampering their comparative analysis. Here, we present and compare the genomes of four different North American spruces: the genome assemblies for Engelmann spruce (Picea engelmannii) and Sitka spruce (Picea sitchensis) together with improved and more contiguous genome assemblies for white spruce (Picea glauca) and for a naturally occurring introgress of these three species known as interior spruce (P. engelmannii × glauca × sitchensis). The genomes were structurally similar, and a large part of scaffolds could be anchored to a genetic map. The composition of the interior spruce genome indicated asymmetric contributions from the three ancestral genomes. Phylogenetic analysis of the nuclear and organelle genomes revealed a topology indicative of ancient reticulation. Different patterns of expansion of gene families among genomes were observed and related with presumed diversifying ecological adaptations. We identified rapidly evolving genes that harbored high rates of non-synonymous polymorphisms relative to synonymous ones, indicative of positive selection and its hitchhiking effects. These gene sets were mostly distinct between the genomes of ecologically contrasted species, and signatures of convergent balancing selection were detected. Stress and stimulus response was identified as the most frequent function assigned to expanding gene families and rapidly evolving genes. These two aspects of genomic evolution were complementary in their contribution to divergent evolution of presumed adaptive nature. These more contiguous spruce giga-genome sequences should strengthen our understanding of conifer genome structure and evolution, as their comparison offers clues into the genetic basis of adaptation and ecology of conifers at the genomic level. They will also provide tools to better monitor natural genetic diversity and improve the management of conifer forests. The genomes of four closely related North American spruces indicate that their high similarity at the morphological level is paralleled by the high conservation of their physical genome structure. Yet, the evidence of divergent evolution is apparent in their rapidly evolving genomes, supported by differential expansion of key gene families and large sets of genes under positive selection, largely in relation to stimulus and environmental stress response.
Collapse
Affiliation(s)
- Kristina K Gagalova
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - René L Warren
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Lauren Coombe
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Johnathan Wong
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Ka Ming Nip
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Macaire Man Saint Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Carol Ritland
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Greg A Taylor
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Dean Cheng
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Patrick Plettner
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - S Austin Hammond
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
- Next-Generation Sequencing Facility, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Hamid Mohamadi
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Brian Boyle
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
| | - Jérôme Laroche
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
| | - Joan Cottrell
- Forest Research, U.K. Forestry Commission, Northern Research Station, Roslin, EH25 9SY, Midlothian, UK
| | - John J Mackay
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Sébastien Gérardi
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Pavy
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jean Bousquet
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| |
Collapse
|
3
|
Zhao S, Gou B, Wang Y, Yang N, Duan P, Wei M, Zhang G, Wei B. Identification and relative expression analysis of CaFRK gene family in pepper. 3 Biotech 2022; 12:137. [PMID: 35646505 PMCID: PMC9130412 DOI: 10.1007/s13205-022-03196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/29/2022] [Indexed: 02/02/2023] Open
Abstract
Fructokinase is the main catalytic enzyme for fructose phosphorylation and can also act as a glucose receptor and signal molecule to regulate the metabolism of plants, which plays an important role in plant growth and development. In this study, the CaFRK gene family and their molecular characteristics are systematically identified and analyzed, and the specific expression of CaFRKs under different tissues, abiotic stresses and hormone treatments were explored. Nine FRK genes were authenticated in pepper genome database, which were dispersedly distributed on eight reference chromosomes and predicted to localize in the cytoplasm. Many cis-acting elements that respond to light, different stresses, hormones and tissue-specific expression were found in the promoters of CaFRKs. FRK proteins of four species including Capsicum annuum, Arabidopsis thaliana, Solanum lycopersicum and Oryza sativa were divided into four groups via phylogenetic analysis. The collinearity analysis showed that there were two collinear gene pairs between CaFRKs and AtFRKs. In addition, it was significantly found that CaFRK9 expressed far higher in flower than other tissues, and the relative expression of CaFRK9 was gradually enhanced with the development of flower buds in fertile accessions, 8B, R1 and F1. Nevertheless, CaFRK9 hardly expressed in all stages of cytoplasmic male sterile lines. Based on the quantitative real-time PCR, most of CaFRK genes showed significant up-regulation under low-temperature, NaCl and PEG6000 treatments. On the contrary, the expression levels of most CaFRKs revealed a various trend in response to hormone treatments (IAA, ABA, GA3, SA and MeJA). This study systematically analyzed CaFRK gene family and studied its expression pattern, which lay the foundation of CaFRK genes cloning and functional verification response to abiotic stresses, and provides new insights into exploring the CaFRK genes on the pollen development in pepper. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03196-1.
Collapse
Affiliation(s)
- Shufang Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Bingdiao Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Yongfu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Nan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Panpan Duan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Min Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
4
|
Koskimäki JJ, Pohjanen J, Kvist J, Fester T, Härtig C, Podolich O, Fluch S, Edesi J, Häggman H, Pirttilä AM. The meristem-associated endosymbiont Methylorubrum extorquens DSM13060 reprograms development and stress responses of pine seedlings. TREE PHYSIOLOGY 2022; 42:391-410. [PMID: 34328183 PMCID: PMC8842435 DOI: 10.1093/treephys/tpab102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Microbes living in plant tissues-endophytes-are mainly studied in crop plants where they typically colonize the root apoplast. Trees-a large carbon source with a high capacity for photosynthesis-provide a variety of niches for endophytic colonization. We have earlier identified a new type of plant-endophyte interaction in buds of adult Scots pine, where Methylorubrum species live inside the meristematic cells. The endosymbiont Methylorubrum extorquens DSM13060 significantly increases needle and root growth of pine seedlings without producing plant hormones, but by aggregating around host nuclei. Here, we studied gene expression and metabolites of the pine host induced by M. extorquens DSM13060 infection. Malic acid was produced by pine to potentially boost M. extorquens colonization and interaction. Based on gene expression, the endosymbiont activated the auxin- and ethylene (ET)-associated hormonal pathways through induction of CUL1 and HYL1, and suppressed salicylic and abscisic acid signaling of pine. Infection by the endosymbiont had an effect on pine meristem and leaf development through activation of GLP1-7 and ALE2, and suppressed flowering, root hair and lateral root formation by downregulation of AGL8, plantacyanin, GASA7, COW1 and RALFL34. Despite of systemic infection of pine seedlings by the endosymbiont, the pine genes CUL1, ETR2, ERF3, HYL, GLP1-7 and CYP71 were highly expressed in the shoot apical meristem, rarely in needles and not in stem or root tissues. Low expression of MERI5, CLH2, EULS3 and high quantities of ononitol suggest that endosymbiont promotes viability and protects pine seedlings against abiotic stress. Our results indicate that the endosymbiont positively affects host development and stress tolerance through mechanisms previously unknown for endophytic bacteria, manipulation of plant hormone signaling pathways, downregulation of senescence and cell death-associated genes and induction of ononitol biosynthesis.
Collapse
Affiliation(s)
- Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland
| | - Johanna Pohjanen
- Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00014 Helsinki, Finland
| | - Thomas Fester
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Claus Härtig
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150 03680 Kyiv, Ukraine
| | | | - Jaanika Edesi
- Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland
- Production Systems, Tree Breeding, Natural Resources Institute Finland LUKE, FI-57200 Savonlinna, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland
| | | |
Collapse
|
5
|
Whitehill JGA, Yuen MMS, Bohlmann J. Constitutive and insect-induced transcriptomes of weevil-resistant and susceptible Sitka spruce. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:137-147. [PMID: 37283859 PMCID: PMC10168040 DOI: 10.1002/pei3.10053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 06/08/2023]
Abstract
Spruce weevil (Pissodes strobi) is a significant pest of regenerating spruce (Picea) and pine (Pinus) forests in North America. Weevil larvae feed in the bark, phloem, cambium, and outer xylem of apical shoots, causing stunted growth or mortality of young trees. We identified and characterized constitutive and weevil-induced patterns of Sitka spruce (Picea sitchensis) transcriptomes in weevil-resistant (R) and susceptible (S) trees using RNA sequencing (RNA-seq) and differential expression (DE) analyses. We developed a statistical model for the analysis of RNA-seq data from treatment experiments with a 2 × 3 factorial design to differentiate insect-induced responses from the effects of mechanical damage. Across the different comparisons, we identified two major transcriptome contrasts: A large set of genes that was constitutively DE between R and S trees, and another set of genes that was DE in weevil-induced S-trees. The constitutive transcriptome unique to R trees appeared to be attuned to defense, while the constitutive transcriptome unique to S trees was enriched for growth-related transcripts. Notably, a set of transcripts annotated as "fungal" was detected consistently in the transcriptomes. Fungal transcripts were identified as DE in the comparison of R and S trees and in the weevil-affected DE transcriptome of S trees, suggesting a potential microbiome role in this conifer-insect interaction.
Collapse
Affiliation(s)
- Justin G. A. Whitehill
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
| | - Macaire M. S. Yuen
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
| | - Jörg Bohlmann
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
6
|
Celedon JM, Bohlmann J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. THE NEW PHYTOLOGIST 2019; 224:1444-1463. [PMID: 31179548 DOI: 10.1111/nph.15984] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 05/20/2023]
Abstract
Conifers have evolved complex oleoresin terpene defenses against herbivores and pathogens. In co-evolved bark beetles, conifer terpenes also serve chemo-ecological functions as pheromone precursors, chemical barcodes for host identification, or nutrients for insect-associated microbiomes. We highlight the genomic, molecular and biochemical underpinnings of the large chemical space of conifer oleoresin terpenes and volatiles. Conifer terpenes are predominantly the products of the conifer terpene synthase (TPS) gene family. Terpene diversity is increased by cytochromes P450 of the CYP720B class. Many conifer TPS are multiproduct enzymes. Multisubstrate CYP720B enzymes catalyse multistep oxidations. We summarise known terpenoid gene functions in various different conifer species with reference to the annotated terpenoid gene space in a spruce genome. Overall, biosynthesis of terpene diversity in conifers is achieved through a system of biochemical radiation and metabolic grids. Expression of TPS and CYP720B genes can be specific to individual cell types of constitutive or traumatic resin duct systems. Induced terpenoid transcriptomes in resin duct cells lead to dynamic changes of terpene composition and quantity to fend off herbivores and pathogens. While terpenoid defenses have contributed much to the evolutionary success of conifers, under new conditions of climate change, these defences may become inconsequential against range-expanding forest pests.
