1
|
Gavina K, Franco LC, Khan H, Lavik JP, Relich RF. Molecular point-of-care devices for the diagnosis of infectious diseases in resource-limited settings - A review of the current landscape, technical challenges, and clinical impact. J Clin Virol 2023; 169:105613. [PMID: 37866094 DOI: 10.1016/j.jcv.2023.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Molecular point-of-care (POC) tests offer high sensitivity, rapid turnaround times, relative ease of use, and the convenience of laboratory-grade testing in the absence of formal laboratory spaces and equipment, making them appealing options for infectious disease diagnosis in resource-limited settings. In this review, we discuss the role and potential of molecular POC tests in resource-limited settings and their associated logistical challenges. We discuss U.S. Food and Drug Administration approval, Clinical Laboratory Improvement Amendments complexity levels, and the REASSURED criteria as a starting point for assessing options currently available inside and outside of the United States. We then present POC tests currently in research and development phases that have potential for commercialization and implementation in limited-resource settings. Finally, we review published studies that have assessed the clinical impact of molecular POC testing in limited- and moderate-resource settings.
Collapse
Affiliation(s)
- Kenneth Gavina
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Clinical Microbiology, Indiana University Health, Indianapolis, IN, USA
| | - Lauren C Franco
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Haseeba Khan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John-Paul Lavik
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Clinical Microbiology, Indiana University Health, Indianapolis, IN, USA
| | - Ryan F Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Clinical Microbiology, Indiana University Health, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Amir S, Arathi A, Reshma S, Mohanan PV. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review. Int J Biol Macromol 2023; 235:123784. [PMID: 36822284 DOI: 10.1016/j.ijbiomac.2023.123784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Microfluidics is a revolutionary technology that has promising applications in the biomedical field.Integrating microfluidic technology with the traditional assays unravels the innumerable possibilities for translational biomedical research. Microfluidics has the potential to build up a novel platform for diagnosis and therapy through precise manipulation of fluids and enhanced throughput functions. The developments in microfluidics-based devices for diagnostics have evolved in the last decade and have been established for their rapid, effective, accurate and economic advantages. The efficiency and sensitivity of such devices to detect disease-specific macromolecules like proteins and nucleic acids have made crucial impacts in disease diagnosis. The disease modelling using microfluidic systems provides a more prominent replication of the in vivo microenvironment and can be a better alternative for the existing disease models. These models can replicate critical microphysiology like the dynamic microenvironment, cellular interactions, and biophysical and biochemical cues. Microfluidics also provides a promising system for high throughput drug screening and delivery applications. However, microfluidics-based diagnostics still encounter related challenges in the reliability, real-time monitoring and reproducibility that circumvents this technology from being impacted in the healthcare industry. This review highlights the recent microfluidics developments for modelling and diagnosing common diseases, including cancer, neurological, cardiovascular, respiratory and autoimmune disorders, and its applications in drug development.
Collapse
Affiliation(s)
- S Amir
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - S Reshma
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
3
|
Bhardwaj T, Ramana LN, Sharma TK. Current Advancements and Future Road Map to Develop ASSURED Microfluidic Biosensors for Infectious and Non-Infectious Diseases. BIOSENSORS 2022; 12:357. [PMID: 35624657 PMCID: PMC9139021 DOI: 10.3390/bios12050357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Better diagnostics are always essential for the treatment and prevention of a disease. Existing technologies for detecting infectious and non-infectious diseases are mostly tedious, expensive, and do not meet the World Health Organization's (WHO) ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end user) criteria. Hence, more accurate, sensitive, and faster diagnostic technologies that meet the ASSURED criteria are highly required for timely and evidenced-based treatment. Presently, the diagnostics industry is finding interest in microfluidics-based biosensors, as this integration comprises all qualities, such as reduction in the size of the equipment, rapid turnaround time, possibility of parallel multiple analysis or multiplexing, etc. Microfluidics deal with the manipulation/analysis of fluid within micrometer-sized channels. Biosensors comprise biomolecules immobilized on a physicochemical transducer for the detection of a specific analyte. In this review article, we provide an outline of the history of microfluidics, current practices in the selection of materials in microfluidics, and how and where microfluidics-based biosensors have been used for the diagnosis of infectious and non-infectious diseases. Our inclination in this review article is toward the employment of microfluidics-based biosensors for the improvement of already existing/traditional methods in order to reduce efforts without compromising the accuracy of the diagnostic test. This article also suggests the possible improvements required in microfluidic chip-based biosensors in order to meet the ASSURED criteria.
Collapse
Affiliation(s)
- Tanu Bhardwaj
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute, 3rd Milestone, Gurugram Expressway, Faridabad 121001, India;
| | - Lakshmi Narashimhan Ramana
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India;
| | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gujarat International Finance and Tec (GIFT) City, Gandhinagar 382355, India
| |
Collapse
|
4
|
Baptista V, Peng WK, Minas G, Veiga MI, Catarino SO. Review of Microdevices for Hemozoin-Based Malaria Detection. BIOSENSORS 2022; 12:bios12020110. [PMID: 35200370 PMCID: PMC8870200 DOI: 10.3390/bios12020110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 05/21/2023]
Abstract
Despite being preventable and treatable, malaria still puts almost half of the world's population at risk. Thus, prompt, accurate and sensitive malaria diagnosis is crucial for disease control and elimination. Optical microscopy and immuno-rapid tests are the standard malaria diagnostic methods in the field. However, these are time-consuming and fail to detect low-level parasitemia. Biosensors and lab-on-a-chip devices, as reported to different applications, usually offer high sensitivity, specificity, and ease of use at the point of care. Thus, these can be explored as an alternative for malaria diagnosis. Alongside malaria infection inside the human red blood cells, parasites consume host hemoglobin generating the hemozoin crystal as a by-product. Hemozoin is produced in all parasite species either in symptomatic and asymptomatic individuals. Furthermore, hemozoin crystals are produced as the parasites invade the red blood cells and their content relates to disease progression. Hemozoin is, therefore, a unique indicator of infection, being used as a malaria biomarker. Herein, the so-far developed biosensors and lab-on-a-chip devices aiming for malaria detection by targeting hemozoin as a biomarker are reviewed and discussed to fulfil all the medical demands for malaria management towards elimination.
Collapse
Affiliation(s)
- Vitória Baptista
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (G.M.); (S.O.C.)
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
- Correspondence:
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Building A1, University Innovation Park, Dongguan 523808, China;
| | - Graça Minas
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (G.M.); (S.O.C.)
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| | - Susana O. Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (G.M.); (S.O.C.)
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| |
Collapse
|
5
|
Carlier L, Baker SC, Huwe T, Yewhalaw D, Haileselassie W, Koepfli C. qPCR in a suitcase for rapid Plasmodium falciparum and Plasmodium vivax surveillance in Ethiopia. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000454. [PMID: 36962431 PMCID: PMC10021179 DOI: 10.1371/journal.pgph.0000454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022]
Abstract
Many Plasmodium spp. infections, both in clinical and asymptomatic patients, are below the limit of detection of light microscopy or rapid diagnostic test (RDT). Molecular diagnosis by qPCR can be valuable for surveillance, but is often hampered by absence of laboratory capacity in endemic countries. To overcome this limitation, we optimized and tested a mobile qPCR laboratory for molecular diagnosis in Ziway, Ethiopia, where transmission intensity is low. Protocols were optimized to achieve high throughput and minimize costs and weight for easy transport. 899 samples from febrile patients and 1021 samples from asymptomatic individuals were screened by local microscopy, RDT, and qPCR within a period of six weeks. 34/52 clinical Plasmodium falciparum infections were missed by microscopy and RDT. Only 4 asymptomatic infections were detected. No hrp2 deletions were observed among 25 samples typed, but 19/24 samples carried hrp3 deletions. The majority (25/41) of Plasmodium vivax infections (1371 samples screened) were found among asymptomatic individuals. All asymptomatic P. vivax infections were negative by microscopy and RDT. In conclusion, the mobile laboratory described here can identify hidden parasite reservoirs within a short period of time, and thus inform malaria control activities.
