1
|
Zhou C, Wang Z, Ran M, Liu Y, Song Z. Nano-selenium ameliorates microplastics-induced injury: Histology, antioxidant capacity, immunity and intestinal microbiota of grass carp (Ctenopharyngodon idella). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117128. [PMID: 39342759 DOI: 10.1016/j.ecoenv.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Microplastics (MPs) are pollutants widely distributed in the aquatic environments and causing various degrees of aquatic toxicity to aquatic organisms, which has attracted global attention in recent years. Nano-selenium (NSe) has been shown to have the potential to mitigate the harmful impacts of toxic substances. However, there is currently no reported evidence regarding the protective influence of NSe against the adverse effects of MPs. The aim of this study is to determine whether NSe could ameliorate the polystyrene (PS)-MPs-induced injury in grass carp (Ctenopharyngodon idella). The individuals of grass carp were assigned into three groups: (1) the control group fed with basal diet, (2) the PS group fed with basal diet and exposed to PS-MPs, and (3) the NSe group fed with diet supplemented with NSe and exposed to PS-MPs. Our results indicated that NSe administration significantly alleviated the histological damage caused by the PS-MPs in the liver and intestine with lower goblet cell count and larger villus height in the intestine, and significantly lower damage score in the liver. Moreover, NSe mitigated PS-MPs-induced oxidative stress through restoring the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA)) except the intestinal CAT activity. Furthermore, NSe supplementation could help fish maintain lower transcriptional level of the immune-related genes (Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88)), inflammation-related genes (major histocompatibility complex class II (MHC-II) and interleukin 8 (IL-8)) and antioxidant enzyme-related genes (nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) and kelch-like ECH-associated protein 1 (Keap-1)) after PS-MPs exposure. Besides, NSe supplementation dramatically helped maintain the intestinal microbial composition, for example, the proportion of Proteobacteria in the grass carp intestine of the NSe group (41 %) was similar to that of the control group (34 %) while 85 % of the PS group. NSe also played a significant protective role in intestinal microbial diversity, effectively resisting the damage on intestinal microbial diversity due to PS-MPs exposure. PS-MPs reduced the beneficial bacteria and increased the pathogenic microorganism like Aeromonas, which was undeniable signs of intestinal dysbiosis. Functional analysis indicated that PS-MPs affected intestinal microbiota functions like inhibition of metabolism, while NSe could significantly alleviate the damage. Our findings suggested that NSe could ameliorate PS-MPs-induced injury, which could contribute to the better understanding of the ecotoxicological effects of MPs on fish and help develop relevant mitigation strategies.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhongyi Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Miling Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yi Liu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China.
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Scott JL, Gupta RC, Aqil F, Jeyabalan J, Schultz DJ. Exosomal Delivery Enhances the Antiproliferative Effects of Acid-Hydrolyzed Apiaceae Spice Extracts in Breast Cancer Cells. Foods 2024; 13:2811. [PMID: 39272578 PMCID: PMC11395330 DOI: 10.3390/foods13172811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer remains a leading cause of death worldwide. The Apiaceae plant family includes many culinary spices that have been shown to have medicinal properties. Many phytochemicals exhibit potent bioactivities but often suffer from poor uptake and oral bioavailability. Bovine milk and colostrum exosomes are a compelling drug delivery platform that could address this issue; these natural nanoparticles can be loaded with hydrophilic and lipophilic small molecules and biologics, resulting in lower doses needed to inhibit cancer growth. Ethanolic extracts of eight Apiaceae spices were examined for phytochemical content and antiproliferative potential. Acid hydrolysis (AH) was employed to remove glycosides, asses its impacts on extract efficacy, and evaluate its effects on exosome loading and subsequent formulation efficacy. Antiproliferative activity was assessed through MTT assays on T-47D, MDA-MB-231, and BT-474 breast cancer cells; all extracts exhibited broad antiproliferative activity. AH enhanced the bioactivity of cumin, caraway, and fennel in T-47D cells. Celery, cumin, anise, and ajwain showed the highest activity and were assayed in exosomal formulations, which resulted in reduced doses required to inhibit cellular proliferation for all extracts except AH-cumin. Apiaceae spice extracts demonstrated antiproliferative activities that can be improved with AH and further enhanced with exosomal delivery.
Collapse
Affiliation(s)
- Jared L Scott
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Ramesh C Gupta
- Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Farrukh Aqil
- Brown Cancer Center and Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | - David J Schultz
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
3
|
Ballı U, Bozkurt Doğan Ş, Öngöz Dede F, Gülle K, Çölgeçen H, Avcı B, Akpolat Ferah M, Kurtiş MB. Effects of Coriander on the Repair Process of Experimentally-induced Periodontitis in Rats. J Vet Dent 2024:8987564241232862. [PMID: 38470443 DOI: 10.1177/08987564241232862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The aim of this study was to evaluate the effects of Coriandrum sativum L. (CSL) seed extract on gingival levels of antioxidant enzymes, pro-inflammatory cytokines and on alveolar bone and attachment levels after experimental periodontitis induction in rats and compare it with low-dose doxycycline (LDD). Forty adult male Wistar Albino rats were divided randomly into 5 groups as follows: 1 = periodontally healthy (control); 2 = periodontitis; 3 = periodontitis + CSL (32 mg/kg); 4 = periodontitis + CSL (200 mg/kg); and 5 = periodontitis + LDD (6 mg/kg). Gingival superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) levels were evaluated by enzyme-linked immunosorbent assay. The presence of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1βeta (IL-1β) immunoreactivity was detected immunohistochemically. Alveolar bone area in the furcation space (ABA), alveolar bone loss (ABL), and attachment loss (AL) were evaluated histomorphometrically. The SOD level was lower in group 5 than in groups 2, 3, and 4. The IL-1β level was highest in group 4. The TNF-α level was statistically higher in groups 2 and 4 than in groups 1, 3, and 5. The IL-6 level was highest in group 4. Its level was higher in groups 2 and 3 than in group 5. ABA was less in groups 2, 3, and 4 compared to groups 1 and 5. ABL was less in group 5 than in groups 2, 3, and 4. AL was greater in group 4 than in group 5. The use of 200 mg/kg CSL showed a pro-inflammatory effect and IL-1β and TNF-α levels decreased after 32 mg/kg CSL application in the treatment of periodontitis.
Collapse
Affiliation(s)
- Umut Ballı
- Department of Periodontology, Yüreğir Karşıyaka Ağız ve Diş Sağlığı Hastanesi, Adana, Turkey
| | - Şeyma Bozkurt Doğan
- Department of Periodontology, Faculty of Dentistry, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Figen Öngöz Dede
- Department of Periodontology, Faculty of Dentistry, Ordu University, Ordu, Turkey
| | - Kanat Gülle
- Department of Medical Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Hatice Çölgeçen
- Department of Biology, Faculty of Sciences and Arts, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Bahattin Avcı
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Meryem Akpolat Ferah
- Department of Medical Histology and Embryology, Faculty of Medicine, Bülent Ecevit University, Zonguldak, Turkey
| | - M Bülent Kurtiş
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Khabour OF, Abuhammad S, Alzoubi KH, Alkofahi AS. Coriandrum sativum and Aloysia triphylla can Protect the Development of Cancer: An in Vivo Study using Mouse Painting Assay. Curr Cancer Drug Targets 2024; 24:455-462. [PMID: 37592785 DOI: 10.2174/1568009623666230817101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
AIM The aim of this study is to examine the protective properties of Coriandrum sativum and Aloysia triphylla against the development of skin cancer. METHODS The skin cancer balb/c mouse model was utilized in the study. Plant extracts were administered to animals using oral gavage. In addition, skin cancer was induced using 7,12-dimethylbenz( a) anthracene (DMBA). RESULTS The study found that A. triphylla extract reduced both tumor incidence (P<0.01) and papilloma frequency (P<0.001) and delayed the onset of tumor development (P<0.001). The A. triphylla extract did not affect tumor size in animals. C. sativum leaf extract reduced the number of tumors per animal, the incidence of tumors, and the frequency of papilloma (P<0.05). In addition, it delayed (P<0.01) the onset of tumors. Treatment of animals with C. sativum seed extract reduced the frequency of papilloma (P<0.05) and delayed the onset of tumors (P<0.05). However, the examined plant extracts did not impact the size of tumors induced by DMBA (P>0.05). CONCLUSION The findings of this study revealed that C. sativum and A. triphylla could protect against cancer development as indicated using the animal model of skin painting assay.
Collapse
Affiliation(s)
- Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Sawsan Abuhammad
- Department of Maternal and Child Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad S Alkofahi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
5
|
Said AA, Reda RM, Metwally MMM, Abd El-Hady HM. Therapeutic efficacy of coriander (Coriandrum sativum) enriched diets in Oreochromis niloticus: effect on hepatic-renal functions, the antioxidant-immune response and resistance to Aeromonas veronii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:687-709. [PMID: 37438674 PMCID: PMC10415512 DOI: 10.1007/s10695-023-01220-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
In this study, the effects of Coriandrum sativum to control Aeromonas veronii infection in Oreochromis niloticus were determined. Coriandrum sativum extract (CE) was tested in vitro against A. veronii by the disc diffusion assay. In in vivo, 150 O. niloticus (from El-Abbassa, Sharkia, Egypt, weighing 34.95 ± 1.98 g) was distributed in five groups (with three replications) in glass aquariums (80 × 40 × 30 cm). The first group (control) was intraperitoneally injected with 0.2 ml of sterilized tryptic soya broth. Groups 2-5 were intraperitoneally challenged with 0.2 ml of A. veronii (4.3 × 106). The five groups were administered a basal diet until clinical signs appeared, and then therapeutic feeding (15 days) was followed: the first (CONT) and second (AV) groups were administered a normal basal diet. The third (AV+CP) and fourth (AV+CE) groups were administered diets supplemented with C. sativum powder and extract, respectively, each at 30 mg/kg. The fifth group (AV+OT) was administered a diet supplemented with oxytetracycline at 500 mg/kg diet. The results of the in vitro experiment revealed that CE has a zone of inhibition of 43 mm against A. veronii. The in vivo results showed that fish administered a therapeutic diet supplemented with CE showed a significant improvement in hematological, biochemical, and immunological parameters, as well as antioxidant capacity (P < 0.05) and the pathological findings of the liver and kidney tissues. The current findings supported that the administration of a CE-enriched diet (30 mg/kg) is an eco-friendly strategy for controlling A. veronii in O. niloticus.