Collapse
Affiliation(s)
- Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
7
|
Whitehill JG, Bohlmann J. A molecular and genomic reference system for conifer defence against insects. PLANT, CELL & ENVIRONMENT 2019; 42:2844-2859. [PMID: 31042808 PMCID: PMC6852437 DOI: 10.1111/pce.13571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 05/29/2023]
Abstract
Insect pests are part of natural forest ecosystems contributing to forest rejuvenation but can also cause ecological disturbance and economic losses that are expected to increase with climate change. The white pine or spruce weevil (Pissodes strobi) is a pest of conifer forests in North America. Weevil-host interactions with various spruce (Picea) species have been explored as a genomic and molecular reference system for conifer defence against insects. Interactions occur in two major phases of the insect life cycle. In the exophase, adult weevils are free-moving and display behaviour of host selection for oviposition that is affected by host traits. In the endophase, insects live within the host where mobility and development from eggs to young adults are affected by a complex system of host defences. Genetic resistance exists in several spruce species and involves synergism of constitutive and induced chemical and physical defences that comprise the conifer defence syndrome. Here, we review conifer defences that disrupt the weevil life cycle and mechanisms by which trees resist weevil attack. We highlight molecular and genomic aspects and a possible role for the weevil microbiome. Knowledge of this conifer defence system is supporting forest health strategies and tree breeding for insect resistance.
Collapse
Affiliation(s)
| | - Jörg Bohlmann
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of BotanyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
8
|
Whitehill JGA, Yuen MMS, Henderson H, Madilao L, Kshatriya K, Bryan J, Jaquish B, Bohlmann J. Functions of stone cells and oleoresin terpenes in the conifer defense syndrome. THE NEW PHYTOLOGIST 2019; 221:1503-1517. [PMID: 30216451 DOI: 10.1111/nph.15477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Conifers depend on complex defense systems against herbivores. Stone cells (SC) and oleoresin are physical and chemical defenses of Sitka spruce that have been separately studied in previous work. Weevil oviposit at the tip of the previous year's apical shoot (PYAS). We investigated interactions between weevil larvae and trees in controlled oviposition experiments with resistant (R) and susceptible (S) Sitka spruce. R trees have an abundance of SC in the PYAS cortex. SC are mostly absent in S trees. R trees and S trees also differ in the composition of oleoresin terpenes. Transcriptomes of R and S trees revealed differences in long-term weevil-induced responses. Performance of larvae was significantly reduced on R trees compared with S trees under experimental conditions that mimicked natural oviposition behavior at apical shoot tips and may be attributed to the effects of SC. In oviposition experiments designed for larvae to feed below the area of highest SC abundance, larvae showed an unusual feeding behavior and oleoresin appeared to function as the major defense. The results support a role for both SC and oleoresin terpenes and possible synergies between these traits in the defense syndrome of weevil-resistant Sitka spruce.
Collapse
Affiliation(s)
- Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hannah Henderson
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Lina Madilao
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Kristina Kshatriya
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jennifer Bryan
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Barry Jaquish
- British Columbia Ministry of Forests, Lands and Natural Resource Operations, Tree Improvement Branch, Kalamalka Forestry Centre, 3401 Reservoir Road, Vernon, BC, V1B 2C7, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
9
|
Hammerbacher A, Kandasamy D, Ullah C, Schmidt A, Wright LP, Gershenzon J. Flavanone-3-Hydroxylase Plays an Important Role in the Biosynthesis of Spruce Phenolic Defenses Against Bark Beetles and Their Fungal Associates. FRONTIERS IN PLANT SCIENCE 2019; 10:208. [PMID: 30858861 PMCID: PMC6397876 DOI: 10.3389/fpls.2019.00208] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/07/2019] [Indexed: 05/07/2023]
Abstract
Conifer forests worldwide are becoming increasingly vulnerable to attacks by bark beetles and their fungal associates due to the effects of global warming. Attack by the bark beetle Ips typographus and the blue-stain fungus it vectors (Endoconidiophora polonica) on Norway spruce (Picea abies) is well known to induce increased production of terpene oleoresin and polyphenolic compounds. However, it is not clear whether specific compounds are important in resisting attack. In this study, we observed a significant increase in dihydroflavonol and flavan-3-ol content after inoculating Norway spruce with the bark beetle vectored fungus. A bioassay revealed that the dihydroflavonol taxifolin and the flavan-3-ol catechin negatively affected both I. typographus and E. polonica. The biosynthesis of flavan-3-ols is well studied in Norway spruce, but little is known about dihydroflavonol formation in this species. A flavanone-3-hydroxylase (F3H) was identified that catalyzed the conversion of eriodictyol to taxifolin and was highly expressed after E. polonica infection. Down-regulating F3H gene expression by RNA interference in transgenic Norway spruce resulted in significantly lower levels of both dihydroflavonols and flavan-3-ols. Therefore F3H plays a key role in the biosynthesis of defense compounds in Norway spruce that act against the bark beetle-fungus complex. This enzyme forms a defensive product, taxifolin, which is also a metabolic precursor of another defensive product, catechin, which in turn synergizes the toxicity of taxifolin to the bark beetle associated fungus.
Collapse
Affiliation(s)
- Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- *Correspondence: Almuth Hammerbacher,
| | - Dineshkumar Kandasamy
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
10
|
Moyano L, Correa MD, Favre LC, Rodríguez FS, Maldonado S, López-Fernández MP. Activation of Nucleases, PCD, and Mobilization of Reserves in the Araucaria angustifolia Megagametophyte During Germination. FRONTIERS IN PLANT SCIENCE 2018; 9:1275. [PMID: 30214454 PMCID: PMC6125354 DOI: 10.3389/fpls.2018.01275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The megagametophyte of mature seeds of Araucaria angustifolia consists of cells with thin walls, one or more nuclei, a central vacuole storing proteins, and a cytoplasm rich in amyloplasts, mitochondria and lipid bodies. In this study, we describe the process of mobilization of reserves and analyzed the dismantling of the tissue during germination, using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and amyloplasts, DNA degradation, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrate that DNA fragmentation in nuclei occurs at early stages of germination, which correlates with induction of specific nucleases. The results of the present study add knowledge on the dismantling of the megagametophyte of genus Araucaria, a storage tissue that stores starch as the main reserve substance, as well as on the PCD pathway, by revealing new insights into the role of nucleases and the expression patterns of putative nuclease genes during germination.
Collapse
Affiliation(s)
- Laura Moyano
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada, Buenos Aires, Argentina
| | - María D. Correa
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo C. Favre
- Departamentos de Industrias y Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Florencia S. Rodríguez
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sara Maldonado
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada, Buenos Aires, Argentina
| | - María P. López-Fernández
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada, Buenos Aires, Argentina
| |
Collapse
|
11
|
Jokipii-Lukkari S, Delhomme N, Schiffthaler B, Mannapperuma C, Prestele J, Nilsson O, Street NR, Tuominen H. Transcriptional Roadmap to Seasonal Variation in Wood Formation of Norway Spruce. PLANT PHYSIOLOGY 2018; 176:2851-2870. [PMID: 29487121 PMCID: PMC5884607 DOI: 10.1104/pp.17.01590] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/15/2018] [Indexed: 05/18/2023]
Abstract
Seasonal cues influence several aspects of the secondary growth of tree stems, including cambial activity, wood chemistry, and transition to latewood formation. We investigated seasonal changes in cambial activity, secondary cell wall formation, and tracheid cell death in woody tissues of Norway spruce (Picea abies) throughout one seasonal cycle. RNA sequencing was performed simultaneously in both the xylem and cambium/phloem tissues of the stem. Principal component analysis revealed gradual shifts in the transcriptomes that followed a chronological order throughout the season. A notable remodeling of the transcriptome was observed in the winter, with many genes having maximal expression during the coldest months of the year. A highly coexpressed set of monolignol biosynthesis genes showed high expression during the period of secondary cell wall formation as well as a second peak in midwinter. This midwinter peak in expression did not trigger lignin deposition, as determined by pyrolysis-gas chromatography/mass spectrometry. Coexpression consensus network analyses suggested the involvement of transcription factors belonging to the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES and MYELOBLASTOSIS-HOMEOBOX families in the seasonal control of secondary cell wall formation of tracheids. Interestingly, the lifetime of the latewood tracheids stretched beyond the winter dormancy period, correlating with a lack of cell death-related gene expression. Our transcriptomic analyses combined with phylogenetic and microscopic analyses also identified the cellulose and lignin biosynthetic genes and putative regulators for latewood formation and tracheid cell death in Norway spruce, providing a toolbox for further physiological and functional assays of these important phase transitions.
Collapse
Affiliation(s)
- Soile Jokipii-Lukkari
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Sveriges Lantbruksuniversitet, SE-901 83 Umeå, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Sveriges Lantbruksuniversitet, SE-901 83 Umeå, Sweden
| | - Bastian Schiffthaler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Jakob Prestele
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Sveriges Lantbruksuniversitet, SE-901 83 Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
12
|
Fox H, Doron-Faigenboim A, Kelly G, Bourstein R, Attia Z, Zhou J, Moshe Y, Moshelion M, David-Schwartz R. Transcriptome analysis of Pinus halepensis under drought stress and during recovery. TREE PHYSIOLOGY 2018; 38:423-441. [PMID: 29177514 PMCID: PMC5982726 DOI: 10.1093/treephys/tpx137] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 05/09/2023]
Abstract
Forest trees use various strategies to cope with drought stress and these strategies involve complex molecular mechanisms. Pinus halepensis Miller (Aleppo pine) is found throughout the Mediterranean basin and is one of the most drought-tolerant pine species. In order to decipher the molecular mechanisms that P. halepensis uses to withstand drought, we performed large-scale physiological and transcriptome analyses. We selected a mature tree from a semi-arid area with suboptimal growth conditions for clonal propagation through cuttings. We then used a high-throughput experimental system to continuously monitor whole-plant transpiration rates, stomatal conductance and the vapor pressure deficit. The transcriptomes of plants were examined at six physiological stages: pre-stomatal response, partial stomatal closure, minimum transpiration, post-irrigation, partial recovery and full recovery. At each stage, data from plants exposed to the drought treatment were compared with data collected from well-irrigated control plants. A drought-stressed P. halepensis transcriptome was created using paired-end RNA-seq. In total, ~6000 differentially expressed, non-redundant transcripts were identified between drought-treated and control trees. Cluster analysis has revealed stress-induced down-regulation of transcripts related to photosynthesis, reactive oxygen species (ROS)-scavenging through the ascorbic acid (AsA)-glutathione cycle, fatty acid and cell wall biosynthesis, stomatal activity, and the biosynthesis of flavonoids and terpenoids. Up-regulated processes included chlorophyll degradation, ROS-scavenging through AsA-independent thiol-mediated pathways, abscisic acid response and accumulation of heat shock proteins, thaumatin and exordium. Recovery from drought induced strong transcription of retrotransposons, especially the retrovirus-related transposon Tnt1-94. The drought-related transcriptome illustrates this species' dynamic response to drought and recovery and unravels novel mechanisms.