Collapse
Affiliation(s)
- Lise Carlier
- Trinity College Dublin, Dublin, Ireland
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - Sarah Cate Baker
- Trinity College Dublin, Dublin, Ireland
- Oregon Health & Science University, Portland, Oregon, United States of America
| | - Tiffany Huwe
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Delenasaw Yewhalaw
- Tropical and Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | | | - Cristian Koepfli
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
6
|
Bui LM, Thi Thu Phung H, Ho Thi TT, Singh V, Maurya R, Khambhati K, Wu CC, Uddin MJ, Trung DM, Chu DT. Recent findings and applications of biomedical engineering for COVID-19 diagnosis: a critical review. Bioengineered 2021; 12:8594-8613. [PMID: 34607509 PMCID: PMC8806999 DOI: 10.1080/21655979.2021.1987821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is one of the most severe global health crises that humanity has ever faced. Researchers have restlessly focused on developing solutions for monitoring and tracing the viral culprit, SARS-CoV-2, as vital steps to break the chain of infection. Even though biomedical engineering (BME) is considered a rising field of medical sciences, it has demonstrated its pivotal role in nurturing the maturation of COVID-19 diagnostic technologies. Within a very short period of time, BME research applied to COVID-19 diagnosis has advanced with ever-increasing knowledge and inventions, especially in adapting available virus detection technologies into clinical practice and exploiting the power of interdisciplinary research to design novel diagnostic tools or improve the detection efficiency. To assist the development of BME in COVID-19 diagnosis, this review highlights the most recent diagnostic approaches and evaluates the potential of each research direction in the context of the pandemic.
Collapse
Affiliation(s)
- Le Minh Bui
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thuy-Tien Ho Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Mehsana, Gujarat, India
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Mehsana, Gujarat, India
| | - Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Mehsana, Gujarat, India
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Do Minh Trung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Dinh Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Farokhzad N, Tao W. Materials chemistry-enabled platforms in detecting sexually transmitted infections: progress towards point-of-care tests. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Bernardini S, Pieri M, Ciotti M. How Could POCT be a Useful Tool for Migrant and Refugee Health? EJIFCC 2021; 32:200-208. [PMID: 34421489 PMCID: PMC8343038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Point of care testing (POCT) represents an important step forward in the clinical management of patients. POC assays are easy to use and do not require skilled personnel; therefore they are particularly useful in low resource settings where diagnostics laboratories equipped with complex instruments that require well trained technicians are not available. Samples can be processed immediately overcoming the problems related to the stability of the sample, storage and shipping to a centralized laboratory hospital based. Furthermore, results are delivered in real-time, usually less than 1 hr; thus, a clinical decision can be taken earlier. A prompt diagnosis is crucial in the case of contagious diseases allowing a rapid isolation of the infected patient and treatment; thus, reducing the risk of transmission of the pathogen. In this report, we address the use of POC assays in the diagnosis of infectious pathogens including hepatitis B and C viruses, human immunodeficiency virus-type 1, human papillomavirus, chlamydia trachomatis, neisseria gonorrhea, trichomonas vaginalis, mycobacterium tuberculosis and the parasite plasmodium. These pathogens are commonly detected among vulnerable people such as refugees and migrants. The described POC assays are based on nuclei acid amplification technology (NAAT) that is generally characterized by a high sensitivity and specificity.
Collapse
Affiliation(s)
- Sergio Bernardini
- Department of Experimental Medicine, University Tor Vergata of Rome, Rome Italy, Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy,Corresponding author: Prof. Sergio Bernardini Department of Experimental Medicine University of Tor Vergata Via Cracovia 50 00133 Rome Italy Phone: +39 3804399292 E-mail:
| | - Massimo Pieri
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Marco Ciotti
- Virology Unit, Laboratory of Clinical Microbiology and Virology, University Hospital Tor Vergata, Rome, Italy
| |
Collapse
|
9
|
Gimenez AM, Marques RF, Regiart M, Bargieri DY. Diagnostic Methods for Non-Falciparum Malaria. Front Cell Infect Microbiol 2021; 11:681063. [PMID: 34222049 PMCID: PMC8248680 DOI: 10.3389/fcimb.2021.681063] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a serious public health problem that affects mostly the poorest countries in the world, killing more than 400,000 people per year, mainly children under 5 years old. Among the control and prevention strategies, the differential diagnosis of the Plasmodium-infecting species is an important factor for selecting a treatment and, consequently, for preventing the spread of the disease. One of the main difficulties for the detection of a specific Plasmodium sp is that most of the existing methods for malaria diagnosis focus on detecting P. falciparum. Thus, in many cases, the diagnostic methods neglect the other non-falciparum species and underestimate their prevalence and severity. Traditional methods for diagnosing malaria may present low specificity or sensitivity to non-falciparum spp. Therefore, there is high demand for new alternative methods able to differentiate Plasmodium species in a faster, cheaper and easier manner to execute. This review details the classical procedures and new perspectives of diagnostic methods for malaria non-falciparum differential detection and the possibilities of their application in different circumstances.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matías Regiart
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Sensitivity Validation of EWOD Devices for Diagnosis of Early Mortality Syndrome (EMS) in Shrimp Using Colorimetric LAMP-XO Technique. SENSORS 2021; 21:s21093126. [PMID: 33946302 PMCID: PMC8124682 DOI: 10.3390/s21093126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022]
Abstract
Electrowetting-on-dielectric (EWOD) is a microfluidic technology used for manipulating liquid droplets at microliter to nanoliter scale. EWOD has the ability to facilitate the accurate manipulation of liquid droplets, i.e., transporting, dispensing, splitting, and mixing. In this work, EWOD fabrication with suitable and affordable materials is proposed for creating EWOD lab-on-a-chip platforms. The EWOD platforms are applied for the diagnosis of early mortality syndrome (EMS) in shrimp by utilizing the colorimetric loop-mediated isothermal amplification method with pH-sensitive xylenol orange (LAMP-XO) diagnosis technique. The qualitative sensitivity is observed by comparing the limit of detection (LOD) while performing the LAMP-XO diagnosis test on the proposed lab-on-a-chip EWOD platform, alongside standard LAMP laboratory tests. The comparison results confirm the reliability of EMS diagnosis on the EWOD platform with qualitative sensitivity for detecting the EMS DNA plasmid concentration at 102 copies in a similar manner to the common LAMP diagnosis tests.
Collapse
|
11
|
Kim J, Lim DH, Mihn DC, Nam J, Jang WS, Lim CS. Clinical Usefulness of LabChip Real-time PCR using Lab-On-a-Chip Technology for Diagnosing Malaria. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:77-82. [PMID: 33684990 PMCID: PMC7939964 DOI: 10.3347/kjp.2021.59.1.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/29/2022]
Abstract
As malaria remains a major health problem worldwide, various diagnostic tests have been developed, including microscopy-based and rapid diagnostic tests. LabChip real-time PCR (LRP) is a small and portable device used to diagnose malaria using lab-on-a-chip technology. This study aimed to evaluate the diagnostic performance of LRP for detecting malaria parasites. Two hundred thirteen patients and 150 healthy individuals were enrolled from May 2009 to October 2015. A diagnostic detectability of LRP for malaria parasites was compared to that of conventional RT-PCR. Sensitivity of LRP for Plasmodium vivax, P. falciparum, P. malariae, and P. ovale was 95.5%, 96.0%, 100%, and 100%, respectively. Specificity of LRP for P. vivax, P. falciparum, P. malariae, and P. ovale was 100%, 99.3%, 100%, and 100%, respectively. Cohen's Kappa coefficients between LRP and CFX96 for detecting P. vivax, P. falciparum, P. malariae, and P. ovale were 0.96, 0.98, 1.00, and 1.00, respectively. Significant difference was not observed between the results of LRP and conventional RT-PCR and microscopic examination. A time required to amplify DNAs using LRP and conventional RT-PCR was 27 min and 86 min, respectively. LRP amplified DNAs 2 times more fast than conventional RT-PCR due to the faster heat transfer. Therefore, LRP could be employed as a useful tool for detecting malaria parasites in clinical laboratories.