Collapse
Affiliation(s)
- Ahmed Abdou Said
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Rasha M Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Zagazig, 44511, Egypt.
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Heba M Abd El-Hady
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
6
|
Inhibitory effect of coriander (Coriandrum sativum L.) extract marinades on the formation of polycyclic aromatic hydrocarbons in roasted duck wings. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Kour R, Sharma N, Showkat S, Sharma S, Nagaiah K, Kumar S, Kaur S. Methanolic fraction of Cassia fistula L. bark exhibits potential to combat oxidative stress and possess antiproliferative activity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:296-312. [PMID: 36919564 DOI: 10.1080/15287394.2023.2189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cassia fistula L. is well known for its traditional medicinal properties as an anti-inflammatory, hepatoprotective, antifungal, antibacterial, antimutagenic, and wound healing agent. The aim of the present study was to determine antioxidant, genoprotective, and cytotoxic potential of different fractions of C. fistula bark including hexane (CaMH), chloroform (CaMC), ethyl acetate (CaME), and methanol (CaMM). Among all the fractions studied, CaMM exhibited maximal radical scavenging activity in antioxidant DPPH assay, Superoxide anion radical scavenging assay and nitric oxide radical scavenging assay displayed an IC50 value of 18.95, 29.41, and 13.38 µg/ml, respectively. CaMM fraction possessed the highest phenolic (130.37 mg gallic acid equivalent/g dry weight of extract) and flavonoid (36.96 mg rutin equivalent/g dry weight of fraction) content. Data demonstrated significant positive correlation between polyphenol levels and radical scavenging activity. Single cell gel electrophoresis (Comet assay) exhibited genoprotective potential of C. fistula bark fractions against DNA damage induced by hydrogen peroxide (H2O2) in human lymphocytes. CaMM fraction displayed highest protective ability against H2O2 induced-toxicity as evidenced by significant decrease in % tail DNA content from 30 to 7% at highest concentration (200 µg/ml). CaMM was found to be rich in catechin, gallic acid, chlorogenic acid, and kaempferol. The phenolic content and antioxidant ability of the fractions was markedly negatively correlated with H2O2- induced DNA damage in human lymphocytes. Cytotoxic potential was evaluated against dermal epidermoid carcinoma (A431), pancreatic (MIA PaCa-2) and brain glioblastoma (LN-18) cancer cell lines using MTT assay. Results showed that C. fistula bark fractions possessed highest toxicity against the skin carcinoma cells. CaMM fraction reduced over 50% cell growth at the concentration of 76.72 µg/ml in A431 cells. These findings suggest that fractions of C. fistula bark exhibit potential to be considered as therapeutic agents in various carcinomas.
Collapse
Affiliation(s)
- Rasdeep Kour
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neha Sharma
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sheikh Showkat
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sunil Sharma
- Aquatic toxicology lab, Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Kommu Nagaiah
- Centre for natural products and Traditional knowledge, CSIR- Indian Institute of Chemical Technology, Hyderabad, India
| | - Subodh Kumar
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
8
|
Synthesis and characterization of natural biomaterial composite nanofibers for ocular drug delivery systems. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Physiological responses and antioxidant properties of coriander plants (Coriandrum sativum L.) under different light intensities of red and blue lights. Sci Rep 2022; 12:21139. [PMID: 36477410 PMCID: PMC9729621 DOI: 10.1038/s41598-022-25749-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Coriander (Coriandrum sativum L.) contains abundant antioxidants and essential oils which can provide antibacterial, antifungal, and antioxidant activities in the pharmaceutical, health and food production industry. To improve the economic values of coriander, the relationships between optimal light treatments for maximizing both plant growth and the antioxidant and essential oil content of coriander leaves need to be determined. Plants were exposed to five light-emitting diodes spectral color mixtures, high blue light (BL) intensity induced the levels of reducing power response. The light treatments were then adjusted for the analysis of secondary metabolite compounds of coriander leaves. Among 30 identified compounds, the amounts of decamethyl-cyclopentasiloxane and dodecane were significantly reduced in the R80 + G50 + B50 condition, whereas dodecamethyl-cyclohexasiloxane level was significantly reduced in R50 + G50 + B80 condition. Various light quality and intensity combinations influenced the accumulations of chlorophyll and phytochemical contents, mediated antioxidative properties, and secondary metabolites of coriander leaves, which may be useful in developing a new LED lighting apparatus optimized for coriander production in plant factories.
Collapse
|
10
|
Bin Heyat MB, Akhtar F, Sultana A, Tumrani S, Teelhawod BN, Abbasi R, Amjad Kamal M, Muaad AY, Lai D, Wu K. Role of Oxidative Stress and Inflammation in Insomnia Sleep Disorder and Cardiovascular Diseases: Herbal Antioxidants and Anti-inflammatory Coupled with Insomnia Detection using Machine Learning. Curr Pharm Des 2022; 28:3618-3636. [PMID: 36464881 DOI: 10.2174/1381612829666221201161636] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 12/07/2022]
Abstract
Insomnia is well-known as trouble in sleeping and enormously influences human life due to the shortage of sleep. Reactive Oxygen Species (ROS) accrue in neurons during the waking state, and sleep has a defensive role against oxidative damage and dissipates ROS in the brain. In contrast, insomnia is the source of inequity between ROS generation and removal by an endogenous antioxidant defense system. The relationship between insomnia, depression, and anxiety disorders damages the cardiovascular systems' immune mechanisms and functions. Traditionally, polysomnography is used in the diagnosis of insomnia. This technique is complex, with a long time overhead. In this work, we have proposed a novel machine learning-based automatic detection system using the R-R intervals extracted from a single-lead electrocardiograph (ECG). Additionally, we aimed to explore the role of oxidative stress and inflammation in sleeping disorders and cardiovascular diseases, antioxidants' effects, and the psychopharmacological effect of herbal medicine. This work has been carried out in steps, which include collecting the ECG signal for normal and insomnia subjects, analyzing the signal, and finally, automatic classification. We used two approaches, including subjects (normal and insomnia), two sleep stages, i.e., wake and rapid eye movement, and three Machine Learning (ML)-based classifiers to complete the classification. A total number of 3000 ECG segments were collected from 18 subjects. Furthermore, using the theranostics approach, the role of mitochondrial dysfunction causing oxidative stress and inflammatory response in insomnia and cardiovascular diseases was explored. The data from various databases on the mechanism of action of different herbal medicines in insomnia and cardiovascular diseases with antioxidant and antidepressant activities were also retrieved. Random Forest (RF) classifier has shown the highest accuracy (subjects: 87.10% and sleep stage: 88.30%) compared to the Decision Tree (DT) and Support Vector Machine (SVM). The results revealed that the suggested method could perform well in classifying the subjects and sleep stages. Additionally, a random forest machine learning-based classifier could be helpful in the clinical discovery of sleep complications, including insomnia. The evidence retrieved from the databases showed that herbal medicine contains numerous phytochemical bioactives and has multimodal cellular mechanisms of action, viz., antioxidant, anti-inflammatory, vasorelaxant, detoxifier, antidepressant, anxiolytic, and cell-rejuvenator properties. Other herbal medicines have a GABA-A receptor agonist effect. Hence, we recommend that the theranostics approach has potential and can be adopted for future research to improve the quality of life of humans.
