1
|
Chai S, Wang K, Wang H, Tian J, Huang Y, Wang T, Li D. Genome-wide identification of the EIN3/EIL gene family in Ginkgo biloba and functional study of a GbEIL in the ethylene signaling pathway. Gene 2024; 928:148800. [PMID: 39067545 DOI: 10.1016/j.gene.2024.148800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
ETHYLENE-INSENSITIVE3 (EIN3) or EIN3-Like (EIL) proteins, play critical roles in integrating ethylene signaling and physiological regulation in plants by modulating the expression of various downstream genes, such as ethylene-response factors (ERFs). However, little is known about the characteristics of EIN3/EILs in the gymnosperm Ginkgo biloba. In the present study, a genome-wide comparative analysis of Ginkgo EIN3/EIL gene family was performed with those from an array of species, including bryophytes (Physcomitrella patens), gymnosperms (Cycas panzhihuaensis), and angiosperms (Arabidopsis thaliana, Gossypium raimondii, Gossypium hirsutum, Oryza sativa, and Brachypodium distachyon). Within the constructed phylogenetic tree for the 53 EIN3/EILs identified, 5 GbEILs from G. biloba, 2 PpEILs from P. patens, and 3 CpEILs from C. panzhihuaensis were assigned to one cluster, suggesting that their derivation occurred after the split of their ancestors and angiosperms. Although considerable divergence accumulated in amino acid sequences along with the evolutionary process, the specific EIN3_DNA-binding domains were evolutionarily conserved among the 53 EIN3/EILs. Collinearity analysis indicated that whole-genome or segmental duplication and subsequent purifying selection might have prompted the generation and evolution of EIN3/EIL multigene families. Based on the expression patterns of five GbEILs at the four developmental stages of Ginkgo ovules, one GbEIL gene (Gb_03292) was further investigated for its role in mediating ethylene signaling. The functional activity of Gb_03292 was closely related to ethylene signaling, as it complemented the triple response via ectopic expression in ein3eil1 double mutant Arabidopsis. Additionally, GbEIL likely modulates the expression of a Ginkgo ERF (Gb_15517) by directly binding to its promoter. These results demonstrated that the GbEIL gene could have participated in mediating ethylene signal transduction during ovule development in G. biloba. The present study also provides insights into the conservation of ethylene signaling across the gymnosperm G. biloba and angiosperm species.
Collapse
Affiliation(s)
- Shanshan Chai
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Kangmei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Huimin Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Juan Tian
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yating Huang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Tianqi Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Dahui Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Wegner L, Porth ML, Ehlers K. Multicellularity and the Need for Communication-A Systematic Overview on (Algal) Plasmodesmata and Other Types of Symplasmic Cell Connections. PLANTS (BASEL, SWITZERLAND) 2023; 12:3342. [PMID: 37765506 PMCID: PMC10536634 DOI: 10.3390/plants12183342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
In the evolution of eukaryotes, the transition from unicellular to simple multicellular organisms has happened multiple times. For the development of complex multicellularity, characterized by sophisticated body plans and division of labor between specialized cells, symplasmic intercellular communication is supposed to be indispensable. We review the diversity of symplasmic connectivity among the eukaryotes and distinguish between distinct types of non-plasmodesmatal connections, plasmodesmata-like structures, and 'canonical' plasmodesmata on the basis of developmental, structural, and functional criteria. Focusing on the occurrence of plasmodesmata (-like) structures in extant taxa of fungi, brown algae (Phaeophyceae), green algae (Chlorophyta), and streptophyte algae, we present a detailed critical update on the available literature which is adapted to the present classification of these taxa and may serve as a tool for future work. From the data, we conclude that, actually, development of complex multicellularity correlates with symplasmic connectivity in many algal taxa, but there might be alternative routes. Furthermore, we deduce a four-step process towards the evolution of canonical plasmodesmata and demonstrate similarity of plasmodesmata in streptophyte algae and land plants with respect to the occurrence of an ER component. Finally, we discuss the urgent need for functional investigations and molecular work on cell connections in algal organisms.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| | | | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| |
Collapse
|
3
|
Pfeifer L, Utermöhlen J, Happ K, Permann C, Holzinger A, von Schwartzenberg K, Classen B. Search for evolutionary roots of land plant arabinogalactan-proteins in charophytes: presence of a rhamnogalactan-protein in Spirogyra pratensis (Zygnematophyceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:568-584. [PMID: 34767672 PMCID: PMC7612518 DOI: 10.1111/tpj.15577] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 05/31/2023]
Abstract
Charophyte green algae (CGA) are assigned to be the closest relatives of land plants and therefore enlighten processes in the colonization of terrestrial habitats. For the transition from water to land, plants needed significant physiological and structural changes, as well as with regard to cell wall composition. Sequential extraction of cell walls of Nitellopsis obtusa (Charophyceae) and Spirogyra pratensis (Zygnematophyceae) offered a comparative overview on cell wall composition of late branching CGA. Because arabinogalactan-proteins (AGPs) are considered common for all land plant cell walls, we were interested in whether these special glycoproteins are present in CGA. Therefore, we investigated both species with regard to characteristic features of AGPs. In the cell wall of Nitellopsis, no hydroxyproline was present and no AGP was precipitable with the β-glucosyl Yariv's reagent (βGlcY). By contrast, βGlcY precipitation of the water-soluble cell wall fraction of Spirogyra yielded a glycoprotein fraction rich in hydroxyproline, indicating the presence of AGPs. Putative AGPs in the cell walls of non-conjugating Spirogyra filaments, especially in the area of transverse walls, were detected by staining with βGlcY. Labelling increased strongly in generative growth stages, especially during zygospore development. Investigations of the fine structure of the glycan part of βGlcY-precipitated molecules revealed that the galactan backbone resembled that of AGPs with 1,3- 1,6- and 1,3,6-linked Galp moieties. Araf was present only in small amounts and the terminating sugars consisted predominantly of pyranosidic terminal and 1,3-linked rhamnose residues. We introduce the term 'rhamnogalactan-protein' for this special AGP-modification present in S. pratensis.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Jon Utermöhlen
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Kathrin Happ
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Charlotte Permann
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck 6020, Austria
| | | | - Birgit Classen
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| |
Collapse
|
4
|
Orton LM, Fitzek E, Feng X, Grayburn WS, Mower JP, Liu K, Zhang C, Duvall MR, Yin Y. Zygnema circumcarinatum UTEX 1559 chloroplast and mitochondrial genomes provide insight into land plant evolution. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3361-3373. [PMID: 32206790 DOI: 10.1093/jxb/eraa149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2020] [Indexed: 05/22/2023]
Abstract
The complete chloroplast and mitochondrial genomes of Charophyta have shed new light on land plant terrestrialization. Here, we report the organellar genomes of the Zygnema circumcarinatum strain UTEX 1559, and a comparative genomics investigation of 33 plastomes and 18 mitogenomes of Chlorophyta, Charophyta (including UTEX 1559 and its conspecific relative SAG 698-1a), and Embryophyta. Gene presence/absence was determined across these plastomes and mitogenomes. A comparison between the plastomes of UTEX 1559 (157 548 bp) and SAG 698-1a (165 372 bp) revealed very similar gene contents, but substantial genome rearrangements. Surprisingly, the two plastomes share only 85.69% nucleotide sequence identity. The UTEX 1559 mitogenome size is 215 954 bp, the largest among all sequenced Charophyta. Interestingly, this large mitogenome contains a 50 kb region without homology to any other organellar genomes, which is flanked by two 86 bp direct repeats and contains 15 ORFs. These ORFs have significant homology to proteins from bacteria and plants with functions such as primase, RNA polymerase, and DNA polymerase. We conclude that (i) the previously published SAG 698-1a plastome is probably from a different Zygnema species, and (ii) the 50 kb region in the UTEX 1559 mitogenome might be recently acquired as a mobile element.
Collapse
Affiliation(s)
- Lauren M Orton
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Elisabeth Fitzek
- Biology/Computational Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology-CeBiTec, Bielefeld, Germany
| | - Xuehuan Feng
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - W Scott Grayburn
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Kan Liu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Melvin R Duvall
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Yanbin Yin
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
5
|
Moody LA. Three-dimensional growth: a developmental innovation that facilitated plant terrestrialization. JOURNAL OF PLANT RESEARCH 2020; 133:283-290. [PMID: 32095969 PMCID: PMC7214384 DOI: 10.1007/s10265-020-01173-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/11/2020] [Indexed: 05/18/2023]
Abstract
One of the most transformative events in the history of life on earth was the transition of plants from water to land approximately 470 million years ago. Within the Charophyte green algae, the closest living relatives of land plants, body plans have evolved from those that comprise simple unicells to those that are morphologically complex, large and multicellular. The Charophytes developed these broad ranging body plans by exploiting a range of one-dimensional and two-dimensional growth strategies to produce filaments, mats and branches. When plants were confronted with harsh conditions on land, they were required to make significant changes to the way they shaped their body plans. One of the fundamental developmental transitions that occurred was the evolution of three-dimensional growth and the acquisition of apical cells with three or more cutting faces. Plants subsequently developed a range of morphological adaptations (e.g. vasculature, roots, flowers, seeds) that enabled them to colonise progressively drier environments. 3D apical growth also evolved convergently in the brown algae, completely independently of the green lineage. This review summarises the evolving developmental complexities observed in the early divergent Charophytes all the way through to the earliest conquerors of land, and investigates 3D apical growth in the brown algae.