Collapse
Affiliation(s)
- Jeeyong Kim
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 08308, Korea
| | - Da Hye Lim
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 08308, Korea
| | - Do-CiC Mihn
- Department of Diagnostic Immunology, Seegene Medical Foundation, Seoul 04805, Korea
| | - Jeonghun Nam
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 08308, Korea
| | - Woong Sik Jang
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 08308, Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 08308, Korea
| |
Collapse
|
12
|
Varo R, Balanza N, Mayor A, Bassat Q. Diagnosis of clinical malaria in endemic settings. Expert Rev Anti Infect Ther 2020; 19:79-92. [PMID: 32772759 DOI: 10.1080/14787210.2020.1807940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Malaria continues to be a major global health problem, with over 228 million cases and 405,000 deaths estimated to occur annually. Rapid and accurate diagnosis of malaria is essential to decrease the burden and impact of this disease, particularly in children. We aimed to review the main available techniques for the diagnosis of clinical malaria in endemic settings and explore possible future options to improve its rapid recognition. AREAS COVERED literature relevant to malaria diagnosis was identified through electronic searches in Pubmed, with no language or date restrictions and limited to humans. EXPERT OPINION Light microscopy is still considered the gold standard method for malaria diagnosis and continues to be at the frontline of malaria diagnosis. However, technologies as rapid diagnostic tests, mainly those who detect histidine-rich protein-2, offer an accurate, rapid and affordable alternative for malaria diagnosis in endemic areas. They are now the technique most extended in endemic areas for parasitological confirmation. In these settings, PCR-based assays are usually restricted to research and they are not currently helpful in the management of clinical malaria. Other technologies, such as isothermal methods could be an interesting and alternative approach to PCR in the future.
Collapse
Affiliation(s)
- Rosauro Varo
- ISGlobal, Hospital Clínic - Universitat De Barcelona , Barcelona, Spain.,Centro De Investigação Em Saúde De Manhiça (CISM) , Maputo, Mozambique
| | - Núria Balanza
- ISGlobal, Hospital Clínic - Universitat De Barcelona , Barcelona, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat De Barcelona , Barcelona, Spain.,Centro De Investigação Em Saúde De Manhiça (CISM) , Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat De Barcelona , Barcelona, Spain.,Centro De Investigação Em Saúde De Manhiça (CISM) , Maputo, Mozambique.,ICREA, Pg. Lluís Companys 23 , Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan De Deu (University of Barcelona) , Barcelona, Spain.,Consorcio De Investigación Biomédica En Red De Epidemiología Y Salud Publica (CIBERESP) , Madrid, Spain
| |
Collapse
|
13
|
Hwang SH, Gonzalez-Suarez AM, Stybayeva G, Revzin A. Prospects and Opportunities for Microsystems and Microfluidic Devices in the Field of Otorhinolaryngology. Clin Exp Otorhinolaryngol 2020; 14:29-42. [PMID: 32772034 PMCID: PMC7904428 DOI: 10.21053/ceo.2020.00626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Microfluidic systems can be used to control picoliter to microliter volumes in ways not possible with other methods of fluid handling. In recent years, the field of microfluidics has grown rapidly, with microfluidic devices offering possibilities to impact biology and medicine. Microfluidic devices populated with human cells have the potential to mimic the physiological functions of tissues and organs in a three-dimensional microenvironment and enable the study of mechanisms of human diseases, drug discovery and the practice of personalized medicine. In the field of otorhinolaryngology, various types of microfluidic systems have already been introduced to study organ physiology, diagnose diseases, and evaluate therapeutic efficacy. Therefore, microfluidic technologies can be implemented at all levels of otorhinolaryngology. This review is intended to promote understanding of microfluidic properties and introduce the recent literature on application of microfluidic-related devices in the field of otorhinolaryngology.
Collapse
Affiliation(s)
- Se Hwan Hwang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | | | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Rei Yan SL, Wakasuqui F, Wrenger C. Point-of-care tests for malaria: speeding up the diagnostics at the bedside and challenges in malaria cases detection. Diagn Microbiol Infect Dis 2020; 98:115122. [PMID: 32711185 DOI: 10.1016/j.diagmicrobio.2020.115122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Malaria remains as one of the major public health problems worldwide. About 228 million cases occurred in 2018 only, with Africa bearing about 93% of the cases. Asymptomatic population carrying the various forms of the parasite Plasmodium in endemic areas plays an important role in the spread of the disease. To tackle this battle, more sensitive and precise detection kits for malaria are crucial to better control the number of new malaria cases. In this review, we not only discuss some of the available approaches to rapidly detect new malaria cases in endemic areas but also shed light on parallel problems that may affect the detection of individuals infected with the parasite, covering kelch 13 mutation, glucose 6-phosphate dehydrogenase deficiency, and hemoglobin disorders. Available approaches for malaria detection covered in this review are focused on point-of-care tests, including portable polymerase chain reaction and aptamers.
Collapse
Affiliation(s)
- Sun L Rei Yan
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil
| | - Felipe Wakasuqui
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
15
|
Mehta N, Perrais B, Martin K, Kumar A, Hobman TC, Cabalfin-Chua MN, Donaldo ME, Siose Painaga MS, Gaite JY, Tran V, Kain KC, Hawkes MT, Yanow SK. A Direct from Blood/Plasma Reverse Transcription-Polymerase Chain Reaction for Dengue Virus Detection in Point-of-Care Settings. Am J Trop Med Hyg 2020; 100:1534-1540. [PMID: 30994095 DOI: 10.4269/ajtmh.19-0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Infection with dengue virus (DENV) is widespread across tropical regions and can result in severe disease. Early diagnosis is important both for patient management and to differentiate infections that present with similar symptoms, such as malaria, chikungunya, and Zika. Rapid diagnostic tests that are used presently for point-of-care detection of DENV antigens lack the sensitivity of molecular diagnostics that detect viral RNA. However, no molecular diagnostic test for DENV is available for use in field settings. In this study, we developed and validated a reverse transcription-polymerase chain reaction (RT-PCR) for the detection of DENV adapted for use in field settings. Reverse transcription-polymerase chain reaction was performed directly from plasma samples without RNA extraction. The assay detected all four serotypes of DENV spiked into blood or plasma. Our RT-PCR does not cross-react with pathogens that cause symptoms that overlap with dengue infection. The test performed equally well in a conventional laboratory qPCR instrument and a small, low-cost portable instrument that can be used in a field setting. The lower limit of detection for the assay was 1 × 104 genome copy equivalents/mL in blood. Finally, we validated our test using 126 archived patient samples. The sensitivity of our RT-PCR was 76.7% (95% CI: 65.8-87.9%) on the conventional instrument, and 78.3% (95% CI: 65.8-87.9%) on the field instrument, when compared with the RealStar Dengue RT-PCR Kit 2.0. The molecular test described here is user-friendly, low-cost, and can be used in regions with limited laboratory capabilities.