Collapse
Affiliation(s)
- Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Arshiya Sultana
- Department of Ilmul Qabalat wa Amraze Niswan, National Institute of Unani Medicine, Ministry of AYUSH, Bengaluru, Karnataka, India
| | - Saifullah Tumrani
- Department of Computer Science, Bahria University, Karachi 75260, Pakistan
| | - Bibi Nushrina Teelhawod
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Rashid Abbasi
- Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment of Ministry of Education, School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.,Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Abdullah Y Muaad
- Department of Studies in Computer Science, University of Mysore, Manasagangothri, Mysore 570006, India.,Sana'a Community College, Sana'a 5695, Yemen
| | - Dakun Lai
- BMI-EP Laboratory, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Kaishun Wu
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
11
|
Sisin NNT, Mat NFC, Rashid RA, Dollah N, Razak KA, Geso M, Algethami M, Rahman WN. Natural Baicalein-Rich Fraction as Radiosensitizer in Combination with Bismuth Oxide Nanoparticles and Cisplatin for Clinical Radiotherapy. Int J Nanomedicine 2022; 17:3853-3874. [PMID: 36081572 PMCID: PMC9448000 DOI: 10.2147/ijn.s370478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/19/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
| | - Nor Fazila Che Mat
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | - Norhayati Dollah
- Department of Nuclear Medicine, Radiotherapy and Oncology, Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Moshi Geso
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Merfat Algethami
- Faculty of Science, Taif University, Al Hawiyah, Taif, Saudi Arabia
| | - Wan Nordiana Rahman
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Correspondence: Wan Nordiana Rahman, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia, Tel +6097677811, Email
| |
Collapse
|
12
|
Marcucci MC, Oliveira CR, Spindola D, Antunes AA, Santana LYK, Cavalaro V, Costa IB, de Carvalho AC, Veiga TAM, Medeiros LS, dos Santos Zamarioli L, Gonçalves CP, Santos MF, Grecco SS, Suzuki VY, Ferreira LM, Garcia DM. Molecular Dereplication and In Vitro and In Silico Pharmacological Evaluation of Coriandrum sativum against Neuroblastoma Cells. Molecules 2022; 27:molecules27175389. [PMID: 36080159 PMCID: PMC9457718 DOI: 10.3390/molecules27175389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the cytotoxic activity of the Coriandrum sativum (C. sativum) ethanolic extract (CSEE) in neuroblastoma cells, chemically characterize the compounds present in the CSEE, and predict the molecular interactions and properties of ADME. Thus, after obtaining the CSEE and performing its chemical characterization through dereplication methods using UPLC/DAD-ESI/HRMS/MS, PM6 methods and the SwissADME drug design platform were used in order to predict molecular interactions and ADME properties. The CSEE was tested for 24 h in neuroblastoma cells to the establishment of the IC50 dose. Then, the cell death was evaluated, using annexin-PI, as well as the activity of the effector caspase 3, and the protein and mRNA levels of Bax and Bcl-2 were analyzed by ELISA and RT-PCR, respectively. By UHPLC/DAD/HRMS-MS/MS analysis, the CSEE showed a high content of isocoumarins-dihydrocoriandrin, coriandrin, and coriandrones A and B, as well as nitrogenated compounds (adenine, adenosine, and tryptophan). Flavonoids (apigenin, hyperoside, and rutin), phospholipids (PAF C-16 and LysoPC (16:0)), and acylglicerol were also identified in lower amount as important compounds with antioxidant activity. The in silico approach results showed that the compounds 1 to 6, which are found mostly in the C. sativum extract, obey the “Five Rules” of Lipinski, suggesting a good pharmacokinetic activity of these compounds when administered orally. The IC50 dose of CSEE (20 µg/mL) inhibited cell proliferation and promoted cell death by the accumulation of cleaved caspase-3 and the externalization of phosphatidylserine. Furthermore, CSEE decreased Bcl-2 and increased Bax, both protein and mRNA levels, suggesting an apoptotic mechanism. CSEE presents cytotoxic effects, promoting cell death. In addition to the promising results predicted through the in silico approach for all compounds, the compound 6 showed the best results in relation to stability due to its GAP value.
Collapse
Affiliation(s)
- Maria Cristina Marcucci
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista-UNESP, São José dos Campos 12231-280, SP, Brazil
- Correspondence:
| | - Carlos Rocha Oliveira
- Grupo de Fitocomplexos e Sinalização Celular, Escola de Ciências da Saúde, Universidade Anhembi Morumbi, São Paulo 09972-270, SP, Brazil
- GAP Biotech, São José dos Campos 12231-280, SP, Brazil
- Programa de Pós Graduação em Engenharia Biomédica, Universidade Federal de São Paulo, São José dos Campos 12231-280, SP, Brazil
| | - Daniel Spindola
- Grupo de Fitocomplexos e Sinalização Celular, Escola de Ciências da Saúde, Universidade Anhembi Morumbi, São Paulo 09972-270, SP, Brazil
| | - Alyne A. Antunes
- Grupo de Fitocomplexos e Sinalização Celular, Escola de Ciências da Saúde, Universidade Anhembi Morumbi, São Paulo 09972-270, SP, Brazil
| | - Leila Y. K. Santana
- Grupo de Fitocomplexos e Sinalização Celular, Escola de Ciências da Saúde, Universidade Anhembi Morumbi, São Paulo 09972-270, SP, Brazil
| | - Victor Cavalaro
- Grupo de Fitocomplexos e Sinalização Celular, Escola de Ciências da Saúde, Universidade Anhembi Morumbi, São Paulo 09972-270, SP, Brazil
| | - Isabelle B. Costa
- Grupo de Fitocomplexos e Sinalização Celular, Escola de Ciências da Saúde, Universidade Anhembi Morumbi, São Paulo 09972-270, SP, Brazil
| | - Ana C. de Carvalho
- Departamento de Química, Universidade Federal de São Paulo, Diadema 09920-000, SP, Brazil
| | - Thiago A. M. Veiga
- Departamento de Química, Universidade Federal de São Paulo, Diadema 09920-000, SP, Brazil
| | - Livia S. Medeiros
- Departamento de Química, Universidade Federal de São Paulo, Diadema 09920-000, SP, Brazil
| | - Lucas dos Santos Zamarioli
- Grupo de Fitocomplexos e Sinalização Celular, Escola de Ciências da Saúde, Universidade Anhembi Morumbi, São Paulo 09972-270, SP, Brazil
| | - Carolina P. Gonçalves
- Mestrado Profissional em Farmácia, Universidade Anhanguera de São Paulo, São Paulo 09972-270, SP, Brazil
| | - Milena F. Santos
- Mestrado Profissional em Farmácia, Universidade Anhanguera de São Paulo, São Paulo 09972-270, SP, Brazil
| | | | - Vanessa Y. Suzuki
- Programa de Pós Graduação em Cirurgia Translacional e Disciplina de Cirurgia Plástica, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo 09972-270, SP, Brazil
| | - Lydia Masako Ferreira
- Programa de Pós Graduação em Cirurgia Translacional e Disciplina de Cirurgia Plástica, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo 09972-270, SP, Brazil
| | - Daniel M. Garcia
- Grupo de Fitocomplexos e Sinalização Celular, Escola de Ciências da Saúde, Universidade Anhembi Morumbi, São Paulo 09972-270, SP, Brazil
| |
Collapse
|
13
|
Al-Radadi NS. Laboratory scale medicinal plants mediated green synthesis of biocompatible nanomaterials and their versatile biomedical applications. Saudi J Biol Sci 2022; 29:3848-3870. [PMID: 35844411 PMCID: PMC9280260 DOI: 10.1016/j.sjbs.2022.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
|
14
|
Mangal S, Singh V, Chhibber S, Harjai K. Natural bioactives versus synthetic antibiotics for the attenuation of quorum sensing-regulated virulence factors of Pseudomonas aeruginosa. Future Microbiol 2022; 17:773-787. [PMID: 35450448 DOI: 10.2217/fmb-2021-0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To study the influence of plant volatiles, bioactives and synthetic antibiotics on the attenuation of the quorum sensing (QS)-regulated virulence factors of Pseudomonas aeruginosa. Materials & methods: QS inhibition; the QS-regulated virulence factors pyocyanin, hemolysin, elastase, protease, alginate and pyochelin; and motility phenotypes were performed at sub-MIC to check the attenuation effect of 24 agents on the virulence of P. aeruginosa. Results: Eighteen out of 24 assayed compounds exhibited anti-QS activity and reduced the production of all virulence factors. Cinnamaldehyde, zingerone and lavender oil exhibited a significant reduction in motility phenotypes. Conclusion: Natural phytomolecules as a whole or their bioactives could be used to develop antivirulence drugs after in vivo evaluation.
Collapse
Affiliation(s)
- Surabhi Mangal
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| | - Vasundhara Singh
- Department of Applied Sciences, Punjab Engineering College (deemed to be university), Chandigarh, 160012, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| |
Collapse
|
15
|
Sobhani Z, Mohtashami L, Amiri MS, Ramezani M, Emami SA, Simal‐Gandara J. Ethnobotanical and phytochemical aspects of the edible herb
Coriandrum sativum
L. J Food Sci 2022; 87:1386-1422. [PMID: 35279837 PMCID: PMC9314633 DOI: 10.1111/1750-3841.16085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/11/2022] [Accepted: 01/23/2022] [Indexed: 12/30/2022]
Abstract
Coriandrum sativum (coriander) is an edible herb in the family Apiaceae. The leaves, fruits, and stems of C. sativum have long been used as culinary spice due to their favorable odor. Traditional practitioners used this plant for treating different diseases like blepharitis, scabies, aphthous stomatitis, laryngitis, headache, and palpitation. In modern researches, coriander has demonstrated anxiolytic, anticonvulsant, antimigraine, neuroprotective, analgesic, diuretic, hypoglycemic, hypolipidemic, hypotensive, anticancer, and antioxidant activities. Coriander contains a wide range of bioactive phytochemicals among which phenylpropenes, terpenoids, isocoumarins, phytosterols, and fatty acids are the most important. This review provides information about the botanical and ethnobotanical aspects, chemical profile, therapeutic uses in Islamic traditional medicine (ITM), and recent pharmacological studies of coriander effects. The results have shown that coriander and its monoterpenoid compound, linalool, can be considered as potential drug candidates for treating metabolic syndrome and different inflammatory conditions especially neural and CNS diseases.
Collapse
Affiliation(s)
- Zahra Sobhani
- Department of Traditional Pharmacy, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Leila Mohtashami
- Department of Pharmacognosy, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | | | - Mahin Ramezani
- Nanotechnology Research Center Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo—Ourense Campus Ourense Spain
| |
Collapse
|
16
|
Abstract
The excess level of reactive oxygen species (ROS) disturbs the oxidative balance leading to oxidative stress, which, in turn, causes diabetes mellites, cancer, and cardiovascular diseases. These effects of ROS and oxidative stress can be balanced by dietary antioxidants. In recent years, there has been an increasing trend in the use of herbal products for personal and beauty care. The Apiaceae (previously Umbelliferae) family is a good source of antioxidants, predominantly phenolic compounds, therefore, widely used in the pharmaceutical, cosmetic, cosmeceutical, flavor, and perfumery industries. These natural antioxidants include polyphenolic acids, flavonoids, carotenoids, tocopherols, and ascorbic acids, and exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis, and anticancer. This review discusses the Apiaceae family plants as an important source of antioxidants their therapeutic value and the use in cosmetics.
Collapse
|
17
|
Jia H, Wen Y, Aw W, Saito K, Kato H. Ameliorating Effects of Coriander on Gastrocnemius Muscles Undergoing Precachexia in a Rat Model of Rheumatoid Arthritis: A Proteomics Analysis. Nutrients 2021; 13:4041. [PMID: 34836295 PMCID: PMC8621435 DOI: 10.3390/nu13114041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 01/06/2023] Open
Abstract
Coriander is a commonly used vegetable, spice, and folk medicine, possessing both nutritional and medicinal properties. Up to two-thirds of patients with rheumatoid arthritis (RA) exhibit loss of body mass, predominately skeletal muscle mass, a process called rheumatoid cachexia, and this has major effects of the quality of life of patients. Owing to a lack of effective treatments, the initial stage of cachexia has been proposed as an important period for prevention and decreasing pathogenesis. In the current study, we found that cachexia-like molecular disorders and muscle weight loss were in progress in gastrocnemius muscle after only 5 days of RA induction in rats, although rheumatoid cachexia symptoms have been reported occurring approximately 45 days after RA induction. Oral administration of coriander slightly restored muscle loss. Moreover, iTRAQ-based quantitative proteomics revealed that coriander treatment could partially restore the molecular derangements induced by RA, including impaired carbon metabolism, deteriorated mitochondrial function (tricarboxylic acid cycle and oxidative phosphorylation), and myofiber-type alterations. Therefore, coriander could be a promising functional food and/or complementary therapy for patients with RA against cachexia.
Collapse
Affiliation(s)
- Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.W.); (W.A.); (K.S.)
| | - Ya Wen
- Health Nutrition, Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.W.); (W.A.); (K.S.)
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77 Stockholm, Sweden
| | - Wanping Aw
- Health Nutrition, Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.W.); (W.A.); (K.S.)
- Institute for Advanced Biosciences, Keio University, 246-2, Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Kenji Saito
- Health Nutrition, Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.W.); (W.A.); (K.S.)
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.W.); (W.A.); (K.S.)
| |
Collapse
|
18
|
Development of Coriandrum sativum Oil Nanoemulgel and Evaluation of Its Antimicrobial and Anticancer Activity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5247816. [PMID: 34671674 PMCID: PMC8523232 DOI: 10.1155/2021/5247816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
This study is aimed at developing coriander oil into a nanoemulgel and evaluating its antimicrobial and anticancer effects. Coriander (Coriandrum sativum) oil was developed into a nanoemulgel by using a self-nanoemulsifying technique with Tween 80 and Span 80. Hydrogel material (Carbopol 940) was then incorporated into the nanoemulsion and mixed well. After this, we evaluated the particle size, polydispersity index (PDI), rheology, antimicrobial effect, and cytotoxic activity. The nanoemulsion had a PDI of 0.188 and a particle size of 165.72 nm. Interesting results were obtained with the nanoemulgel against different types of bacteria, such as Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus (MRSA), with a minimum inhibitory concentration (MIC) of 2.3 μg/ml, 3.75 μg/ml, and 6.5 μg/ml, respectively. In addition, the half-maximal inhibitory concentration (IC50) of the nanoemulgel when applying it to human breast cancer cells (MCF-7), hepatocellular carcinoma cells (Hep3B), and human cervical epithelioid carcinoma cells (HeLa) was 28.84 μg/ml, 28.18 μg/ml, and 24.54 μg/ml, respectively, which proves that the nanoemulgel has anticancer effects. The development of C. sativum oil into a nanoemulgel by using a self-nanoemulsifying technique showed a bioactive property better than that in crude oil. Therefore, simple nanotechnology techniques are a promising step in the preparation of pharmaceutical dosage forms.
Collapse
|
19
|
Soleimanifar M, Jafari SM, Assadpour E, Mirarab A. Electrosprayed whey protein nanocarriers containing natural phenolics; thermal and antioxidant properties, release behavior and stability. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Huang H, Nakamura T, Yasuzawa T, Ueshima S. Effects of Coriandrum sativum on Migration and Invasion Abilities of Cancer Cells. J Nutr Sci Vitaminol (Tokyo) 2020; 66:468-477. [PMID: 33132351 DOI: 10.3177/jnsv.66.468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Coriandrum sativum (coriander) is an annual herb in the Apiaceae family. Its leaves and seeds are used for cooking. Coriander has several beneficial functions such as anti-inflammatory, analgesic and anti-cancer effects. Although anti-carcinogenic potential of coriander has been known well, the effects of coriander on cancer metastasis have not yet been fully elucidated. In the present study, the effects of coriander on migration and invasion were investigated in vitro and in vivo by using human hepatocellular carcinoma cell line (HepG2) and mouse melanoma cell line (B16F10). The migration and invasion abilities of cancer cells had been evaluated by trans-well double chamber and these abilities were significantly impaired by treatment of cancer cells with coriander extract whose concentration did not affect proliferation. The treatment of cancer cells with coriander extract significantly reduced both matrix metalloproteinase 2 (MMP-2) and urokinase-type plasminogen activator (u-PA) activities, which were involved in cell migration and invasion, in their conditioned media. Furthermore, coriander extract suppressed the phosphorylation of Erk 1 or IkB in B16F10 cells, and inhibited the expression of MMP-2 or u-PA mRNA. After injection of B16F10 cells into the tail vein of C57BL/6J mice, the number of metastatic regions in lungs were counted. Mice fed with diet containing coriander possessed a smaller number of metastatic regions than those fed with control diet. It was suggested that coriander extract might have the abilities to suppress cancer cell migration and invasion, indicating that coriander provides the improvement of cancer prognosis.
Collapse
Affiliation(s)
- Honing Huang
- Applied Biological Chemistry, Graduated School of Agriculture, Kindai University
| | - Tomomi Nakamura
- Applied Biological Chemistry, Graduated School of Agriculture, Kindai University
| | - Toshinori Yasuzawa
- Department of Food Science & Nutrition, Faculty of Agriculture, Kindai University.,Department of Health and Nutrition, Faculty of Health Science, Kio University
| | - Shigeru Ueshima
- Applied Biological Chemistry, Graduated School of Agriculture, Kindai University.,Department of Food Science & Nutrition, Faculty of Agriculture, Kindai University.,Antiaging Center, Kindai University
| |
Collapse
|
21
|
Paranagama MP, Piyarathne NS, Nandasena TL, Jayatilake S, Navaratne A, Galhena BP, Williams S, Rajapakse J, Kita K. The Porphyromonas gingivalis inhibitory effects, antioxidant effects and the safety of a Sri Lankan traditional betel quid - an in vitro study. BMC Complement Med Ther 2020; 20:259. [PMID: 32819379 PMCID: PMC7439561 DOI: 10.1186/s12906-020-03048-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 08/06/2020] [Indexed: 01/03/2023] Open
Abstract
Background The Sri Lankan traditional betel quid (TBQ) which had been extensively used in the country before its colonization is claimed to have antiperiodontopathic effects in the Sri Lankan folklore. However, there is no reported scientific evidence to support the claimed antiperiodontopathic effects mediated by this TBQ. The present study was carried out to investigate the protective effect of the Sri Lankan TBQ in the pathogenesis of periodontitis. Methods We investigate the ethyl acetate extract of the Sri Lankan TBQ for its antibacterial effects against the keystone periodontopathic bacterium, P. gingivalis and also its antioxidant potential, which is important to protect the periodontium from oxidative stress. Further, its safety was analyzed using the cytokinesis block micronucleus assay on human peripheral blood lymphocytes (PBLs). Results Ethyl acetate extract of this TBQ inhibited the growth of P. gingivalis with a minimum bactericidal concentration (MBC) of 125 μg/ml. It was found to be a rich source of polyphenols and displayed considerable DPPH and ABTS radical scavenging activities and a strong ferric reducing antioxidant power. This extract could protect the cultured human gingival fibroblasts from H2O2 induced oxidative stress. In addition, this TBQ extract was not genotoxic to human PBLs even at a concentration of 2.5 mg/ml. Moreover, it exhibited protective effects against bleomycin induced genotoxicity in PBLs. Conclusion Ethyl acetate extract of the Sri Lankan TBQ is a source of natural antibacterial compounds against P. gingivalis. It is also a source of natural antioxidants which can protect human gingival fibroblasts from H2O2 induced oxidative stress. These properties of the TBQ may have contributed to its claimed antiperiodontopathic effects. Besides, it was found to be relatively non-toxic to human cells. Thus this TBQ extract has a huge potential to be developed as a novel adjunctive therapeutic lead against periodontitis.
Collapse
Affiliation(s)
| | | | - Tharanga Lakmali Nandasena
- Department of Basic Sciences, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sumedha Jayatilake
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Ayanthi Navaratne
- Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Bandula Prasanna Galhena
- Department of Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Senani Williams
- Department of Pathology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Jayantha Rajapakse
- Department of Pathobiology, Faculty of Veterinary Medicine & Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
22
|
Bukvicki D, Gottardi D, Prasad S, Novakovic M, Marin PD, Tyagi AK. The Healing Effects of Spices in Chronic Diseases. Curr Med Chem 2020; 27:4401-4420. [DOI: 10.2174/0929867325666180831145800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/14/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
Spices are not only just herbs used in culinary for improving the taste of dishes,
they are also sources of a numerous bioactive compounds significantly beneficial for health.
They have been used since ancient times because of their antimicrobial, anti-inflammatory
and carminative properties. Several scientific studies have suggested their protective role
against chronic diseases. In fact, their active compounds may help in arthritis, neurodegenerative
disorders (Alzheimer’s, Parkinson, Huntington’s disease, amyotrophic lateral sclerosis,
etc.), diabetes, sore muscles, gastrointestinal problems and many more. In the present study,
possible roles of spices and their active components, in chronic diseases (cancer, arthritis,
cardiovascular diseases, etc.) along with their mechanism of action have been reviewed.
Collapse
Affiliation(s)
- Danka Bukvicki
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, 11 000 Belgrade, Serbia
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, United States
| | - Miroslav Novakovic
- University of Belgrade, National Institute, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
| | - Petar D. Marin
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, 11 000 Belgrade, Serbia
| | - Amit Kumar Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, United States
| |
Collapse
|
23
|
Effects of Pistacia lentiscus and Coriander Triphala on Adult Gastroesophageal Reflux Disease: A Randomized Double-Blinded Clinical Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2020. [DOI: 10.5812/ircmj.102260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: The cardinal symptoms of gastroesophageal reflux disease include heartburn (pyrosis) and regurgitation. Conventional treatment is done by proton pump inhibitors. In Persian traditional medicine, several herbs (single or combined) have been used to treat gastrointestinal disorders. Objectives: This study aimed to assess the effects of Pistacia lentiscus (mastic) and Coriander Triphala on reflux symptoms compared to omeprazole in a double-blinded randomized clinical trial. Methods: In a double-blinded, multicenter, randomized clinical trial, we assessed the effects of Pistacia lentiscus L., Coriander Triphala, and omeprazole on the symptoms of GERD in Tabriz, Iran, in 2018 - 2019. Thus, 105 patients with GERD symptoms were assigned randomly to three groups as group A (Pistacia lentiscus L., 1000 mg/TDS), group B (Coriander Triphala, 1000 mg/TDS), and group C (omeprazole, 20 mg/day plus five placebo capsules per day). The assessments were done at the beginning and the end of the study using FSSG, VAS, RS, and GERD-HRQL questionnaires. Results: In the beginning, no significant differences were observed between the groups in the background characteristics. There was no statistically significant difference between Pistacia lentiscus, Coriander Triphala, and omeprazole in the improvement of FSSG, VAS, GERD-HRQL, and reflux scores. In all groups, the FFSG, VAS, reflux, and GERD-HRQL scores significantly decreased and improved after four weeks of intervention compared to the respective baselines. The FSSG score improvements after four weeks of intervention were 73.68%, 83.33%, and 68.62%, in groups A, B, and C, respectively. The VAS score improvements were 66.66%, 75.00%, and 62.50% in groups A, B, and C, respectively. Improvements in GERD-HRQL were 90.00%, 91.28%, and 82.00%, in groups A, B, and C, respectively. Reflux improvements were 66.66%, 80.00%, and 66.66% in groups A, B, and C, respectively. Conclusions: The results showed that Pistacia lentiscus and Coriander Triphala are as effective as omeprazole in the treatment of GERD.
Collapse
|
24
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
25
|
Ahmed R, Kumari M, Saifi A, Khan M, Arora V, Shamsi Y, Halder S. Acute and subchronic oral toxicity studies of majun brahmi and itrifal muqawwi dimagh (traditional unani formulations) in rats. Pharmacognosy Res 2020. [DOI: 10.4103/pr.pr_93_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Kumar R, Mohammad A, Saini RV, Chahal A, Wong CM, Sharma D, Kaur S, Kumar V, Winterbourn CC, Saini AK. Deciphering the in vivo redox behavior of human peroxiredoxins I and II by expressing in budding yeast. Free Radic Biol Med 2019; 145:321-329. [PMID: 31580947 DOI: 10.1016/j.freeradbiomed.2019.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/18/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023]
Abstract
Peroxiredoxins (Prxs), scavenge cellular peroxides by forming recyclable disulfides but under high oxidative stress, hyperoxidation of their active-site Cys residue results in loss of their peroxidase activity. Saccharomyces cerevisiae deficient in human Prx (hPrx) orthologue TSA1 show growth defects under oxidative stress. They can be complemented with hPRXI but not by hPRXII, but it is not clear how the disulfide and hyperoxidation states of the hPrx vary in yeast under oxidative stress. To understand this, we used oxidative-stress sensitive tsa1tsa2Δ yeast strain to express hPRXI or hPRXII. We found that hPrxI in yeast exists as a mixture of disulfide-linked dimer and reduced monomer but becomes hyperoxidized upon elevated oxidative stress as analyzed under denaturing conditions (SDS-PAGE). In contrast, hPrxII was present predominantly as the disulfide in unstressed cells and readily converted to its hyperoxidized, peroxidase-inactive form even with mild oxidative stress. Interestingly, we found that plant extracts containing polyphenol antioxidants provided further protection against the growth defects of the tsa1tsa2Δ strain expressing hPrx and preserved the peroxidase-active forms of the Prxs. The extracts also helped to protect against hyperoxidation of hPrxs in HeLa cells. Based on these findings we can conclude that resistance to oxidative stress of yeast cells expressing individual hPrxs requires the hPrx to be maintained in a redox state that permits redox cycling and peroxidase activity. Peroxidase activity decreases as the hPrx becomes hyperoxidized and the limited protection by hPrxII compared with hPrxI can be explained by its greater sensitivity to hyperoxidation.
Collapse
Affiliation(s)
- Rakesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Ashu Mohammad
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Reena V Saini
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Anterpreet Chahal
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Chi-Ming Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, People's Republic of China
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Sukhvir Kaur
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Vikas Kumar
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Adesh K Saini
- Faculty of Basic Sciences Shoolini University, Solan, India.
| |
Collapse
|
27
|
D'Angelo S, Martino E, Cacciapuoti G. Effects of Annurca Apple (Malus pumila cv Annurca) Polyphenols on Breast Cancer Cells. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401315666190206142025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
Dietary micronutrients have been proposed as effective inhibitory agents for
cancer initiation, progression, and incidence. Among them, polyphenols, present in different foods
and beverages, have retained attention in recent years. Apples are among the most consumed fruits
worldwide, and several studies suggest that apple polyphenols could play a role in the prevention of
degenerative diseases.
Aims and Objectives:
The present study aimed at evaluating the effects of Annurca flesh polyphenols
extract (AFPE) effects of proliferation on MCF-7 cells.
Methods:
The data indicated that apple polyphenolic compounds had a significant antiproliferative
action on MCF-7 cells and 500μM EqC AFPE induced a cell cycle arrest at G2/M. AFPE was also
capable of inducing morphological changes as evidenced by nuclear condensation.
Results:
The cellular, morphological, and molecular data unequivocally suggested that induction of
cellular apoptosis was mainly responsible for the previously observed antiproliferation-induced
AFPE on MCF-7 cells.
Conclusion:
Taken together, AFPE that acts at a low micromolar range against breast cancer cells
may be considered as a promising candidate for anticancer therapy.
Collapse
Affiliation(s)
- Stefania D'Angelo
- Dipartimento di Scienze Motorie e del Benessere, Universita degli Studi di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
| | - Elisa Martino
- Dip. Biochimica, Biofisica e Patologia Generale, Universita della Campania “Luigi Vanvitelli", Napoli, Italy
| | - Giovanna Cacciapuoti
- Dip. Biochimica, Biofisica e Patologia Generale, Universita della Campania “Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
28
|
E M Eid E, S Alanazi A, Koosha S, A Alrasheedy A, Azam F, M Taban I, Khalilullah H, Sadiq Al-Qubaisi M, A Alshawsh M. Zerumbone Induces Apoptosis in Breast Cancer Cells by Targeting αvβ3 Integrin upon Co-Administration with TP5-iRGD Peptide. Molecules 2019; 24:molecules24142554. [PMID: 31337024 PMCID: PMC6680663 DOI: 10.3390/molecules24142554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/24/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are highly promising tools to deliver therapeutic molecules into tumours. αVβ3 integrins are cell-matrix adhesion receptors, and are considered as an attractive target for anticancer therapies owing to their roles in the process of metastasis and angiogenesis. Therefore, this study aims to assess the effect of co-administration of zerumbone (ZER) and ZERencapsulated in hydroxypropyl-β-cyclodextrin with TP5-iRGD peptide towards cell cytotoxicity, apoptosis induction, and proliferation of normal and cancerous breast cells utilizing in vitro assays, as well as to study the molecular docking of ZER in complex with TP5-iRGD peptide. Cell viability assay findings indicated that ZER and ZERencapsulated in hydroxypropyl-β-cyclodextrin (ZER-HPβCD) inhibited the growth of estrogen receptor positivebreast cancer cells (ER+ MCF-7) at 72 h treatment with an inhibitory concentration (IC)50 of 7.51 ± 0.2 and 5.08 ± 0.2 µg/mL, respectively, and inhibited the growth of triple negative breast cancer cells (MDA-MB-231) with an IC50 of 14.96 ± 1.52 µg/mL and 12.18 ± 0.7 µg/mL, respectively. On the other hand, TP5-iRGD peptide showed no significant cytotoxicity on both cancer and normal cells. Interestingly, co-administration of TP5-iRGD peptide in MCF-7 cells reduced the IC50 of ZER from 7.51 ± 0.2 µg/mL to 3.13 ± 0.7 µg/mL and reduced the IC50 of ZER-HPβCD from 5.08 ± 0.2 µg/mL to 0.49 ± 0.004 µg/mL, indicating that the co-administration enhances the potency and increases the efficacy of ZER and ZER-HPβCD compounds. Acridine orange (AO)/propidium iodide (PI) staining under fluorescence microscopy showed evidence of early apoptosis after 72 h from the co-administration of ZER or ZER-HPβCD with TP5-iRGD peptide in MCF-7 breast cancer cells. The findings of the computational modelling experiment provide novel insights into the ZER interaction with integrin αvβ3 in the presence of TP5-iRGD, and this could explain why ZER has better antitumor activities when co-administered with TP5-iRGD peptide.
Collapse
Affiliation(s)
- Eltayeb E M Eid
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911 Unaizah, Saudi Arabia.
| | | | - Sanaz Koosha
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Alian A Alrasheedy
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911 Unaizah, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911 Unaizah, Saudi Arabia
| | - Ismail M Taban
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911 Unaizah, Saudi Arabia
| | | | - Mohammed A Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Wei JN, Liu ZH, Zhao YP, Zhao LL, Xue TK, Lan QK. Phytochemical and bioactive profile of Coriandrum sativum L. Food Chem 2019; 286:260-267. [PMID: 30827604 DOI: 10.1016/j.foodchem.2019.01.171] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/19/2023]
Abstract
Coriandrum sativum L. is well known around the world because of its food and medicine uses. The main bioactive constituents in C. sativum are essential oil, fatty acids, tocol, sterol and carotenoids, their yields and chemical compositions being influenced by genotype, variety, planting season, ecotype, planting condition, growth stage, plant part, harvesting time, extracting process and other factors. Coriander and its different extracts possess varying degrees of antioxidative and antimicrobial activities on account of different active constituents. The general usages, chemical compositions and bioactivities of coriander are summarized in this review, along with safety considerations.
Collapse
Affiliation(s)
- Jing-Na Wei
- Tianjin Institute of Quality Standard and Testing Technology for Agro-products, Tianjin Academy of Agricultural Sciences, Huada Road, 17th Kilometric Marker of Jinjing Highway, Xiqing District, Tianjin 300381, China.
| | - Zheng-Hui Liu
- Tianjin Institute of Quality Standard and Testing Technology for Agro-products, Tianjin Academy of Agricultural Sciences, Huada Road, 17th Kilometric Marker of Jinjing Highway, Xiqing District, Tianjin 300381, China
| | - Yun-Ping Zhao
- Tianjin Institute of Quality Standard and Testing Technology for Agro-products, Tianjin Academy of Agricultural Sciences, Huada Road, 17th Kilometric Marker of Jinjing Highway, Xiqing District, Tianjin 300381, China
| | - Lin-Lin Zhao
- Tianjin Institute of Quality Standard and Testing Technology for Agro-products, Tianjin Academy of Agricultural Sciences, Huada Road, 17th Kilometric Marker of Jinjing Highway, Xiqing District, Tianjin 300381, China
| | - Tian-Kai Xue
- Tianjin Institute of Quality Standard and Testing Technology for Agro-products, Tianjin Academy of Agricultural Sciences, Huada Road, 17th Kilometric Marker of Jinjing Highway, Xiqing District, Tianjin 300381, China
| | - Qing-Kuo Lan
- Tianjin Institute of Quality Standard and Testing Technology for Agro-products, Tianjin Academy of Agricultural Sciences, Huada Road, 17th Kilometric Marker of Jinjing Highway, Xiqing District, Tianjin 300381, China
| |
Collapse
|
30
|
Kaur P, Purewal SS, Sandhu KS, Kaur M. DNA damage protection: an excellent application of bioactive compounds. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0237-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
31
|
Elmas L, Secme M, Mammadov R, Fahrioglu U, Dodurga Y. The determination of the potential anticancer effects of
Coriandrum sativum
in PC‐3 and LNCaP prostate cancer cell lines. J Cell Biochem 2018; 120:3506-3513. [DOI: 10.1002/jcb.27625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Levent Elmas
- Department of Medical Biology, Faculty of Medicine Pamukkale University Denizli Turkey
| | - Mücahit Secme
- Department of Medical Biology, Faculty of Medicine Pamukkale University Denizli Turkey
| | - Ramazan Mammadov
- Department of Biology, Faculty of Arts and Sciences Pamukkale University Denizli Turkey
| | - Umut Fahrioglu
- Department of Medical Biology, Faculty of Medicine Near East University Nicosia Cyprus
| | - Yavuz Dodurga
- Department of Medical Biology, Faculty of Medicine Pamukkale University Denizli Turkey
| |
Collapse
|
32
|
Zimmermann-Franco DC, Esteves B, Lacerda LM, Souza IDO, Santos JAD, Pinto NDCC, Scio E, da Silva AD, Macedo GC. In vitro and in vivo anti-inflammatory properties of imine resveratrol analogues. Bioorg Med Chem 2018; 26:4898-4906. [PMID: 30193941 DOI: 10.1016/j.bmc.2018.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
Resveratrol is a natural polyphenol found mainly on red grapes and in red wine, pointed as an important anti-inflammatory/immunomodulatory molecule. However, its bioavailability problems have limited its use encouraging the search for new alternatives agents. Thus, in this study, we synthetize 12 resveratrol analogues (6 imines, 1 thioimine and 5 hydrazones) and investigated its cytotoxicity, antioxidant activity and in vitro anti-inflammatory/immunomodulatory properties. The most promising compounds were also evaluated in vivo. The results showed that imines presented less cytotoxicity, were more effective than resveratrol on DPPH scavenger and exhibited an anti-inflammatory profile. Among them, the imines with a radical in the para position, on the ring B, not engaged in an intramolecular hydrogen-interaction, showed more prominent anti-inflammatory activity modulating, in vivo, the edema formation, the inflammatory infiltration and cytokine levels. An immunomodulatory activity also was observed in these molecules. Thus, our results suggest that imines with these characteristics presents potential to control inflammatory disorders.
Collapse
Affiliation(s)
- Danielle Cristina Zimmermann-Franco
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Bruna Esteves
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Leticia Moroni Lacerda
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Isabela de Oliveira Souza
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Juliana Alves Dos Santos
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Nícolas de Castro Campos Pinto
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Elita Scio
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Adilson David da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Gilson Costa Macedo
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil.
| |
Collapse
|
33
|
Siddiqi A, Parveen A, Dhyani N, Hussain ME, Fahim M. Effects of Coriandrum Sativum Extract and Simvastatin in Isopreterenol Induced Heart Failure in Rats. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2018. [DOI: 10.1515/sjecr-2017-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Abstract
Heart failure is a syndrome, caused due to structural and functional cardiac abnormalities, characterized by changes in the hemodynamic and neurohumoral mechanisms. It is becoming a major health burden worldwide. More effective therapies are desperately needed. Coriandrum sativum (C. sativum), a traditional spice crop has been known to possess many biological and medicinal properties. The present study was designed to investigate the cardioprotective efficacy of C. sativum in rat model of isoproterenol induced heart failure. Heart failure was produced by injecting isoproterenol subcutaneously (85 mg/kg twice at an interval of 24 h). Oral efficacy of seed extract was assessed on hemodynamic profile, antioxidant enzyme activities, lipid peroxidation, lipid profile, atherogenic indices, mRNA and protein expression of endothelin receptors (ETA and ETB) and histopathology. Treatment of heart failure rats with C. sativum orally (1g/kg b.wt) improved the altered hemodynamics, restored the cardiac antioxidant enzymes armory, attenuated oxidative stress, improved lipid profile, lowered atherogenic indices, decreased the levels of ETA and ETB receptor mRNA and protein, and restored the cardiac morphology. In conclusion, our results suggest C. sativum to be a cardioprotective agent in heart failure, possibly by the virtue of its ability to alleviate oxidative stress, improve lipid profile and endothelial dysfunction.