Collapse
Affiliation(s)
- Laura A Moody
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
6
|
Evolution of Photorespiratory Glycolate Oxidase among Archaeplastida. PLANTS 2020; 9:plants9010106. [PMID: 31952152 PMCID: PMC7020209 DOI: 10.3390/plants9010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/17/2022]
Abstract
Photorespiration has been shown to be essential for all oxygenic phototrophs in the present-day oxygen-containing atmosphere. The strong similarity of the photorespiratory cycle in cyanobacteria and plants led to the hypothesis that oxygenic photosynthesis and photorespiration co-evolved in cyanobacteria, and then entered the eukaryotic algal lineages up to land plants via endosymbiosis. However, the evolutionary origin of the photorespiratory enzyme glycolate oxidase (GOX) is controversial, which challenges the common origin hypothesis. Here, we tested this hypothesis using phylogenetic and biochemical approaches with broad taxon sampling. Phylogenetic analysis supported the view that a cyanobacterial GOX-like protein of the 2-hydroxy-acid oxidase family most likely served as an ancestor for GOX in all eukaryotes. Furthermore, our results strongly indicate that GOX was recruited to the photorespiratory metabolism at the origin of Archaeplastida, because we verified that Glaucophyta, Rhodophyta, and Streptophyta all express GOX enzymes with preference for the substrate glycolate. Moreover, an “ancestral” protein synthetically derived from the node separating all prokaryotic from eukaryotic GOX-like proteins also preferred glycolate over l-lactate. These results support the notion that a cyanobacterial ancestral protein laid the foundation for the evolution of photorespiratory GOX enzymes in modern eukaryotic phototrophs.
Collapse
|
7
|
Rippin M, Pichrtová M, Arc E, Kranner I, Becker B, Holzinger A. Metatranscriptomic and metabolite profiling reveals vertical heterogeneity within a Zygnema green algal mat from Svalbard (High Arctic). Environ Microbiol 2019; 21:4283-4299. [PMID: 31454446 PMCID: PMC6899726 DOI: 10.1111/1462-2920.14788] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/22/2019] [Indexed: 02/02/2023]
Abstract
Within streptophyte green algae Zygnematophyceae are the sister group to the land plants that inherited several traits conferring stress protection. Zygnema sp., a mat-forming alga thriving in extreme habitats, was collected from a field site in Svalbard, where the bottom layers are protected by the top layers. The two layers were investigated by a metatranscriptomic approach and GC-MS-based metabolite profiling. In the top layer, 6569 genes were significantly upregulated and 149 were downregulated. Upregulated genes coded for components of the photosynthetic apparatus, chlorophyll synthesis, early light-inducible proteins, cell wall and carbohydrate metabolism, including starch-degrading enzymes. An increase in maltose in the top layer and degraded starch grains at the ultrastructural levels corroborated these findings. Genes involved in amino acid, redox metabolism and DNA repair were upregulated. A total of 29 differentially accumulated metabolites (out of 173 identified ones) confirmed higher metabolic turnover in the top layer. For several of these metabolites, differential accumulation matched the transcriptional changes of enzymes involved in associated pathways. In summary, the findings support the hypothesis that in a Zygnema mat the top layer shields the bottom layers from abiotic stress factors such as excessive irradiation.
Collapse
Affiliation(s)
- Martin Rippin
- University of CologneBotanical InstituteCologneGermany
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Erwann Arc
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - Ilse Kranner
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | | |
Collapse
|
8
|
Abstract
GROWTH-REGULATING FACTORs (GRFs) are sequence-specific DNA-binding transcription factors that regulate various aspects of plant growth and development. GRF proteins interact with a transcription cofactor, GRF-INTERACTING FACTOR (GIF), to form a functional transcriptional complex. For its activities, the GRF-GIF duo requires the SWITCH2/SUCROSE NONFERMENTING2 chromatin remodeling complex. One of the most conspicuous roles of the duo is conferring the meristematic potential on the proliferative and formative cells during organogenesis. GRF expression is post-transcriptionally down-regulated by microRNA396 (miR396), thus constructing the GRF-GIF-miR396 module and fine-tuning the duo’s action. Since the last comprehensive review articles were published over three years ago, many studies have added further insight into its action and elucidated new biological roles. The current review highlights recent advances in our understanding of how the GRF-GIF-miR396 module regulates plant growth and development. In addition, I revise the previous view on the evolutionary origin of the GRF gene family.
Collapse
Affiliation(s)
- Jeong Hoe Kim
- Department of Biology, School of Biological Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
9
|
Darkness-induced effects on gene expression in Cosmarium crenatum (Zygnematophyceae) from a polar habitat. Sci Rep 2019; 9:10559. [PMID: 31332253 PMCID: PMC6646379 DOI: 10.1038/s41598-019-47041-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
Light is a key environmental regulator in all photosynthetic organisms. Many studies focused on the physiologic response to changes in light availability of species from the Zygnematophyceae, but the impact of the absence of light and the molecular acclimation process on the other side have been poorly understood. Here we present transcriptomic analyses of Cosmarium crenatum from a polar habitat exposed to darkness. The algae were cultured in dark for one week; cell number and quantum yield of photosystem II (Fv/Fm) were monitored. Cell number was stable, but the Fv/Fm decreased in both groups, darkness-treated and control. Gene expression analysis revealed a strong repression of transcripts associated with photosynthesis, photorespiration and cell wall development. General carbohydrate and lipid metabolism were differentially regulated, but starch is shown to be the primary energy source in these conditions. Additionally, C. crenatum induced mRNA responsible for epigenetic modifications which may be a specific response to an adaption and acclimation to polar conditions. Our study sheds light on the molecular acclimation process to darkness and provides ecological implications for new perspectives in this specialized group of green algae.
Collapse
|
10
|
Wang Y, Wen Q, Zhou Z, Yan N. Cell Modeling Based on Bubbles with Weighted Membranes. J Comput Biol 2019; 26:241-265. [PMID: 30624960 DOI: 10.1089/cmb.2018.0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mathematicization for cell modeling provides an effective tool to verify the biological theory, and the existing research mainly focuses on the description of cell structures. This article then addresses the pattern question of cell division or morphogenesis by means of bubble model with weighted membranes. In this study, we show that cell shapes including intersection angles at junction points depend on weights on membranes. For convenience, adhesion and contractile force are considered together as a factor in construction of patterning model. This model is also used to compare with experimental data. And the consistency between our model and experiments is also obtained consequently. This system of differential equations with their boundary conditions theorizes the existing experimental models, and improves the rationality of these models.
Collapse
Affiliation(s)
- Yuandi Wang
- 1 Department of Mathematics, Shanghai University, Shanghai, China
| | - Qingmei Wen
- 1 Department of Mathematics, Shanghai University, Shanghai, China
| | - Zhigang Zhou
- 2 College of Aqua-life Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Nanjun Yan
- 1 Department of Mathematics, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Fitzek E, Orton L, Entwistle S, Grayburn WS, Ausland C, Duvall MR, Yin Y. Cell Wall Enzymes in Zygnema circumcarinatum UTEX 1559 Respond to Osmotic Stress in a Plant-Like Fashion. FRONTIERS IN PLANT SCIENCE 2019; 10:732. [PMID: 31231410 PMCID: PMC6566377 DOI: 10.3389/fpls.2019.00732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/16/2019] [Indexed: 05/20/2023]
Abstract
Previous analysis of charophyte green algal (CGA) genomes and transcriptomes for specific protein families revealed that numerous land plant characteristics had already evolved in CGA. In this study, we have sequenced and assembled the transcriptome of Zygnema circumcarinatum UTEX 1559, and combined its predicted protein sequences with those of 13 additional species [five embryophytes (Emb), eight charophytes (Cha), and two chlorophytes (Chl) as the outgroup] for a comprehensive comparative genomics analysis. In total 25,485 orthologous gene clusters (OGCs, equivalent to protein families) of the 14 species were classified into nine OGC groups. For example, the Cha+Emb group contains 4,174 OGCs found in both Cha and Emb but not Chl species, representing protein families that have evolved in the common ancestor of Cha and Emb. Different OGC groups were subjected to a Gene Ontology (GO) enrichment analysis with the Chl+Cha+Emb group (including 5,031 OGCs found in Chl and Cha and Emb) as the control. Interestingly, nine of the 20 top enriched GO terms in the Cha+Emb group are cell wall-related, such as biological processes involving celluloses, pectins, lignins, and xyloglucans. Furthermore, three glycosyltransferase families (GT2, 8, 43) were selected for in-depth phylogenetic analyses, which confirmed their presence in UTEX 1559. More importantly, of different CGA groups, only Zygnematophyceae has land plant cellulose synthase (CesA) orthologs, while other charophyte CesAs form a CGA-specific CesA-like (Csl) subfamily (likely also carries cellulose synthesis activity). Quantitative real-time-PCR experiments were performed on selected GT family genes in UTEX 1559. After osmotic stress treatment, significantly elevated expression was found for GT2 family genes ZcCesA, ZcCslC and ZcCslA-like (possibly mannan and xyloglucan synthases, respectively), as well as for GT8 family genes (possibly pectin synthases). All these suggest that the UTEX 1559 cell wall polysaccharide synthesis-related genes respond to osmotic stress in a manner that is similar to land plants.