Collapse
Affiliation(s)
- Ninad Mehta
- School of Public Health, University of Alberta, Edmonton, Canada
| | - Bastien Perrais
- School of Public Health, University of Alberta, Edmonton, Canada
| | - Kimberly Martin
- School of Public Health, University of Alberta, Edmonton, Canada
| | - Anil Kumar
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Tom C Hobman
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.,Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Mary Noreen Cabalfin-Chua
- Section of Pediatric Infectious Diseases, Department of Pediatrics, Chong Hua Hospital, Cebu, Philippines
| | | | | | | | - Vanessa Tran
- Tropical Disease Unit, The University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Kevin C Kain
- Tropical Disease Unit, The University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Michael T Hawkes
- School of Public Health, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, Edmonton, Canada.,Stollery Science Lab, Edmonton, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Stephanie K Yanow
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.,School of Public Health, University of Alberta, Edmonton, Canada
| |
Collapse
|
16
|
Kamaliddin C, Le Bouar M, Berry A, Fenneteau O, Gillet P, Godineau N, Candolfi E, Houzé S. Assessment of diagnostic methods for imported malaria in mainland France. Med Mal Infect 2019; 50:141-160. [PMID: 31375372 DOI: 10.1016/j.medmal.2019.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 07/04/2019] [Indexed: 12/29/2022]
Affiliation(s)
- C Kamaliddin
- Centre national de référence du paludisme, hôpital Bichat, 75018 Paris, France
| | - M Le Bouar
- Service de parasitologie-mycologie, CHU de Toulouse, 31300 Toulouse, France
| | - A Berry
- Service de parasitologie-mycologie, CHU de Toulouse, 31300 Toulouse, France
| | - O Fenneteau
- Service d'hématologie biologique, CHU Robert-Debré, AP-HP, 75018 Paris, France
| | - P Gillet
- Department of clinical sciences, institute of tropical medicine, 2000 Anvers, Belgium
| | - N Godineau
- Service de parasitologie, centre hospitalier Delafontaine, 93200 Saint-Denis, France
| | - E Candolfi
- Laboratoire de parasitologie, institut de parasitologie et de pathologie tropicale, hôpitaux civils de Strasbourg, CHU, 67000 Strasbourg, France
| | - S Houzé
- Centre national de référence du paludisme, hôpital Bichat, 75018 Paris, France; Service de parasitologie, hôpital Bichat, AP-HP, 75018 Paris, France.
| |
Collapse
|
17
|
Frickmann H, Wegner C, Ruben S, Behrens C, Kollenda H, Hinz R, Rojak S, Schwarz NG, Hagen RM, Tannich E. Evaluation of the multiplex real-time PCR assays RealStar malaria S&T PCR kit 1.0 and FTD malaria differentiation for the differentiation of Plasmodium species in clinical samples. Travel Med Infect Dis 2019; 31:101442. [PMID: 31255712 DOI: 10.1016/j.tmaid.2019.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Two commercial PCR assays were assessed in a retrospective study to determine their reliability as tools for the differentiation of Plasmodium species in human blood. METHODS A total of 1022 blood samples from 817 patients with suspected or confirmed malaria submitted to the German National Reference Centre for Tropical Pathogens were subjected to malaria microscopy using thick and thin blood films as well as to a genus-specific malaria real-time PCR. Parasite-positive samples were analysed by RealStar Malaria S&T PCR Kit 1.0 (altona Diagnostics) and FTD Malaria Differentiation (Fast Track Diagnostics) multiplex real-time PCR assays targeting species-specific Plasmodium DNA. RESULTS Out of the 1022 blood samples, 247 (24.2%) tested positive for Plasmodium spp. The two multiplex assays showed rather similar performance characteristics and provided concordant species information in 98.9% of samples positive by malaria microscopy and in 95.1% (RealStar) and 96.8% (FTD) of samples positive by genus-specific PCR. Compared to FTD, RealStar revealed slightly reduced sensitivity for submicroscopic, low-level P. falciparum infections, while FTD was unable to detect P. knowlesi. CONCLUSIONS The two commercial malaria PCR assays assessed are suitable for discriminating Plasmodium species in clinical samples, and can provide additional information in cases of microscopically uncertain findings.
Collapse
Affiliation(s)
- Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Tropical Microbiology and Entomology Unit, Bundeswehr Hospital Hamburg, Hamburg, Germany; Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany.
| | - Christine Wegner
- National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefanie Ruben
- National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christoph Behrens
- National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hans Kollenda
- Department of Microbiology and Hospital Hygiene, Tropical Microbiology and Entomology Unit, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Rebecca Hinz
- Department of Microbiology and Hospital Hygiene, Tropical Microbiology and Entomology Unit, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Sandra Rojak
- Department of Microbiology and Hospital Hygiene, Tropical Microbiology and Entomology Unit, Bundeswehr Hospital Hamburg, Hamburg, Germany; Department of Infectious Diseases and Tropical Medicine, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Norbert G Schwarz
- Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ralf Matthias Hagen
- Department of Preventive Medicine, Bundeswehr Medical Academy, Munich, Germany
| | - Egbert Tannich
- National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
18
|
Shapiro SJ, Dendukuri D, Doyle PS. Design of Hydrogel Particle Morphology for Rapid Bioassays. Anal Chem 2018; 90:13572-13579. [PMID: 30339359 DOI: 10.1021/acs.analchem.8b03728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrogel microparticles have been extensively used in the field of medical diagnostics for detecting targets ranging from proteins to nucleic acids. However, little is known about how the shape of hydrogel particles impacts the signal from a bioassay. In this article, we analyze the flux into porous hydrogel particles to develop scaling laws for the signal from a point-of-care bioassay. The signal can be increased by increasing the ratio of the surface area of the hydrogel particle to the two-dimensional projected imaging area used for analysis. We show that adding internal surface area to hydrogel particles increases the assay signal in a biotin-streptavidin bioassay. We also demonstrate the application of this technique to a protein-based assay for thyroid-stimulating hormone, reducing the limit of detection of the assay sixfold by changing particle shape. We anticipate that these strategies can be used broadly to optimize hydrogel-based systems for point-of-care diagnostics.
Collapse
Affiliation(s)
- Sarah J Shapiro
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Dhananjaya Dendukuri
- Achira Laboratories Pvt. Ltd. , 66B, 13th Cross Road, Dollar Layout, JP Nagar Phase III , Bangalore 560078 , India
| | - Patrick S Doyle
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
19
|
Kwon YM, Stammnitz MR, Wang J, Swift K, Knowles GW, Pye RJ, Kreiss A, Peck S, Fox S, Pemberton D, Jones ME, Hamede R, Murchison EP. Tasman-PCR: a genetic diagnostic assay for Tasmanian devil facial tumour diseases. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180870. [PMID: 30473836 PMCID: PMC6227955 DOI: 10.1098/rsos.180870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/11/2018] [Indexed: 05/04/2023]
Abstract
Tasmanian devils have spawned two transmissible cancer clones, known as devil facial tumour 1 (DFT1) and devil facial tumour 2 (DFT2). DFT1 and DFT2 are transmitted between animals by the transfer of allogeneic contagious cancer cells by biting, and both cause facial tumours. DFT1 and DFT2 tumours are grossly indistinguishable, but can be differentiated using histopathology, cytogenetics or genotyping of polymorphic markers. However, standard diagnostic methods require specialist skills and equipment and entail long processing times. Here, we describe Tasman-PCR: a simple polymerase chain reaction (PCR)-based diagnostic assay that identifies and distinguishes DFT1 and DFT2 by amplification of DNA spanning tumour-specific interchromosomal translocations. We demonstrate the high sensitivity and specificity of this assay by testing DNA from 546 tumours and 804 normal devils. A temporal-spatial screen confirmed the reported geographic ranges of DFT1 and DFT2 and did not provide evidence of additional DFT clones. DFT2 affects disproportionately more males than females, and devils can be co-infected with DFT1 and DFT2. Overall, we present a PCR-based assay that delivers rapid, accurate and high-throughput diagnosis of DFT1 and DFT2. This tool provides an additional resource for devil disease management and may assist with ongoing conservation efforts.