Collapse
Affiliation(s)
- Hagar Fox
- Institute of Plant Sciences, Volcani Center, ARO, Bet Dagan 50250, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | - Gilor Kelly
- Institute of Plant Sciences, Volcani Center, ARO, Bet Dagan 50250, Israel
| | - Ronny Bourstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ziv Attia
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jing Zhou
- Institute of Plant Sciences, Volcani Center, ARO, Bet Dagan 50250, Israel
| | - Yosef Moshe
- Institute of Plant Sciences, Volcani Center, ARO, Bet Dagan 50250, Israel
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | |
Collapse
|
13
|
Stival Sena J, Giguère I, Rigault P, Bousquet J, Mackay J. Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. TREE PHYSIOLOGY 2018; 38:442-456. [PMID: 29040752 DOI: 10.1093/treephys/tpx125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Temperatures are expected to increase over the next century in all terrestrial biomes and particularly in boreal forests, where drought-induced mortality has been predicted to rise. Genomics research is helping to develop hypotheses regarding the molecular basis of drought tolerance and recent work proposed that the osmo-protecting dehydrin proteins have undergone a clade-specific expansion in the Pinaceae, a major group of conifer trees. The objectives of this study were to identify all of the putative members of the gene family, trace their evolutionary origin, examine their structural diversity and test for drought-responsive expression. We identified 41 complete dehydrin coding sequences in Picea glauca, which is four times more than most angiosperms studied to date, and more than in pines. Phylogenetic reconstructions indicated that the family has undergone an expansion in conifers, with parallel evolution implicating the sporadic resurgence of certain amino acid sequence motifs, and a major duplication giving rise to a clade specific to the Pinaceae. A variety of plant dehydrin structures were identified with variable numbers of the A-, E-, S- and K-segments and an N-terminal (N1) amino acid motif including assemblages specific to conifers. The expression of several of the spruce dehydrins was tissue preferential under non-stressful conditions or responded to water stress after 7-18 days without watering, reflecting changes in osmotic potential. We found that dehydrins with N1 K2 and N1 AESK2 sequences were the most responsive to the lack of water. Together, the family expansion, drought-responsive expression and structural diversification involving loss and gain of amino acid motifs suggests that subfunctionalization has driven the diversification seen among dehydrin gene duplicates. Our findings clearly indicate that dehydrins represent a large family of candidate genes for drought tolerance in spruces and in other Pinaceae that may underpin adaptability in spatially and temporally variable environments.
Collapse
Affiliation(s)
- Juliana Stival Sena
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
- Canada Research Chair in Forest Genomics, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
| | - Isabelle Giguère
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
| | - Philippe Rigault
- Gydle Inc., 1135 Grande Allée Ouest Suite 220, Québec QC G1S 1E7, Canada
| | - Jean Bousquet
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
- Canada Research Chair in Forest Genomics, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
| | - John Mackay
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
- Canada Research Chair in Forest Genomics, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
14
|
Celedon JM, Yuen MMS, Chiang A, Henderson H, Reid KE, Bohlmann J. Cell-type- and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:710-726. [PMID: 28857307 DOI: 10.1111/tpj.13673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 05/09/2023]
Abstract
Plant defenses often involve specialized cells and tissues. In conifers, specialized cells of the bark are important for defense against insects and pathogens. Using laser microdissection, we characterized the transcriptomes of cortical resin duct cells, phenolic cells and phloem of white spruce (Picea glauca) bark under constitutive and methyl jasmonate (MeJa)-induced conditions, and we compared these transcriptomes with the transcriptome of the bark tissue complex. Overall, ~3700 bark transcripts were differentially expressed in response to MeJa. Approximately 25% of transcripts were expressed in only one cell type, revealing cell specialization at the transcriptome level. MeJa caused cell-type-specific transcriptome responses and changed the overall patterns of cell-type-specific transcript accumulation. Comparison of transcriptomes of the conifer bark tissue complex and specialized cells resolved a masking effect inherent to transcriptome analysis of complex tissues, and showed the actual cell-type-specific transcriptome signatures. Characterization of cell-type-specific transcriptomes is critical to reveal the dynamic patterns of spatial and temporal display of constitutive and induced defense systems in a complex plant tissue or organ. This was demonstrated with the improved resolution of spatially restricted expression of sets of genes of secondary metabolism in the specialized cell types.
Collapse
Affiliation(s)
- Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Angela Chiang
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hannah Henderson
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Karen E Reid
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
15
|
Li Z, De La Torre AR, Sterck L, Cánovas FM, Avila C, Merino I, Cabezas JA, Cervera MT, Ingvarsson PK, Van de Peer Y. Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants. Genome Biol Evol 2017; 9:1130-1147. [PMID: 28460034 PMCID: PMC5414570 DOI: 10.1093/gbe/evx070] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 01/02/2023] Open
Abstract
Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny.
Collapse
Affiliation(s)
- Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Amanda R De La Torre
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Sciences, University of California-Davis, Davis, CA
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, Spain
| | - Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, Spain
| | - Irene Merino
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium.,Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
16
|
Little SA, Boyes IG, Donaleshen K, von Aderkas P, Ehlting J. A transcriptomic resource for Douglas-fir seed development and analysis of transcription during late megagametophyte development. PLANT REPRODUCTION 2016; 29:273-286. [PMID: 27699505 DOI: 10.1007/s00497-016-0291-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/16/2016] [Indexed: 05/08/2023]
Abstract
Douglas-fir transcriptomics. Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is economically important with extensive breeding programs and seed trade. However, the molecular genetics of its seed development are largely unknown. We developed a transcriptome resource covering key developmental stages of megagametophytes over time: prefertilization, fertilization, embryogenesis, and early, unfertilized abortion. RNA sequencing reads were assembled de novo into 105,505 predicted high-confidence transcripts derived from 34,521 predicted genes. Expression levels were estimated based on alignment of the original reads to the reference. Megagametophytes express a distinct set of genes compared to those of vegetative tissues. Transcripts related to signaling, protein turnover, and RNA biogenesis have lower expression values in vegetative tissues, whereas cell wall remodeling, solute transport, and seed storage protein transcripts have higher expression values in megagametophytes. Seed storage protein transcripts become very abundant in both pollinated and unpollinated megagametophytes over time, even in aborting ovules. However, the absence of protein storage bodies in unfertilized megagametophytes suggests extensive posttranscriptional mechanisms that either inhibit storage protein translation or their aggregation into protein bodies. This novel transcriptome resource provides a foundation for further important insights into conifer seed development.
Collapse
Affiliation(s)
- Stefan A Little
- Department of Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
- Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - Ian G Boyes
- Department of Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Kate Donaleshen
- Department of Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Patrick von Aderkas
- Department of Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Jürgen Ehlting
- Department of Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada.
| |
Collapse
|
17
|
Ohtani M, Morisaki K, Sawada Y, Sano R, Uy ALT, Yamamoto A, Kurata T, Nakano Y, Suzuki S, Matsuda M, Hasunuma T, Hirai MY, Demura T. Primary Metabolism during Biosynthesis of Secondary Wall Polymers of Protoxylem Vessel Elements. PLANT PHYSIOLOGY 2016; 172:1612-1624. [PMID: 27600813 PMCID: PMC5100780 DOI: 10.1104/pp.16.01230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 05/02/2023]
Abstract
Xylem vessels, the water-conducting cells in vascular plants, undergo characteristic secondary wall deposition and programmed cell death. These processes are regulated by the VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors. Here, to identify changes in metabolism that occur during protoxylem vessel element differentiation, we subjected tobacco (Nicotiana tabacum) BY-2 suspension culture cells carrying an inducible VND7 system to liquid chromatography-mass spectrometry-based wide-target metabolome analysis and transcriptome analysis. Time-course data for 128 metabolites showed dynamic changes in metabolites related to amino acid biosynthesis. The concentration of glyceraldehyde 3-phosphate, an important intermediate of the glycolysis pathway, immediately decreased in the initial stages of cell differentiation. As cell differentiation progressed, specific amino acids accumulated, including the shikimate-related amino acids and the translocatable nitrogen-rich amino acid arginine. Transcriptome data indicated that cell differentiation involved the active up-regulation of genes encoding the enzymes catalyzing fructose 6-phosphate biosynthesis from glyceraldehyde 3-phosphate, phosphoenolpyruvate biosynthesis from oxaloacetate, and phenylalanine biosynthesis, which includes shikimate pathway enzymes. Concomitantly, active changes in the amount of fructose 6-phosphate and phosphoenolpyruvate were detected during cell differentiation. Taken together, our results show that protoxylem vessel element differentiation is associated with changes in primary metabolism, which could facilitate the production of polysaccharides and lignin monomers and, thus, promote the formation of the secondary cell wall. Also, these metabolic shifts correlate with the active transcriptional regulation of specific enzyme genes. Therefore, our observations indicate that primary metabolism is actively regulated during protoxylem vessel element differentiation to alter the cell's metabolic activity for the biosynthesis of secondary wall polymers.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Keiko Morisaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Yuji Sawada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Ryosuke Sano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Abigail Loren Tung Uy
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Atsushi Yamamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Tetsuya Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Yoshimi Nakano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Shiro Suzuki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Mami Matsuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Tomohisa Hasunuma
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Masami Yokota Hirai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.);
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.);
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.);
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.);
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| |
Collapse
|
18
|
Genome-wide analysis of superoxide dismutase gene family in Gossypium raimondii and G. arboreum. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Geisler K, Jensen NB, Yuen MMS, Madilao L, Bohlmann J. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products. PLANT PHYSIOLOGY 2016; 171:152-64. [PMID: 26936895 PMCID: PMC4854711 DOI: 10.1104/pp.16.00180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/01/2016] [Indexed: 05/06/2023]
Abstract
Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I-IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes.