Collapse
Affiliation(s)
- Elisabeth Fitzek
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
- Department of Computational Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld, Germany
| | - Lauren Orton
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
| | - Sarah Entwistle
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
| | - W. Scott Grayburn
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
| | - Catherine Ausland
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
| | - Melvin R. Duvall
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
| | - Yanbin Yin
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska – Lincoln, Lincoln, NE, United States
- *Correspondence: Yanbin Yin, ;
| |
Collapse
|
12
|
Ruiz-May E, Sørensen I, Fei Z, Zhang S, Domozych DS, Rose JKC. The Secretome and N-Glycosylation Profiles of the Charophycean Green Alga, Penium margaritaceum, Resemble Those of Embryophytes. Proteomes 2018; 6:E14. [PMID: 29561781 PMCID: PMC6027541 DOI: 10.3390/proteomes6020014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022] Open
Abstract
The secretome can be defined as the population of proteins that are secreted into the extracellular environment. Many proteins that are secreted by eukaryotes are N-glycosylated. However, there are striking differences in the diversity and conservation of N-glycosylation patterns between taxa. For example, the secretome and N-glycosylation structures differ between land plants and chlorophyte green algae, but it is not clear when this divergence took place during plant evolution. A potentially valuable system to study this issue is provided by the charophycean green algae (CGA), which is the immediate ancestors of land plants. In this study, we used lectin affinity chromatography (LAC) coupled with mass spectrometry to characterize the secretome including secreted N-glycoproteins of Penium margaritaceum, which is a member of the CGA. The identified secreted proteins and N-glycans were compared to those known from the chlorophyte green alga Chlamydomonas reinhardtii and the model land plant, Arabidopsis thaliana, to establish their evolutionary context. Our approach allowed the identification of cell wall proteins and proteins modified with N-glycans that are identical to those of embryophytes, which suggests that the P. margaritaceum secretome is more closely related to those of land plants than to those of chlorophytes. The results of this study support the hypothesis that many of the proteins associated with plant cell wall modification as well as other extracellular processes evolved prior to the colonization of terrestrial habitats.
Collapse
Affiliation(s)
- Eliel Ruiz-May
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, CP 91070 Xalapa, Veracruz, Mexico.
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA.
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA.
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Ishizaki K. Evolution of land plants: insights from molecular studies on basal lineages. Biosci Biotechnol Biochem 2017; 81:73-80. [DOI: 10.1080/09168451.2016.1224641] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
The invasion of the land by plants, or terrestrialization, was one of the most critical events in the history of the Earth. The evolution of land plants included significant transformations in body plans: the emergence of a multicellular diploid sporophyte, transition from gametophyte-dominant to sporophyte-dominant life histories, and development of many specialized tissues and organs, such as stomata, vascular tissues, roots, leaves, seeds, and flowers. Recent advances in molecular genetics in two model basal plants, bryophytes Physcomitrella patens and Marchantia polymorpha, have begun to provide answers to several key questions regarding land plant evolution. This paper discusses the evolution of the genes and regulatory mechanisms that helped drive such significant morphological innovations among land-based plants.
Collapse
Affiliation(s)
- Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| |
Collapse
|
14
|
Ohtani M, Akiyoshi N, Takenaka Y, Sano R, Demura T. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:17-26. [PMID: 28013230 DOI: 10.1093/jxb/erw473] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Nobuhiro Akiyoshi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Yuto Takenaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Ryosuke Sano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
15
|
Abstract
The life cycles of eukaryotes alternate between haploid and diploid phases, which are initiated by meiosis and gamete fusion, respectively. In both ascomycete and basidiomycete fungi and chlorophyte algae, the haploid-to-diploid transition is regulated by a pair of paralogous homeodomain protein encoding genes. That a common genetic program controls the haploid-to-diploid transition in phylogenetically disparate eukaryotic lineages suggests this may be the ancestral function for homeodomain proteins. Multicellularity has evolved independently in many eukaryotic lineages in either one or both phases of the life cycle. Organisms, such as land plants, exhibiting a life cycle whereby multicellular bodies develop in both the haploid and diploid phases are often referred to as possessing an alternation of generations. We review recent progress on understanding the genetic basis for the land plant alternation of generations and highlight the roles that homeodomain-encoding genes may have played in the evolution of complex multicellularity in this lineage.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
- Department of Plant Biology, University of California, Davis, California 95616
| | - Keiko Sakakibara
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Chihiro Furumizu
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
| |
Collapse
|
16
|
Van de Poel B, Cooper ED, Van Der Straeten D, Chang C, Delwiche CF. Transcriptome Profiling of the Green Alga Spirogyra pratensis (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses. PLANT PHYSIOLOGY 2016; 172:533-45. [PMID: 27489312 PMCID: PMC5074641 DOI: 10.1104/pp.16.00299] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/01/2016] [Indexed: 05/26/2023]
Abstract
It is well known that ethylene regulates a diverse set of developmental and stress-related processes in angiosperms, yet its roles in early-diverging embryophytes and algae are poorly understood. Recently, it was shown that ethylene functions as a hormone in the charophyte green alga Spirogyra pratensis Since land plants evolved from charophytes, this implies conservation of ethylene as a hormone in green plants for at least 450 million years. However, the physiological role of ethylene in charophyte algae has remained unknown. To gain insight into ethylene responses in Spirogyra, we used mRNA sequencing to measure changes in gene expression over time in Spirogyra filaments in response to an ethylene treatment. Our analyses show that at the transcriptional level, ethylene predominantly regulates three processes in Spirogyra: (1) modification of the cell wall matrix by expansins and xyloglucan endotransglucosylases/hydrolases, (2) down-regulation of chlorophyll biosynthesis and photosynthesis, and (3) activation of abiotic stress responses. We confirmed that the photosynthetic capacity and chlorophyll content were reduced by an ethylene treatment and that several abiotic stress conditions could stimulate cell elongation in an ethylene-dependent manner. We also found that the Spirogyra transcriptome harbors only 10 ethylene-responsive transcription factor (ERF) homologs, several of which are regulated by ethylene. These results provide an initial understanding of the hormonal responses induced by ethylene in Spirogyra and help to reconstruct the role of ethylene in ancestral charophytes prior to the origin of land plants.
Collapse
Affiliation(s)
- Bram Van de Poel
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Endymion D Cooper
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Dominique Van Der Straeten
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| |
Collapse
|
17
|
Moody LA, Saidi Y, Gibbs DJ, Choudhary A, Holloway D, Vesty EF, Bansal KK, Bradshaw SJ, Coates JC. An ancient and conserved function for Armadillo-related proteins in the control of spore and seed germination by abscisic acid. THE NEW PHYTOLOGIST 2016; 211:940-51. [PMID: 27040616 PMCID: PMC4982054 DOI: 10.1111/nph.13938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/15/2016] [Indexed: 05/27/2023]
Abstract
Armadillo-related proteins regulate development throughout eukaryotic kingdoms. In the flowering plant Arabidopsis thaliana, Armadillo-related ARABIDILLO proteins promote multicellular root branching. ARABIDILLO homologues exist throughout land plants, including early-diverging species lacking true roots, suggesting that early-evolving ARABIDILLOs had additional biological roles. Here we investigated, using molecular genetics, the conservation and diversification of ARABIDILLO protein function in plants separated by c. 450 million years of evolution. We demonstrate that ARABIDILLO homologues in the moss Physcomitrella patens regulate a previously undiscovered inhibitory effect of abscisic acid (ABA) on spore germination. Furthermore, we show that A. thaliana ARABIDILLOs function similarly during seed germination. Early-diverging ARABIDILLO homologues from both P. patens and the lycophyte Selaginella moellendorffii can substitute for ARABIDILLO function during A. thaliana root development and seed germination. We conclude that (1) ABA was co-opted early in plant evolution to regulate functionally analogous processes in spore- and seed-producing plants and (2) plant ARABIDILLO germination functions were co-opted early into both gametophyte and sporophyte, with a specific rooting function evolving later in the land plant lineage.
Collapse
Affiliation(s)
- Laura A. Moody
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Younousse Saidi
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Daniel J. Gibbs
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | | | - Daniel Holloway
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Eleanor F. Vesty
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | | | | | - Juliet C. Coates
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
18
|
Abstract
Cell division is a key biological process in which cells divide forming new daughter cells. In the present study, we investigate continuously how a Coleochaete cell divides by introducing a modified differential equation model in parametric equation form. We discuss both the influence of "dead" cells and the effects of various end-points on the formation of the new cells' boundaries. We find that the boundary condition on the free end-point is different from that on the fixed end-point; the former has a direction perpendicular to the surface. It is also shown that the outer boundaries of new cells are arc-shaped. The numerical experiments and theoretical analyses for this model to construct the outer boundary are given.
Collapse
Affiliation(s)
- Yuandi Wang
- Department of Mathematics, Shanghai University , Shanghai, China
| | - Jinyu Cong
- Department of Mathematics, Shanghai University , Shanghai, China
| |
Collapse
|
19
|
Sun L, Dong H, Mei Y, Wang NN. Functional investigation of two 1-aminocyclopropane-1-carboxylate (ACC) synthase-like genes in the moss Physcomitrella patens. PLANT CELL REPORTS 2016; 35:817-30. [PMID: 26743426 DOI: 10.1007/s00299-015-1923-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/02/2015] [Accepted: 12/18/2015] [Indexed: 05/16/2023]
Abstract
Two ACC synthase-like (ACL) proteins in the moss Physcomitrella patens have no ACS activity, and PpACL1 functions as an L -cystine/ L -cysteine C-S lyase. The ethylene biosynthetic pathway has been well characterized in higher plants, and homologs of a key enzyme in this pathway, ACS, have been reported in several algae and mosses, including Physcomitrella patens. However, the function of the ACS homologs in P. patens has not been investigated. In this research, we cloned two putative ACS genes from the P. patens genome, namely PpACS-Like 1 and 2, and investigated whether their encoded proteins had in vitro and in vivo ACS activity. In vitro biochemical assays using purified PpACL1 and PpACL2 showed that neither protein had ACS activity. Subsequently, we generated transgenic Arabidopsis lines expressing 35S:PpACL1 and 35S:PpACL2, and found that the transgenic etiolated seedlings that overexpressed either of these proteins lacked the constitutive triple response phenotype and did not emit excess levels of ethylene, indicating that neither of the PpACS-Like proteins had in vivo ACS activity. Furthermore, we found that PpACL1 functions as a C-S lyase that uses L-cystine and L-cysteine as substrates, rather than as an aminotransferase. Together, these results indicated that PpACL1 and PpACL2 are not true ACS genes as those found in higher plants.
Collapse
Affiliation(s)
- Lifang Sun
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hui Dong
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuanyuan Mei
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ning Ning Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
20
|
de Vries J, Fischer AM, Roettger M, Rommel S, Schluepmann H, Bräutigam A, Carlsbecker A, Gould SB. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. THE NEW PHYTOLOGIST 2016; 209:705-20. [PMID: 26358624 PMCID: PMC5049668 DOI: 10.1111/nph.13630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/04/2015] [Indexed: 05/10/2023]
Abstract
The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system.
Collapse
Affiliation(s)
- Jan de Vries
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Angela Melanie Fischer
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Mayo Roettger
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Sophie Rommel
- Population GeneticsHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Henriette Schluepmann
- Molecular Plant PhysiologyUtrecht UniversityPadualaan 83584CH Utrechtthe Netherlands
| | - Andrea Bräutigam
- Plant BiochemistryHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Annelie Carlsbecker
- Department of Organismal Biology, Physiological BotanyUppsala BioCenterLinnean Centre for Plant BiologyUppsala UniversityUlls väg 24ESE‐756 51UppsalaSweden
| | - Sven Bernhard Gould
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| |
Collapse
|
21
|
Holzinger A, Pichrtová M. Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques. FRONTIERS IN PLANT SCIENCE 2016; 7:678. [PMID: 27242877 PMCID: PMC4873514 DOI: 10.3389/fpls.2016.00678] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/02/2016] [Indexed: 05/20/2023]
Abstract
Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetophyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae, and Charo- phyceae. Zygnematophyceae (Conjugating green algae) are considered to be closest algal relatives to land plants (Embryophyta). Therefore, they are ideal model organisms for studying stress tolerance mechanisms connected with transition to land, one of the most important events in plant evolution and the Earth's history. In Zygnematophyceae, but also in Coleochaetophyceae, Chlorokybophyceae, and Klebsormidiophyceae terrestrial members are found which are frequently exposed to naturally occurring abiotic stress scenarios like desiccation, freezing and high photosynthetic active (PAR) as well as ultraviolet (UV) irradiation. Here, we summarize current knowledge about various stress tolerance mechanisms including insight provided by pioneer transcriptomic and proteomic studies. While formation of dormant spores is a typical strategy of freshwater classes, true terrestrial groups are stress tolerant in vegetative state. Aggregation of cells, flexible cell walls, mucilage production and accumulation of osmotically active compounds are the most common desiccation tolerance strategies. In addition, high photophysiological plasticity and accumulation of UV-screening compounds are important protective mechanisms in conditions with high irradiation. Now a shift from classical chemical analysis to next-generation genome sequencing, gene reconstruction and annotation, genome-scale molecular analysis using omics technologies followed by computer-assisted analysis will give new insights in a systems biology approach. For example, changes in transcriptome and role of phytohormone signaling in Klebsormidium during desiccation were recently described. Application of these modern approaches will deeply enhance our understanding of stress reactions in an unbiased non-targeted view in an evolutionary context.
Collapse
Affiliation(s)
- Andreas Holzinger
- Unit of Functional Plant Biology, Institute of Botany, University of Innsbruck, InnsbruckAustria
- *Correspondence: Andreas Holzinger,
| | - Martina Pichrtová
- Unit of Functional Plant Biology, Institute of Botany, University of Innsbruck, InnsbruckAustria
| |
Collapse
|
22
|
|
23
|
Kato H, Ishizaki K, Kouno M, Shirakawa M, Bowman JL, Nishihama R, Kohchi T. Auxin-Mediated Transcriptional System with a Minimal Set of Components Is Critical for Morphogenesis through the Life Cycle in Marchantia polymorpha. PLoS Genet 2015; 11:e1005084. [PMID: 26020919 PMCID: PMC4447296 DOI: 10.1371/journal.pgen.1005084] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/20/2015] [Indexed: 01/06/2023] Open
Abstract
The plant hormone auxin regulates many aspects of plant growth and development. Recent progress in Arabidopsis provided a scheme that auxin receptors, TIR1/AFBs, target transcriptional co-repressors, AUX/IAAs, for degradation, allowing ARFs to regulate transcription of auxin responsive genes. The mechanism of auxin-mediated transcriptional regulation is considered to have evolved around the time plants adapted to land. However, little is known about the role of auxin-mediated transcription in basal land plant lineages. We focused on the liverwort Marchantia polymorpha, which belongs to the earliest diverging lineage of land plants. M. polymorpha has only a single TIR1/AFB (MpTIR1), a single AUX/IAA (MpIAA), and three ARFs (MpARF1, MpARF2, and MpARF3) in the genome. Expression of a dominant allele of MpIAA with mutations in its putative degron sequence conferred an auxin resistant phenotype and repressed auxin-dependent expression of the auxin response reporter proGH3:GUS. We next established a system for DEX-inducible auxin-response repression by expressing the putatively stabilized MpIAA protein fused with the glucocorticoid receptor domain (MpIAA(mDII)-GR). Repression of auxin responses in (pro)MpIAA:MpIAA(mDII)-GR plants caused severe defects in various developmental processes, including gemmaling development, dorsiventrality, organogenesis, and tropic responses. Transient transactivation assays showed that the three MpARFs had different transcriptional activities, each corresponding to their phylogenetic classifications. Moreover, MpIAA and MpARF proteins interacted with each other with different affinities. This study provides evidence that pleiotropic auxin responses can be achieved by a minimal set of auxin signaling factors and suggests that the transcriptional regulation mediated by TIR1/AFB, AUX/IAA, and three types of ARFs might have been a key invention to establish body plans of land plants. We propose that M. polymorpha is a good model to investigate the principles and the evolution of auxin-mediated transcriptional regulation and its roles in land plant morphogenesis.
Collapse
Affiliation(s)
- Hirotaka Kato
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kimitsune Ishizaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Masaru Kouno
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Section of Plant Biology, University of California, Davis, Davis, California, United States of America
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
24
|
Auxin-Mediated Transcriptional System with a Minimal Set of Components Is Critical for Morphogenesis through the Life Cycle in Marchantia polymorpha. PLoS Genet 2015. [DOI: 10.1371/journal.pgen.1005084 pgenetics-d-14-02665 [pii]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Gallie DR. Appearance and elaboration of the ethylene receptor family during land plant evolution. PLANT MOLECULAR BIOLOGY 2015; 87:521-39. [PMID: 25682121 DOI: 10.1007/s11103-015-0296-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/11/2015] [Indexed: 05/04/2023]
Abstract
Ethylene is perceived following binding to endoplasmic reticulum-localized receptors, which in Arabidopsis thaliana, include ETR1, ERS1, EIN4, ETR2, and ERS2. These receptors fall into two subfamilies based on conservation of features within their histidine kinase domain. Subfamily 1 contains ETR1 and ERS1 whereas subfamily 2 contains EIN4, ETR2, and ERS2. Because ethylene receptors are found only in plants, this raises questions of when each receptor evolved. Here it is shown that subfamily 1 receptors encoded by a multigene family are present in all charophytes examined, these being most homologous to ETR1 based on their evolutionary relationship as well as containing histidine kinase and receiver domains. In charophytes and Physcomitrella patens, one or more gene family members contain the intron characteristic of subfamily 2 genes, indicating the first step in subfamily 2 receptor evolution. ERS1 homologs appear in basal angiosperm species after Amborella trichopoda and, in some early and basal angiosperm species and monocots in general, it is the only subfamily 1 receptor present. Distinct EIN4 and ETR2 homologs appear only in core eudicots and ERS2 homologs appear only in the Brassicaceae, suggesting it is the most recent receptor to evolve. These findings show that a subfamily 1 receptor had evolved and a subfamily 2 receptor had begun to evolve in plants prior to the colonization of land and only these two existed up to the appearance of the first basal angiosperm. The appearance of ERS2 in the Brassicaceae suggests ongoing evolution of the ethylene receptor family.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA, 92521-0129, USA,
| |
Collapse
|
26
|
Ju C, Van de Poel B, Cooper ED, Thierer JH, Gibbons TR, Delwiche CF, Chang C. Conservation of ethylene as a plant hormone over 450 million years of evolution. NATURE PLANTS 2015; 1:14004. [PMID: 27246051 DOI: 10.1038/nplants.2014.4] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/16/2014] [Indexed: 05/20/2023]
Abstract
Land plants evolved more than 450 million years ago from a lineage of freshwater charophyte green algae(1). The extent to which plant signalling systems existed before the evolutionary transition to land is unknown. Although charophytes occupy a key phylogenetic position for elucidating the origins of such signalling systems(2-4), there is a paucity of sequence data for these organisms(5,6). Here we carry out de novo transcriptomics of five representative charophyte species, and find putative homologues for the biosynthesis, transport, perception and signalling of major plant hormones. Focusing on the plant hormone ethylene, we provide evidence that the filamentous charophyte Spirogyra pratensis possesses an ethylene hormone system homologous to that in plants. Spirogyra produces ethylene and exhibits a cell elongation response to ethylene. Spirogyra ethylene-signalling homologues partially rescue mutants of the angiosperm Arabidopsis thaliana and respond post-translationally to ethylene when expressed in plant cells, indicative of unambiguously homologous ethylene-signalling pathways in Spirogyra and Arabidopsis. These findings imply that the common aquatic ancestor possessed this pathway prior to the colonization of land and that cell elongation was possibly an ancestral ethylene response. This highlights the importance of charophytes for investigating the origins of fundamental plant processes.