Collapse
Affiliation(s)
- Young Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Maximilian R. Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Kate Swift
- Animal Health Laboratories, Mount Pleasant Laboratories, Tasmanian Department of Primary Industries, Parks, Water and the Environment, Prospect, Tasmania 7250, Australia
| | - Graeme W. Knowles
- Animal Health Laboratories, Mount Pleasant Laboratories, Tasmanian Department of Primary Industries, Parks, Water and the Environment, Prospect, Tasmania 7250, Australia
| | - Ruth J. Pye
- Menzies Institute, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Alexandre Kreiss
- Menzies Institute, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Sarah Peck
- Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Tasmania 7000, Australia
| | - Samantha Fox
- Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Tasmania 7000, Australia
- Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - David Pemberton
- Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Tasmania 7000, Australia
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, 55 Private Bag, Hobart, Tasmania 7000, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, 55 Private Bag, Hobart, Tasmania 7000, Australia
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- Author for correspondence: Elizabeth P. Murchison e-mail:
| |
Collapse
|
20
|
Andersson J, Larsson A, Ström A. Stick-slip motion and controlled filling speed by the geometric design of soft micro-channels. J Colloid Interface Sci 2018; 524:139-147. [PMID: 29649622 DOI: 10.1016/j.jcis.2018.03.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS Liquid can move by capillary action through interconnected porous materials, as in fabric or paper towels. Today mass transport is controlled by chemical modification. It is, however, possible to direct mass transport by geometrical modifications. It is here proposed that it is possible to tailor capillary flow speed in a model system of micro-channels by the angle, size and position of attached side channels. EXPERIMENTS A flexible, rapid, and cost-effective method is used to produce micro-channels in gels. It involves 3D-printed moulds in which gels are cast. Open channels of micrometre size with several side channels on either one or two sides are produced with tilting angles of 10-170°. On a horizontal plane the meniscus of water driven by surface tension is tracked in the main channel. FINDINGS The presence of side channels on one side slowed down the speed of the meniscus in the main channel least. Channels having side channels on both sides with tilting angles of up to 30° indicated tremendously slower flow, and the liquid exhibited a stick-slip motion. Broader side channels decreased the speed more than thinner ones, as suggested by the hypothesis. Inertial forces are suggested to be important in branched channel systems studied here.
Collapse
Affiliation(s)
- Johanna Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden; SuMo Biomaterials, VINN Excellence Centre, Chalmers University of Technology, Gothenburg, Sweden
| | - Anette Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden; SuMo Biomaterials, VINN Excellence Centre, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Ström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden; SuMo Biomaterials, VINN Excellence Centre, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
21
|
Amir A, Cheong FW, de Silva JR, Liew JWK, Lau YL. Plasmodium knowlesi malaria: current research perspectives. Infect Drug Resist 2018; 11:1145-1155. [PMID: 30127631 PMCID: PMC6089103 DOI: 10.2147/idr.s148664] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Originally known to cause simian malaria, Plasmodium knowlesi is now known as the fifth human malaria species. Since the publishing of a report that largely focused on human knowlesi cases in Sarawak in 2004, many more human cases have been reported in nearly all of the countries in Southeast Asia and in travelers returning from these countries. The zoonotic nature of this infection hinders malaria elimination efforts. In order to grasp the current perspective of knowlesi malaria, this literature review explores the different aspects of the disease including risk factors, diagnosis, treatment, and molecular and functional studies. Current studies do not provide sufficient data for an effective control program. Therefore, future direction for knowlesi research is highlighted here with a final aim of controlling, if not eliminating, the parasite.
Collapse
Affiliation(s)
- Amirah Amir
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,
| | - Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,
| | - Jeremy Ryan de Silva
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,
| |
Collapse
|
22
|
Evaluation of a Hydrogel-Based Diagnostic Approach for the Point-of-Care Based Detection of Neisseria gonorrhoeae. Antibiotics (Basel) 2018; 7:antibiotics7030070. [PMID: 30081551 PMCID: PMC6164196 DOI: 10.3390/antibiotics7030070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 11/18/2022] Open
Abstract
Eleven primer pairs were developed for the identification of Neisseria gonorrhoeae. The sensitivity and specificity of these primers were evaluated by Real Time (RT)-PCR melt curve analyses with DNA from 145 N. gonorrhoeae isolates and 40 other Neisseria or non-Neisseria species. Three primer pairs were further evaluated in a hydrogel-based RT-PCR detection platform, using DNA extracted from 50 N. gonorrhoeae cultures. We observed 100% sensitivity and specificity in the hydrogel assay, confirming its potential as a point-of-care test (POCT) for N. gonorrhoeae diagnosis.
Collapse
|
23
|
Pham NM, Karlen W, Beck HP, Delamarche E. Malaria and the 'last' parasite: how can technology help? Malar J 2018; 17:260. [PMID: 29996831 PMCID: PMC6042346 DOI: 10.1186/s12936-018-2408-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023] Open
Abstract
Malaria, together with HIV/AIDS, tuberculosis and hepatitis are the four most deadly infectious diseases globally. Progress in eliminating malaria has saved millions of lives, but also creates new challenges in detecting the 'last parasite'. Effective and accurate detection of malaria infections, both in symptomatic and asymptomatic individuals are needed. In this review, the current progress in developing new diagnostic tools to fight malaria is presented. An ideal rapid test for malaria elimination is envisioned with examples to demonstrate how innovative technologies can assist the global defeat against this disease. Diagnostic gaps where technology can bring an impact to the elimination campaign for malaria are identified. Finally, how a combination of microfluidic-based technologies and smartphone-based read-outs could potentially represent the next generation of rapid diagnostic tests is discussed.
Collapse
Affiliation(s)
- Ngoc Minh Pham
- Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, 8092, Zurich, Switzerland
| | - Walter Karlen
- Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, 8092, Zurich, Switzerland
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.
- University of Basel, Petersgraben 1, 4001, Basel, Switzerland.