Collapse
Affiliation(s)
- Aisha Siddiqi
- Department of Physiology, Hamdard Institute of Medical Sciences and Research , Jamia Hamdard (Hamdard University) , Hamdard Nagar, New Delhi - 110062 , India
| | - Adila Parveen
- Centre for Physiotherapy and Rehabilitation Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi - 110025 , India
| | - Neha Dhyani
- Department of Physiology, Hamdard Institute of Medical Sciences and Research , Jamia Hamdard (Hamdard University) , Hamdard Nagar, New Delhi - 110062 , India
| | - M. Ejaz Hussain
- Centre for Physiotherapy and Rehabilitation Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi - 110025 , India
| | - Mohammad Fahim
- Department of Physiology, Hamdard Institute of Medical Sciences and Research , Jamia Hamdard (Hamdard University) , Hamdard Nagar, New Delhi - 110062 , India
| |
Collapse
|
34
|
Karia P, Patel KV, Rathod SSP. Breast cancer amelioration by Butea monosperma in-vitro and in-vivo. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:54-62. [PMID: 29366766 DOI: 10.1016/j.jep.2017.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Butea monosperma belonging to family Fabaceae is used in the Indian traditional medicine (Ayurveda) for various ailments including abdominal tumors and possess anti-estrogenic activity. AIM OF THE STUDY The present study is aimed at investigating the chemo-preventive potential of Butea monosperma in breast cancer and elucidating it's mechanism of action by assessing its effect on key processes like apoptosis, angiogenesis and metastasis. METHODS Cytotoxic potential of methanol extract of Butea monosperma flower (MEBM) was tested in MCF-7 (estrogen receptor positive), MDA-MB-231 (triple negative) and MDA-MB-453 (HER2 positive) human breast cancer cells by MTT assay. Chemo-preventive potential was evaluated in-vivo in Methylnitrosourea (MNU) induced mammary cancer in nulliparous Sprague-Dawley rats. The mechanism for anticancer potential was screened by in-vitro studies involving Annexin V- FITC assay (apoptosis), Chick Chorioallantoic Membrane assay (angiogenesis) and Migration assay (metastasis). Statistical analysis was done by one way and two way ANOVA (for Growth Rate and feed consumption efficiency) followed by post hoc Bonferroni's test with P value < 0.05. RESULTS It is observed that the exposure of MEBM, at various concentrations and time intervals to different cell lines, resulted in decreased cell proliferation. The IC50 value of MCF-7 cells was found significantly less than that of MDA-MB-231 and MDA-MB-453 cells, which indicated that the extract of said medicinal plant were more potent inhibitors of estrogen positive breast cancer cells than other types of breast cancer cells in vitro. Corroborative evidences were acquired in MNU actuated mammary carcinogenesis where MEBM constricted tumor parameters, decreased expression of estrogen and progesterone, nucleic acid content and increased latency period. MEBM also induced apoptosis, inhibited angiogenesis and metastasis in-vitro. CONCLUSION Selective cytotoxic activity in MCF-7 estrogen positive breast cancer cells and inhibition of growth of mammary carcinoma in-vivo by methanol extract of Butea monosperma flowers (MEBM) suggests chemo-prevention through modulation of estrogen and progesterone receptor, apoptotic, anti-angiogenesis and anti-metastatic activity.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Breast Neoplasms/chemically induced
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Butea/chemistry
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Chick Embryo
- Dose-Response Relationship, Drug
- Female
- Humans
- MCF-7 Cells
- Methylnitrosourea
- Neoplasm Invasiveness
- Neovascularization, Pathologic
- Phytotherapy
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Rats, Sprague-Dawley
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/drug effects
- Receptors, Progesterone/metabolism
- Signal Transduction/drug effects
- Time Factors
Collapse
Affiliation(s)
- Prachi Karia
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India.
| | - Kirti V Patel
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India.
| | - Shri S P Rathod
- Visiting Faculty, Parul Institute of Pharmacy and Research, P. O. Limda, Ta. Waghodia, Vadodara, Gujarat 391110, India.
| |
Collapse
|
35
|
The Protective Effects of Hydro-Alcoholic Extract of Coriandrum sativum in Rats with Experimental Iron-Overload Condition. Jundishapur J Nat Pharm Prod 2017. [DOI: 10.5812/jjnpp.65028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Coriander (Coriandrum sativum): A promising functional food toward the well-being. Food Res Int 2017; 105:305-323. [PMID: 29433220 DOI: 10.1016/j.foodres.2017.11.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 01/03/2023]
Abstract
Coriandrum sativum (C. sativum) or coriander is one of the most popularly used spices in culinary worldwide, and its medicinal values has been recognized since ancient time. C. sativum contains bioactive phytochemicals that are accounted for a wide range of biological activities including antioxidant, anticancer, neuroprotective, anxiolytic, anticonvulsant, analgesic, migraine-relieving, hypolipidemic, hypoglycemic, hypotensive, antimicrobial, and antiinflammatory activities. The major compound, linalool, abundantly found in seeds is remarked for its abilities to modulate many key pathogenesis pathways of diseases. Apart from the modulating effects, the potent antioxidant property of the C. sativum provides a key mechanism behind its protective effects against neurodegenerative diseases, cancer, and metabolic syndrome. This review shed light on comprehensive aspects regarding the therapeutic values of the C. sativum, which indicate its significance of being a promising functional food for promoting the well-being in the era of aging and lifestyle-related diseases.
Collapse
Affiliation(s)
- Veda Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand; Program in Chemical Biology, Chulabhorn Graduate Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education (CHE), Ministry of Education, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
37
|
Ishida M, Nishi K, Kunihiro N, Onda H, Nishimoto S, Sugahara T. Immunostimulatory effect of aqueous extract of Coriandrum sativum L. seed on macrophages. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4727-4736. [PMID: 28369918 DOI: 10.1002/jsfa.8341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Coriandrum sativum L. seed is generally used as a spice and crude drug. Although many functions of the various components in C. sativum L. seed have been reported, the immunostimulatory effect of water-soluble components in C. sativum L. seed has not been studied. In the present study, we focused on the immunostimulatory effect of C. sativum L. seed aqueous extract (CAE) on macrophages as a novel health function of C. sativum L. seed components. RESULTS CAE significantly enhanced the production of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in both RAW264.7 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. CAE also stimulated nitric oxide (NO) production and the phagocytosis activity in RAW264.7 cells. We suggest that the activity of CAE is a result of the upregulation of mitogen-activated protein kinase and nuclear factor-κB cascades via TLR4. In addition, IL-6 production by peritoneal macrophages collected from CAE-administered mice was significantly enhanced, suggesting that CAE could stimulate macrophage activity in vivo. CONCLUSION The findings of the present study suggest that CAE contains a novel water-soluble component with an immunostimulatory effect on macrophages. CAE would contribute to activating host defense against pathogens by stimulating the innate immunity. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Momoko Ishida
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Kosuke Nishi
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
- Food and Health Sciences Research Center, Ehime University, Matsuyama, Ehime, Japan
| | - Nanami Kunihiro
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Hiroyuki Onda
- Research and Analysis Center, S&B Foods Inc., Tokyo, Japan
| | - Sogo Nishimoto
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Takuya Sugahara
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
- Food and Health Sciences Research Center, Ehime University, Matsuyama, Ehime, Japan
- South Ehime Fisheries Research Center, Ehime University, Ainan, Ehime, Japan
| |
Collapse
|
38
|
Dietary Natural Products for Prevention and Treatment of Breast Cancer. Nutrients 2017; 9:nu9070728. [PMID: 28698459 PMCID: PMC5537842 DOI: 10.3390/nu9070728] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer among females worldwide. Several epidemiological studies suggested the inverse correlation between the intake of vegetables and fruits and the incidence of breast cancer. Substantial experimental studies indicated that many dietary natural products could affect the development and progression of breast cancer, such as soy, pomegranate, mangosteen, citrus fruits, apple, grape, mango, cruciferous vegetables, ginger, garlic, black cumin, edible macro-fungi, and cereals. Their anti-breast cancer effects involve various mechanisms of action, such as downregulating ER-α expression and activity, inhibiting proliferation, migration, metastasis and angiogenesis of breast tumor cells, inducing apoptosis and cell cycle arrest, and sensitizing breast tumor cells to radiotherapy and chemotherapy. This review summarizes the potential role of dietary natural products and their major bioactive components in prevention and treatment of breast cancer, and special attention was paid to the mechanisms of action.
Collapse
|
39
|
Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:69-76. [DOI: 10.1016/j.jphotobiol.2016.08.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
|
40
|
Zheng J, Zhou Y, Li Y, Xu DP, Li S, Li HB. Spices for Prevention and Treatment of Cancers. Nutrients 2016; 8:E495. [PMID: 27529277 PMCID: PMC4997408 DOI: 10.3390/nu8080495] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Spices have been widely used as food flavorings and folk medicines for thousands of years. Numerous studies have documented the antioxidant, anti-inflammatory and immunomodulatory effects of spices, which might be related to prevention and treatment of several cancers, including lung, liver, breast, stomach, colorectum, cervix, and prostate cancers. Several spices are potential sources for prevention and treatment of cancers, such as Curcuma longa (tumeric), Nigella sativa (black cumin), Zingiber officinale (ginger), Allium sativum (garlic), Crocus sativus (saffron), Piper nigrum (black pepper) and Capsicum annum (chili pepper), which contained several important bioactive compounds, such as curcumin, thymoquinone, piperine and capsaicin. The main mechanisms of action include inducing apoptosis, inhibiting proliferation, migration and invasion of tumors, and sensitizing tumors to radiotherapy and chemotherapy. This review summarized recent studies on some spices for prevention and treatment of cancers, and special attention was paid to bioactive components and mechanisms of action.
Collapse
Affiliation(s)
- Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
41
|
|
42
|
Luciardi MC, Blázquez MA, Cartagena E, Bardón A, Arena ME. Mandarin essential oils inhibit quorum sensing and virulence factors of Pseudomonas aeruginosa. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Delavar Kasmaei H, Ghorbanifar Z, Zayeri F, Minaei B, Kamali SH, Rezaeizadeh H, Amin G, Ghobadi A, Mirzaei Z. Effects of Coriandrum sativum Syrup on Migraine: A Randomized, Triple-Blind, Placebo-Controlled Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e20759. [PMID: 26889386 PMCID: PMC4752800 DOI: 10.5812/ircmj.20759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 06/22/2014] [Accepted: 07/06/2014] [Indexed: 11/29/2022]
Abstract
Background: Migraine is one of the most common and debilitating neurological problems. Although numerous preventive drugs are used to treat migraine, their complications are unavoidable. Application of herbal medicine, especially well-known medicinal plants, to treatment of chronic diseases, like migraine, could be effective. Coriandrum sativum L. (C. sativum) fruit is one of the most commonly prescribed herbs in Persian medicine, which has been used to treat headache. Objectives: This study was designed to evaluate the effects of C. sativum syrup on duration, severity and frequency of migraine. Patients and Methods: A total of 68 migraineurs, who had the eligibility criteria, according to international headache society diagnostic criteria, were randomly assigned to intervention group (n = 34) or control group (n = 34). In addition to 500 mg of sodium valproate per day, in intervention group, they received 15 mL of Coriander fruit syrup and 15 mL of placebo syrup, in control group, three times a day, during a month. The subjects were followed for clinical efficacy at weeks 1, 2, 3 and 4. The number of migraine attacks per week, as well as the duration and severity of attacks, were evaluated. Results: Of 68 patients randomized, 66 were included in analysis. The generalized estimating equations analysis showed that the Coriander fruit syrup decreased duration, severity and frequency of migraine, in the intervention group (P < 0.001). To be more precise, the mean migraine duration, severity and frequency, in the intervention group, were 5.7 hours, 3.65 units and about 50% less than control group, respectively. Conclusions: Results of this study showed that C. sativum fruit is efficient in reduction of the duration and frequency of migraine attacks and in diminishing pain degree.
Collapse
Affiliation(s)
- Hosein Delavar Kasmaei
- Department of Neurology, Faculty of Medicine, Shohadaye-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Zahra Ghorbanifar
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Farid Zayeri
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Bagher Minaei
- Department of Traditional Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Seyed Hamid Kamali
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Hossein Rezaeizadeh
- Department of Traditional Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Hossein Rezaeizadeh, Department of Traditional Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, IR Iran. Tel: +98-2166917754, Fax: +98-2166917678, E-mail:
| | - Gholamreza Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
- Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Ali Ghobadi
- Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Zohreh Mirzaei
- Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
44
|
Kianpour Rad S, Kanthimathi MS, Abd Malek SN, Lee GS, Looi CY, Wong WF. Cinnamomum cassia Suppresses Caspase-9 through Stimulation of AKT1 in MCF-7 Cells but Not in MDA-MB-231 Cells. PLoS One 2015; 10:e0145216. [PMID: 26700476 PMCID: PMC4689535 DOI: 10.1371/journal.pone.0145216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/01/2015] [Indexed: 11/18/2022] Open
Abstract
Background Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated. Methodology/Principal Findings The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells (IC50, 34±3.52 and 32.42 ±0.37 μg/ml, respectively). Oxidative stress due to disruption of antioxidant enzyme (SOD, GPx and CAT) activity is suggested as the probable cause for apoptosis initiation. Though the main apoptosis pathway in both cell lines was found to be through caspase-8 activation, caspase-9 was also activated in MDA-MB-231 cells but suppressed in MCF-7 cells. Gene expression studies revealed that AKT1, the caspase-9 suppressor, was up-regulated in MCF-7 cells while down-regulated in MDA-MB-231 cells. Although, AKT1 protein expression in both cell lines was down-regulated, a steady increase in MCF-7 cells was observed after a sharp decrease of suppression of AKT1. Trans-cinnamaldehyde and coumarin were isolated and identified and found to be mainly responsible for the observed anti-proliferative activity of CE (Cinnamomum cassia). Conclusion Activation of caspase-8 is reported for the first time to be involved as the main apoptosis pathway in breast cancer cell lines upon treatment with C. cassia. The double effects of C. cassia on AKT1 gene expression in MCF-7 cells is reported for the first time in this study.
Collapse
Affiliation(s)
- Sima Kianpour Rad
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - M. S. Kanthimathi
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, UMCPR, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Guan Serm Lee
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Karami R, Hosseini M, Mohammadpour T, Ghorbani A, Sadeghnia HR, Rakhshandeh H, Vafaee F, Esmaeilizadeh M. Effects of hydroalcoholic extract of Coriandrum sativum on oxidative damage in pentylenetetrazole-induced seizures in rats. IRANIAN JOURNAL OF NEUROLOGY 2015; 14:59-66. [PMID: 26056549 PMCID: PMC4449395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/16/2015] [Indexed: 11/02/2022]
Abstract
BACKGROUND An important role for oxidative stress, as a consequence of epileptic seizures, has been suggested. Coriandrum sativum has been shown that have antioxidant effects. Central nervous system depressant effects of C. sativum have also been reported. In this study, the effects of hydroalcoholic extract of aerial parts of the plants on brain tissues oxidative damages following seizures induced by pentylenetetrazole (PTZ) was investigated in rats. METHODS The rats were divided into five groups and treated: (1) Control (saline), (2) PTZ (90 mg/kg, i.p.), (3-5) three doses (100, 500 and 1000 mg/kg of C. sativum extract (CSE) before PTZ. Latencies to the first minimal clonic seizures (MCS) and the first generalized tonic-clonic seizures (GTCS) were recorded. The cortical and hippocampal tissues were then removed for biochemical measurements. RESULTS The extract significantly increased the MCS and GTCS latencies (P < 0.01, P < 0.001) following PTZ-induced seizures. The malondialdehyde (MDA) levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of the control animals (P < 0.001). Pretreatment with the extract prevented elevation of the MDA levels (P < 0.010-P < 0.001). Following PTZ administration, a significant reduction in total thiol groups was observed in both cortical and hippocampal tissues (P < 0.050). Pre-treatment with the 500 mg/kg of the extract caused a significant prevention of decreased in total thiol concentration in the cortical tissues (P < 0.010). CONCLUSION The present study showed that the hydroalcoholic extract of the aerial parts of C. sativum possess significant antioxidant and anticonvulsant activities.
Collapse
Affiliation(s)
- Reza Karami
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center AND Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Toktam Mohammadpour
- Neurogenic Inflammation Research Center AND Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants AND Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants AND Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants AND Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neurogenic Inflammation Research Center AND Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
46
|
Laribi B, Kouki K, M'Hamdi M, Bettaieb T. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia 2015; 103:9-26. [PMID: 25776008 DOI: 10.1016/j.fitote.2015.03.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 11/18/2022]
Abstract
Coriander (Coriandrum sativum L.), a member of the Apiaceae family, is among most widely used medicinal plant, possessing nutritional as well as medicinal properties. Thus, the aim of this updated review is to highlight the importance of coriander as a potential source of bioactive constituents and to summarize their biological activities as well as their different applications from data obtained in recent literature, with critical analysis on the gaps and potential for future investigations. A literature review was carried out by searching on the electronic databases including PubMed, Scopus, ScienceDirect, and Google Scholar for studies focusing on the biological and pharmacological activities of coriander seed and herb bioactive constituents. All recent English-language articles published between 2000 and 2014 were searched using the terms 'C. sativum', 'medicinal plant', 'bioactive constituents', and 'biological activities'. Subsequently, coriander seed and herb essential oils have been actively investigated for their chemical composition and biological activities including antimicrobial, antioxidant, hypoglycemic, hypolipidemic, anxiolytic, analgesic, anti-inflammatory, anti-convulsant and anti-cancer activities, among others. Although coriander has been reported to possess a wide range of traditional medicinal uses, no report is available in its effectiveness use in reactive airway diseases such as asthma and bronchiolitis. In brief, the information presented herein will be helpful to create more interest towards this medicinal species by defining novel pharmacological and clinical applications and hence, may be useful in developing new drug formulations in the future or by employing coriander bioactive constituents in combination with conventional drugs to enhance the treatment of diseases such as Alzheimer and cancer.
Collapse
Affiliation(s)
- Bochra Laribi
- National Agronomic Institute of Tunisia, 43, Av. Charles Nicolle, 1082 Tunis, Tunisia; Higher Agronomic Institute of Chott-Mariem, BP 47, 4042 Chott Meriem, Sousse, Tunisia.
| | - Karima Kouki
- National Agronomic Institute of Tunisia, 43, Av. Charles Nicolle, 1082 Tunis, Tunisia
| | - Mahmoud M'Hamdi
- National Agronomic Institute of Tunisia, 43, Av. Charles Nicolle, 1082 Tunis, Tunisia; Higher Agronomic Institute of Chott-Mariem, BP 47, 4042 Chott Meriem, Sousse, Tunisia
| | - Taoufik Bettaieb
- National Agronomic Institute of Tunisia, 43, Av. Charles Nicolle, 1082 Tunis, Tunisia
| |
Collapse
|
47
|
Induction of DNA damage by the leaves and rhizomes of Curcuma amada Roxb in breast cancer cell lines. JOURNAL OF ACUTE DISEASE 2015. [DOI: 10.1016/s2221-6189(14)60075-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Christapher PV, Parasuraman S, Christina JMA, Asmawi MZ, Vikneswaran M. Review on Polygonum minus. Huds, a commonly used food additive in Southeast Asia. Pharmacognosy Res 2015; 7:1-6. [PMID: 25598627 PMCID: PMC4285636 DOI: 10.4103/0974-8490.147125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/17/2014] [Accepted: 12/17/2014] [Indexed: 11/08/2022] Open
Abstract
Polygonum minus (Polygonaceae), generally known as ‘kesum’ in Malaysia is among the most commonly used food additive, flavoring agent and traditionally used to treat stomach and body aches. Raw or cooked leaves of P. minus are used in digestive disorders in the form of a decoction and the oil is used for dandruff. The pharmacological studies on P. minus have demonstrated antioxidant, in vitro LDL oxidation inhibition, antiulcer activity, analgesic activity, anti-inflammatory activity, in vitro antiplatelet aggregation activity, antimicrobial activity, digestive enhancing property and cytotoxic activity. The spectroscopic studies of essential oil of P. minus showed the presence of about 69 compounds, which are responsible for the aroma. The phytochemical studies showed presence of flavonoids and essential oils. This review is an effort to update the botanical, phytochemical, pharmacological and toxicological data of the plant P. minus.
Collapse
Affiliation(s)
- Parayil Varghese Christapher
- Unit of Pharmacology, Faculty of Pharmacy, AIMST University, Semeling, Bedong ; School of Pharmaceutical Sciences, University Sains Malaysia, Pulau Pinang, Malaysia
| | | | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University Sains Malaysia, Pulau Pinang, Malaysia
| | | |
Collapse
|