Collapse
Affiliation(s)
- Chuanli Ju
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Bram Van de Poel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Endymion D Cooper
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - James H Thierer
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Theodore R Gibbons
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
27
|
Holzinger A, Kaplan F, Blaas K, Zechmann B, Komsic-Buchmann K, Becker B. Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLoS One 2014; 9:e110630. [PMID: 25340847 PMCID: PMC4207709 DOI: 10.1371/journal.pone.0110630] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Water loss has significant effects on physiological performance and survival rates of algae. However, despite the prominent presence of aeroterrestrial algae in terrestrial habitats, hardly anything is known about the molecular events that allow aeroterrestrial algae to survive harsh environmental conditions. We analyzed the transcriptome and physiology of a strain of the alpine aeroterrestrial alga Klebsormidium crenulatum under control and strong desiccation-stress conditions. PRINCIPAL FINDINGS For comparison we first established a reference transcriptome. The high-coverage reference transcriptome includes about 24,183 sequences (1.5 million reads, 636 million bases). The reference transcriptome encodes for all major pathways (energy, carbohydrates, lipids, amino acids, sugars), nearly all deduced pathways are complete or missing only a few transcripts. Upon strong desiccation, more than 7000 transcripts showed changes in their expression levels. Most of the highest up-regulated transcripts do not show similarity to known viridiplant proteins, suggesting the existence of some genus- or species-specific responses to desiccation. In addition, we observed the up-regulation of many transcripts involved in desiccation tolerance in plants (e.g. proteins similar to those that are abundant in late embryogenesis (LEA), or proteins involved in early response to desiccation ERD), and enzymes involved in the biosynthesis of the raffinose family of oligosaccharides (RFO) known to act as osmolytes). Major physiological shifts are the up-regulation of transcripts for photosynthesis, energy production, and reactive oxygen species (ROS) metabolism, which is supported by elevated cellular glutathione content as revealed by immunoelectron microscopy as well as an increase in total antiradical power. However, the effective quantum yield of Photosystem II and CO2 fixation decreased sharply under the applied desiccation stress. In contrast, transcripts for cell integrative functions such as cell division, DNA replication, cofactor biosynthesis, and amino acid biosynthesis were down-regulated. SIGNIFICANCE This is the first study investigating the desiccation transcriptome of a streptophyte green alga. Our results indicate that the cellular response is similar to embryophytes, suggesting that embryophytes inherited a basic cellular desiccation tolerance from their streptophyte predecessors.
Collapse
Affiliation(s)
- Andreas Holzinger
- University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Franziska Kaplan
- University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Kathrin Blaas
- University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Bernd Zechmann
- Baylor University, Center for Microscopy and Imaging, Waco, Texas, United States of America
| | | | - Burkhard Becker
- University of Cologne, Botanical Institute, Biocenter, Cologne, Germany
| |
Collapse
|
28
|
Abstract
The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
29
|
Mikkelsen MD, Harholt J, Ulvskov P, Johansen IE, Fangel JU, Doblin MS, Bacic A, Willats WGT. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. ANNALS OF BOTANY 2014; 114:1217-36. [PMID: 25204387 PMCID: PMC4195564 DOI: 10.1093/aob/mcu171] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 07/08/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS The charophyte green algae (CGA) are thought to be the closest living relatives to the land plants, and ancestral CGA were unique in giving rise to the land plant lineage. The cell wall has been suggested to be a defining structure that enabled the green algal ancestor to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. METHODS Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs characterized in land plants. In addition, gene cloning was employed in two cases to answer important evolutionary questions. KEY RESULTS Genetic evidence was obtained indicating that many of the most important core cell wall polysaccharides have their evolutionary origins in the CGA, including cellulose, mannan, xyloglucan, xylan and pectin, as well as arabino-galactan protein. Moreover, two putative cellulose synthase-like D family genes (CSLDs) from the CGA species Coleochaete orbicularis and a fragment of a putative CSLA/K-like sequence from a CGA Spirogyra species were cloned, providing the first evidence that all the cellulose synthase/-like genes present in early-divergent land plants were already present in CGA. CONCLUSIONS The results provide new insights into the evolution of cell walls and support the notion that the CGA were pre-adapted to life on land by virtue of the their cell wall biosynthetic capacity. These findings are highly significant for understanding plant cell wall evolution as they imply that some features of land plant cell walls evolved prior to the transition to land, rather than having evolved as a result of selection pressures inherent in this transition.
Collapse
Affiliation(s)
- Maria D Mikkelsen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jesper Harholt
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Ida E Johansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jonatan U Fangel
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Victoria 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Victoria 3010, Australia
| | - William G T Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| |
Collapse
|
30
|
Doty KF, Betzelberger AM, Kocot KM, Cook ME. Immunofluorescence localization of the tubulin cytoskeleton during cell division and cell growth in members of the Coleochaetales (Streptophyta). JOURNAL OF PHYCOLOGY 2014; 50:624-39. [PMID: 26988447 DOI: 10.1111/jpy.12194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/09/2014] [Indexed: 05/24/2023]
Abstract
Study of charophycean green algae, including the Coleochaetales, may shed light on the evolutionary history of characters they share with their land plant relatives. We examined the tubulin cytoskeleton during mitosis, cytokinesis, and growth in members of the Coleochaetales with diverse morphologies to determine if phragmoplasts occurred throughout this order and to identify microtubular patterns associated with cell growth. Species representing three subgroups of Coleochaete and its sister genus Chaetosphaeridium were studied. Cytokinesis involving a phragmoplast was found in the four taxa examined. Differential interference contrast microscopy of living cells confirmed that polar cytokinesis like that described in the model flowering plant Arabidopsis occurred in all species when the forming cell plate traversed a vacuole. Calcofluor labeling of cell walls demonstrated directed growth from particular cell regions of all taxa. Electron microscopy confirmed directed growth in the unusual growth pattern of Chaetosphaeridium. All four species exhibited unordered microtubule patterns associated with diffuse growth in early cell expansion. In subsequent elongating cells, Coleochaete irregularis Pringsheim and Chaetosphaeridium globosum (Nordstedt) Klebahn exhibited tubulin cytoskeleton arrays corresponding to growth patterns associated with tip growth in plants, fungi, and other charophycean algae. Hoop-shaped microtubules frequently associated with diffuse growth of elongating cells in plants were not observed in any of these species. Presence of phragmoplasts in the diverse species studied supports the hypothesis that cytokinesis involving a phragmoplast originated in a common ancestor of the Coleochaetales, and possibly in a common ancestor of Charales, Coleochaetales, Zygnematales, and plants.
Collapse
Affiliation(s)
- Karen F Doty
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois, 61790-4120, USA
| | - Amy M Betzelberger
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois, 61790-4120, USA
| | - Kevin M Kocot
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois, 61790-4120, USA
| | - Martha E Cook
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois, 61790-4120, USA
| |
Collapse
|
31
|
Cooper ED, Bentlage B, Gibbons TR, Bachvaroff TR, Delwiche CF. Metatranscriptome profiling of a harmful algal bloom. HARMFUL ALGAE 2014; 37:75-83. [PMID: 25484636 PMCID: PMC4255328 DOI: 10.1016/j.hal.2014.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Metagenomic methods provide a powerful means to investigate complex ecological phenomena. Developed originally for study of Bacteria and Archaea, the application of these methods to eukaryotic microorganisms is yet to be fully realized. Most prior environmental molecular studies of eukaryotes have relied heavily on PCR amplification with eukaryote-specific primers. Here we apply high throughput short-read sequencing of poly-A selected RNA to capture the metatranscriptome of an estuarine dinoflagellate bloom. To validate the metatranscriptome assembly process we simulated metatranscriptomic datasets using short-read sequencing data from clonal cultures of four algae of varying phylogenetic distance. We find that the proportion of chimeric transcripts reconstructed from community transcriptome sequencing is low, suggesting that metatranscriptomic sequencing can be used to accurately reconstruct the transcripts expressed by bloom-forming communities of eukaryotes. To further validate the bloom metatransciptome assembly we compared it to a transcriptomic assembly from a cultured, clonal isolate of the dominant bloom-causing alga and found that the two assemblies are highly similar. Eukaryote-wide phylogenetic analyses reveal the taxonomic composition of the bloom community, which is comprised of several dinoflagellates, ciliates, animals, and fungi. The assembled metatranscriptome reveals the functional genomic composition of a metabolically active community. Highlighting the potential power of these methods, we found that relative transcript abundance patterns suggest that the dominant dinoflagellate might be expressing toxin biosynthesis related genes at a higher level in the presence of competitors, predators and prey compared to it growing in monoculture.
Collapse
Affiliation(s)
- Endymion D. Cooper
- CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742-4407, USA
| | - Bastian Bentlage
- CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742-4407, USA
| | - Theodore R. Gibbons
- CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742-4407, USA
| | - Tsvetan R. Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E Pratt St., Baltimore, MD 21202, USA
| | - Charles F. Delwiche
- CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742-4407, USA
- Maryland Agricultural Experiment Station, AGNR, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
32
|
Pereira-Leal JB, Abreu IA, Alabaça CS, Almeida MH, Almeida P, Almeida T, Amorim MI, Araújo S, Azevedo H, Badia A, Batista D, Bohn A, Capote T, Carrasquinho I, Chaves I, Coelho AC, Costa MMR, Costa R, Cravador A, Egas C, Faro C, Fortes AM, Fortunato AS, Gaspar MJ, Gonçalves S, Graça J, Horta M, Inácio V, Leitão JM, Lino-Neto T, Marum L, Matos J, Mendonça D, Miguel A, Miguel CM, Morais-Cecílio L, Neves I, Nóbrega F, Oliveira MM, Oliveira R, Pais MS, Paiva JA, Paulo OS, Pinheiro M, Raimundo JAP, Ramalho JC, Ribeiro AI, Ribeiro T, Rocheta M, Rodrigues AI, Rodrigues JC, Saibo NJM, Santo TE, Santos AM, Sá-Pereira P, Sebastiana M, Simões F, Sobral RS, Tavares R, Teixeira R, Varela C, Veloso MM, Ricardo CPP. A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing. BMC Genomics 2014; 15:371. [PMID: 24885229 PMCID: PMC4070548 DOI: 10.1186/1471-2164-15-371] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/15/2014] [Indexed: 01/17/2023] Open
Abstract
Background Cork oak (Quercus suber) is one of the rare trees with the ability to produce cork, a material widely used to make wine bottle stoppers, flooring and insulation materials, among many other uses. The molecular mechanisms of cork formation are still poorly understood, in great part due to the difficulty in studying a species with a long life-cycle and for which there is scarce molecular/genomic information. Cork oak forests are of great ecological importance and represent a major economic and social resource in Southern Europe and Northern Africa. However, global warming is threatening the cork oak forests by imposing thermal, hydric and many types of novel biotic stresses. Despite the economic and social value of the Q. suber species, few genomic resources have been developed, useful for biotechnological applications and improved forest management. Results We generated in excess of 7 million sequence reads, by pyrosequencing 21 normalized cDNA libraries derived from multiple Q. suber tissues and organs, developmental stages and physiological conditions. We deployed a stringent sequence processing and assembly pipeline that resulted in the identification of ~159,000 unigenes. These were annotated according to their similarity to known plant genes, to known Interpro domains, GO classes and E.C. numbers. The phylogenetic extent of this ESTs set was investigated, and we found that cork oak revealed a significant new gene space that is not covered by other model species or EST sequencing projects. The raw data, as well as the full annotated assembly, are now available to the community in a dedicated web portal at http://www.corkoakdb.org. Conclusions This genomic resource represents the first trancriptome study in a cork producing species. It can be explored to develop new tools and approaches to understand stress responses and developmental processes in forest trees, as well as the molecular cascades underlying cork differentiation and disease response.
Collapse
Affiliation(s)
- José B Pereira-Leal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kleist TJ, Spencley AL, Luan S. Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages. FRONTIERS IN PLANT SCIENCE 2014; 5:187. [PMID: 24860579 DOI: 10.3389/fpls.2014.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/21/2014] [Indexed: 05/24/2023]
Abstract
Land plants have evolved a host of anatomical and molecular adaptations for terrestrial growth. Many of these adaptations are believed to be elaborations of features that were present in their algal-like progenitors. In the model plant Arabidopsis, 10 Calcineurin B-Like proteins (CBLs) function as calcium sensors and modulate the activity of 26 CBL-Interacting Protein Kinases (CIPKs). The CBL-CIPK network coordinates environmental responses and helps maintain proper ion balances, especially during abiotic stress. We identified and analyzed CBL and CIPK homologs in green lineages, including CBLs and CIPKs from charophyte green algae, the closest living relatives of land plants. Phylogenomic evidence suggests that the network expanded from a small module, likely a single CBL-CIPK pair, present in the ancestor of modern plants and algae. Extreme conservation of the NAF motif, which mediates CBL-CIPK physical interactions, among all identified CIPKs supports the interpretation of CBL and CIPK homologs in green algae and early diverging land plants as functionally linked network components. We identified the full complement of CBL and CIPK loci in the genome of Physcomitrella, a model moss. These analyses demonstrate the strong effects of a recent moss whole genome duplication: CBL and CIPK loci appear in cognate pairs, some of which appear to be pseudogenes, with high sequence similarity. We cloned all full-length transcripts from these loci and performed yeast two-hybrid analyses to demonstrate CBL-CIPK interactions and identify specific connections within the network. Using phylogenomics, we have identified three ancient types of CBLs that are discernible by N-terminal localization motifs and a "green algal-type" clade of CIPKs with members from Physcomitrella and Arabidopsis.
Collapse
Affiliation(s)
- Thomas J Kleist
- Department of Plant and Microbial Biology, University of California Berkeley Berkeley, CA, USA
| | - Andrew L Spencley
- Department of Plant and Microbial Biology, University of California Berkeley Berkeley, CA, USA ; Department of Dermatology, Stanford University Stanford, CA, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California Berkeley Berkeley, CA, USA
| |
Collapse
|
34
|
Kleist TJ, Spencley AL, Luan S. Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages. FRONTIERS IN PLANT SCIENCE 2014; 5:187. [PMID: 24860579 PMCID: PMC4030171 DOI: 10.3389/fpls.2014.00187] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/21/2014] [Indexed: 05/22/2023]
Abstract
Land plants have evolved a host of anatomical and molecular adaptations for terrestrial growth. Many of these adaptations are believed to be elaborations of features that were present in their algal-like progenitors. In the model plant Arabidopsis, 10 Calcineurin B-Like proteins (CBLs) function as calcium sensors and modulate the activity of 26 CBL-Interacting Protein Kinases (CIPKs). The CBL-CIPK network coordinates environmental responses and helps maintain proper ion balances, especially during abiotic stress. We identified and analyzed CBL and CIPK homologs in green lineages, including CBLs and CIPKs from charophyte green algae, the closest living relatives of land plants. Phylogenomic evidence suggests that the network expanded from a small module, likely a single CBL-CIPK pair, present in the ancestor of modern plants and algae. Extreme conservation of the NAF motif, which mediates CBL-CIPK physical interactions, among all identified CIPKs supports the interpretation of CBL and CIPK homologs in green algae and early diverging land plants as functionally linked network components. We identified the full complement of CBL and CIPK loci in the genome of Physcomitrella, a model moss. These analyses demonstrate the strong effects of a recent moss whole genome duplication: CBL and CIPK loci appear in cognate pairs, some of which appear to be pseudogenes, with high sequence similarity. We cloned all full-length transcripts from these loci and performed yeast two-hybrid analyses to demonstrate CBL-CIPK interactions and identify specific connections within the network. Using phylogenomics, we have identified three ancient types of CBLs that are discernible by N-terminal localization motifs and a "green algal-type" clade of CIPKs with members from Physcomitrella and Arabidopsis.
Collapse
Affiliation(s)
- Thomas J. Kleist
- Department of Plant and Microbial Biology, University of California BerkeleyBerkeley, CA, USA
| | - Andrew L. Spencley
- Department of Plant and Microbial Biology, University of California BerkeleyBerkeley, CA, USA
- Department of Dermatology, Stanford UniversityStanford, CA, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California BerkeleyBerkeley, CA, USA
| |
Collapse
|
35
|
Yin Y, Johns MA, Cao H, Rupani M. A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily. BMC Genomics 2014; 15:260. [PMID: 24708035 PMCID: PMC4023592 DOI: 10.1186/1471-2164-15-260] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/31/2014] [Indexed: 11/30/2022] Open
Abstract
Background Enzymes of the cellulose synthase (CesA) family and CesA-like (Csl) families are responsible for the synthesis of celluloses and hemicelluloses, and thus are of great interest to bioenergy research. We studied the occurrences and phylogenies of CesA/Csl families in diverse plants and algae by comprehensive data mining of 82 genomes and transcriptomes. Results We found that 1) charophytic green algae (CGA) have orthologous genes in CesA, CslC and CslD families; 2) liverwort genes are found in the CesA, CslA, CslC and CslD families; 3) The fern Pteridium aquilinum not only has orthologs in these conserved families but also in the CslB, CslH and CslE families; 4) basal angiosperms, e.g. Aristolochia fimbriata, have orthologs in these families too; 5) gymnosperms have genes forming clusters ancestral to CslB/H and to CslE/J/G respectively; 6) CslG is found in switchgrass and basal angiosperms; 7) CslJ is widely present in dicots and monocots; 8) CesA subfamilies have already diversified in ferns. Conclusions We speculate that: (i) ferns and horsetails might both have CslH enzymes, responsible for the synthesis of mixed-linkage glucans and (ii) CslD and similar genes might be responsible for the synthesis of mannans in CGA. Our findings led to a more detailed model of cell wall evolution and suggested that gene loss played an important role in the evolution of Csl families. We also demonstrated the usefulness of transcriptome data in the study of plant cell wall evolution and diversity.
Collapse
Affiliation(s)
- Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, Montgomery Hall 325A, DeKalb, IL 60115-2857, USA.
| | | | | | | |
Collapse
|
36
|
Civáň P, Foster PG, Embley MT, Séneca A, Cox CJ. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biol Evol 2014; 6:897-911. [PMID: 24682153 PMCID: PMC4007539 DOI: 10.1093/gbe/evu061] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2014] [Indexed: 11/23/2022] Open
Abstract
Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes.
Collapse
Affiliation(s)
- Peter Civáň
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Peter G. Foster
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Martin T. Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Ana Séneca
- Department of Biology, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Department of Biology, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Cymon J. Cox
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
37
|
Sørensen I, Fei Z, Andreas A, Willats WGT, Domozych DS, Rose JKC. Stable transformation and reverse genetic analysis of Penium margaritaceum: a platform for studies of charophyte green algae, the immediate ancestors of land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:339-51. [PMID: 24308430 DOI: 10.1111/tpj.12375] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/20/2013] [Accepted: 10/25/2013] [Indexed: 05/25/2023]
Abstract
The charophyte green algae (CGA, Streptophyta, Viridiplantae) occupy a key phylogenetic position as the immediate ancestors of land plants but, paradoxically, are less well-studied than the other major plant lineages. This is particularly true in the context of functional genomic studies, where the lack of an efficient protocol for their stable genetic transformation has been a major obstacle. Observations of extant CGA species suggest the existence of some of the evolutionary adaptations that had to occur for land colonization; however, to date, there has been no robust experimental platform to address this genetically. We present a protocol for high-throughput Agrobacterium tumefaciens-mediated transformation of Penium margaritaceum, a unicellular CGA species. The versatility of Penium as a model for studying various aspects of plant cell biology and development was illustrated through non-invasive visualization of protein localization and dynamics in living cells. In addition, the utility of RNA interference (RNAi) for reverse genetic studies was demonstrated by targeting genes associated with cell wall modification (pectin methylesterase) and biosynthesis (cellulose synthase). This provided evidence supporting current models of cell wall assembly and inter-polymer interactions that were based on studies of land plants, but in this case using direct observation in vivo. This new functional genomics platform has broad potential applications, including studies of plant organismal biology and the evolutionary innovations required for transition from aquatic to terrestrial habitats.
Collapse
Affiliation(s)
- Iben Sørensen
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | | | | | |
Collapse
|
38
|
Sharma N, Bhalla PL, Singh MB. Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha. BMC Genomics 2013; 14:915. [PMID: 24365221 PMCID: PMC3880041 DOI: 10.1186/1471-2164-14-915] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/27/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transcription factors (TFs) are vital elements that regulate transcription and the spatio-temporal expression of genes, thereby ensuring the accurate development and functioning of an organism. The identification of TF-encoding genes in a liverwort, Marchantia polymorpha, offers insights into TF organization in the members of the most basal lineages of land plants (embryophytes). Therefore, a comparison of Marchantia TF genes with other land plants (monocots, dicots, bryophytes) and algae (chlorophytes, rhodophytes) provides the most comprehensive view of the rates of expansion or contraction of TF genes in plant evolution. RESULTS In this study, we report the identification of TF-encoding transcripts in M. polymorpha for the first time, as evidenced by deep RNA sequencing data. In total, 3,471 putative TF encoding transcripts, distributed in 80 families, were identified, representing 7.4% of the generated Marchantia gametophytic transcriptome dataset. Overall, TF basic functions and distribution across families appear to be conserved when compared to other plant species. However, it is of interest to observe the genesis of novel sequences in 24 TF families and the apparent termination of 2 TF families with the emergence of Marchantia. Out of 24 TF families, 6 are known to be associated with plant reproductive development processes. We also examined the expression pattern of these TF-encoding transcripts in six male and female developmental stages in vegetative and reproductive gametophytic tissues of Marchantia. CONCLUSIONS The analysis highlighted the importance of Marchantia, a model plant system, in an evolutionary context. The dataset generated here provides a scientific resource for TF gene discovery and other comparative evolutionary studies of land plants.
Collapse
Affiliation(s)
- Niharika Sharma
- Plant Molecular Biology and Biotechnology Laboratory, Australian Research Council Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Australian Research Council Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Australian Research Council Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
39
|
Gerotto C, Morosinotto T. Evolution of photoprotection mechanisms upon land colonization: evidence of PSBS-dependent NPQ in late Streptophyte algae. PHYSIOLOGIA PLANTARUM 2013; 149:583-98. [PMID: 23663155 DOI: 10.1111/ppl.12070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 05/20/2023]
Abstract
Light is the energy source for photosynthetic organisms but, if absorbed in excess, it can drive to the formation of reactive oxygen species and photoinhibition. One major mechanism to avoid oxidative damage in plants and algae is the dissipation of excess excitation energy as heat, called non-photochemical quenching (NPQ). Eukaryotic algae and plants, however, rely on two different proteins for NPQ activation, the former mainly depending on LHCSR (Lhc-like protein Stress Related; previously called Li818, Light Induced protein 818), whereas in the latter the major role is played by a distinct protein, PSBS (photosystem II subunit S). In the moss Physcomitrella patens, which diverged from vascular plants early after land colonization, both these proteins were found to be present and active in inducing NPQ, suggesting that during plants evolution both mechanisms co-existed. In order to investigate in more detail NPQ adaptation toward land colonization, we analyzed Streptophyte algae, the latest organisms to diverge from the land plants ancestors. Among them we found evidence of a PSBS-dependent NPQ in species belonging to Charales, Coleochaetales and Zygnematales, the latest groups to diverge from land plants ancestors. On the contrary earlier diverging algae, as Mesostigmatales and Klebsormidiales, likely rely on LHCSR for their NPQ activation. Presented evidence thus suggests that PSBS-dependent NPQ, although possibly present in some Chlorophyta, was stably acquired in the Cambrian period about 500 million years ago, before late Streptophyte algae diverged from plants ancestors.
Collapse
Affiliation(s)
- Caterina Gerotto
- Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58 B, 35121, Padova, Italy
| | - Tomas Morosinotto
- Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58 B, 35121, Padova, Italy
| |
Collapse
|
40
|
Novis PM, Smissen R, Buckley TR, Gopalakrishnan K, Visnovsky G. Inclusion of chloroplast genes that have undergone expansion misleads phylogenetic reconstruction in the Chlorophyta. AMERICAN JOURNAL OF BOTANY 2013; 100:2194-2209. [PMID: 24148615 DOI: 10.3732/ajb.1200584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Chlorophytes comprise a substantial proportion of green plant diversity. However, sister-group relationships and circumscription of the classes Chlorophyceae, Trebouxiophyceae, and Ulvophyceae have been problematic to resolve. Some analyses support a sister relationship between the trebouxiophycean Leptosira and chlorophyceans, potentially altering the circumscription of two classes, also supported by a shared fragmentation in the chloroplast gene rpoB. We sought to determine whether the latter is a synapomorphy or whether the supporting analyses are vulnerable to systematic bias. METHODS We sequenced a portion of rpoB spanning the fragmented region in strains for which it had not previously been sampled: four Chlorophyceae, six counterclockwise (CCW) group (ulvophyceans and trebouxiophyceans) and one streptophyte. We then explored the effect of subsampling proteins and taxa on phylogenetic reconstruction from a data set of 41 chloroplast proteins. KEY RESULTS None of the CCW or streptophyte strains possessed the split in rpoB, including inferred near relatives of Leptosira, but it was found in all chlorophycean strains. We reconstructed alternative phylogenies (Leptosira + Chlorophyceae and Leptosira + Chlorellales) using two different protein groups (Rpo and Rps), both subject to coding-region expansion. A conserved region of RpoB remained suitable for analysis of more recent divergences. CONCLUSIONS The Rps sequences can explain earlier findings linking Leptosira with the Chlorophyceae and should be excluded from phylogenetic analyses attempting to resolve deep nodes because their expansion violates the assumptions of substitution models. We reaffirm that Leptosira is a trebouxiophycean and that fragmentation of rpoB has occurred at least twice in chlorophyte evolution.
Collapse
Affiliation(s)
- Phil M Novis
- Allan Herbarium, Landcare Research, P.O. Box 69040, Lincoln 7640, New Zealand
| | | | | | | | | |
Collapse
|
41
|
Nishihama R, Kohchi T. Evolutionary insights into photoregulation of the cell cycle in the green lineage. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:630-7. [PMID: 23978389 DOI: 10.1016/j.pbi.2013.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 05/18/2023]
Abstract
Plant growth depends solely on light energy, which drives photosynthesis. Thus, linking growth control to light signals during certain developmental events, such as seed or spore germination and organ formation, is a crucial feature that plants evolved to use energy efficiently. How light controls the cell cycle depends on growth habitats, body plans (unicellular vs. multicellular), and photosensors. For example, the photosensors mediating light signaling to promote cell division appear to differ between green algae and land plants. In this review, we focus on cell-cycle regulation by light and discuss the transition of its molecular mechanisms during evolution. Recent advances show that light-dependent cell-cycle control involves global changes in transcription of cell-cycle genes, and is mediated by auxin and cytokinin.
Collapse
Affiliation(s)
- Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
42
|
Zalewski CS, Floyd SK, Furumizu C, Sakakibara K, Stevenson DW, Bowman JL. Evolution of the class IV HD-zip gene family in streptophytes. Mol Biol Evol 2013; 30:2347-65. [PMID: 23894141 PMCID: PMC3773374 DOI: 10.1093/molbev/mst132] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters.
Collapse
Affiliation(s)
| | - Sandra K. Floyd
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Chihiro Furumizu
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Keiko Sakakibara
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | | | - John L. Bowman
- Section of Plant Biology, University of California, Davis
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Cheng S, Liu R, Gallie DR. The unique evolution of the programmed cell death 4 protein in plants. BMC Evol Biol 2013; 13:199. [PMID: 24041411 PMCID: PMC3850090 DOI: 10.1186/1471-2148-13-199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/13/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The programmed cell death 4 (PDCD4) protein is induced in animals during apoptosis and functions to inhibit translation and tumor promoter-induced neoplastic transformation. PDCD4 is composed of two MA3 domains that share similarity with the single MA3 domain present in the eukaryotic translation initiation factor (eIF) 4G, which serves as a scaffold protein to assemble several initiation factors needed for the recruitment of the 40S ribosomal subunit to an mRNA. Although eIF4A is an ATP-dependent RNA helicase that binds the MA3 domain of eIF4G to promote translation initiation, binding of eIF4A to the MA3 domains of PDCD4 inhibits protein synthesis. Genes encoding PDCD4 are present in many lower eukaryotes and in plants, but PDCD4 in higher plants is unique in that it contains four MA3 domains and has been implicated in ethylene signaling and abiotic stress responses. Here, we examine the evolution of PDCD4 in plants. RESULTS In older algal lineages, PDCD4 contains two MA3 domains similar to the homolog in animals. By the appearance of early land plants, however, PDCD4 is composed of four MA3 domains which likely is the result of a duplication of the two MA3 domain form of the protein. Evidence from fresh water algae, from which land plants evolved, suggests that the duplication event occurred prior to the colonization of land. PDCD4 in more recently evolved chlorophytes also contains four MA3 domains but this may have resulted from an independent duplication event. Expansion and divergence of the PDCD4 gene family occurred during land plant evolution with the appearance of a distinct gene member following the evolution of basal angiosperms. CONCLUSIONS The appearance of a unique form of PDCD4 in plants correlates with the appearance of components of the ethylene signaling pathway, suggesting that it may represent the adaptation of an existing protein involved in programmed cell death to one that functions in abiotic stress responses through hormone signaling.
Collapse
Affiliation(s)
- Shijun Cheng
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| | | | | |
Collapse
|
44
|
Holzinger A, Karsten U. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. FRONTIERS IN PLANT SCIENCE 2013; 4:327. [PMID: 23986769 PMCID: PMC3749462 DOI: 10.3389/fpls.2013.00327] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/02/2013] [Indexed: 05/18/2023]
Abstract
Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular mechanisms involved in desiccation-stress physiology of these organisms. The very limited existing information is described in the present review.
Collapse
Affiliation(s)
- Andreas Holzinger
- Functional Plant Biology, Institute of Botany, University of InnsbruckInnsbruck, Austria
| | - Ulf Karsten
- Applied Ecology and Phycology, Institute of Biological Sciences, University of RostockRostock, Germany
| |
Collapse
|
45
|
Wang M, Yuan D, Gao W, Li Y, Tan J, Zhang X. A comparative genome analysis of PME and PMEI families reveals the evolution of pectin metabolism in plant cell walls. PLoS One 2013; 8:e72082. [PMID: 23951288 PMCID: PMC3741192 DOI: 10.1371/journal.pone.0072082] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/04/2013] [Indexed: 12/13/2022] Open
Abstract
Pectins are fundamental polysaccharides in the plant primary cell wall. Pectins are synthesized and secreted to cell walls as highly methyl-esterified polymers and then demethyl-esterified by pectin methylesterases (PMEs), which are spatially regulated by pectin methylesterase inhibitors (PMEIs). Although PME and PMEI genes are pivotal in plant cell wall formation, few studies have focused on the evolutionary patterns of the PME and PMEI gene families. In this study, the gene origin, evolution, and expression diversity of these two families were systematically analyzed using 11 representative species, including algae, bryophytes, lycophytes and flowering land plants. The results show that 1) for the two subfamilies (PME and proPME) of PME, the origin of the PME subfamily is consistent with the appearance of pectins in early charophyte cell walls, 2) Whole genome duplication (WGD) and tandem duplication contribute to the expansion of proPME and PMEI families in land plants, 3) Evidence of selection pressure shows that the proPME and PMEI families have rapidly evolved, particularly the PMEI family in vascular plants, and 4) Comparative expression profile analysis of the two families indicates that the eudicot Arabidopsis and monocot rice have different expression patterns. In addition, the gene structure and sequence analyses show that the origin of the PMEI domain may be derived from the neofunctionalization of the pro domain after WGD. This study will advance the evolutionary understanding of the PME and PMEI families and plant cell wall development.
Collapse
Affiliation(s)
- Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenhui Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiafu Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
46
|
Bowman JL. Walkabout on the long branches of plant evolution. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:70-7. [PMID: 23140608 DOI: 10.1016/j.pbi.2012.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 05/09/2023]
Abstract
The closest living relatives of land plants, the Charophytes, and early diverging land plant lineages, the bryophytes, reside in a phylogenetic grade. Recent analyses have resolved relationships and demonstrated that some components of the land plant developmental genetic toolkit have their origin in algal ancestors. Phylogenetic grades of taxa imply long independent evolutionary histories, with extant species diversity potentially relictual and highly derived morphologically, making reconstruction of ancestral states problematic. Incorporating data on the genetic bases of character states may be phylogenetically informative in elucidating ancestral states in cases where morphology is highly divergent.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
47
|
Meyer M, Griffiths H. Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:769-86. [PMID: 23345319 DOI: 10.1093/jxb/ers390] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The importance of the eukaryotic algal CO(2)-concentrating mechanism (CCM) is considered in terms of global productivity as well as molecular phylogeny and diversity. The three major constituents comprising the CCM in the majority of eukaryotes are described. These include: (i) likely plasma- and chloroplast-membrane inorganic carbon transporters; (ii) a suite of carbonic anhydrase enzymes in strategic locations; and usually (iii) a microcompartment in which most Rubisco aggregates (the chloroplast pyrenoid). The molecular diversity of known CCM components are set against the current green algal model for their probable operation. The review then focuses on the kinetic and cystallographic interactions of Rubisco, which permit pyrenoid formation and CCM function. Firstly, we consider observations that surface residues of the Rubisco small subunit directly condition Rubisco aggregation and pyrenoid formation. Secondly, we reanalyse the phylogenetic progression in green Rubisco kinetic properties, and suggest that Rubisco substrate selectivity (the specificity factor, S(rel), and affinity for CO(2), K(c)) demonstrate a systematic relaxation, which directly relates to the origins and effectiveness of a CCM. Finally, we consider the implications of eukaryotic CCM regulation and minimum components needed for introduction into higher plants as a possible means to enhance crop productivity in the future.
Collapse
Affiliation(s)
- Moritz Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | | |
Collapse
|
48
|
Viaene T, Delwiche CF, Rensing SA, Friml J. Origin and evolution of PIN auxin transporters in the green lineage. TRENDS IN PLANT SCIENCE 2013; 18:5-10. [PMID: 22981345 DOI: 10.1016/j.tplants.2012.08.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/09/2012] [Accepted: 08/22/2012] [Indexed: 05/04/2023]
Abstract
Polarized auxin transport is crucial for many developmental processes in flowering plants and requires the PIN-FORMED (PIN) family of auxin efflux carriers. However, the impact of polar auxin transport and PIN proteins on the development of non-seed plant species and green algal lineages is largely unknown. Using recently available sequence information from streptophyte algae and other non-seed plant species, we have constructed a preliminary phylogenetic framework and present several hypotheses for PIN protein evolution. We postulate that PIN proteins originated in streptophyte algae at the endoplasmic reticulum (ER) and that plasma membrane localization was acquired during land plant evolution. We also suggest that PIN proteins are evolutionarily distinct from another family of auxin transporters at the ER, the PIN-LIKES (PILS) proteins.
Collapse
Affiliation(s)
- Tom Viaene
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.
| | | | | | | |
Collapse
|
49
|
Holzinger A, Karsten U. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23986769 DOI: 10.3389/fpls.2013.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular mechanisms involved in desiccation-stress physiology of these organisms. The very limited existing information is described in the present review.
Collapse
Affiliation(s)
- Andreas Holzinger
- Functional Plant Biology, Institute of Botany, University of Innsbruck Innsbruck, Austria
| | | |
Collapse
|
50
|
Yasumura Y, Pierik R, Fricker MD, Voesenek LACJ, Harberd NP. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:947-59. [PMID: 23046428 DOI: 10.1111/tpj.12005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh-water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence-induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land.
Collapse
Affiliation(s)
- Yuki Yasumura
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UKPlant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|