Collapse
Affiliation(s)
- Katrin Geisler
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Niels Berg Jensen
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Lina Madilao
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
20
|
Cañas RA, Feito I, Fuente-Maqueda JF, Ávila C, Majada J, Cánovas FM. Transcriptome-wide analysis supports environmental adaptations of two Pinus pinaster populations from contrasting habitats. BMC Genomics 2015; 16:909. [PMID: 26545587 PMCID: PMC4636790 DOI: 10.1186/s12864-015-2177-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/31/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Maritime pine (Pinus pinaster Aiton) grows in a range of different climates in the southwestern Mediterranean region and the existence of a variety of latitudinal ecotypes or provenances is well established. In this study, we have conducted a deep analysis of the transcriptome in needles from two P. pinaster provenances, Leiria (Portugal) and Tamrabta (Morocco), which were grown in northern Spain under the same conditions. RESULTS An oligonucleotide microarray (PINARRAY3) and RNA-Seq were used for whole-transcriptome analyses, and we found that 90.95% of the data were concordant between the two platforms. Furthermore, the two methods identified very similar percentages of differentially expressed genes with values of 5.5% for PINARRAY3 and 5.7% for RNA-Seq. In total, 6,023 transcripts were shared and 88 differentially expressed genes overlapped in the two platforms. Among the differentially expressed genes, all transport related genes except aquaporins were expressed at higher levels in Tamrabta than in Leiria. In contrast, genes involved in secondary metabolism were expressed at higher levels in Tamrabta, and photosynthesis-related genes were expressed more highly in Leiria. The genes involved in light sensing in plants were well represented in the differentially expressed groups of genes. In addition, increased levels of hormones such as abscisic acid, gibberellins, jasmonic and salicylic acid were observed in Leiria. CONCLUSIONS Both transcriptome platforms have proven to be useful resources, showing complementary and reliable results. The results presented here highlight the different abilities of the two maritime pine populations to sense environmental conditions and reveal one type of regulation that can be ascribed to different genetic and epigenetic backgrounds.
Collapse
Affiliation(s)
- Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain.
| | - Isabel Feito
- Sección Forestal, SERIDA, Finca Experimental La Mata, 33825, Grado, Principado de Asturias, Spain.
| | | | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain.
| | - Juan Majada
- Sección Forestal, SERIDA, Finca Experimental La Mata, 33825, Grado, Principado de Asturias, Spain.
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain.
| |
Collapse
|
21
|
Warren RL, Keeling CI, Yuen MMS, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B, Yanchuk A, Bousquet J, Jones SJM, MacKay J, Birol I, Bohlmann J. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:189-212. [PMID: 26017574 DOI: 10.1111/tpj.12886] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/15/2015] [Indexed: 05/21/2023]
Abstract
White spruce (Picea glauca), a gymnosperm tree, has been established as one of the models for conifer genomics. We describe the draft genome assemblies of two white spruce genotypes, PG29 and WS77111, innovative tools for the assembly of very large genomes, and the conifer genomics resources developed in this process. The two white spruce genotypes originate from distant geographic regions of western (PG29) and eastern (WS77111) North America, and represent elite trees in two Canadian tree-breeding programs. We present an update (V3 and V4) for a previously reported PG29 V2 draft genome assembly and introduce a second white spruce genome assembly for genotype WS77111. Assemblies of the PG29 and WS77111 genomes confirm the reconstructed white spruce genome size in the 20 Gbp range, and show broad synteny. Using the PG29 V3 assembly and additional white spruce genomics and transcriptomics resources, we performed MAKER-P annotation and meticulous expert annotation of very large gene families of conifer defense metabolism, the terpene synthases and cytochrome P450s. We also comprehensively annotated the white spruce mevalonate, methylerythritol phosphate and phenylpropanoid pathways. These analyses highlighted the large extent of gene and pseudogene duplications in a conifer genome, in particular for genes of secondary (i.e. specialized) metabolism, and the potential for gain and loss of function for defense and adaptation.
Collapse
Affiliation(s)
- René L Warren
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Macaire Man Saint Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anthony Raymond
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Greg A Taylor
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Benjamin P Vandervalk
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Hamid Mohamadi
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Daniel Paulino
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Readman Chiu
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Shaun D Jackman
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Gordon Robertson
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Chen Yang
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Brian Boyle
- Department of Wood and Forest Sciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Margarete Hoffmann
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Carol Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Barry Jaquish
- British Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, BC, V8W 9C2, Canada
| | - Alvin Yanchuk
- British Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, BC, V8W 9C2, Canada
| | - Jean Bousquet
- Department of Wood and Forest Sciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Steven J M Jones
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - John MacKay
- Department of Wood and Forest Sciences, Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Inanc Birol
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
22
|
Cañas RA, Canales J, Muñoz-Hernández C, Granados JM, Ávila C, García-Martín ML, Cánovas FM. Understanding developmental and adaptive cues in pine through metabolite profiling and co-expression network analysis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3113-27. [PMID: 25873654 PMCID: PMC4449534 DOI: 10.1093/jxb/erv118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Conifers include long-lived evergreen trees of great economic and ecological importance, including pines and spruces. During their long lives conifers must respond to seasonal environmental changes, adapt to unpredictable environmental stresses, and co-ordinate their adaptive adjustments with internal developmental programmes. To gain insights into these responses, we examined metabolite and transcriptomic profiles of needles from naturally growing 25-year-old maritime pine (Pinus pinaster L. Aiton) trees over a year. The effect of environmental parameters such as temperature and rain on needle development were studied. Our results show that seasonal changes in the metabolite profiles were mainly affected by the needles' age and acclimation for winter, but changes in transcript profiles were mainly dependent on climatic factors. The relative abundance of most transcripts correlated well with temperature, particularly for genes involved in photosynthesis or winter acclimation. Gene network analysis revealed relationships between 14 co-expressed gene modules and development and adaptation to environmental stimuli. Novel Myb transcription factors were identified as candidate regulators during needle development. Our systems-based analysis provides integrated data of the seasonal regulation of maritime pine growth, opening new perspectives for understanding the complex regulatory mechanisms underlying conifers' adaptive responses. Taken together, our results suggest that the environment regulates the transcriptome for fine tuning of the metabolome during development.
Collapse
Affiliation(s)
- Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071 Málaga, Spain
| | - Javier Canales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071 Málaga, Spain
| | - Carmen Muñoz-Hernández
- Unidad de Nanoimagen, Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), Parque Tecnológico de Andalucía, C/ Severo Ochoa 35, 29590 Campanillas (Málaga), Spain
| | - Jose M Granados
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071 Málaga, Spain
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071 Málaga, Spain
| | - María L García-Martín
- Unidad de Nanoimagen, Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), Parque Tecnológico de Andalucía, C/ Severo Ochoa 35, 29590 Campanillas (Málaga), Spain
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071 Málaga, Spain
| |
Collapse
|
23
|
Differential Gene Expression Reveals Candidate Genes for Drought Stress Response in Abies alba (Pinaceae). PLoS One 2015; 10:e0124564. [PMID: 25924061 PMCID: PMC4414588 DOI: 10.1371/journal.pone.0124564] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/05/2015] [Indexed: 11/24/2022] Open
Abstract
Increasing drought periods as a result of global climate change pose a threat to many tree species by possibly outpacing their adaptive capabilities. Revealing the genetic basis of drought stress response is therefore implemental for future conservation strategies and risk assessment. Access to informative genomic regions is however challenging, especially for conifers, partially due to their large genomes, which puts constraints on the feasibility of whole genome scans. Candidate genes offer a valuable tool to reduce the complexity of the analysis and the amount of sequencing work and costs. For this study we combined an improved drought stress phenotyping of needles via a novel terahertz water monitoring technique with Massive Analysis of cDNA Ends to identify candidate genes for drought stress response in European silver fir (Abies alba Mill.). A pooled cDNA library was constructed from the cotyledons of six drought stressed and six well-watered silver fir seedlings, respectively. Differential expression analyses of these libraries revealed 296 candidate genes for drought stress response in silver fir (247 up- and 49 down-regulated) of which a subset was validated by RT-qPCR of the twelve individual cotyledons. A majority of these genes code for currently uncharacterized proteins and hint on new genomic resources to be explored in conifers. Furthermore, we could show that some traditional reference genes from model plant species (GAPDH and eIF4A2) are not suitable for differential analysis and we propose a new reference gene, TPC1, for drought stress expression profiling in needles of conifer seedlings.
Collapse
|
24
|
de Assis Fonseca FC, Firmino AAP, de Macedo LLP, Coelho RR, de Sousa Júnior JDA, Silva-Junior OB, Togawa RC, Pappas GJ, de Góis LAB, da Silva MCM, Grossi-de-Sá MF. Sugarcane giant borer transcriptome analysis and identification of genes related to digestion. PLoS One 2015; 10:e0118231. [PMID: 25706301 PMCID: PMC4338194 DOI: 10.1371/journal.pone.0118231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/11/2015] [Indexed: 11/25/2022] Open
Abstract
Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.
Collapse
Affiliation(s)
- Fernando Campos de Assis Fonseca
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Alexandre Augusto Pereira Firmino
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Lima Pepino de Macedo
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Roberta Ramos Coelho
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Orzenil Bonfim Silva-Junior
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Maria Fátima Grossi-de-Sá
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
25
|
De La Torre AR, Birol I, Bousquet J, Ingvarsson PK, Jansson S, Jones SJM, Keeling CI, MacKay J, Nilsson O, Ritland K, Street N, Yanchuk A, Zerbe P, Bohlmann J. Insights into conifer giga-genomes. PLANT PHYSIOLOGY 2014; 166:1724-32. [PMID: 25349325 PMCID: PMC4256843 DOI: 10.1104/pp.114.248708] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes.
Collapse
Affiliation(s)
- Amanda R De La Torre
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Inanc Birol
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Jean Bousquet
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Stefan Jansson
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Steven J M Jones
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Christopher I Keeling
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - John MacKay
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Ove Nilsson
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Kermit Ritland
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Nathaniel Street
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Alvin Yanchuk
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Philipp Zerbe
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| | - Jörg Bohlmann
- Department of Ecology and Environmental Sciences (A.R.D.L.T., P.K.I.) and Umeå Plant Science Center, Department of Plant Physiology (P.K.I., S.J., O.N., N.S.), Umeå University, SE-901 87 Umea, Sweden;Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6 (I.B., S.J.M.J.);Canada Research Chair in Forest and Environmental Genomics (J.Bou.) and Center for Forest Research and Institute for Systems and Integrative Biology (J.Bou., J.M.), Université Laval, Quebec, Quebec, Canada G1V 0A6;Michael Smith Laboratories (C.I.K., P.Z., J.Boh.) and Department of Forest and Conservation Sciences (K.R., J.Boh.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, British Columbia, Canada V8W 9C2 (A.Y.)
| |
Collapse
|
26
|
Abstract
Background NAD(H) kinase (NADK) is the key enzyme that catalyzes de novo synthesis of NADP(H) from NAD(H) for NADP(H)-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood. Principal Findings We performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (∼30%) in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the functional diversity and functional divergence of the NADK family in plants. Conclusions These findings will facilitate further studies of the NADK family and provide valuable information for functional validation of this family in plants.
Collapse
|
27
|
Pavy N, Deschênes A, Blais S, Lavigne P, Beaulieu J, Isabel N, Mackay J, Bousquet J. The landscape of nucleotide polymorphism among 13,500 genes of the conifer picea glauca, relationships with functions, and comparison with medicago truncatula. Genome Biol Evol 2014; 5:1910-25. [PMID: 24065735 PMCID: PMC3814201 DOI: 10.1093/gbe/evt143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene families differ in composition, expression, and chromosomal organization between conifers and angiosperms, but little is known regarding nucleotide polymorphism. Using various sequencing strategies, an atlas of 212k high-confidence single nucleotide polymorphisms (SNPs) with a validation rate of more than 92% was developed for the conifer white spruce (Picea glauca). Nonsynonymous and synonymous SNPs were annotated over the corresponding 13,498 white spruce genes representative of 2,457 known gene families. Patterns of nucleotide polymorphisms were analyzed by estimating the ratio of nonsynonymous to synonymous numbers of substitutions per site (A/S). A general excess of synonymous SNPs was expected and observed. However, the analysis from several perspectives enabled to identify groups of genes harboring an excess of nonsynonymous SNPs, thus potentially under positive selection. Four known gene families harbored such an excess: dehydrins, ankyrin-repeats, AP2/DREB, and leucine-rich repeat. Conifer-specific sequences were also generally associated with the highest A/S ratios. A/S values were also distributed asymmetrically across genes specifically expressed in megagametophytes, roots, or in both, harboring on average an excess of nonsynonymous SNPs. These patterns confirm that the breadth of gene expression is a contributing factor to the evolution of nucleotide polymorphism. The A/S ratios of Medicago truncatula genes were also analyzed: several gene families shared between P. glauca and M. truncatula data sets had similar excess of synonymous or nonsynonymous SNPs. However, a number of families with high A/S ratios were found specific to P. glauca, suggesting cases of divergent evolution at the functional level.
Collapse
Affiliation(s)
- Nathalie Pavy
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kolosova N, Breuil C, Bohlmann J. Cloning and characterization of chitinases from interior spruce and lodgepole pine. PHYTOCHEMISTRY 2014; 101:32-39. [PMID: 24564978 DOI: 10.1016/j.phytochem.2014.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/27/2013] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Chitinases have been implicated in the defence of conifers against insects and pathogens. cDNA for six chitinases were cloned from interior spruce (Picea glauca x engelmannii) and four from lodgepole pine (Pinus contorta). The cloned interior spruce chitinases were annotated class I PgeChia1-1 and PgeChia1-2, class II PgeChia2-1, class IV PgeChia4-1, and class VII PgeChia7-1 and PgeChia7-2; lodgepole pine chitinases were annotated class I PcChia1-1, class IV PcChia4-1, and class VII PcChia7-1 and PcChia7-2. Chitinases were expressed in Escherichia coli with maltose-binding-protein tags and soluble proteins purified. Functional characterization demonstrated chitinolytic activity for the three class I chitinases PgeChia1-1, PgeChia1-2 and PcChia1-1. Transcript analysis established strong induction of most of the tested chitinases, including all three class I chitinases, in interior spruce and lodgepole pine in response to inoculation with bark beetle associated fungi (Leptographium abietinum and Grosmannia clavigera) and in interior spruce in response to weevil (Pissodes strobi) feeding. Evidence of chitinolytic activity and inducibility by fungal and insect attack support the involvement of these chitinases in conifer defense.
Collapse
Affiliation(s)
- N Kolosova
- Michael Smith Laboratories, University of British Columbia, 312-2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - C Breuil
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - J Bohlmann
- Michael Smith Laboratories, University of British Columbia, 312-2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
29
|
Stival Sena J, Giguère I, Boyle B, Rigault P, Birol I, Zuccolo A, Ritland K, Ritland C, Bohlmann J, Jones S, Bousquet J, Mackay J. Evolution of gene structure in the conifer Picea glauca: a comparative analysis of the impact of intron size. BMC PLANT BIOLOGY 2014; 14:95. [PMID: 24734980 PMCID: PMC4108047 DOI: 10.1186/1471-2229-14-95] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/09/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND A positive relationship between genome size and intron length is observed across eukaryotes including Angiosperms plants, indicating a co-evolution of genome size and gene structure. Conifers have very large genomes and longer introns on average than most plants, but impacts of their large genome and longer introns on gene structure has not be described. RESULTS Gene structure was analyzed for 35 genes of Picea glauca obtained from BAC sequencing and genome assembly, including comparisons with A. thaliana, P. trichocarpa and Z. mays. We aimed to develop an understanding of impact of long introns on the structure of individual genes. The number and length of exons was well conserved among the species compared but on average, P. glauca introns were longer and genes had four times more intronic sequence than Arabidopsis, and 2 times more than poplar and maize. However, pairwise comparisons of individual genes gave variable results and not all contrasts were statistically significant. Genes generally accumulated one or a few longer introns in species with larger genomes but the position of long introns was variable between plant lineages. In P. glauca, highly expressed genes generally had more intronic sequence than tissue preferential genes. Comparisons with the Pinus taeda BACs and genome scaffolds showed a high conservation for position of long introns and for sequence of short introns. A survey of 1836 P. glauca genes obtained by sequence capture mostly containing introns <1 Kbp showed that repeated sequences were 10× more abundant in introns than in exons. CONCLUSION Conifers have large amounts of intronic sequence per gene for seed plants due to the presence of few long introns and repetitive element sequences are ubiquitous in their introns. Results indicate a complex landscape of intron sizes and distribution across taxa and between genes with different expression profiles.
Collapse
Affiliation(s)
- Juliana Stival Sena
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Isabelle Giguère
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Brian Boyle
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Inanc Birol
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrea Zuccolo
- Applied Genomics Institute, Udine 33100, Italy
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
| | - Kermit Ritland
- Department of Forest Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carol Ritland
- Department of Forest Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Steven Jones
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jean Bousquet
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Canada Research Chair in Forest Genomics, Université Laval, Québec, QC G1V 0A6, Canada
| | - John Mackay
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
30
|
Kawai Y, Ono E, Mizutani M. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:328-43. [PMID: 24547750 DOI: 10.1111/tpj.12479] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 01/23/2014] [Accepted: 02/03/2014] [Indexed: 05/20/2023]
Abstract
The 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily is the second largest enzyme family in the plant genome, and its members are involved in various oxygenation/hydroxylation reactions. Despite their biochemical significance in metabolism, a systematic analysis of plant 2OGDs remains to be accomplished. We present a phylogenetic classification of 479 2OGDs in six plant models, ranging from green algae to angiosperms. These were classified into three classes - DOXA, DOXB and DOXC - based on amino acid sequence similarity. The DOXA class includes plant homologs of Escherichia coli AlkB, which is a prototype of 2OGD involved in the oxidative demethylation of alkylated nucleic acids and histones. The DOXB class is conserved across all plant taxa and is involved in proline 4-hydroxylation in cell wall protein synthesis. The DOXC class is involved in specialized metabolism of various phytochemicals, including phytohormones and flavonoids. The vast majority of 2OGDs from land plants were classified into the DOXC class, but only seven from Chlamydomonas, suggesting that this class has diversified during land plant evolution. Phylogenetic analysis assigned DOXC-class 2OGDs to 57 phylogenetic clades. 2OGD genes involved in gibberellin biosynthesis were conserved among vascular plants, and those involved in flavonoid and ethylene biosynthesis were shared among seed plants. Several angiosperm-specific clades were found to be involved in various lineage-specific specialized metabolisms, but 31 of the 57 DOXC-class clades were only found in a single species. Therefore, the evolution and diversification of DOXC-class 2OGDs is partly responsible for the diversity and complexity of specialized metabolites in land plants.
Collapse
Affiliation(s)
- Yosuke Kawai
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | | | | |
Collapse
|
31
|
Hammerbacher A, Paetz C, Wright LP, Fischer TC, Bohlmann J, Davis AJ, Fenning TM, Gershenzon J, Schmidt A. Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica. PLANT PHYSIOLOGY 2014; 164:2107-22. [PMID: 24550241 PMCID: PMC3982766 DOI: 10.1104/pp.113.232389] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/14/2014] [Indexed: 05/18/2023]
Abstract
Proanthocyanidins (PAs) are common polyphenolic polymers of plants found in foliage, fruit, bark, roots, rhizomes, and seed coats that consist of flavan-3-ol units such as 2,3-trans-(+)-catechin and 2,3-cis-(-)-epicatechin. Although the biosynthesis of flavan-3-ols has been studied in angiosperms, little is known about their biosynthesis and ecological roles in gymnosperms. In this study, the genes encoding leucoanthocyanidin reductase, a branch point enzyme involved in the biosynthesis of 2,3-trans-(+)-flavan-3-ols, were identified and functionally characterized in Norway spruce (Picea abies), the most widespread and economically important conifer in Europe. In addition, the accumulation of flavan-3-ols and PAs was investigated in Norway spruce saplings after wounding or inoculation with the fungal pathogen Ceratocystis polonica, which is vectored by bark beetles (Ips typographus) and is usually present during fatal beetle attacks. Monomeric and dimeric flavan-3-ols were analyzed by reverse-phase high-pressure liquid chromatography, while the size and subunit composition of larger PAs were characterized using a novel acid hydrolysis method and normal phase chromatography. Only flavan-3-ol monomers with 2,3-trans stereochemistry were detected in spruce bark; dimeric and larger PAs contained flavan-3-ols with both 2,3-trans and 2,3-cis stereochemistry. Levels of monomers as well as PAs with a higher degree of polymerization increased dramatically in spruce bark after infection by C. polonica. In accordance with their role in the biosynthesis of 2,3-trans-(+)-flavan-3-ols, transcript abundance of Norway spruce LEUCOANTHOCYANIDIN REDUCTASE genes also increased significantly during fungal infection. Bioassays with C. polonica revealed that the levels of 2,3-trans-(+)-catechin and PAs that are produced in the tree in response to fungal infection inhibit C. polonica growth and can therefore be considered chemical defense compounds.
Collapse
Affiliation(s)
- Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., C.P., L.P.W., A.J.D., T.M.F., J.G., A.S.)
- Department of Plant Biochemistry and Physiology, Ludwig-Maximilian University, 82152 Munich, Germany (T.C.F.); and
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.)
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., C.P., L.P.W., A.J.D., T.M.F., J.G., A.S.)
- Department of Plant Biochemistry and Physiology, Ludwig-Maximilian University, 82152 Munich, Germany (T.C.F.); and
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.)
| | - Louwrance P. Wright
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., C.P., L.P.W., A.J.D., T.M.F., J.G., A.S.)
- Department of Plant Biochemistry and Physiology, Ludwig-Maximilian University, 82152 Munich, Germany (T.C.F.); and
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.)
| | - Thilo C. Fischer
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., C.P., L.P.W., A.J.D., T.M.F., J.G., A.S.)
- Department of Plant Biochemistry and Physiology, Ludwig-Maximilian University, 82152 Munich, Germany (T.C.F.); and
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.)
| | - Joerg Bohlmann
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., C.P., L.P.W., A.J.D., T.M.F., J.G., A.S.)
- Department of Plant Biochemistry and Physiology, Ludwig-Maximilian University, 82152 Munich, Germany (T.C.F.); and
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.)
| | - Andrew J. Davis
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., C.P., L.P.W., A.J.D., T.M.F., J.G., A.S.)
- Department of Plant Biochemistry and Physiology, Ludwig-Maximilian University, 82152 Munich, Germany (T.C.F.); and
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.)
| | | | | | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., C.P., L.P.W., A.J.D., T.M.F., J.G., A.S.)
- Department of Plant Biochemistry and Physiology, Ludwig-Maximilian University, 82152 Munich, Germany (T.C.F.); and
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.)
| |
Collapse
|
32
|
Canales J, Bautista R, Label P, Gómez-Maldonado J, Lesur I, Fernández-Pozo N, Rueda-López M, Guerrero-Fernández D, Castro-Rodríguez V, Benzekri H, Cañas RA, Guevara MA, Rodrigues A, Seoane P, Teyssier C, Morel A, Ehrenmann F, Le Provost G, Lalanne C, Noirot C, Klopp C, Reymond I, García-Gutiérrez A, Trontin JF, Lelu-Walter MA, Miguel C, Cervera MT, Cantón FR, Plomion C, Harvengt L, Avila C, Gonzalo Claros M, Cánovas FM. De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:286-99. [PMID: 24256179 DOI: 10.1111/pbi.12136] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 05/21/2023]
Abstract
Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species.
Collapse
Affiliation(s)
- Javier Canales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Guo A, Zheng CX, Yang YY. Differential expression of SLOW WALKER2 homologue in ovules of female sterile mutant and fertile clone of Pinus tabulaeformis. Russ J Dev Biol 2014. [DOI: 10.1134/s1062360414020052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM. Calcium-dependent protein kinases in plants: evolution, expression and function. PLANT & CELL PHYSIOLOGY 2014; 55:551-69. [PMID: 24363288 DOI: 10.1093/pcp/pct200] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in metabolism, osmosis, hormone response and stress signaling pathways. CPKs are a large multigene family of proteins that are present in all plants studied to date, as well as in protists, oomycetes and green algae, but are not found in animals and fungi. Despite the increasing evidence of the importance of CPKs in developmental and stress responses from various plants, a comprehensive genome-wide analysis of CPKs from algae to higher plants has not been undertaken. This paper describes the evolution of CPKs from green algae to plants using a broadly sampled phylogenetic analysis and demonstrates the functional diversification of CPKs based on expression and functional studies in different plant species. Our findings reveal that CPK sequence diversification into four major groups occurred in parallel with the terrestrial transition of plants. Despite significant expansion of the CPK gene family during evolution from green algae to higher plants, there is a high level of sequence conservation among CPKs in all plant species. This sequence conservation results in very little correlation between CPK evolutionary groupings and functional diversity, making the search for CPK functional orthologs a challenge.
Collapse
Affiliation(s)
- Gardette R Valmonte
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, New Zealand
| | | | | | | |
Collapse
|
35
|
Day PM, Potter D, Inoue K. Evolution and targeting of Omp85 homologs in the chloroplast outer envelope membrane. FRONTIERS IN PLANT SCIENCE 2014; 5:535. [PMID: 25352854 PMCID: PMC4195282 DOI: 10.3389/fpls.2014.00535] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/19/2014] [Indexed: 05/20/2023]
Abstract
Translocon at the outer-envelope-membrane of chloroplasts 75 (Toc75) is the core component of the chloroplast protein import machinery. It belongs to the Omp85 family whose members exist in various Gram-negative bacteria, mitochondria, and chloroplasts of eukaryotes. Chloroplasts of Viridiplantae contain another Omp85 homolog called outer envelope protein 80 (OEP80), whose exact function is unknown. In addition, the Arabidopsis thaliana genome encodes truncated forms of Toc75 and OEP80. Multiple studies have shown a common origin of the Omp85 homologs of cyanobacteria and chloroplasts but their results about evolutionary relationships among cyanobacterial Omp85 (cyanoOmp85), Toc75, and OEP80 are inconsistent. The bipartite targeting sequence-dependent sorting of Toc75 has been demonstrated but the targeting mechanisms of other chloroplast Omp85 homologs remain largely unexplored. This study was aimed to address these unresolved issues in order to further our understanding of chloroplast evolution. Sequence alignments and recently determined structures of bacterial Omp85 homologs were used to predict structures of chloroplast Omp85 homologs. The results enabled us to identify amino acid residues that may indicate functional divergence of Toc75 from cyanoOmp85 and OEP80. Phylogenetic analyses using Omp85 homologs from various cyanobacteria and chloroplasts provided strong support for the grouping of Toc75 and OEP80 sister to cyanoOmp85. However, this support was diminished when the analysis included Omp85 homologs from other bacteria and mitochondria. Finally, results of import assays using isolated chloroplasts support outer membrane localization of OEP80tr and indicate that OEP80 may carry a cleavable targeting sequence.
Collapse
Affiliation(s)
| | | | - Kentaro Inoue
- *Correspondence: Kentaro Inoue, Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA e-mail:
| |
Collapse
|
36
|
Mann IK, Wegrzyn JL, Rajora OP. Generation, functional annotation and comparative analysis of black spruce (Picea mariana) ESTs: an important conifer genomic resource. BMC Genomics 2013; 14:702. [PMID: 24119028 PMCID: PMC4007752 DOI: 10.1186/1471-2164-14-702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 12/01/2022] Open
Abstract
Background EST (expressed sequence tag) sequences and their annotation provide a highly valuable resource for gene discovery, genome sequence annotation, and other genomics studies that can be applied in genetics, breeding and conservation programs for non-model organisms. Conifers are long-lived plants that are ecologically and economically important globally, and have a large genome size. Black spruce (Picea mariana), is a transcontinental species of the North American boreal and temperate forests. However, there are limited transcriptomic and genomic resources for this species. The primary objective of our study was to develop a black spruce transcriptomic resource to facilitate on-going functional genomics projects related to growth and adaptation to climate change. Results We conducted bidirectional sequencing of cDNA clones from a standard cDNA library constructed from black spruce needle tissues. We obtained 4,594 high quality (2,455 5' end and 2,139 3' end) sequence reads, with an average read-length of 532 bp. Clustering and assembly of ESTs resulted in 2,731 unique sequences, consisting of 2,234 singletons and 497 contigs. Approximately two-thirds (63%) of unique sequences were functionally annotated. Genes involved in 36 molecular functions and 90 biological processes were discovered, including 24 putative transcription factors and 232 genes involved in photosynthesis. Most abundantly expressed transcripts were associated with photosynthesis, growth factors, stress and disease response, and transcription factors. A total of 216 full-length genes were identified. About 18% (493) of the transcripts were novel, representing an important addition to the Genbank EST database (dbEST). Fifty-seven di-, tri-, tetra- and penta-nucleotide simple sequence repeats were identified. Conclusions We have developed the first high quality EST resource for black spruce and identified 493 novel transcripts, which may be species-specific related to life history and ecological traits. We have also identified full-length genes and microsatellite-containing ESTs. Based on EST sequence similarities, black spruce showed close evolutionary relationships with congeneric Picea glauca and Picea sitchensis compared to other Pinaceae members and angiosperms. The EST sequences reported here provide an important resource for genome annotation, functional and comparative genomics, molecular breeding, conservation and management studies and applications in black spruce and related conifer species.
Collapse
Affiliation(s)
- Ishminder K Mann
- Forest Genetics and Biotechnology Group, Department of Biology, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4J1, Canada.
| | | | | |
Collapse
|
37
|
Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MMS, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, Mackay J, Bohlmann J, Jones SJM. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. BIOINFORMATICS (OXFORD, ENGLAND) 2013. [PMID: 23698863 DOI: 10.1093/bioinformatics/btt1178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
UNLABELLED White spruce (Picea glauca) is a dominant conifer of the boreal forests of North America, and providing genomics resources for this commercially valuable tree will help improve forest management and conservation efforts. Sequencing and assembling the large and highly repetitive spruce genome though pushes the boundaries of the current technology. Here, we describe a whole-genome shotgun sequencing strategy using two Illumina sequencing platforms and an assembly approach using the ABySS software. We report a 20.8 giga base pairs draft genome in 4.9 million scaffolds, with a scaffold N50 of 20,356 bp. We demonstrate how recent improvements in the sequencing technology, especially increasing read lengths and paired end reads from longer fragments have a major impact on the assembly contiguity. We also note that scalable bioinformatics tools are instrumental in providing rapid draft assemblies. AVAILABILITY The Picea glauca genome sequencing and assembly data are available through NCBI (Accession#: ALWZ0100000000 PID: PRJNA83435). http://www.ncbi.nlm.nih.gov/bioproject/83435.