| | | |
Collapse
|
24
|
Shittu O, Opeyemi OA, Ajibaye O, Omotesho BO, Fakayode O. Evaluation of the Clinical Proficiency of RDTs, Microscopy and Nested PCR in the Diagnosis of Symptomatic Malaria in Ilorin, North-Central, Nigeria. Open Access Maced J Med Sci 2018; 6:1032-1040. [PMID: 29983797 PMCID: PMC6026432 DOI: 10.3889/oamjms.2018.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND: Accurate laboratory diagnosis of suspected malaria is the hallmark to the control of the disease. AIM: The clinical proficiency of commercial Rapid Diagnostic test kits (RDTs) using nested PCR as quality control was evaluated among patients attending two public healthcare providing institutions in Ilorin, Kwara state, North-Central, Nigeria. METHOD: A cross-sectional evaluation of finger prick blood samples of volunteer patients were accessed for malaria parasites with pLDH, HRP2, Pf, Pf/PAN and nested PCR molecular assays. The data derived were analysed using standard formulae for diagnostic accuracy, and the obtained predictive values were subjected to a comparison with one-way analysis of variance (ANOVA). RESULT: Three hundred and sixty-eight (368) patients comprising 203 (55%) females and 165 (45%) males participated in this study. Routine microscopy revealed that 54 (32.7%) males and 80 (39.4%) was infected with Plasmodium falciparum. SD Bioline (pLDH) 47.4%; Carestart Malaria (HRP2) 49.8% recorded low sensitivities. Micropoint (pfPAN) 82.8% and Micropoint (Mal. Pf) 64.4% recorded a high sensitivity. SD Bioline (pLDH) 67.4%; Carestart Malaria (HRP2) 85.9%; Micropoint (PfPAN) 62.2% and Micropoint (Mal. Pf) 86.7% had high specificities. The positive predictive value (PPV) ranged from 67.7% to 85.94%, while the negative predictive values (NPV) of 64.4% for SD Bioline (pLDH); 86.7% for Carestart Malaria (HRP2); 89.3% for Micropoint (pfPAN) and 58.5% for Micropoint (Mal. Pf). Agarose gel analysis of P. falciparumssrRNA gene (206 bp) for 28 specimens containing 10% concordant and discordant samples showed that all 12 negative specimens for RDTs and routine microscopy were truly negative for nPCR. However, the remaining 16 specimens were positive for nPCR and showed discrepancies with routine microscopy and RDTs. Cohen’s interrater diagnostic measure analysis revealed that the weighted kappa for the RDTs was moderate 0.417 (p=0.027), 95%CI (0.756, 0.078) and good for nPCR 0.720 (p < 0.001), 95%CI (0.963, 0.477). The area under the curve (AUC) specify that nPCR has been more effective than the RDTs (nPCRAUC = 0.875; p < 0.001 and RDTsAUC = 0.708; p = 0.063). CONCLUSION: A thorough large-scale quality control is advocated on all commercial RDTs being used in most sub-Saharan African countries. This is to avoid double jeopardy consequent upon misdiagnosis on unidentified positive cases serving as pool reservoir for the insect vector and cyclical infection and re-infection of the populace.
Collapse
Affiliation(s)
- Olalere Shittu
- Parasitology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
| | | | - Olusola Ajibaye
- Biochemistry and Nutrition Unit, Nigeria Institute of Medical Research, Lagos, Nigeria
| | | | | |
Collapse
|
25
|
Kolluri N, Klapperich CM, Cabodi M. Towards lab-on-a-chip diagnostics for malaria elimination. LAB ON A CHIP 2017; 18:75-94. [PMID: 29125615 DOI: 10.1039/c7lc00758b] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Malaria continues to be one of the most devastating diseases impacting global health. Although there have been significant reductions in global malaria incidence and mortality rates over the past 17 years, the disease remains endemic throughout the world, especially in low- and middle-income countries. The World Health Organization has put forth ambitious milestones moving toward a world free of malaria as part of the United Nations Millennium Goals. Mass screening and treatment of symptomatic and asymptomatic malaria infections in endemic regions is integral to these goals and requires diagnostics that are both sensitive and affordable. Lab-on-a-chip technologies provide a path toward sensitive, portable, and affordable diagnostic platforms. Here, we review and compare currently-available and emerging lab-on-a-chip diagnostic approaches in three categories: (1) protein-based tests, (2) nucleic acid tests, and (3) cell-based detection. For each category, we highlight the opportunities and challenges in diagnostics development for malaria elimination, and comment on their applicability to different phases of elimination strategies.
Collapse
Affiliation(s)
- N Kolluri
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | | | | |
Collapse
|
26
|
Abstract
Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination.
Collapse
|
27
|
Krampa FD, Aniweh Y, Awandare GA, Kanyong P. Recent Progress in the Development of Diagnostic Tests for Malaria. Diagnostics (Basel) 2017; 7:diagnostics7030054. [PMID: 28925968 PMCID: PMC5617953 DOI: 10.3390/diagnostics7030054] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
The impact of malaria on global health has continually prompted the need to develop effective diagnostic strategies. In malaria endemic regions, routine diagnosis is hampered by technical and infrastructural challenges to laboratories. These laboratories lack standard facilities, expertise or diagnostic supplies; thus, therapy is administered based on clinical or self-diagnosis. There is the need for accurate diagnosis of malaria due to the continuous increase in the cost of medication, and the emergence and spread of drug resistant strains. However, the widely utilized Giemsa-stained microscopy and immunochromatographic tests for malaria are liable to several drawbacks, including inadequate sensitivity and false-positive outcomes. Alternative methods that offer improvements in performance are either expensive, have longer turnaround time or require a level of expertise that makes them unsuitable for point-of-care (POC) applications. These gaps necessitate exploration of more efficient detection techniques with the potential of POC applications, especially in resource-limited settings. This minireview discusses some of the recent trends and new approaches that are seeking to improve the clinical diagnosis of malaria.
Collapse
Affiliation(s)
- Francis D Krampa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana.
- Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Legon, Accra, Ghana.
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana.
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana.
- Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Legon, Accra, Ghana.
| | - Prosper Kanyong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana.
- Nanotechnology & Integrated Bioengineering Centre, Ulster University, Jordanstown BT37 0QB, UK.
| |
Collapse
|
28
|
Taylor BJ, Lanke K, Banman SL, Morlais I, Morin MJ, Bousema T, Rijpma SR, Yanow SK. A Direct from Blood Reverse Transcriptase Polymerase Chain Reaction Assay for Monitoring Falciparum Malaria Parasite Transmission in Elimination Settings. Am J Trop Med Hyg 2017; 97:533-543. [PMID: 28722583 DOI: 10.4269/ajtmh.17-0039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We describe a novel one-step reverse transcriptase real-time PCR (direct RT-PCR) for Plasmodium falciparum malaria parasites that amplifies RNA targets directly from blood. We developed the assay to identify gametocyte-specific transcripts in parasites from patient blood samples, as a means of monitoring malaria parasite transmission in field settings. To perform the test, blood is added directly to a master mix in PCR tubes and analyzed by real-time PCR. The limit of detection of the assay on both conventional and portable real-time PCR instruments was 100 parasites/mL for 18S rRNA, and 1,000 parasites/mL for asexual (PFE0065W) and gametocyte (PF14_0367, PFGEXP5) mRNA targets. The usefulness of this assay in field studies was explored in samples from individuals living in a high-transmission region in Cameroon. The sensitivity and specificity of the assay compared with a standard two-step RT-PCR was 100% for 18S rRNA on both conventional and portable instruments. For PF14_0367, the sensitivity and specificity were 85.7% and 70.0%, respectively, on the conventional instrument and 78.6% and 90%, respectively, on the portable instrument. The concordance for assays run on the two instruments was 100% for 18S rRNA, and 79.2% for PF14_0367, with most discrepancies resulting from samples with low transcript levels. The results show asexual and sexual stage RNA targets can be detected directly from blood samples in a simple one-step test on a field-friendly instrument. This assay may be useful for monitoring malaria parasite transmission potential in elimination settings, where sensitive diagnostics are needed to evaluate the progress of malaria eradication initiatives.
Collapse
Affiliation(s)
- Brian J Taylor
- School of Public Health, Katz Group Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen, The Netherlands
| | - Shanna L Banman
- School of Public Health, Katz Group Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Isabelle Morlais
- Institut de Recherche pour le Développement, Université de Montpellier (UMR) MIVEGEC, Montpellier Cedex, France.,Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique centrale, Yaoundé, Cameroon
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen, The Netherlands
| | - Sanna R Rijpma
- Department of Medical Microbiology, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen, The Netherlands
| | - Stephanie K Yanow
- Department of Medical Microbiology and Immunology, Katz Group Centre, University of Alberta, Edmonton, Alberta, Canada.,School of Public Health, Katz Group Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Kim C, Hoffmann G, Searson PC. Integrated Magnetic Bead-Quantum Dot Immunoassay for Malaria Detection. ACS Sens 2017; 2:766-772. [PMID: 28723116 DOI: 10.1021/acssensors.7b00119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria persists as a disease of high morbidity and mortality due to improper diagnosis, overuse of drugs, rapidly evolving drug resistant parasites, and poor disease monitoring. The two common tests used in developing countries, microscopic examination of Glemsa slides and rapid diagnostic tests (RDTs), have limitations associated with variability in specificity and sensitivity, and qualitative outcome. Here we report on an immunoassay using magnetic beads for capture and quantum dots for detection of histidine-rich protein 2 (HRP2). Conventional immunoassays, such as ELISA, and molecular analysis tools, such as PCR, are difficult to implement in low resource settings. Therefore, to provide a proof-of-principle of translation of this assay to low resource settings, we demonstrate HRP2 detection in an automated droplet-based microfluidic device. Droplet-based platforms have the potential to allow translation of molecular detection assays to point-of-care use in low resource settings.
Collapse
Affiliation(s)
- Chloe Kim
- Department
of Materials Science and Engineering and Institute for Nanobiotechnology, Johns Hopkins University, 3400
North Charles Street, Baltimore, Maryland 21218, United States
| | - Gwendolyn Hoffmann
- Department
of Materials Science and Engineering and Institute for Nanobiotechnology, Johns Hopkins University, 3400
North Charles Street, Baltimore, Maryland 21218, United States
| | - Peter C. Searson
- Department
of Materials Science and Engineering and Institute for Nanobiotechnology, Johns Hopkins University, 3400
North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
30
|
Lim H, Jo GE, Kim KS, Back SM, Choi H. Miniaturized thermocycler based on thermoelectric heating for diagnosis of sexually transmitted disease by DNA amplification. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:055001. [PMID: 28571452 DOI: 10.1063/1.4983647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sexually transmitted disease (STD) is among the most common infectious diseases; therefore, it is necessary to develop sensitive early diagnostic techniques. As the gold standard, polymerase chain reaction (PCR) has been most widely employed for STD diagnosis; however, PCR requires large and expensive instruments. In this study, miniaturized thermal cycler using Peltier modules was developed for the PCR analysis. In comparison with the conventional PCR instrument, the Peltier-based micro-PCR (P-mPCR) device developed in this study enables one to amplify and successfully distinguish between DNA of different sizes. Furthermore, by using the clinical vaginal sample collected with the vaginal swab and tampon, different kinds of STD bacteria could be detected with high accuracy (∼94.19%) and high sensitivity (∼95.6%). Therefore, the P-mPCR device will be applicable in STD diagnosis as well as the detection of other bacteria/viruses using DNA amplification in regions including those with limited resources.
Collapse
Affiliation(s)
- Hyunjung Lim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, 08308, South Korea
| | - Ga Eun Jo
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, 08308, South Korea
| | - Kyong Soo Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, 08308, South Korea
| | - Seung Min Back
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, 08308, South Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, 08308, South Korea
| |
Collapse
|
31
|
Bissonnette L, Bergeron MG. Portable devices and mobile instruments for infectious diseases point-of-care testing. Expert Rev Mol Diagn 2017; 17:471-494. [PMID: 28343420 DOI: 10.1080/14737159.2017.1310619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Rapidity, simplicity, and portability are highly desirable characteristics of tests and devices designed for performing diagnostics at the point of care (POC), either near patients managed in healthcare facilities or to offer bioanalytical alternatives in external settings. By reducing the turnaround time of the diagnostic cycle, POC diagnostics can reduce the dissemination, morbidity, and mortality of infectious diseases and provide tools to control the global threat of antimicrobial resistance. Areas covered: A literature search of PubMed and Google Scholar, and extensive mining of specialized publications, Internet resources, and manufacturers' websites have been used to organize and write this overview of the challenges and requirements associated with the development of portable sample-to-answer diagnostics, and showcase relevant examples of handheld devices, portable instruments, and less mobile systems which may or could be operated at POC. Expert commentary: Rapid (<1 h) diagnostics can contribute to control infectious diseases and antimicrobial resistant pathogens. Portable devices or instruments enabling sample-to-answer bioanalysis can provide rapid, robust, and reproducible testing at the POC or close from it. Beyond testing, to realize some promises of personalized/precision medicine, it will be critical to connect instruments to healthcare data management systems, to efficiently link decentralized testing results to the electronic medical record of patients.
Collapse
Affiliation(s)
- Luc Bissonnette
- a Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval , Québec City , Québec , Canada
| | - Michel G Bergeron
- a Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval , Québec City , Québec , Canada.,b Département de microbiologie-infectiologie et d'immunologie , Faculté de médecine, Université Laval , Québec City , Québec , Canada
| |
Collapse
|
32
|
Kuleš J, Potocnakova L, Bhide K, Tomassone L, Fuehrer HP, Horvatić A, Galan A, Guillemin N, Nižić P, Mrljak V, Bhide M. The Challenges and Advances in Diagnosis of Vector-Borne Diseases: Where Do We Stand? Vector Borne Zoonotic Dis 2017; 17:285-296. [PMID: 28346867 DOI: 10.1089/vbz.2016.2074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vector-borne diseases (VBD) are of major importance to human and animal health. In recent years, VBD have been emerging or re-emerging in many geographical areas, alarming new disease threats and economic losses. The precise diagnosis of many of these diseases still remains a major challenge because of the lack of comprehensive data available on accurate and reliable diagnostic methods. Here, we conducted a systematic and in-depth review of the former, current, and upcoming techniques employed for the diagnosis of VBD.
Collapse
Affiliation(s)
- Josipa Kuleš
- 1 ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb , Zagreb, Croatia
| | - Lenka Potocnakova
- 2 Laboratory of Biomedical Microbiology and Immunology of University of Veterinary Medicine and Pharmacy , Kosice, Slovakia
| | - Katarina Bhide
- 2 Laboratory of Biomedical Microbiology and Immunology of University of Veterinary Medicine and Pharmacy , Kosice, Slovakia
| | - Laura Tomassone
- 3 Department of Veterinary Science, University of Torino , Grugliasco, Italy
| | - Hans-Peter Fuehrer
- 4 Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine , Vienna, Austria
| | - Anita Horvatić
- 1 ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb , Zagreb, Croatia
| | - Asier Galan
- 1 ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb , Zagreb, Croatia
| | - Nicolas Guillemin
- 1 ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb , Zagreb, Croatia
| | - Petra Nižić
- 5 Faculty of Veterinary Medicine, Internal Diseases Clinic, University of Zagreb , Zagreb, Croatia
| | - Vladimir Mrljak
- 5 Faculty of Veterinary Medicine, Internal Diseases Clinic, University of Zagreb , Zagreb, Croatia
| | - Mangesh Bhide
- 1 ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb , Zagreb, Croatia .,2 Laboratory of Biomedical Microbiology and Immunology of University of Veterinary Medicine and Pharmacy , Kosice, Slovakia .,6 Institute of Neuroimmunology , Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
33
|
Banoth E, Kasula VK, Gorthi SS. Portable optofluidic absorption flow analyzer for quantitative malaria diagnosis from whole blood. APPLIED OPTICS 2016; 55:8637-8643. [PMID: 27828146 DOI: 10.1364/ao.55.008637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fast and automated diagnostic devices are bound to play a significant role in the on-going efforts toward malaria eradication. In this article, we present the realization of a portable device for quantitative malaria diagnostic testing at the point-of-care. The device measures optical absorbance (at λ=405 nm) of single cells flowing through a custom-designed microfluidic channel. The device incorporates the required functionality to align the microfluidic channel with the optical interrogation region. Variation in optical absorbance is used to differentiate red blood cells (both healthy and infected) from other cellular components of whole blood. Using the instrument, we have measured single-cell optical absorbance levels of different types of cells present in blood. High-throughput single-cell-level measurements facilitated by the device enable detection of malaria, even from a few microliters of blood. Further, we demonstrate the detection of malaria from a suspension containing all cellular components of whole blood, which validates its usability in real-world diagnostic scenarios.
Collapse
|
34
|
Vashist A, Kaushik A, Vashist A, Jayant RD, Tomitaka A, Ahmad S, Gupta YK, Nair M. Recent trends on hydrogel based drug delivery systems for infectious diseases. Biomater Sci 2016; 4:1535-1553. [PMID: 27709137 PMCID: PMC5162423 DOI: 10.1039/c6bm00276e] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Since centuries, the rapid spread and cure of infectious diseases have been a major concern to the progress and survival of humans. These diseases are a global burden and the prominent cause for worldwide deaths and disabilities. Nanomedicine has emerged as the most excellent tool to eradicate and halt their spread. Various nanoformulations (NFs) using advanced nanotechnology are in demand. Recently, hydrogel and nanogel based drug delivery devices have posed new prospects to simulate the natural intelligence of various biological systems. Owing to their unique porous interpenetrating network design, hydrophobic drug incorporation and stimulus sensitivity hydrogels owe excellent potential as targeted drug delivery systems. The present review is an attempt to highlight the recent trends of hydrogel based drug delivery systems for the delivery of therapeutic agents and diagnostics for major infectious diseases including acquired immune deficiency syndrome (AIDS), malaria, tuberculosis, influenza and ebola. Future prospects and challenges are also described.
Collapse
Affiliation(s)
- Arti Vashist
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Ajeet Kaushik
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rahul Dev Jayant
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Asahi Tomitaka
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, New Delhi, 110025, India
| | - Y K Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhavan Nair
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| |
Collapse
|
35
|
|
36
|
Abstract
PURPOSE OF REVIEW Limitations of blood smear microscopy contributed to failure of the 1950-1960s WHO Global Programme to Eliminate Malaria. All diagnostic methods encounter limits of detection (LOD) beyond which it will not be possible to identify infected individuals. When this occurs, it becomes difficult to continue evaluating progress of malaria elimination. The purpose of this review is to compare available diagnostic technologies, factors that underlie their LOD, and their potential roles related to the goal of elimination. RECENT FINDINGS Parasite-containing cells, parasite proteins, hemozoin, nucleic acids, and parasite-specific human antibodies are targets of diagnosis. Many studies report advantages of technologies to detect these diagnostic targets. Nucleic acid amplification tests and strategies for enriching capture of malaria diagnostic targets have consistently identified a parasite reservoir not detected by methods focused on the other biological targets. Exploiting magnetic properties of hemozoin may open new strategies for noninvasive malaria diagnosis. SUMMARY Microscopy and rapid diagnostic tests provide effective surveillance for malaria control. Strategies that detect a reservoir of submicroscopic infection must be developed and standardized to guide malaria elimination.
Collapse
|
37
|
Britton S, Cheng Q, McCarthy JS. Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings. Malar J 2016; 15:88. [PMID: 26879936 PMCID: PMC4754967 DOI: 10.1186/s12936-016-1158-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 02/09/2016] [Indexed: 02/08/2023] Open
Abstract
As malaria transmission continues to decrease, an increasing number of countries will enter pre-elimination and elimination. To interrupt transmission, changes in control strategies are likely to require more accurate identification of all carriers of Plasmodium parasites, both symptomatic and asymptomatic, using diagnostic tools that are highly sensitive, high throughput and with fast turnaround times preferably performed in local health service settings. Currently available immunochromatographic lateral flow rapid diagnostic tests and field microscopy are unlikely to consistently detect infections at parasite densities less than 100 parasites/µL making them insufficiently sensitive for detecting all carriers. Molecular diagnostic platforms, such as PCR and LAMP, are currently available in reference laboratories, but at a cost both financially and in turnaround time. This review describes the recent progress in developing molecular diagnostic tools in terms of their capacity for high throughput and potential for performance in non-reference laboratories for malaria elimination.
Collapse
Affiliation(s)
- Sumudu Britton
- University of Queensland, Brisbane, Australia. .,QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Qin Cheng
- Australian Army Malaria Institute, Brisbane, Australia.
| | - James S McCarthy
- University of Queensland, Brisbane, Australia. .,QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
38
|
Yanow SK, Gavina K, Gnidehou S, Maestre A. Impact of Malaria in Pregnancy as Latin America Approaches Elimination. Trends Parasitol 2016; 32:416-427. [PMID: 26875608 DOI: 10.1016/j.pt.2016.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 11/29/2022]
Abstract
In Latin America, four million pregnancies are at risk of malaria annually, but malaria in pregnancy is largely overlooked. As countries progress toward malaria elimination, targeting reservoirs of transmission is a priority. Pregnant women are an important risk group because they harbor asymptomatic infections and dormant liver stages of Plasmodium vivax that cause relapses. Of significant concern is the discovery that most infections in pregnant women fail to be detected by routine diagnostics. We review here recent findings on malaria in pregnancy within Latin America. We focus on the Amazon basin and Northwest Colombia, areas that harbor the greatest burden of malaria, and propose that more sensitive diagnostics and active surveillance at antenatal clinics will be necessary to eliminate malaria from these final frontiers.
Collapse
Affiliation(s)
- Stephanie K Yanow
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - Kenneth Gavina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Sedami Gnidehou
- Department of Biology, Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda Maestre
- Grupo Salud y Comunidad, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
39
|
Sánchez-Ovejero C, Benito-Lopez F, Díez P, Casulli A, Siles-Lucas M, Fuentes M, Manzano-Román R. Sensing parasites: Proteomic and advanced bio-detection alternatives. J Proteomics 2016; 136:145-56. [PMID: 26773860 DOI: 10.1016/j.jprot.2015.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022]
Abstract
Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within microfluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for bio-sensing parasites in their hosts, showing the newest opportunities offered by modern "-omics" and platforms for parasite detection and control.
Collapse
Affiliation(s)
- Carlos Sánchez-Ovejero
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - Fernando Benito-Lopez
- Analytical Chemistry Department, Universidad del País Vasco UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Adriano Casulli
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, - 00161 Rome, Italy
| | - Mar Siles-Lucas
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Raúl Manzano-Román
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain.
| |
Collapse
|
40
|
Cordray MS, Richards-Kortum RR. A paper and plastic device for the combined isothermal amplification and lateral flow detection of Plasmodium DNA. Malar J 2015; 14:472. [PMID: 26611141 PMCID: PMC4661981 DOI: 10.1186/s12936-015-0995-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022] Open
Abstract
Background Isothermal amplification techniques are emerging as a promising method for malaria diagnosis since they are capable of detecting extremely low concentrations of parasite target while mitigating the need for infrastructure and training required by other nucleic acid based tests. Recombinase polymerase amplification (RPA) is promising for further development since it operates in a short time frame (<30 min) and produces a product that can be visually detected on a lateral flow dipstick. A self-sealing paper and plastic system that performs both the amplification and detection of a malaria DNA sequence is presented. Methods Primers were designed using the NCBI nBLAST tools and screened using gel electrophoresis. Paper and plastic devices were prototyped using commercial design software and parts were cut using a laser cutter and assembled by hand. Synthetic copies of the Plasmodium 18S gene were spiked into solution and used as targets for the RPA reaction. To test the performance of the device the same samples spiked with synthetic target were run in parallel both in the paper and plastic devices and using conventional bench top methods. Results Novel RPA primers were developed that bind to sequences present in the four species of Plasmodium which infect humans. The paper and plastic devices were found to be capable of detecting as few as 5 copies/µL of synthetic Plasmodium DNA (50 copies total), comparable to the same reaction run on the bench top. The devices produce visual results in an hour, cost approximately $1, and are self-contained once the device is sealed. