1
|
Fan X, Liu Y, Chen X, Xu Y, Wu W, Li F, Liu G, Chen X, Zhang C, Zhou Y. Synergies between diabetes and hyperhomocysteinaemia: New insights to predict and prevent adverse cardiovascular effects. Diabetes Obes Metab 2024; 26:5776-5785. [PMID: 39434446 DOI: 10.1111/dom.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
AIM To explore the association of hyperhomocysteinaemia (HHcy) and diabetes synergies with cardiovascular events in the adult population of northern China. METHODS Data were collected from the Asymptomatic Polyvascular Abnomalities Community study for 2010 to 2019. Serum homocysteine (Hcy) levels were determined by enzyme-linked immunosorbent assay. The participants were categorized into four groups based on their Hcy levels and diabetes status: non-diabetes/non-HHcy, non-diabetes/HHcy, diabetes/non-HHcy and diabetes/HHcy. The composite endpoint consisted of the occurrence of first-ever stroke, myocardial infraction (MI) or all-cause mortality. Cox regression analyses were performed to evaluate the associations of diabetes and HHcy with cardiovascular disease (CVD) events. RESULTS In total, 5278 participants were eligible (average age 55.1 years, 60% male). Over a follow-up of 9.1 years, 618 events were identified, 202 stroke, 52 MI and 406 all-cause deaths. Compared with the non-diabetes/non-HHcy group, hazard ratios with 95% confidence intervals in the diabetes/HHcy group for stroke, MI, major adverse cardiovascular event (MACE), all-cause death and composite endpoint were 1.85 (1.12-3.04), 1.33 (0.42-4.23), 1.78 (1.13-2.80), 2.24 (1.56-3.23) and 1.97 (1.47-2.65), respectively. Significant interactions between HHcy and diabetes status were found for stroke, MI and MACE (P for interaction = .002, .027 and .044, respectively). In addition, the association of diabetes/HHcy with stroke was modified by age (< 60 and ≥ 60 years; P for interaction = .016). CONCLUSIONS The findings highlight the synergistic impact of diabetes and HHcy on CVD. Joint assessments of diabetes and Hcy levels should be emphasized for risk stratification and primary prevention of CVD.
Collapse
Affiliation(s)
- Xue Fan
- Department of Research Center for Cardiovascular and Cerebrovascular Disease, Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhe Liu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xueyu Chen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuehao Xu
- Department of Research Center for Cardiovascular and Cerebrovascular Disease, Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqian Wu
- Department of Research Center for Cardiovascular and Cerebrovascular Disease, Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengchang Li
- Department of Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute for Nutrition and Health, Chinese Academy of sciences, Shanghai, China
| | - Gang Liu
- Department of Internal Medicine, Tangshan, China
| | - Xiaoli Chen
- Department of Internal Medicine, Tangshan, China
| | - Caiping Zhang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yong Zhou
- Department of Research Center for Cardiovascular and Cerebrovascular Disease, Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Carrasco-Cabezas M, Assmann TS, Martínez P, Cerpa L, Calfunao S, Echiburú B, Maliqueo M, Crisosto N, Salas-Pérez F. Folate and Vitamin B12 Levels in Chilean Women with PCOS and Their Association with Metabolic Outcomes. Nutrients 2024; 16:1937. [PMID: 38931291 PMCID: PMC11206694 DOI: 10.3390/nu16121937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects women of reproductive age. Many women with PCOS have been found to have an unbalanced diet and deficiencies in essential nutrients. This study aimed to assess the levels of folate and vitamin B12 (B12) and their relationship with metabolic factors in women with PCOS. Anthropometric, clinical, and genetic analyses were conducted to evaluate markers related to one-carbon metabolism in women with PCOS and in a control group. The PCOS group had a higher BMI and HOMA-IR (1.7 vs. 3.1; p < 0.0001). HDL cholesterol levels were 23% lower and triglyceride levels were 74% higher in women with PCOS. Although there were no significant differences in folate and B12 levels between the PCOS and control groups, over 60% of women with PCOS had low B12 levels (<300 pg/mL) and high homocysteine levels. In addition, the MTHFR A1298C and C677T polymorphisms were not associated with PCOS. Moreover, erythrocyte folate levels were positively correlated with fasting glucose, triglycerides, and free androgen index, and negatively correlated with SHBG and LH levels. These results suggest that B vitamins may be associated with the metabolic phenotype in PCOS. This study emphasizes the potential link between folate, vitamin B12, and metabolic and hormonal outcomes in women with PCOS.
Collapse
Affiliation(s)
- Matías Carrasco-Cabezas
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Faculty of Medicine, Universidad de Chile, Santiago 8320000, Chile; (M.C.-C.); (L.C.); (S.C.)
| | - Taís Silveira Assmann
- Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil;
| | - Paz Martínez
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine, West Division, Faculty of Medicine, Universidad de Chile, Santiago 8320000, Chile; (P.M.); (B.E.); (M.M.); (N.C.)
- Health Sciences Institute, Universidad de O’Higgins, Rancagua 3070000, Chile
| | - Leslie Cerpa
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Faculty of Medicine, Universidad de Chile, Santiago 8320000, Chile; (M.C.-C.); (L.C.); (S.C.)
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago 8320000, Chile
| | - Susan Calfunao
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Faculty of Medicine, Universidad de Chile, Santiago 8320000, Chile; (M.C.-C.); (L.C.); (S.C.)
| | - Bárbara Echiburú
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine, West Division, Faculty of Medicine, Universidad de Chile, Santiago 8320000, Chile; (P.M.); (B.E.); (M.M.); (N.C.)
| | - Manuel Maliqueo
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine, West Division, Faculty of Medicine, Universidad de Chile, Santiago 8320000, Chile; (P.M.); (B.E.); (M.M.); (N.C.)
| | - Nicolás Crisosto
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine, West Division, Faculty of Medicine, Universidad de Chile, Santiago 8320000, Chile; (P.M.); (B.E.); (M.M.); (N.C.)
- Endocrinology Unit, Department of Medicine, Clínica Alemana de Santiago, Faculty of Medicine, Universidad del Desarrollo, Santiago 7650568, Chile
| | | |
Collapse
|
3
|
Yang X, Hu R, Wang Z, Hou Y, Song G. Associations Between Serum Folate Level and HOMA-IR in Chinese Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:1481-1491. [PMID: 37229352 PMCID: PMC10204713 DOI: 10.2147/dmso.s409291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Background Adequate intake of folic acid (FA) has been proven essential for metabolism, cellular homeostasis, and antioxidant effects in diabetic patients. Our aim was to evaluate the association between serum folate levels and the risk of insulin resistance in patients with type 2 diabetes mellitus (T2DM) and to provide new ideas and approaches for reducing the risk of T2DM. Methods This was a case-control study involving 412 participants (206 with T2DM). Anthropometric parameters, islet function, biochemical parameters and body composition of T2DM group and control group were determined. Correlation analysis and logistic regression were used to evaluate the risk factors associated with the onset of insulin resistance in T2DM. Results The folate levels in type 2 diabetic patients with insulin resistance were significantly lower than those in patients without insulin resistance. Logistic regression showed that FA and high-density lipoprotein were independent influencing factors for insulin resistance in diabetic patients (P < 0.05). After adjusting for confounding factors, the degree of insulin resistance in diabetic patients was in a significant inverse relationship with folate levels (P< 0.05). We also found that below the serum FA threshold of 7.09 ng/mL insulin resistance was significantly more elevated. Conclusion Our findings suggest that the risk of insulin resistance increases with the decrease in serum FA levels in T2DM patients. Monitoring folate levels in these patients and FA supplementation are warranted preventive measures.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Rui Hu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Zhen Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Yilin Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| |
Collapse
|
4
|
Kambis TN, Mishra PK. Genome Editing and Diabetic Cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:103-114. [PMID: 36454462 PMCID: PMC10155862 DOI: 10.1007/978-981-19-5642-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Differential gene expression is associated with diabetic cardiomyopathy (DMCM) and culminates in adverse remodeling in the diabetic heart. Genome editing is a technology utilized to alter endogenous genes. Genome editing also provides an option to induce cardioprotective genes or inhibit genes linked to adverse cardiac remodeling and thus has promise in ameliorating DMCM. Non-coding genes have emerged as novel regulators of cellular signaling and may serve as potential therapeutic targets for DMCM. Specifically, there is a widespread change in the gene expression of fetal cardiac genes and microRNAs, termed genetic reprogramming, that promotes pathological remodeling and contributes to heart failure in diabetes. This genetic reprogramming of both coding and non-coding genes varies with the progression and severity of DMCM. Thus, genetic editing provides a promising option to investigate the role of specific genes/non-coding RNAs in DMCM initiation and progression as well as developing therapeutics to mitigate cardiac remodeling and ameliorate DMCM. This chapter will summarize the research progress in genome editing and DMCM and provide future directions for utilizing genome editing as an approach to prevent and/or treat DMCM.
Collapse
Affiliation(s)
- Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Eldesoqui M, Eldken ZH, Mostafa SA, Al-Serwi RH, El-Sherbiny M, Elsherbiny N, Mohammedsaleh ZM, Sakr NH. Exercise Augments the Effect of SGLT2 Inhibitor Dapagliflozin on Experimentally Induced Diabetic Cardiomyopathy, Possible Underlying Mechanisms. Metabolites 2022; 12:metabo12070635. [PMID: 35888760 PMCID: PMC9315877 DOI: 10.3390/metabo12070635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
One of the most prevalent cardiovascular problems linked with type 2 diabetes mellitus (T2DM) is diabetic cardiomyopathy (DCM). DCM is associated with myocardial oxidative stress, inflammation, apoptosis, suppressed autophagy, extracellular matrix remodeling, and fibrosis. The current study aims to investigate the protective effect of sodium-glucose transport 2 inhibitor (SGLT2i) dapagliflozin and/or exercise on DCM. Thirty adult male Sprague Dawley rats are used. T2DM is induced by a 6-week high-fat diet (HFD) followed by a single intraperitoneal (IP) injection of 35 mg/kg streptozotocin (STZ). Rats are divided into five groups, control, diabetic (DM), DM + swimming, DM + dapagliflozin, and DM + dapagliflozin and swimming. Serum glucose, insulin, insulin resistance (HOMA-IR), and cardiac enzymes (CK-MB and lactate dehydrogenase (LDH) are measured. Heart specimens are used for evaluation of cellular oxidative stress markers malondialdehyde (MDA), antioxidant enzymes, glutathione (GSH), and catalase (CAT), as well as mRNA expression of TGF-β, MMP9, IL-1β, and TNF-α. Stained sections with haematoxylin and eosin (H & E) and Masson trichrome are used for histopathological evaluation and detection of fibrosis, respectively. Immunohistochemical staining for apoptosis (caspase-3), and autophagy (LC3) are also carried out. The combinations of SGLT2i and exercise exhibited the most significant cardioprotective effect. It improved diabetic-induced histopathological alterations in the myocardium and attenuated the elevation of serum blood glucose, CK-MB, LDH, myocardial MDA, and mRNA expression of TNF-α, IL-1β, TGF-β, MMP9, and the immune expression of caspase-3. Moreover, this combination increased the serum insulin, myocardial antioxidants GSH and CAT, and increase the immune expression of the LC-3. In conclusion, a combination of SGLT2i and exercise exerted a better antioxidant, anti-inflammatory, and antifibrotic effect in DCM. Moreover, the combination enhances the autophagic capacity of the heart.
Collapse
Affiliation(s)
- Mamdouh Eldesoqui
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Zienab Helmy Eldken
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Sally Abdallah Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Noha Hammad Sakr
- Department of Anatomy, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh 33511, Egypt;
| |
Collapse
|
6
|
Long-Acting Thioredoxin Ameliorates Doxorubicin-Induced Cardiomyopathy via Its Anti-Oxidative and Anti-Inflammatory Action. Pharmaceutics 2022; 14:pharmaceutics14030562. [PMID: 35335938 PMCID: PMC8953310 DOI: 10.3390/pharmaceutics14030562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022] Open
Abstract
Although the number of patients with heart failure is increasing, a sufficient treatment agent has not been established. Oxidative stress and inflammation play important roles in the development of myocardial remodeling. When thioredoxin (Trx), an endogenous anti-oxidative and inflammatory modulator with a molecular weight of 12 kDa, is exogenously administered, it disappears rapidly from the blood circulation. In this study, we prepared a long-acting Trx, by fusing human Trx (HSA-Trx) with human serum albumin (HSA) and evaluated its efficacy in treating drug-induced heart failure. Drug-induced cardiomyopathy was created by intraperitoneally administering doxorubicin (Dox) to mice three times per week. A decrease in heart weight, increased myocardial fibrosis and markers for myocardial damage that were observed in the Dox group were suppressed by HSA-Trx administration. HSA-Trx also suppressed the expression of atrogin-1 and myostatin, myocardial atrophy factors in addition to suppressing oxidative stress and inflammation. In the Dox group, a decreased expression of endogenous Trx in cardiac tissue and an increased expression of macrophage migration inhibitory factor were observed, but these changes were restored to normal levels by HSA-Trx administration. These findings suggest that HSA-Trx improves the pathological condition associated with Dox-induced cardiomyopathy by its anti-oxidative/anti-inflammatory and myocardial atrophy inhibitory action.
Collapse
|
7
|
Dede E, Liapis D, Davos C, Katsimpoulas M, Varela A, Mpotis I, Kostomitsopoulos N, Kadoglou NPE. The effects of exercise training on cardiac matrix metalloproteinases activity and cardiac function in mice with diabetic cardiomyopathy. Biochem Biophys Res Commun 2022; 586:8-13. [PMID: 34818584 DOI: 10.1016/j.bbrc.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
AIM To evaluate the effects of exercise training (ET) on cardiac extracellular matrix (ECM) proteins homeostasis and cardiac dysfunction in mice with diabetic cardiomyopathy. METHODS Thirty-six male C57BL/6 mice were randomized into 3 groups for 8 weeks (12mice/group): Diabetic control-DC: Diabetes was induced by single streptozotocin injection (200 mg/kg i.p.); Diabetic exercise-DE: Diabetic mice underwent ET program on motorized-treadmill (6-times/week, 60min/session); Non-diabetic control-NDC: Vehicle-treated, sedentary, non-diabetic mice served as controls. Before euthanasia, all groups underwent transthoracic echocardiography (TTE). Post-mortem, left-ventricle (LV) samples were histologically analysed for ECM proteins (collagen, elastin), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). RESULTS DC group showed significantly higher cardiac contents of collagen and MMP-9 and lower elastic concentration than NDC (p < 0.001). The implementation of ET completely outweighed those diabetes-induced changes (DE vs NDC, p > 0.05). TIMP-1 levels significantly increased across all groups (DC: 18.98 ± 3.47%, DE: 24.24 ± 2.36%, NDC: 46.36 ± 5.91%; p < 0.05), while MMP-9/TIMP-1 ratio followed a reverse pattern. ET tended to increase MMP-2 concentrations versus DC (p = 0.055), but did not achieve non-diabetic levels (p < 0.05). TIMP-2 cardiac concentrations remained unaltered throughout the study (p > 0.05). Importantly, ET ameliorated both LV end-systolic internal diameter (LVESD) (p < 0.001) and the percentage of LV fractional shortening (FS%) (p = 0.006) compared to DC. Despite that favorable effect, the cardiac function level of DE group remained worse than NDC group (%FS: p = 0.002; LVESD: p < 0.001). CONCLUSION Systemic ET may favorably change ECM proteins, MMP-9 and TIMP-1 cardiac concentrations in mice with diabetic cardiomyopathy. Those results were associated with partial improvement of echocardiography-assessed cardiac function, indicating a therapeutic effect of ET in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Eleni Dede
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Dimitrios Liapis
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Constantinos Davos
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Aimilia Varela
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Ioannis Mpotis
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | | | | |
Collapse
|
8
|
Barteková M, Adameová A, Görbe A, Ferenczyová K, Pecháňová O, Lazou A, Dhalla NS, Ferdinandy P, Giricz Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic Biol Med 2021; 169:446-477. [PMID: 33905865 DOI: 10.1016/j.freeradbiomed.2021.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiometabolic diseases (CMDs) are metabolic diseases (e.g., obesity, diabetes, atherosclerosis, rare genetic metabolic diseases, etc.) associated with cardiac pathologies. Pathophysiology of most CMDs involves increased production of reactive oxygen species and impaired antioxidant defense systems, resulting in cardiac oxidative stress (OxS). To alleviate OxS, various antioxidants have been investigated in several diseases with conflicting results. Here we review the effect of CMDs on cardiac redox homeostasis, the role of OxS in cardiac pathologies, as well as experimental and clinical data on the therapeutic potential of natural antioxidants (including resveratrol, quercetin, curcumin, vitamins A, C, and E, coenzyme Q10, etc.), synthetic antioxidants (including N-acetylcysteine, SOD mimetics, mitoTEMPO, SkQ1, etc.), and promoters of antioxidant enzymes in CMDs. As no antioxidant indicated for the prevention and/or treatment of CMDs has reached the market despite the large number of preclinical and clinical studies, a sizeable translational gap is evident in this field. Thus, we also highlight potential underlying factors that may contribute to the failure of translation of antioxidant therapies in CMDs.
Collapse
Affiliation(s)
- Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia.
| | - Adriana Adameová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Oľga Pecháňová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, And Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| |
Collapse
|
9
|
Li Q, Hu L, Li J, Yu P, Hu F, Wan B, Xu M, Cheng H, Yu W, Jiang L, Shi Y, Li J, Duan M, Long Y, Liu WT. Hydrogen Attenuates Endotoxin-Induced Lung Injury by Activating Thioredoxin 1 and Decreasing Tissue Factor Expression. Front Immunol 2021; 12:625957. [PMID: 33767697 PMCID: PMC7985449 DOI: 10.3389/fimmu.2021.625957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/18/2021] [Indexed: 01/19/2023] Open
Abstract
Endotoxin-induced lung injury is one of the major causes of death induced by endotoxemia, however, few effective therapeutic options exist. Hydrogen inhalation has recently been shown to be an effective treatment for inflammatory lung injury, but the underlying mechanism is unknown. In the current study we aim to investigate how hydrogen attenuates endotoxin-induced lung injury and provide reference values for the clinical application of hydrogen. LPS was used to establish an endotoxin-induced lung injury mouse model. The survival rate and pulmonary pathologic changes were evaluated. THP-1 and HUVECC cells were cultured in vitro. The thioredoxin 1 (Trx1) inhibitor was used to evaluate the anti-inflammatory effects of hydrogen. Hydrogen significantly improved the survival rate of mice, reduced pulmonary edema and hemorrhage, infiltration of neutrophils, and IL-6 secretion. Inhalation of hydrogen decreased tissue factor (TF) expression and MMP-9 activity, while Trx1 expression was increased in the lungs and serum of endotoxemia mice. LPS-stimulated THP-1 and HUVEC-C cells in vitro and showed that hydrogen decreases TF expression and MMP-9 activity, which were abolished by the Trx1 inhibitor, PX12. Hydrogen attenuates endotoxin-induced lung injury by decreasing TF expression and MMP-9 activity via activating Trx1. Targeting Trx1 by hydrogen may be a potential treatment for endotoxin-induced lung injury.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
- Department of Anesthesiology, Jinling College Affiliated to Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Juan Li
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Fan Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Bing Wan
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Miaomiao Xu
- Department of Anesthesiology, Jinling College Affiliated to Nanjing Medical University, Nanjing, China
| | - Huixian Cheng
- Department of Anesthesiology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Wanyou Yu
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Liping Jiang
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yadan Shi
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jincan Li
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Manlin Duan
- Department of Anesthesiology, Jinling College Affiliated to Nanjing Medical University, Nanjing, China
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
- Department of Anesthesiology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yun Long
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Wen-Tao Liu
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Homme RP, Sandhu HS, George AK, Tyagi SC, Singh M. Sustained Inhibition of NF-κB Activity Mitigates Retinal Vasculopathy in Diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:947-964. [PMID: 33640319 DOI: 10.1016/j.ajpath.2021.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
This study investigated the effects of long-term NF-κB inhibition in mitigating retinal vasculopathy in a type 1 diabetic mouse model (Akita, Ins2Akita). Akita and wild-type (C57BL/6J) male mice, 24 to 26 weeks old, were treated with or without a selective inhibitor of NF-κB, 4-methyl-N1-(3-phenyl-propyl) benzene-1,2-diamine (JSH-23), for 4 weeks. Treatment was given when the mice were at least 24 weeks old. Metabolic parameters, key inflammatory mediators, blood-retinal barrier junction molecules, retinal structure, and function were measured. JSH-23 significantly lowered basal glucose levels and intraocular pressure in Akita. It also mitigated vascular remodeling and microaneurysms significantly. Optical coherence tomography of untreated Akita showed thinning of retinal layers; however, treatment with JSH-23 could prevent it. Electroretinogram demonstrated that A- and B-waves in Akita were significantly smaller than in wild type mice, indicating that JSH-23 intervention prevented loss of retinal function. Protein levels and gene expression of key inflammatory mediators, such as NOD-like receptor family pyrin domain-containing 3, intercellular adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2, were decreased after JSH-23 treatment. At the same time, connexin-43 and occludin were maintained. Vision-guided behavior also improved significantly. The results show that reducing inflammation could protect the diabetic retina and its vasculature. Findings appear to have broader implications in treating not only ocular conditions but also other vasculopathies.
Collapse
Affiliation(s)
- Rubens P Homme
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky; Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Harpal S Sandhu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Akash K George
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky; Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Mahavir Singh
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky; Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky.
| |
Collapse
|
11
|
Multi-organ damage by covid-19: congestive (cardio-pulmonary) heart failure, and blood-heart barrier leakage. Mol Cell Biochem 2021; 476:1891-1895. [PMID: 33483858 PMCID: PMC7822399 DOI: 10.1007/s11010-021-04054-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/09/2021] [Indexed: 12/23/2022]
Abstract
Corona virus disease-19 (covid-19) is caused by a coronavirus that is also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and is generally characterized by fever, respiratory inflammation, and multi-organ failure in susceptible hosts. One of the first things during inflammation is the response by acute phase proteins coupled with coagulation. The angiotensinogen (a substrate for hypertension) is one such acute phase protein and goes on to explain an association of covid-19 with that of angiotensin-converting enzyme-2 (ACE2, a metallopeptidase). Therefore, it is advisable to administer, and test the efficacy of specific blocker(s) of angiotensinogen such as siRNAs or antibodies to covid-19 subjects. Covid-19 activates neutrophils, macrophages, but decreases T-helper cells activity. The metalloproteinases promote the activation of these inflammatory immune cells, therefore; we surmise that doxycycline (a metalloproteinase inhibitor, and a safer antibiotic) would benefit the covid-19 subjects. Along these lines, an anti-acid has also been suggested for mitigation of the covid-19 complications. Interestingly, there are three primary vegetables (celery, carrot, and long-squash) which are alkaline in their pH-range as compared to many others. Hence, treatment with fresh juice (without any preservative) from these vegies or the antioxidants derived from purple carrot and cabbage together with appropriate anti-coagulants may also help prevent or lessen the detrimental effects of the covid-19 pathological outcomes. These suggested remedies might be included in the list of putative interventions that are currently being investigated towards mitigating the multi-organ damage by Covid-19 during the ongoing pandemic.
Collapse
|
12
|
Involvements of Hyperhomocysteinemia in Neurological Disorders. Metabolites 2021; 11:metabo11010037. [PMID: 33419180 PMCID: PMC7825518 DOI: 10.3390/metabo11010037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/27/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
Homocysteine (HCY), a physiological amino acid formed when proteins break down, leads to a pathological condition called hyperhomocysteinemia (HHCY), when it is over a definite limit. It is well known that an increase in HCY levels in blood, can contribute to arterial damage and several cardiovascular disease, but the knowledge about the relationship between HCY and brain disorders is very poor. Recent studies demonstrated that an alteration in HCY metabolism or a deficiency in folate or vitamin B12 can cause altered methylation and/or redox potentials, that leads to a modification on calcium influx in cells, or into an accumulation in amyloid and/or tau protein involving a cascade of events that culminate in apoptosis, and, in the worst conditions, neuronal death. The present review will thus summarize how much is known about the possible role of HHCY in neurodegenerative disease.
Collapse
|
13
|
Lu Q, Guo P, Guo J, Ares I, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Targeting peroxisome proliferator-activated receptors: A new strategy for the treatment of cardiac fibrosis. Pharmacol Ther 2020; 219:107702. [PMID: 33022300 DOI: 10.1016/j.pharmthera.2020.107702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
Cardiac fibrosis is a pathogenic factor of many cardiovascular diseases (CVD), which seriously affects people's life, and health and causes huge economic losses. Increasing evidence has shown that peroxisome proliferator-activated receptors (PPARs) can regulate the progression of cardiac fibrosis. For the first time, this review systematically summarizes the literature on cardiac fibrosis from the perspective of PPARs from 2010 to 2020. Moreover, the role of each PPARs in cardiac fibrosis was clarified in this scientific revision from the perspectives of pharmacologically active substances, known agonists, natural extract compounds, and nucleic-acid-based drugs in different CVD models. Furthermore, the combination of multiple PPARs on the treatment of cardiac fibrosis is discussed. This scientific review provides new ideas for targeting PPARs in the treatment of cardiac fibrosis and provides strategies for the development of new, safe, and effective pharmacological antagonists against cardiac fibrosis based on PPAR activity.
Collapse
Affiliation(s)
- Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pu Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingchao Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
14
|
Gebreab KY, Eeza MNH, Bai T, Zuberi Z, Matysik J, O'Shea KE, Alia A, Berry JP. Comparative toxicometabolomics of perfluorooctanoic acid (PFOA) and next-generation perfluoroalkyl substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114928. [PMID: 32540561 DOI: 10.1016/j.envpol.2020.114928] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/08/2020] [Accepted: 05/31/2020] [Indexed: 05/09/2023]
Abstract
Owing to environmental health concerns, a number of per- and polyfluoroalkyl substances (PFAS) have been phased-out, and increasingly replaced by various chemical analogs. Most prominent among these replacements are numerous perfluoroether carboxylic acids (PFECA). Toxicity, and environmental health concerns associated with these next-generation PFAS, however, remains largely unstudied. The zebrafish embryo was employed, in the present study, as a toxicological model system to investigate toxicity of a representative sample of PFECA, alongside perfluorooctanoic acid (PFOA) as one of the most widely used, and best studied, of the "legacy" PFAS. In addition, high-resolution magic angle spin (HRMAS) NMR was utilized for metabolic profiling of intact zebrafish embryos in order to characterize metabolic pathways associated with toxicity of PFAS. Acute embryotoxicity (i.e., lethality), along with impaired development, and variable effects on locomotory behavior, were observed for all PFAS in the zebrafish model. Median lethal concentration (LC50) was significantly correlated with alkyl chain-length, and toxic concentrations were quantitatively similar to those reported previously for PFAS. Metabolic profiling of zebrafish embryos exposed to selected PFAS, specifically including PFOA and two representative PFECA (i.e., GenX and PFO3TDA), enabled elaboration of an integrated model of the metabolic pathways associated with toxicity of these representative PFAS. Alterations of metabolic profiles suggested targeting of hepatocytes (i.e., hepatotoxicity), as well as apparent modulation of neural metabolites, and moreover, were consistent with a previously proposed role of mitochondrial disruption and peroxisome proliferator-activated receptor (PPAR) activation as reflected by dysfunctions of carbohydrate, lipid and amino acid metabolism, and consistent with a previously proposed contribution of PFAS to metabolic syndrome. Taken together, it was generally concluded that toxicity of PFECA is quantitatively and qualitatively similar to PFOA, and these analogs, likewise, represent potential concerns as environmental toxicants.
Collapse
Affiliation(s)
- Kiflom Y Gebreab
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Muhamed N H Eeza
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Tianyu Bai
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Zain Zuberi
- The School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Leiden Institute of Chemistry, Leiden University, 2333, Leiden, the Netherlands
| | - John P Berry
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| |
Collapse
|
15
|
Huang X, Zhao Q, Li D, Ren B, Yue L, Shi F, Wang X, Zheng C, Chen X, Zhang C, Zhang W. Association between gene promoter methylation of the one-carbon metabolism pathway and serum folate among patients with hyperhomocysteinemia. Eur J Clin Nutr 2020; 74:1677-1684. [DOI: 10.1038/s41430-020-0657-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/23/2022]
|
16
|
Andreeva–Gateva PA, Mihaleva ID, Dimova II. Type 2 diabetes mellitus and cardiovascular risk; what the pharmacotherapy can change through the epigenetics. Postgrad Med 2019; 132:109-125. [DOI: 10.1080/00325481.2019.1681215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pavlina A. Andreeva–Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Department of Pharmacology, Medical Faculty, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Ivelina D. Mihaleva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivanka I. Dimova
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
17
|
Sun L, Yu M, Zhou T, Zhang S, He G, Wang G, Gang X. Current advances in the study of diabetic cardiomyopathy: From clinicopathological features to molecular therapeutics (Review). Mol Med Rep 2019; 20:2051-2062. [PMID: 31322242 DOI: 10.3892/mmr.2019.10473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
The incidence of diabetes mellitus has become a major public health concern due to lifestyle alterations. Moreover, the complications associated with diabetes mellitus deeply influence the quality of life of patients. Diabetic cardiomyopathy (DC) is a type of diabetes mellitus complication characterized by functional and structural damage in the myocardium but not accompanied by coronary arterial disease. Currently, diagnosing and preventing DC is still a challenge for physicians due to its atypical symptoms. For this reason, it is necessary to summarize the current knowledge on DC, especially in regards to the underlying molecular mechanisms toward the goal of developing useful diagnostic approaches and effective drugs based on these mechanisms. There exist several review articles which have focused on these points, but there still remains a lot to learn from published studies. In this review, the features, diagnosis and molecular mechanisms of DC are reviewed. Furthermore, potential therapeutic and prophylactic drugs are discussed.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ming Yu
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Siwen Zhang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guangyu He
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
18
|
Kar S, Shahshahan HR, Kambis TN, Yadav SK, Li Z, Lefer DJ, Mishra PK. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cardiac Remodeling and Dysfunction. Front Physiol 2019; 10:598. [PMID: 31178749 PMCID: PMC6544124 DOI: 10.3389/fphys.2019.00598] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes, a methionine-rich meat diet, or certain genetic polymorphisms show elevated levels of homocysteine (Hcy), which is strongly associated with the development of cardiovascular disease including diabetic cardiomyopathy. However, reducing Hcy levels with folate shows no beneficial cardiac effects. We have previously shown that a hydrogen sulfide (H2S), a by-product of Hcy through transsulfuration by cystathionine beta synthase (CBS), donor mitigates Hcy-induced hypertrophy in cardiomyocytes. However, the in vivo cardiac effects of H2S in the context of hyperhomocysteinemia (HHcy) have not been studied. We tested the hypothesis that HHcy causes cardiac remodeling and dysfunction in vivo, which is ameliorated by H2S. Twelve-week-old male CBS+/− (a model of HHcy) and sibling CBS+/+ (WT) mice were treated with SG1002 (a slow release H2S donor) diet for 4 months. The left ventricle of CBS+/− mice showed increased expression of early remodeling signals c-Jun and c-Fos, increased interstitial collagen deposition, and increased cellular hypertrophy. Notably, SG1002 treatment slightly reduced c-Jun and c-Fos expression, decreased interstitial fibrosis, and reduced cellular hypertrophy. Pressure volume loop analyses in CBS+/− mice revealed increased end systolic pressure with no change in stroke volume (SV) suggesting increased afterload, which was abolished by SG1002 treatment. Additionally, SG1002 treatment increased end-diastolic volume and SV in CBS+/− mice, suggesting increased ventricular filling. These results demonstrate SG1002 treatment alleviates cardiac remodeling and afterload in HHcy mice. H2S may be cardioprotective in conditions where H2S is reduced and Hcy is elevated.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hamid R Shahshahan
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Santosh K Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Zhen Li
- Department of Pharmacology and Experimental Therapeutics, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - David J Lefer
- Department of Pharmacology and Experimental Therapeutics, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
19
|
Ostrakhovitch EA, Tabibzadeh S. Homocysteine and age-associated disorders. Ageing Res Rev 2019; 49:144-164. [PMID: 30391754 DOI: 10.1016/j.arr.2018.10.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022]
Abstract
There are numerous theories of aging, a process which still seems inevitable. Aging leads to cancer and multi-systemic disorders as well as chronic diseases. Decline in age- associated cellular functions leads to neurodegeneration and cognitive decline that affect the quality of life. Accumulation of damage, mutations, metabolic changes, failure in cellular energy production and clearance of altered proteins over the lifetime, and hyperhomocysteinemia, ultimately result in tissue degeneration. The decline in renal functions, nutritional deficiencies, deregulation of methionine cycle and deficiencies of homocysteine remethylation and transsulfuration cofactors cause elevation of homocysteine with advancing age. Abnormal accumulation of homocysteine is a risk factor of cardiovascular, neurodegenerative and chronic kidney disease. Moreover, approximately 50% of people, aged 65 years and older develop hypertension and are at a high risk of developing cardiovascular insufficiency and incurable neurodegenerative disorders. Increasing evidence suggests inverse relation between cognitive impairment, cerebrovascular and cardiovascular events and renal function. Oxidative stress, inactivation of nitric oxide synthase pathway and mitochondria dysfunction associated with impaired homocysteine metabolism lead to aging tissue degeneration. In this review, we examine impact of high homocysteine levels on changes observed with aging that contribute to development and progression of age associated diseases.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA, USA.
| | - S Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA, USA.
| |
Collapse
|
20
|
Majumder A, Singh M, George AK, Tyagi SC. Restoration of skeletal muscle homeostasis by hydrogen sulfide during hyperhomocysteinemia-mediated oxidative/ER stress condition 1. Can J Physiol Pharmacol 2018; 97:441-456. [PMID: 30422673 DOI: 10.1139/cjpp-2018-0501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elevated homocysteine (Hcy), i.e., hyperhomocysteinemia (HHcy), causes skeletal muscle myopathy. Among many cellular and metabolic alterations caused by HHcy, oxidative and endoplasmic reticulum (ER) stress are considered the major ones; however, the precise molecular mechanism(s) in this process is unclear. Nevertheless, there is no treatment option available to treat HHcy-mediated muscle injury. Hydrogen sulfide (H2S) is increasingly recognized as a potent anti-oxidant, anti-apoptotic/necrotic/pyroptotic, and anti-inflammatory compound and also has been shown to improve angiogenesis during ischemic injury. Patients with CBS mutation produce less H2S, making them vulnerable to Hcy-mediated cellular damage. Many studies have reported bidirectional regulation of ER stress in apoptosis through JNK activation and concomitant attenuation of cell proliferation and protein synthesis via PI3K/AKT axis. Whether H2S mitigates these detrimental effects of HHcy on muscle remains unexplored. In this review, we discuss molecular mechanisms of HHcy-mediated oxidative/ER stress responses, apoptosis, angiogenesis, and atrophic changes in skeletal muscle and how H2S can restore skeletal muscle homeostasis during HHcy condition. This review also highlights the molecular mechanisms on how H2S could be developed as a clinically relevant therapeutic option for chronic conditions that are aggravated by HHcy.
Collapse
Affiliation(s)
- Avisek Majumder
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,b Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,c Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Akash K George
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,c Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
21
|
Nandi SS, Shahshahan HR, Shang Q, Kutty S, Boska M, Mishra PK. MiR-133a Mimic Alleviates T1DM-Induced Systolic Dysfunction in Akita: An MRI-Based Study. Front Physiol 2018; 9:1275. [PMID: 30364155 PMCID: PMC6192327 DOI: 10.3389/fphys.2018.01275] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetic cardiomyopathy is a leading cause of heart failure. Developing a novel therapeutic strategy for diabetic cardiomyopathy and characterizing animal models used for diabetes mellitus (DM) are important. Insulin 2 mutant (Ins2+/-) Akita is a spontaneous, genetic, mouse model for T1DM, which is relevant to humans. There are contrasting reports on systolic dysfunction and pathological remodeling (hypertrophy and fibrosis) in Akita heart. Here, we used magnetic resonance imaging (MRI) approach, a gold standard reference for evaluating cardiac function, to measure ejection fraction (indicator of systolic dysfunction) in Akita. Moreover, we performed Wheat Germ Agglutinin (WGA) and hematoxylin and Eosin stainings to determine cardiac hypertrophy, and Masson's Trichrome and picrosirius red stainings to determine cardiac fibrosis in Akita. MiR-133a, an anti-hypertrophy and anti-fibrosis miRNA, is downregulated in Akita heart. We determined if miR-133a mimic treatment could mitigate systolic dysfunction and remodeling in Akita heart. Our MRI results revealed decreased ejection fraction in Akita as compared to WT and increased ejection fraction in miR-133a mimic-treated Akita. We also found that miR-133a mimic treatment mitigates T1DM-induced cardiac hypertrophy and fibrosis in Akita. We conclude that Akita shows cardiac hypertrophy, fibrosis and systolic dysfunction and miR-133a mimic treatment to Akita could ameliorate them.
Collapse
Affiliation(s)
- Shyam Sundar Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hamid Reza Shahshahan
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Quanliang Shang
- Department of Pediatric Cardiology, Children's Hospital, Omaha, NE, United States
| | - Shelby Kutty
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pediatric Cardiology, Children's Hospital, Omaha, NE, United States
| | - Michael Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
22
|
Majumder A, Singh M, George AK, Behera J, Tyagi N, Tyagi SC. Hydrogen sulfide improves postischemic neoangiogenesis in the hind limb of cystathionine-β-synthase mutant mice via PPAR-γ/VEGF axis. Physiol Rep 2018; 6:e13858. [PMID: 30175474 PMCID: PMC6119702 DOI: 10.14814/phy2.13858] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Neoangiogenesis is a fundamental process which helps to meet energy requirements, tissue growth, and wound healing. Although previous studies showed that Peroxisome proliferator-activated receptor (PPAR-γ) regulates neoangiogenesis via upregulation of vascular endothelial growth factor (VEGF), and both VEGF and PPAR-γ expressions were inhibited during hyperhomocysteinemic (HHcy), whether these two processes could trigger pathological effects in skeletal muscle via compromising neoangiogenesis has not been studied yet. Unfortunately, there are no treatment options available to date for ameliorating HHcy-mediated neoangiogenic defects. Hydrogen sulfide (H2 S) is a novel gasotransmitter that can induce PPAR-γ levels. However, patients with cystathionine-β-synthase (CBS) mutation(s) cannot produce a sufficient amount of H2 S. We hypothesized that exogenous supplementation of H2 S might improve HHcy-mediated poor neoangiogenesis via the PPAR-γ/VEGF axis. To examine this, we created a hind limb femoral artery ligation (FAL) in CBS+/- mouse model and treated them with GYY4137 (a long-acting H2 S donor compound) for 21 days. To evaluate neoangiogenesis, we used barium sulfate angiography and laser Doppler blood flow measurements in the ischemic hind limbs of experimental mice post-FAL to assess blood flow. Proteins and mRNAs levels were studied by Western blots and qPCR analyses. HIF1-α, VEGF, PPAR-γ and p-eNOS expressions were attenuated in skeletal muscle of CBS+/- mice after 21 days of FAL in comparison to wild-type (WT) mice, that were improved via GYY4137 treatment. We also found that the collateral vessel density and blood flow were significantly reduced in post-FAL CBS+/- mice compared to WT mice and these effects were ameliorated by GYY4137. Moreover, we found that plasma nitrite levels were decreased in post-FAL CBS+/- mice compared to WT mice, which were mitigated by GYY4137 supplementation. These results suggest that HHcy can inhibit neoangiogenesis via antagonizing the angiogenic signal pathways encompassing PPAR-γ/VEGF axis and that GYY4137 could serve as a potential therapeutic to alleviate the harmful metabolic effects of HHcy conditions.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
| | - Mahavir Singh
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
| | - Akash K. George
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
| | - Jyotirmaya Behera
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
| | - Neetu Tyagi
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
| | - Suresh C. Tyagi
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
| |
Collapse
|
23
|
Laha A, Majumder A, Singh M, Tyagi SC. Connecting homocysteine and obesity through pyroptosis, gut microbiome, epigenetics, peroxisome proliferator-activated receptor γ, and zinc finger protein 407. Can J Physiol Pharmacol 2018; 96:971-976. [PMID: 29890083 DOI: 10.1139/cjpp-2018-0037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although homocysteine (Hcy), a part of the epigenome, contributes to cell death by pyroptosis and decreases peroxisome proliferator-activated receptor γ (PPARγ) levels, the mechanisms are unclear. Hcy is found in high concentrations in the sera of obese individuals, which can elicit an immune response as well by hypermethylating CpG islands of specific gene promoters, a marker of epigenetics. Hcy has also been established to chelate divalent metal ions like Cu2+ and Zn2+, but this role of Hcy has not been established in relationship with obesity. It has been known for a while that PPARγ dysregulation results in various metabolic disorders including glucose and lipid metabolism. Recently, zinc finger protein 407 (Zfp407) is reported to regulate PPARγ target gene expression without affecting PPARγ transcript and protein levels by synergistically working with PPARγ. However, the mechanism(s) of this synergy, as well as other factors contributing to or inhibiting this synergism, have not been proven. This review suggests that Hcy contributes to pyroptosis, changes gut microbiome, and alters PPARγ-dependent mechanism(s) via Zfp407-mediated upregulated adipogenesis and misbalanced fatty acid metabolism, which can predispose to obesity and, consequently, obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Anwesha Laha
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA.,Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Avisek Majumder
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA.,Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Mahavir Singh
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA.,Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA.,Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
24
|
The role of NADPH oxidases in diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1908-1913. [DOI: 10.1016/j.bbadis.2017.07.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022]
|
25
|
Targeting miRNA for Therapy of Juvenile and Adult Diabetic Cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:47-59. [PMID: 29754174 DOI: 10.1007/978-3-319-74470-4_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prevalence of diabetes mellitus (DM), a multifactorial disease often diagnosed with high blood glucose levels, is rapidly increasing in the world. Association of DM with multi-organ dysfunction including cardiomyopathy makes it a leading cause of morbidity and mortality. There are two major types of DM: type 1 DM (T1D) and type 2 DM (T2D). T1D is diagnosed by reduced levels of insulin and high levels of glucose in the blood. It is caused due to pancreatic beta cell destruction/loss, and mostly found in juveniles (juvenile DM). T2D is diagnosed by increased levels of insulin and glucose in the blood. It is caused due to insulin receptor dysfunction, and mostly found in the adults (adult DM). Both T1D and T2D impair cardiac muscle function, which is referred to as diabetic cardiomyopathy. We and others have reported that miRNAs, a novel class of tiny non-coding regulatory RNAs, are differentially expressed in the diabetic heart and they contribute to diabetic cardiomyopathy. Here, we elaborated the biogenesis of miRNA, how miRNA regulates a gene, cardioprotective roles of different miRNAs including miRNAs present in exosomes, underlying molecular mechanisms by which miRNA ameliorates diabetic cardiomyopathy, and the role of miRNA as a potential therapeutic target for juvenile and adult diabetic cardiomyopathy.
Collapse
|
26
|
Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing. PLoS One 2017; 12:e0182828. [PMID: 28837672 PMCID: PMC5570368 DOI: 10.1371/journal.pone.0182828] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023] Open
Abstract
Although diabetes mellitus (DM) causes cardiomyopathy and exacerbates heart failure, the underlying molecular mechanisms for diabetic cardiomyopathy/heart failure are poorly understood. Insulin2 mutant (Ins2+/-) Akita is a mouse model of T1DM, which manifests cardiac dysfunction. However, molecular changes at cardiac transcriptome level that lead to cardiomyopathy remain unclear. To understand the molecular changes in the heart of diabetic Akita mice, we profiled cardiac transcriptome of Ins2+/- Akita and Ins2+/+ control mice using next generation sequencing (NGS) and microarray, and determined the implications of differentially expressed genes on various heart failure signaling pathways using Ingenuity pathway (IPA) analysis. First, we validated hyperglycemia, increased cardiac fibrosis, and cardiac dysfunction in twelve-week male diabetic Akita. Then, we analyzed the transcriptome levels in the heart. NGS analyses on Akita heart revealed 137 differentially expressed transcripts, where Bone Morphogenic Protein-10 (BMP10) was the most upregulated and hairy and enhancer of split-related (HELT) was the most downregulated gene. Moreover, twelve long non-coding RNAs (lncRNAs) were upregulated. The microarray analyses on Akita heart showed 351 differentially expressed transcripts, where vomeronasal-1 receptor-180 (Vmn1r180) was the most upregulated and WD Repeat Domain 83 Opposite Strand (WDR83OS) was the most downregulated gene. Further, miR-101c and H19 lncRNA were upregulated but Neat1 lncRNA was downregulated in Akita heart. Eleven common genes were upregulated in Akita heart in both NGS and microarray analyses. IPA analyses revealed the role of these differentially expressed genes in key signaling pathways involved in diabetic cardiomyopathy. Our results provide a platform to initiate focused future studies by targeting these genes and/or non-coding RNAs, which are differentially expressed in Akita hearts and are involved in diabetic cardiomyopathy.
Collapse
|
27
|
Singh M, Tyagi SC. Metalloproteinases as mediators of inflammation and the eyes: molecular genetic underpinnings governing ocular pathophysiology. Int J Ophthalmol 2017; 10:1308-1318. [PMID: 28861360 DOI: 10.18240/ijo.2017.08.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/01/2017] [Indexed: 12/18/2022] Open
Abstract
There are many vision threatening diseases of the eye affecting millions of people worldwide. In this article, we are summarizing potential role of various matrix metalloproteinases (MMPs); the Zn (2+)-dependent endoproteases in eye health along with pathogenesis of prominent ocular diseases such as macular degeneration, diabetic retinopathy, and glaucoma via understanding MMPs regulation in affected patients, interactions of MMPs with their substrate molecules, and key regulatory functions of tissue inhibitor of metalloproteinases (TIMPs) towards maintaining overall homeostasis.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
28
|
Abstract
Fibrosis is a major player in cardiovascular disease, both as a contributor to the development of disease, as well as a post-injury response that drives progression. Despite the identification of many mechanisms responsible for cardiovascular fibrosis, to date no treatments have emerged that have effectively reduced the excess deposition of extracellular matrix associated with fibrotic conditions. Novel treatments have recently been identified that hold promise as potential therapeutic agents for cardiovascular diseases associated with fibrosis, as well as other fibrotic conditions. The purpose of this review is to provide an overview of emerging antifibrotic agents that have shown encouraging results in preclinical or early clinical studies, but have not yet been approved for use in human disease. One of these agents is bone morphogenetic protein-7 (BMP7), which has beneficial effects in multiple models of fibrotic disease. Another approach discussed involves altering the levels of micro-RNA (miR) species, including miR-29 and miR-101, which regulate the expression of fibrosis-related gene targets. Further, the antifibrotic potential of agonists of the peroxisome proliferator-activated receptors will be discussed. Finally, evidence will be reviewed in support of the polypeptide hormone relaxin. Relaxin is long known for its extracellular remodeling properties in pregnancy, and is rapidly emerging as an effective antifibrotic agent in a number of organ systems. Moreover, relaxin has potent vascular and renal effects that make it a particularly attractive approach for the treatment of cardiovascular diseases. In each case, the mechanism of action and the applicability to various fibrotic diseases will be discussed.
Collapse
Affiliation(s)
- Benita L McVicker
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, OmahaNE, United States
| | - Robert G Bennett
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,The Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, OmahaNE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, OmahaNE, United States
| |
Collapse
|
29
|
Majumder A, Behera J, Jeremic N, Tyagi SC. Hypermethylation: Causes and Consequences in Skeletal Muscle Myopathy. J Cell Biochem 2017; 118:2108-2117. [PMID: 27982479 DOI: 10.1002/jcb.25841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
A detrimental consequence of hypermethylation is hyperhomocysteinemia (HHcy), that causes oxidative stress, inflammation, and matrix degradation, which leads to multi-pathology in different organs. Although, it is well known that hypermethylation leads to overall gene silencing and hypomethylation leads to overall gene activation, the role of such process in skeletal muscle dysfunction during HHcy condition is unclear. In this study, we emphasized the multiple mechanisms including epigenetic alteration by which HHcy causes skeletal muscle myopathy. This review also highlights possible role of methylation, histone modification, and RNA interference in skeletal muscle dysfunction during HHcy condition and potential therapeutic molecules, putative challenges, and methodologies to deal with HHcy mediated skeletal muscle dysfunction. We also highlighted that B vitamins (mainly B12 and B6), with folic acid supplementation, could be useful as an adjuvant therapy to reverse these consequences associated with this HHcy conditions in skeletal muscle. However, we would recommend to further study involving long-term trials could help to assess efficacy of the use of these therapeutic agents. J. Cell. Biochem. 118: 2108-2117, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky, 40202.,Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40202
| | - Jyotirmaya Behera
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40202
| | - Nevena Jeremic
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40202
| | - Suresh C Tyagi
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky, 40202.,Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40202
| |
Collapse
|
30
|
Behera J, Bala J, Nuru M, Tyagi SC, Tyagi N. Homocysteine as a Pathological Biomarker for Bone Disease. J Cell Physiol 2017; 232:2704-2709. [PMID: 27859269 DOI: 10.1002/jcp.25693] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 01/04/2023]
Abstract
In the last few decades, perturbation in methyl-group and homocysteine (Hcy) balance have emerged as independent risk factors in a number of pathological conditions including neurodegenerative disease, cardiovascular dysfunction, cancer development, autoimmune disease, and kidney disease. Recent studies report Hcy to be a newly recognized risk factor for osteoporosis. Elevated Hcy levels are known to modulate osteoclastgenesis by causing detrimental effects on bone via oxidative stress induced metalloproteinase-mediated extracellular matrix degradation and decrease in bone blood flow. Evidence from previous studies also suggests that the decreased chondrocytes mediated bone mineralization in chick limb-bud mesenchymal cells and during the gestational period of ossification in rat model. However, Hcy imbalance and its role in bone loss, regression in vascular invasion, and osteoporosis, are not clearly understood. More investigations are required to explore the complex interplay between Hcy imbalance and onset of bone disease progression. This article reviews the current body of knowledge on regulation of Hcy mediated oxidative stress and its role in bone remodeling, vascular blood flow and progression of bone disease. J. Cell. Physiol. 232: 2704-2709, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Jyoti Bala
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Mohammed Nuru
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
31
|
Bildyug NB, Voronkina IV, Smagina LV, Yudintseva NM, Pinaev GP. Matrix Metalloproteinases in Primary Culture of Cardiomyocytes. BIOCHEMISTRY (MOSCOW) 2016; 80:1318-26. [PMID: 26567576 DOI: 10.1134/s0006297915100132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The highly organized contractile apparatus of cardiomyocytes in heart tissue allows for their continuous contractility, whereas extracellular matrix components are synthesized and spatially organized by fibroblasts and endothelial cells. However, reorganization of the cardiomyocyte contractile apparatus occurs upon their 2D cultivation, which is accompanied by transient loss of their contractility and acquired capability of extracellular matrix synthesis (Bildyug, N. B., and Pinaev, G. P. (2013) Tsitologiya, 55, 713-724). In this study, matrix metalloproteinases were investigated at different times of cardiomyocyte 2D cultivation and 3D cultivation in collagen gels. It was found that cardiomyocytes in 2D culture synthesize matrix metalloproteinases MMP-2 and MMP-9, wherein their amount varies with the cultivation time. The peak MMP-9 amount is at early cultivation time, when the reorganization of cardiomyocyte contractile apparatus occurs, and the MMP-2 peak precedes the recovery of the initial organization of their contractile apparatus. Upon cardiomyocyte cultivation in 3D collagen gels, in which case their contractile apparatus does not rearrange, a steady small amount of MMP-2 and MMP-9 is observed. These data indicate that the cardiomyocyte contractile apparatus reorganization in culture is associated with synthesis and spatial organization of their own extracellular matrix.
Collapse
Affiliation(s)
- N B Bildyug
- Institute of Cytology, Russian Academy of Sciences, Russia.
| | | | | | | | | |
Collapse
|
32
|
Peroxisome Proliferator-Activated Receptor-γ Is Critical to Cardiac Fibrosis. PPAR Res 2016; 2016:2198645. [PMID: 27293418 PMCID: PMC4880703 DOI: 10.1155/2016/2198645] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily, which plays a central role in regulating lipid and glucose metabolism. However, accumulating evidence demonstrates that PPARγ agonists have potential to reduce inflammation, influence the balance of immune cells, suppress oxidative stress, and improve endothelial function, which are all involved in the cellular and molecular mechanisms of cardiac fibrosis. Thus, in this review we discuss the role of PPARγ in various cardiovascular conditions associated with cardiac fibrosis, including diabetes mellitus, hypertension, myocardial infarction, heart failure, ischemia/reperfusion injury, atrial fibrillation, and several other cardiovascular disease (CVD) conditions, and summarize the developmental status of PPARγ agonists for the clinical management of CVD.
Collapse
|
33
|
Prathipati P, Metreveli N, Nandi SS, Tyagi SC, Mishra PK. Ablation of Matrix Metalloproteinase-9 Prevents Cardiomyocytes Contractile Dysfunction in Diabetics. Front Physiol 2016; 7:93. [PMID: 27014091 PMCID: PMC4791405 DOI: 10.3389/fphys.2016.00093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022] Open
Abstract
Elevated expression and activity of matrix metalloproteinase-9 (MMP9) and decreased contractility of cardiomyocytes are documented in diabetic hearts. However, it is unclear whether MMP is involved in the regulation of contractility of cardiomyocytes in diabetic hearts. In the present study, we tested the hypothesis that MMP9 regulates contractility of cardiomyocytes in diabetic hearts, and ablation of MMP9 prevents impaired contractility of cardiomyocytes in diabetic hearts. To determine the specific role of MMP9 in cardiomyocyte contractility, we used 12–14 week male WT (normoglycemic sibling of Akita), Akita, and Ins2+∕−/MMP9−∕− (DKO) mice. DKO mice were generated by cross-breeding male Ins2+∕− Akita (T1D) with female MMP9 knockout (MMP9−∕−) mice. We isolated cardiomyocytes from the heart of the above three groups of mice and measured their contractility and calcium transients. Moreover, we determined mRNA and protein levels of sarco-endoplasmic reticulum calcium ATPase-2a (SERCA-2a), which is involved in calcium handling during contractility of cardiomyocytes in WT, Akita, and DKO hearts using QPCR, Western blotting and immunoprecipitation, respectively. Our results revealed that in Akita hearts where increased expression and activity of MMP9 is reported, the rates of shortening and re-lengthening (±dL/dt) of cardiomyocytes were decreased, time to 90% peak height and baseline during contractility was increased, rate of calcium decay was increased, and calcium transient was decreased as compared to WT cardiomyocytes. However, these changes in Akita were blunted in DKO cardiomyocytes. The molecular analyses of SERCA-2a in the hearts showed that it was downregulated in Akita as compared to WT but was comparatively upregulated in DKO. These results suggest that abrogation of MMP9 gene prevents contractility of cardiomyocytes, possibly by increasing SERCA-2a and calcium transients. We conclude that MMP9 plays a crucial role in the regulation of contractility of cardiomyocytes in diabetic hearts.
Collapse
Affiliation(s)
- Priyanka Prathipati
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| | - Naira Metreveli
- Department of Physiology and Biophysics, University of Louisville Louisville, KY, USA
| | - Shyam Sundar Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville Louisville, KY, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical CenterOmaha, NE, USA; Department of Anesthesiology, University of Nebraska Medical CenterOmaha, NE, USA
| |
Collapse
|
34
|
Vacek TP, Neamtu D, Tyagi SC. Effect of MMPs on Cardiovasculature and Blood Flow. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Kesherwani V, Nandi SS, Sharawat SK, Shahshahan HR, Mishra PK. Hydrogen sulfide mitigates homocysteine-mediated pathological remodeling by inducing miR-133a in cardiomyocytes. Mol Cell Biochem 2015; 404:241-50. [PMID: 25763715 DOI: 10.1007/s11010-015-2383-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/05/2015] [Indexed: 12/13/2022]
Abstract
An elevated level of homocysteine called hyperhomocysteinemia (HHcy) is associated with pathological cardiac remodeling. Hydrogen sulfide (H2S) acts as a cardioprotective gas; however, the mechanism by which H2S mitigates homocysteine-mediated pathological remodeling in cardiomyocytes is unclear. We hypothesized that H2S ameliorates HHcy-mediated hypertrophy by inducing cardioprotective miR-133a in cardiomyocytes. To test the hypothesis, HL1 cardiomyocytes were treated with (1) plain medium (control, CT), (2) 100 µM of homocysteine (Hcy), (3) Hcy with 30 µM of H2S (Hcy + H2S), and (4) H2S for 24 h. The levels of hypertrophy markers: c-fos, atrial natriuretic peptide (ANP), and beta-myosin heavy chain (β-MHC), miR-133a, and its transcriptional inducer myosin enhancer factor-2C (MEF2C) were determined by Western blotting, RT-qPCR, and immunofluorescence. The activity of MEF2C was assessed by co-immunoprecipitation of MEF2C with histone deacetylase-1(HDAC1). Our results show that H2S ameliorates homocysteine-mediated up-regulation of c-fos, ANP, and β-MHC, and down-regulation of MEF2C and miR-133a. HHcy induces the binding of MEF2C with HDAC1, whereas H2S releases MEF2C from MEF2C-HDAC1 complex causing activation of MEF2C. These findings elicit that HHcy induces cardiac hypertrophy by promoting MEF2C-HDAC1 complex formation that inactivates MEF2C causing suppression of anti-hypertrophy miR-133a in cardiomyocytes. H2S mitigates hypertrophy by inducing miR-133a through activation of MEF2C in HHcy cardiomyocytes. To our knowledge, this is a novel mechanism of H2S-mediated activation of MEF2C and induction of miR-133a and inhibition of hypertrophy in HHcy cardiomyocytes.
Collapse
Affiliation(s)
- Varun Kesherwani
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 668 S 41st Street, DRC1, Room 5047, Omaha, NE, 68198-5850, USA
| | | | | | | | | |
Collapse
|
36
|
Yang XH, Li P, Yin YL, Tu JH, Dai W, Liu LY, Wang SX. Rosiglitazone via PPARγ-dependent suppression of oxidative stress attenuates endothelial dysfunction in rats fed homocysteine thiolactone. J Cell Mol Med 2015; 19:826-35. [PMID: 25656735 PMCID: PMC4395197 DOI: 10.1111/jcmm.12510] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 11/17/2014] [Indexed: 02/03/2023] Open
Abstract
To explore whether rosiglitazone (RSG), a selective peroxisome proliferator-activated receptor γ (PPARγ) agonist, exerts beneficial effects on endothelial dysfunction induced by homocysteine thiolactone (HTL) and to investigate the potential mechanisms. Incubation of cultured human umbilical vein endothelial cells with HTL (1 mM) for 24 hrs significantly reduced cell viabilities assayed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, as well as enhanced productions of reactive oxygen species, activation of nuclear factor kappa B, and increased intercellular cell adhesion molecule-1 secretion. Pre-treatment of cells with RSG (0.001–0.1 mM), pyrollidine dithiocarbamate (PDTC, 0.1 mM) or apocynin (0.1 mM) for 1 hr reversed these effects induced by HTL. Furthermore, co-incubation with GW9662 (0.01 mM) abolished the protective effects of RSG on HTL-treated cells. In ex vivo experiments, exposure of isolated aortic rings from. rats to HTL (1 mM) for 1 hr dramatically impaired acetylcholine-induced endothelium-dependent relaxation, reduced release of nitric oxide and activity of superoxide dismutase, and increased malondialdehyde content in aortic tissues. Preincubation of aortic rings with RSG (0.1, 0.3, 1 mM), PDTC or apocynin normalized the disorders induced by HTL. In vivo analysis indicated that administration of RSG (20 mg/kg/d) remarkably suppressed oxidative stress and prevented endothelial dysfunction in rats fed HTL (50 mg/kg/d) for 8 weeks. RSG improves endothelial functions in rats fed HTL, which is related to PPARγ-dependent suppression of oxidative stress.
Collapse
Affiliation(s)
- Xu-Hong Yang
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Differential expression of dicer, miRNAs, and inflammatory markers in diabetic Ins2+/- Akita hearts. Cell Biochem Biophys 2014; 68:25-35. [PMID: 23797610 DOI: 10.1007/s12013-013-9679-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetic cardiomyopathy is a leading cause of morbidity and mortality, and Insulin2 mutant (Ins2+/-) Akita is a genetic mice model of diabetes relevant to humans. Dicer, miRNAs, and inflammatory cytokines are associated with heart failure. However, the differential expression of miRNAs, dicer, and inflammatory molecules are not clear in diabetic cardiomyopathy of Akita. We measured the levels of miRNAs, dicer, pro-inflammatory tumor necrosis factor alpha (TNFα), and anti-inflammatory interleukin 10 (IL-10) in C57BL/6J (WT) and Akita hearts. The results revealed increased heart to body weight ratio and robust expression of brain natriuretic peptide (BNP: a hypertrophy marker) suggesting cardiac hypertrophy in Akita. The multiplex RT-PCR, qPCR, and immunoblotting showed up regulation of dicer, whereas miRNA array elicited spread down regulation of miRNAs in Akita including dramatic down regulation of let-7a, miR-130, miR-142-3p, miR-148, miR-338, miR-345-3p, miR-384-3p, miR-433, miR-450, miR-451, miR-455, miR-494, miR-499, miR-500, miR-542-3p, miR-744, and miR-872. Conversely, miR-295 is induced in Akita. Cardiac TNFα is upregulated at mRNA (RT-PCR and qPCR), protein (immunoblotting), and cellular (immunohistochemistry and confocal microscopy) levels, and is robust in hypertrophic cardiomyocytes suggesting direct association of TNFα with hypertrophy. Contrary to TNFα, cardiac IL-10 is downregulated in Akita. In conclusion, induction of dicer and TNFα, and attenuation of IL-10 and majority of miRNA are associated with cardiomyopathy in Akita and could be used for putative therapeutic target for heart failure in diabetics.
Collapse
|
38
|
Azevedo A, Prado AF, Antonio RC, Issa JP, Gerlach RF. Matrix metalloproteinases are involved in cardiovascular diseases. Basic Clin Pharmacol Toxicol 2014; 115:301-14. [PMID: 24974977 DOI: 10.1111/bcpt.12282] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 06/26/2014] [Indexed: 12/18/2022]
Abstract
This MiniReview describes the essential biochemical and molecular aspects of matrix metalloproteinases (MMPs) and briefly discusses how they engage in different diseases, with particular emphasis on cardiovascular diseases. There is compelling scientific evidence that many MMPs, especially MMP-2, play important roles in the development of cardiovascular diseases; inhibition of these enzymes is beneficial to many cardiovascular conditions, sometimes precluding or postponing end-organ damage and fatal outcomes. Conducting comprehensive discussions and further studies on how MMPs participate in cardiovascular diseases is important, because inhibition of these enzymes may be an alternative or an adjuvant for current cardiovascular disease therapy.
Collapse
Affiliation(s)
- Aline Azevedo
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
39
|
Sengwayo D, Moraba M, Motaung S. Association of homocysteinaemia with hyperglycaemia, dyslipidaemia, hypertension and obesity. Cardiovasc J Afr 2014; 24:265-9. [PMID: 24217303 PMCID: PMC3807673 DOI: 10.5830/cvja-2013-059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/14/2013] [Indexed: 01/14/2023] Open
Abstract
AIM Hyperhomocysteinaemia and the metabolic syndrome are associated with increased cardiovascular risk. We investigated whether there is a link between the metabolic syndrome or its components and homocysteine levels in a population without cardiovascular disease. METHODS From the population sample of 382 participants (286 females and 96 males) we isolated those reflecting the metabolic syndrome and determined their homocysteine levels. We then evaluated the association of homocysteine with hyperglycaemia, hypertriglyceridaemia, hypercholesterolaemia, hypertension and obesity, using a significance level of p = 0.05. Enzymatic methods were used for all biochemical parameters. RESULTS We found the statistical relationship between homocysteine and the metabolic syndrome as follows: hyperglycaemia (p = 0.175), hypertriglyceridaemia (p = 0.442), hypercholesterolaemia (p = 0.480), obesity (p = 0.080); and hypertension: systolic pressure (p = 0.002) and diastolic pressure (p = 0.033). CONCLUSION We found no statistically significant association between baseline plasma homocysteine levels and the metabolic syndrome, except for hypertension.
Collapse
Affiliation(s)
- Dudu Sengwayo
- Department of Medical Science, Health Public and Health Promotion, School of Health Sciences, Faculty of Health Sciences, University of Limpopo (Turfloop Campus), Sovenga, South Africa
| | | | | |
Collapse
|
40
|
Winchester L, Veeranki S, Givvimani S, Tyagi SC. Exercise mitigates the adverse effects of hyperhomocysteinemia on macrophages, MMP-9, skeletal muscle, and white adipocytes. Can J Physiol Pharmacol 2014; 92:575-82. [PMID: 24923386 DOI: 10.1139/cjpp-2014-0059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regular exercise is a great medicine with its benefits encompassing everything from prevention of cardiovascular risk to alleviation of different muscular myopathies. Interestingly, elevated levels of homocysteine (Hcy), also known as hyperhomocysteinemia (HHcy), antagonizes beta-2 adrenergic receptors (β2AR), gamma amino butyric acid (GABA), and peroxisome proliferator-activated receptor-gamma (PPARγ) receptors. HHcy also stimulates an elevation of the M1/M2 macrophage ratio, resulting in a more inflammatory profile. In this review we discuss several potential targets altered by HHcy that result in myopathy and excessive fat accumulation. Several of these HHcy mediated changes can be countered by exercise and culminate into mitigation of HHcy induced myopathy and metabolic syndrome. We suggest that exercise directly impacts levels of Hcy, matrix metalloproteinase 9 (MMP-9), macrophages, and G-protein coupled receptors (GPCRs, especially Gs). While HHcy promotes the M1 macrophage phenotype, it appears that exercise may diminish the M1/M2 ratio, resulting in a less inflammatory phenotype. HHcy through its influence on GPCRs, specifically β₂AR, PPARγ and GABA receptors, promotes accumulation of white fat, whereas exercise enhances the browning of white fat and counters HHcy-mediated effects on GPCRs. Alleviation of HHcy-associated pathologies with exercise also includes reversal of excessive MMP-9 activation. Moreover, exercise, by reducing plasma Hcy levels, may prevent skeletal muscle myopathy, improve exercise capacity and rescue the obese phenotype. The purpose of this review is to summarize the pathological conditions surrounding HHcy and to clarify the importance of regular exercise as a method of disease prevention.
Collapse
Affiliation(s)
- Lee Winchester
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
41
|
Familtseva A, Kalani A, Chaturvedi P, Tyagi N, Metreveli N, Tyagi SC. Mitochondrial mitophagy in mesenteric artery remodeling in hyperhomocysteinemia. Physiol Rep 2014; 2:e00283. [PMID: 24771691 PMCID: PMC4001876 DOI: 10.14814/phy2.283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although high levels of homocysteine also termed as hyperhomocysteinemia (HHcy) has been associated with inflammatory bowel disease and mesenteric artery occlusion, the mitochondrial mechanisms behind endothelial dysfunction that lead to mesenteric artery remodeling are largely unknown. We hypothesize that in HHcy there is increased mitochondrial fission due to altered Mfn‐2/Drp‐1 ratio, which leads to endothelial dysfunction and collagen deposition in the mesenteric artery inducing vascular remodeling. To test this hypothesis, we used four groups of mice: (i) WT (C57BL/6J); (ii) mice with HHcy (CBS+/−); (iii) oxidative stress resistant mice (C3H) and (iv) mice with HHcy and oxidative stress resistance (CBS+/−/C3H). For mitochondrial dynamics, we studied the expression of Mfn‐2 which is a mitochondrial fusion protein and Drp‐1 which is a mitochondrial fission protein by western blots, real‐time PCR and immunohistochemistry. We also examined oxidative stress markers, endothelial cell, and gap junction proteins that play an important role in endothelial dysfunction. Our data showed increase in oxidative stress, mitochondrial fission (Drp‐1), and collagen deposition in CBS+/− compared to WT and C3H mice. We also observed significant down regulation of Mfn‐2 (mitochondrial fusion marker), CD31, eNOS and connexin 40 (gap junction protein) in CBS+/− mice as compared to WT and C3H mice. In conclusion, our data suggested that HHcy increased mitochondrial fission (i.e., decreased Mfn‐2/Drp‐1 ratio, causing mitophagy) that leads to endothelial cell damage and collagen deposition in the mesenteric artery. This is a novel report on the role of mitochondrial dynamics alteration defining mesenteric artery remodeling. e00283 This article is a novel report on the role of mitochondrial dynamics in mesenteric artery remodeling during hyperhomocysteinemia. The study can contribute significantly toward understanding the mesenteric mitochondrial mechanisms underpinning inflammatory bowel disease – a major clinical concern.
Collapse
Affiliation(s)
- Anastasia Familtseva
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, 40202, Kentucky
| | | | | | | | | | | |
Collapse
|
42
|
Moroni F, Mirabella T. Decellularized matrices for cardiovascular tissue engineering. AMERICAN JOURNAL OF STEM CELLS 2014; 3:1-20. [PMID: 24660110 PMCID: PMC3960753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to "biointegration". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.
Collapse
|
43
|
Generating double knockout mice to model genetic intervention for diabetic cardiomyopathy in humans. Methods Mol Biol 2014; 1194:385-400. [PMID: 25064116 DOI: 10.1007/978-1-4939-1215-5_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes is a rapidly increasing disease that enhances the chances of heart failure twofold to fourfold (as compared to age and sex matched nondiabetics) and becomes a leading cause of morbidity and mortality. There are two broad classifications of diabetes: type1 diabetes (T1D) and type2 diabetes (T2D). Several mice models mimic both T1D and T2D in humans. However, the genetic intervention to ameliorate diabetic cardiomyopathy in these mice often requires creating double knockout (DKO). In order to assess the therapeutic potential of a gene, that specific gene is either overexpressed (transgenic expression) or abrogated (knockout) in the diabetic mice. If the genetic mice model for diabetes is used, it is necessary to create DKO with transgenic/knockout of the target gene to investigate the specific role of that gene in pathological cardiac remodeling in diabetics. One of the important genes involved in extracellular matrix (ECM) remodeling in diabetes is matrix metalloproteinase-9 (Mmp9). Mmp9 is a collagenase that remains latent in healthy hearts but induced in diabetic hearts. Activated Mmp9 degrades extracellular matrix (ECM) and increases matrix turnover causing cardiac fibrosis that leads to heart failure. Insulin2 mutant (Ins2+/-) Akita is a genetic model for T1D that becomes diabetic spontaneously at the age of 3-4 weeks and show robust hyperglycemia at the age of 10-12 weeks. It is a chronic model of T1D. In Ins2+/- Akita, Mmp9 is induced. To investigate the specific role of Mmp9 in diabetic hearts, it is necessary to create diabetic mice where Mmp9 gene is deleted. Here, we describe the method to generate Ins2+/-/Mmp9-/- (DKO) mice to determine whether the abrogation of Mmp9 ameliorates diabetic cardiomyopathy.
Collapse
|
44
|
Rashid K, Sinha K, Sil PC. An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol 2013; 62:584-600. [PMID: 24084033 DOI: 10.1016/j.fct.2013.09.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/29/2013] [Accepted: 09/19/2013] [Indexed: 12/29/2022]
Abstract
Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta 700054, West Bengal, India
| | | | | |
Collapse
|
45
|
Mishra PK, Givvimani S, Chavali V, Tyagi SC. Cardiac matrix: a clue for future therapy. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2271-6. [PMID: 24055000 DOI: 10.1016/j.bbadis.2013.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/30/2022]
Abstract
Cardiac muscle is unique because it contracts ceaselessly throughout the life and is highly resistant to fatigue. The marvelous nature of the cardiac muscle is attributed to its matrix that maintains structural and functional integrity and provides ambient micro-environment required for mechanical, cellular and molecular activities in the heart. Cardiac matrix dictates the endothelium myocyte (EM) coupling and contractility of cardiomyocytes. The matrix metalloproteinases (MMPs) and their tissue inhibitor of metalloproteinases (TIMPs) regulate matrix degradation that determines cardiac fibrosis and myocardial performance. We have shown that MMP-9 regulates differential expression of micro RNAs (miRNAs), calcium cycling and contractility of cardiomyocytes. The differential expression of miRNAs is associated with angiogenesis, hypertrophy and fibrosis in the heart. MMP-9, which is involved in the degradation of cardiac matrix and induction of fibrosis, is also implicated in inhibition of survival and differentiation of cardiac stem cells (CSC). Cardiac matrix is distinct because it renders mechanical properties and provides a framework essential for differentiation of cardiac progenitor cells (CPC) into specific lineage. Cardiac matrix regulates myocyte contractility by EM coupling and calcium transients and also directs miRNAs required for precise regulation of continuous and synchronized beating of cardiomyocytes that is indispensible for survival. Alteration in the matrix homeostasis due to induction of MMPs, altered expression of specific miRNAs or impaired signaling for contractility of cardiomyocytes leads to catastrophic effects. This review describes the mechanisms by which cardiac matrix regulates myocardial performance and suggests future directions for the development of treatment strategies in cardiovascular diseases.
Collapse
Affiliation(s)
- Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|
46
|
Cardiac stem cell niche, MMP9, and culture and differentiation of embryonic stem cells. Methods Mol Biol 2013; 1035:153-63. [PMID: 23959989 DOI: 10.1007/978-1-62703-508-8_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Embryonic stem cells (ESC) are totipotent, self-renewing, and clonogenic, having potential to differentiate into a wide variety of cell types. Due to regenerative capability, it has tremendous potential for treating myocardial infarction (death of myocardial tissue) and type 1 diabetes (death of pancreatic beta cells). Understanding the components regulating ESC differentiation is the key to unlock the regenerative potential of ESC-based therapies. Both the stiffness of extracellular matrix (ECM) and surrounding niche/microenvironment play pivotal roles in ESC differentiation. Matrix metalloproteinase-9 (MMP9) induces fibrosis that causes stiffness of the ECM and impairs differentiation of cardiac stem cells into cardiomyocytes. Here, we describe the method of ESC culture and differentiation, and the expression of MMP9 and its inhibitor, tissue inhibitor of metalloproteinase-4 (TIMP4) in differentiating ESC.
Collapse
|
47
|
Abstract
Despite our cognizance that diabetes can enhance the chances of heart failure, causes multiorgan failure,and contributes to morbidity and mortality, it is rapidly increasing menace worldwide. Less attention has been paid to alert prediabetics through determining the comprehensive predictors of diabetic cardiomyopathy (DCM) and ameliorating DCM using novel approaches. DCM is recognized as asymptomatic progressing structural and functional remodeling in the heart of diabetics, in the absence of coronary atherosclerosis and hypertension. The three major stages of DCM are: (1) early stage, where cellular and metabolic changes occur without obvious systolic dysfunction; (2) middle stage, which is characterized by increased apoptosis, a slight increase in left ventricular size, and diastolic dysfunction and where ejection fraction (EF) is <50%; and (3) late stage, which is characterized by alteration in microvasculature compliance, an increase in left ventricular size, and a decrease in cardiac performance leading to heart failure. Recent investigations have revealed that DCM is multifactorial in nature and cellular, molecular, and metabolic perturbations predisposed and contributed to DCM. Differential expression of microRNA (miRNA), signaling molecules involved in glucose metabolism, hyperlipidemia, advanced glycogen end products, cardiac extracellular matrix remodeling, and alteration in survival and differentiation of resident cardiac stem cells are manifested in DCM. A sedentary lifestyle and high fat diet causes obesity and this leads to type 2 diabetes and DCM. However, exercise training improves insulin sensitivity, contractility of cardiomyocytes, and cardiac performance in type 2 diabetes. These findings provide new clues to diagnose and mitigate DCM. This review embodies developments in the field of DCM with the aim of elucidating the future perspectives of predictors and prevention of DCM.
Collapse
Affiliation(s)
| | | | - Paras K Mishra
- Correspondence: Paras Kumar Mishra, Department of Physiology and Biophysics, School of Medicine, 500 S Preston Street, HSC-A Room 1216, University of Louisville, Louisville, KY 40202, USA, Tel +1 502 852 3627, Fax +1 502 852 6239, Email
| |
Collapse
|
48
|
Mishra PK, Chavali V, Metreveli N, Tyagi SC. Ablation of MMP9 induces survival and differentiation of cardiac stem cells into cardiomyocytes in the heart of diabetics: a role of extracellular matrix. Can J Physiol Pharmacol 2012; 90:353-60. [PMID: 22394373 DOI: 10.1139/y11-131] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contribution of extracellular matrix (ECM) to stem cell survival and differentiation is unequivocal, and matrix metalloproteinase-9 (MMP9) induces ECM turn over; however, the role of MMP9 in the survival and differentiation of cardiac stem cells is unclear. We hypothesize that ablation of MMP9 enhances the survival and differentiation of cardiac stem cells into cardiomyocytes in diabetics. To test our hypothesis, Ins2(+/-) Akita, C57 BL/6J, and double knock out (DKO: Ins2(+/-)/MMP9(-/-)) mice were used. We created the DKO mice by deleting the MMP9 gene from Ins2(+/-). The above 3 groups of mice were genotyped. The activity and expression of MMP9 in the 3 groups were determined by in-gel gelatin zymography, Western blotting, and confocal microscopy. To determine the role of MMP9 in ECM stiffness (fibrosis), we measured collagen deposition in the histological sections of hearts using Masson's trichrome staining. The role of MMP9 in cardiac stem cell survival and differentiation was determined by co-immunoprecipitation (co-IP) of MMP9 with c-kit (a marker of stem cells) and measuring the level of troponin I (a marker of cardiomyocytes) by confocal microscopy in the 3 groups. Our results revealed that ablation of MMP9 (i) reduces the stiffness of ECM by decreasing collagen accumulation (fibrosis), and (ii) enhances the survival (elevated c-kit level) and differentiation of cardiac stem cells into cardiomyocytes (increased troponin I) in diabetes. We conclude that inhibition of MMP9 ameliorates stem cell survival and their differentiation into cardiomyocytes in diabetes.
Collapse
Affiliation(s)
- Paras Kumar Mishra
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, KY 40202, USA.
| | | | | | | |
Collapse
|
49
|
Serizawa KI, Yogo K, Aizawa K, Tashiro Y, Ishizuka N. Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats. Cardiovasc Diabetol 2011; 10:105. [PMID: 22107602 PMCID: PMC3248842 DOI: 10.1186/1475-2840-10-105] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/23/2011] [Indexed: 01/22/2023] Open
Abstract
Background Nicorandil, an anti-angina agent, reportedly improves outcomes even in angina patients with diabetes. However, the precise mechanism underlying the beneficial effect of nicorandil on diabetic patients has not been examined. We investigated the protective effect of nicorandil on endothelial function in diabetic rats because endothelial dysfunction is a major risk factor for cardiovascular disease in diabetes. Methods Male Sprague-Dawley rats (6 weeks old) were intraperitoneally injected with streptozotocin (STZ, 40 mg/kg, once a day for 3 days) to induce diabetes. Nicorandil (15 mg/kg/day) and tempol (20 mg/kg/day, superoxide dismutase mimetic) were administered in drinking water for one week, starting 3 weeks after STZ injection. Endothelial function was evaluated by measuring flow-mediated dilation (FMD) in the femoral arteries of anaesthetised rats. Cultured human coronary artery endothelial cells (HCAECs) were treated with high glucose (35.6 mM, 24 h) and reactive oxygen species (ROS) production with or without L-NAME (300 μM), apocynin (100 μM) or nicorandil (100 μM) was measured using fluorescent probes. Results Endothelial function as evaluated by FMD was significantly reduced in diabetic as compared with normal rats (diabetes, 9.7 ± 1.4%; normal, 19.5 ± 1.7%; n = 6-7). There was a 2.4-fold increase in p47phox expression, a subunit of NADPH oxidase, and a 1.8-fold increase in total eNOS expression in diabetic rat femoral arteries. Nicorandil and tempol significantly improved FMD in diabetic rats (nicorandil, 17.7 ± 2.6%; tempol, 13.3 ± 1.4%; n = 6). Nicorandil significantly inhibited the increased expressions of p47phox and total eNOS in diabetic rat femoral arteries. Furthermore, nicorandil significantly inhibited the decreased expression of GTP cyclohydrolase I and the decreased dimer/monomer ratio of eNOS. ROS production in HCAECs was increased by high-glucose treatment, which was prevented by L-NAME and nicorandil suggesting that eNOS itself might serve as a superoxide source under high-glucose conditions and that nicorandil might prevent ROS production from eNOS. Conclusions These results suggest that nicorandil improved diabetes-induced endothelial dysfunction through antioxidative effects by inhibiting NADPH oxidase and eNOS uncoupling.
Collapse
Affiliation(s)
- Ken-ichi Serizawa
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka 412-8513 Japan
| | | | | | | | | |
Collapse
|
50
|
Wang Z, Dou X, Yao T, Song Z. Homocysteine inhibits adipogenesis in 3T3-L1 preadipocytes. Exp Biol Med (Maywood) 2011; 236:1379-88. [PMID: 22114064 DOI: 10.1258/ebm.2011.011234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is a characteristic metabolic abnormality in several pathological conditions, including hypertension, diabetes and alcoholic liver disease. Emerging evidence indicates that adipose tissue contributes to HHcy and homocysteine (Hcy) conversely affects adipose tissue function. However, the specific effect of Hcyon adipogenesis is poorly understood. In the present study, we investigated the effects and mechanisms of Hcy on adipogenic process using 3T3-L1 preadipocytes, a well-established in vitro model for the study of adipogenesis. Confluent mouse embryo 3T3-L1 preadipocytes (D0) were exposed to differentiation cocktail for three days (D3). Then, cells were transferred to insulin-containing medium and re-fed every two days. Maturation of adipocytes was confirmed by Oil Red O staining of lipid droplets on day 7. Exogenous Hcy was added to the culture medium on either D0 or D3. At day 7, adipogenesis indices were measured. Our data indicated that both Hcy addition protocols suppressed adipogenic process, evidenced by decreased lipid accumulation and downregulated gene expressions of adipocyte protein 2 and peroxisome proliferator-activated receptor gamma (PPAR-gamma), implying that Hcy exerted inhibitory effects on both mitotic clonal expansion (MCE) stage and differentiation stage. Further study showed that Hcy suppresses MCE via decreasing retinoblastoma protein phosphorylation and E2F-1 protein expression. To delineate the critical involvement of PPAR-gamma in Hcy-induced suppression on adipogenesis, we employed rosiglitazone, a specific PPAR-gamma agonist, to replace insulin for the inductive stimulus of adipogenesis. Our results showed that Hcy suppressed rosiglitazone-induced adipogenesis in a similar fashion as this by insulin, suggesting that inhibition of PPAR-gamma transactivation was critically involved in the Hcy-induced inhibitory effect on adipogenesis. Taken together, our data indicate that Hcy suppressed adipogenesis in 3T3-L1 preadipocytes and the inhibition of PPAR-gamma transactivity may, at least partially, contribute to the suppressive effect.
Collapse
Affiliation(s)
- Zhigang Wang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P R China
| | | | | | | |
Collapse
|