Collapse
Affiliation(s)
- Inanc Birol
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 4S6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The Norway spruce genome sequence and conifer genome evolution. Nature 2013; 497:579-84. [DOI: 10.1038/nature12211] [Citation(s) in RCA: 1065] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 04/22/2013] [Indexed: 12/18/2022]
|
39
|
Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MMS, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, Mackay J, Bohlmann J, Jones SJM. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. ACTA ACUST UNITED AC 2013; 29:1492-7. [PMID: 23698863 PMCID: PMC3673215 DOI: 10.1093/bioinformatics/btt178] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
White spruce (Picea glauca) is a dominant conifer of the boreal forests of North America, and providing genomics resources for this commercially valuable tree will help improve forest management and conservation efforts. Sequencing and assembling the large and highly repetitive spruce genome though pushes the boundaries of the current technology. Here, we describe a whole-genome shotgun sequencing strategy using two Illumina sequencing platforms and an assembly approach using the ABySS software. We report a 20.8 giga base pairs draft genome in 4.9 million scaffolds, with a scaffold N50 of 20 356 bp. We demonstrate how recent improvements in the sequencing technology, especially increasing read lengths and paired end reads from longer fragments have a major impact on the assembly contiguity. We also note that scalable bioinformatics tools are instrumental in providing rapid draft assemblies. Availability: The Picea glauca genome sequencing and assembly data are available through NCBI (Accession#: ALWZ0100000000 PID: PRJNA83435). http://www.ncbi.nlm.nih.gov/bioproject/83435. Contact:ibirol@bcgsc.ca Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Inanc Birol
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 4S6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hall DE, Zerbe P, Jancsik S, Quesada AL, Dullat H, Madilao LL, Yuen M, Bohlmann J. Evolution of conifer diterpene synthases: diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases. PLANT PHYSIOLOGY 2013; 161:600-16. [PMID: 23370714 PMCID: PMC3561007 DOI: 10.1104/pp.112.208546] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.
Collapse
|
41
|
Mackay J, Dean JFD, Plomion C, Peterson DG, Cánovas FM, Pavy N, Ingvarsson PK, Savolainen O, Guevara MÁ, Fluch S, Vinceti B, Abarca D, Díaz-Sala C, Cervera MT. Towards decoding the conifer giga-genome. PLANT MOLECULAR BIOLOGY 2012; 80:555-69. [PMID: 22960864 DOI: 10.1007/s11103-012-9961-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/24/2012] [Indexed: 05/21/2023]
Abstract
Several new initiatives have been launched recently to sequence conifer genomes including pines, spruces and Douglas-fir. Owing to the very large genome sizes ranging from 18 to 35 gigabases, sequencing even a single conifer genome had been considered unattainable until the recent throughput increases and cost reductions afforded by next generation sequencers. The purpose of this review is to describe the context for these new initiatives. A knowledge foundation has been acquired in several conifers of commercial and ecological interest through large-scale cDNA analyses, construction of genetic maps and gene mapping studies aiming to link phenotype and genotype. Exploratory sequencing in pines and spruces have pointed out some of the unique properties of these giga-genomes and suggested strategies that may be needed to extract value from their sequencing. The hope is that recent and pending developments in sequencing technology will contribute to rapidly filling the knowledge vacuum surrounding their structure, contents and evolution. Researchers are also making plans to use comparative analyses that will help to turn the data into a valuable resource for enhancing and protecting the world's conifer forests.
Collapse
Affiliation(s)
- John Mackay
- Center for Forest Research, Institute for Integrative and Systems Biology, Université Laval, Québec, Québec G1V 0A6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Klintenäs M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. THE NEW PHYTOLOGIST 2012; 196:1260-1273. [PMID: 23020222 DOI: 10.1111/j.1469-8137.2012.04332.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/08/2012] [Indexed: 05/18/2023]
Abstract
In flowering plants, homologs of the Arabidopsis phosphatidylethanolamine-binding protein (PEBP) FLOWERING LOCUS T (FT) are key components in controlling flowering time. We show here that, although FT homologs are found in all angiosperms with completed genome sequences, there is no evidence to date that FT-like genes exist in other groups of plants. Through phylogeny reconstructions and heterologous expression, we examined the biochemical function of the Picea (spruces) and Pinus (pines) PEBP families - two gymnosperm taxa phylogenetically distant from the angiosperms. We have defined a lineage of gymnosperm PEBP genes, termed the FT/TERMINAL FLOWER1 (TFL1)-like genes, that share sequence characteristics with both the angiosperm FT- and TFL1-like clades. When expressed in Arabidopsis, FT/TFL1-like genes repressed flowering, indicating that the proteins are biochemically more similar to the angiosperm TFL1-like proteins than to the FT-like proteins. This suggests that the regulation of the vegetative-to-reproductive switch might differ in gymnosperms compared with angiosperms. Molecular evolution studies suggest that plasticity at exon 4 contributes to the divergence of FT-like function in floral promotion. In addition, the presence of FT-like genes in basal angiosperms indicates that the FT-like function emerged at an early stage during the evolution of flowering plants as a means to regulate flowering time.
Collapse
Affiliation(s)
- Maria Klintenäs
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - Pierre A Pin
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - Reyes Benlloch
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, 901-87, Umeå, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| |
Collapse
|
43
|
Li SH, Nagy NE, Hammerbacher A, Krokene P, Niu XM, Gershenzon J, Schneider B. Localization of phenolics in phloem parenchyma cells of Norway spruce (Picea abies). Chembiochem 2012; 13:2707-13. [PMID: 23150460 DOI: 10.1002/cbic.201200547] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Indexed: 12/12/2022]
Abstract
Norway spruce (Picea abies) bark contains specialized phloem parenchyma cells that swell and change their contents upon attack by the bark beetle Ips typographus and its microbial associate, the blue stain fungus Ceratocystis polonica. These cells exhibit bright autofluorescence after treatment with standard aldehyde fixatives, and so have been postulated to contain phenolic compounds. Laser microdissection of spruce bark sections combined with cryogenic NMR spectroscopy demonstrated significantly higher concentrations of the stilbene glucoside astringin in phloem parenchyma cells than in adjacent sieve cells. After infection by C. polonica, the flavonoid (+)-catechin also appeared in phloem parenchyma cells and there was a decrease in astringin content compared to cells from uninfected trees. Analysis of whole-bark extracts confirmed the results obtained from the cell extracts and revealed a significant increase in dimeric stilbene glucosides, both astringin and isorhapontin derivatives (piceasides A to H), in fungus-infected versus uninfected bark that might explain the reduction in stilbene monomers. Phloem parenchyma cells thus appear to be a principal site of phenolic accumulation in spruce bark.
Collapse
Affiliation(s)
- Sheng-Hong Li
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Chen J, Uebbing S, Gyllenstrand N, Lagercrantz U, Lascoux M, Källman T. Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective constraints in gymnosperms and angiosperms. BMC Genomics 2012; 13:589. [PMID: 23122049 PMCID: PMC3543189 DOI: 10.1186/1471-2164-13-589] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/25/2012] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND A detailed knowledge about spatial and temporal gene expression is important for understanding both the function of genes and their evolution. For the vast majority of species, transcriptomes are still largely uncharacterized and even in those where substantial information is available it is often in the form of partially sequenced transcriptomes. With the development of next generation sequencing, a single experiment can now simultaneously identify the transcribed part of a species genome and estimate levels of gene expression. RESULTS mRNA from actively growing needles of Norway spruce (Picea abies) was sequenced using next generation sequencing technology. In total, close to 70 million fragments with a length of 76 bp were sequenced resulting in 5 Gbp of raw data. A de novo assembly of these reads, together with publicly available expressed sequence tag (EST) data from Norway spruce, was used to create a reference transcriptome. Of the 38,419 PUTs (putative unique transcripts) longer than 150 bp in this reference assembly, 83.5% show similarity to ESTs from other spruce species and of the remaining PUTs, 3,704 show similarity to protein sequences from other plant species, leaving 4,167 PUTs with limited similarity to currently available plant proteins. By predicting coding frames and comparing not only the Norway spruce PUTs, but also PUTs from the close relatives Picea glauca and Picea sitchensis to both Pinus taeda and Taxus mairei, we obtained estimates of synonymous and non-synonymous divergence among conifer species. In addition, we detected close to 15,000 SNPs of high quality and estimated gene expression differences between samples collected under dark and light conditions. CONCLUSIONS Our study yielded a large number of single nucleotide polymorphisms as well as estimates of gene expression on transcriptome scale. In agreement with a recent study we find that the synonymous substitution rate per year (0.6 × 10-09 and 1.1 × 10-09) is an order of magnitude smaller than values reported for angiosperm herbs. However, if one takes generation time into account, most of this difference disappears. The estimates of the dN/dS ratio (non-synonymous over synonymous divergence) reported here are in general much lower than 1 and only a few genes showed a ratio larger than 1.
Collapse
Affiliation(s)
- Jun Chen
- Department of Ecology and Genetics, EBC, Uppsala University, 752 36 Uppsala, Sweden
| | - Severin Uebbing
- Department of Ecology and Genetics, EBC, Uppsala University, 752 36 Uppsala, Sweden
| | - Niclas Gyllenstrand
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, P.O. Box 7080, SE-750 07 Uppsala, Sweden
| | - Ulf Lagercrantz
- Department of Ecology and Genetics, EBC, Uppsala University, 752 36 Uppsala, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, EBC, Uppsala University, 752 36 Uppsala, Sweden
- Laboratory of Evolutionary Genomics, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Thomas Källman
- Department of Ecology and Genetics, EBC, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
45
|
Zhang Y, Zhang S, Han S, Li X, Qi L. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). PLANT CELL REPORTS 2012; 31:1637-57. [PMID: 22622308 DOI: 10.1007/s00299-012-1277-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 05/13/2023]
Abstract
UNLABELLED Japanese larch (Larix leptolepis) is an ecologically and economically important species mainly grown in northeastern China, Japan and Europe. However, erratic flowering and poor germplasm resources caused by high embryo abortion rates have hampered breeding of Larix species. Somatic embryogenesis (SE) is an effective tool for the production of L. leptolepis with desirable characteristics, such as expression of totipotency, preparation of synthetic seeds, and genetic transformation. However, public genomic resources for this species are limited. We sequenced 591,759 raw expressed sequence tags (ESTs) from a 454 sequencing cDNA library of L. leptolepis somatic embryos, resulting in 572,403 high-quality reads. These reads were assembled into 70,927 unique sequences (UniGenes), including 32,321 contigs and 38,606 singletons. After removal of low-quality sequences, 65,115 UniGenes were annotated using the UniProtKB program. Based on their sequence similarity with known proteins, the matched 30,372 sequences from 664 species were estimated to represent approximately 19,000 unique genes. Gene ontology analysis revealed 21,324 UniGenes assigned to 51 categories. By Kyoto Encyclopedia of Genes and Genomes mapping, 25,773 transcripts were associated with 160 biochemical pathways. Further analysis screened four signal transduction pathways represented by 337 enzymes and 17 secondary metabolites. In silico analysis reveals that 207 UniESTs in Larix are homologous to MAPKs genes identified from other model plants, which may be involved in regulating SE development. This study provides an initial insight into the Larix transcriptomes of the pro-embryogenic mass and is a sound basis for future studies. KEY MESSAGE We constructed a large, full-length 454 sequencing cDNA library of Larix leptolepis during somatic embryogenesis. More than 590,000 sequences were obtained and a deep-coverage EST database was constructed.
Collapse
Affiliation(s)
- Yuan Zhang
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | | | | | | | | |
Collapse
|
46
|
Sun YH, Shi R, Zhang XH, Chiang VL, Sederoff RR. MicroRNAs in trees. PLANT MOLECULAR BIOLOGY 2012; 80:37-53. [PMID: 22161564 DOI: 10.1007/s11103-011-9864-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 10/26/2011] [Indexed: 05/31/2023]
Abstract
MicroRNAs (miRNAs) are 20-24 nucleotide long molecules processed from a specific class of RNA polymerase II transcripts that mainly regulate the stability of mRNAs containing a complementary sequence by targeted degradation in plants. Many features of tree biology are regulated by miRNAs affecting development, metabolism, adaptation and evolution. MiRNAs may be modified and harnessed for controlled suppression of specific genes to learn about gene function, or for practical applications through genetic engineering. Modified (artificial) miRNAs act as dominant suppressors and are particularly useful in tree genetics because they bypass the generations of inbreeding needed for fixation of recessive mutations. The purpose of this review is to summarize the current status of information on miRNAs in trees and to guide future studies on the role of miRNAs in the biology of woody perennials and to illustrate their utility in directed genetic modification of trees.
Collapse
Affiliation(s)
- Ying-Hsuan Sun
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
47
|
Raherison E, Rigault P, Caron S, Poulin PL, Boyle B, Verta JP, Giguère I, Bomal C, Bohlmann J, MacKay J. Transcriptome profiling in conifers and the PiceaGenExpress database show patterns of diversification within gene families and interspecific conservation in vascular gene expression. BMC Genomics 2012; 13:434. [PMID: 22931377 PMCID: PMC3534630 DOI: 10.1186/1471-2164-13-434] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/11/2012] [Indexed: 12/22/2022] Open
Abstract
Background Conifers have very large genomes (13 to 30 Gigabases) that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues. Results An oligonucleotide microarray was developed from Picea glauca and P. sitchensis cDNA datasets. It represents 23,853 unique genes and was shown to be suitable for transcriptome profiling in several species. A comparison of secondary xylem and phelloderm tissues showed that preferential expression in these vascular tissues was highly conserved among Picea spp. RNA-Sequencing strongly confirmed tissue preferential expression and provided a robust validation of the microarray design. A small database of transcription profiles called PiceaGenExpress was developed from over 150 hybridizations spanning eight major tissue types. In total, transcripts were detected for 92% of the genes on the microarray, in at least one tissue. Non-annotated genes were predominantly expressed at low levels in fewer tissues than genes of known or predicted function. Diversity of expression within gene families may be rapidly assessed from PiceaGenExpress. In conifer trees, dehydrins and late embryogenesis abundant (LEA) osmotic regulation proteins occur in large gene families compared to angiosperms. Strong contrasts and low diversity was observed in the dehydrin family, while diverse patterns suggested a greater degree of diversification among LEAs. Conclusion Together, the oligonucleotide microarray and the PiceaGenExpress database represent the first resource of this kind for gymnosperm plants. The spruce transcriptome analysis reported here is expected to accelerate genetic studies in the large and important group comprised of conifer trees.
Collapse
Affiliation(s)
- Elie Raherison
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, Canada, G1V 0A6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Keeling CI, Henderson H, Li M, Yuen M, Clark EL, Fraser JD, Huber DPW, Liao NY, Docking TR, Birol I, Chan SK, Taylor GA, Palmquist D, Jones SJM, Bohlmann J. Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:525-536. [PMID: 22516182 DOI: 10.1016/j.ibmb.2012.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
Bark beetles (Coleoptera: Curculionidae: Scolytinae) are major insect pests of many woody plants around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant historical pest of western North American pine forests. It is currently devastating pine forests in western North America--particularly in British Columbia, Canada--and is beginning to expand its host range eastward into the Canadian boreal forest, which extends to the Atlantic coast of North America. Limited genomic resources are available for this and other bark beetle pests, restricting the use of genomics-based information to help monitor, predict, and manage the spread of these insects. To overcome these limitations, we generated comprehensive transcriptome resources from fourteen full-length enriched cDNA libraries through paired-end Sanger sequencing of 100,000 cDNA clones, and single-end Roche 454 pyrosequencing of three of these cDNA libraries. Hybrid de novo assembly of the 3.4 million sequences resulted in 20,571 isotigs in 14,410 isogroups and 246,848 singletons. In addition, over 2300 non-redundant full-length cDNA clones putatively containing complete open reading frames, including 47 cytochrome P450s, were sequenced fully to high quality. This first large-scale genomics resource for bark beetles provides the relevant sequence information for gene discovery; functional and population genomics; comparative analyses; and for future efforts to annotate the MPB genome. These resources permit the study of this beetle at the molecular level and will inform research in other Dendroctonus spp. and more generally in the Curculionidae and other Coleoptera.
Collapse
Affiliation(s)
- Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1Z4.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Canales J, Rueda-López M, Craven-Bartle B, Avila C, Cánovas FM. Novel insights into regulation of asparagine synthetase in conifers. FRONTIERS IN PLANT SCIENCE 2012; 3:100. [PMID: 22654888 PMCID: PMC3359511 DOI: 10.3389/fpls.2012.00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/27/2012] [Indexed: 05/18/2023]
Abstract
Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in plants. A comparative study of PpAS1 and PpAS2 gene expression profiles showed that PpAS1 gene is highly regulated by developmental and environmental factors, while PpAS2 is expressed constitutively. To determine the molecular mechanisms underpinning the differential expression of PpAS1, the promoter region of the gene was isolated and putative binding sites for MYB transcription factors were identified. Gel mobility shift assays showed that a MYB protein from Pinus taeda (PtMYB1) was able to interact with the promoter region of PpAS1. Furthermore, transient expression analyses in pine cells revealed a negative effect of PtMYB1 on PpAS1 expression. The potential role of MYB factors in the transcriptional regulation of PpAS1 in vascular cells is discussed.
Collapse
Affiliation(s)
- Javier Canales
- Departamento de Biología Molecular y Bioquímica, Instituto Andaluz de Biotecnología, Universidad de MálagaMálaga, Spain
| | - Marina Rueda-López
- Departamento de Biología Molecular y Bioquímica, Instituto Andaluz de Biotecnología, Universidad de MálagaMálaga, Spain
| | - Blanca Craven-Bartle
- Departamento de Biología Molecular y Bioquímica, Instituto Andaluz de Biotecnología, Universidad de MálagaMálaga, Spain
| | - Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Instituto Andaluz de Biotecnología, Universidad de MálagaMálaga, Spain
| | - Francisco M. Cánovas
- Departamento de Biología Molecular y Bioquímica, Instituto Andaluz de Biotecnología, Universidad de MálagaMálaga, Spain
| |
Collapse
|
50
|
Holliday JA, Suren H, Aitken SN. Divergent selection and heterogeneous migration rates across the range of Sitka spruce (Picea sitchensis). Proc Biol Sci 2012; 279:1675-83. [PMID: 22113032 PMCID: PMC3297444 DOI: 10.1098/rspb.2011.1805] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/31/2011] [Indexed: 11/12/2022] Open
Abstract
Gene flow and effective population size (N(e)) should depend on a population's position within its range: those near the edges are expected to have smaller N(e) and lower relative emigration rates, whereas those nearer the centre should have larger N(e) and higher relative emigration rates. In species with continuous ranges, this phenomenon may limit the ability of peripheral populations to respond to divergent selection. Here, we employ Sitka spruce as a model to test these predictions. We previously genotyped 339 single nucleotide polymorphisms (SNPs) in 410 individuals from 13 populations, and used these data to identify putative targets of divergent selection, as well as to explore the extent to which central-peripheral structure may impede adaptation. Fourteen SNPs had outlier F(ST) estimates suggestive of divergent selection, of which nine were previously associated with phenotypic variation in adaptive traits (timing of autumn budset and cold hardiness). Using coalescent simulations, we show that populations from near the centre of the range have higher effective populations sizes than those from the edges, and that central populations contribute more migrants to marginal populations than the reverse. Our results suggest that while divergent selection appears to have shaped allele frequencies among populations, asymmetrical movement of alleles from the centre to the edges of the species range may affect the adaptive capacity of peripheral populations. In southern peripheral populations, the movement of cold-adapted alleles from the north represents a significant impediment to adaptation under climate change, while in the north, movement of warm-adapted alleles from the south may enhance adaptation.
Collapse
Affiliation(s)
- Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|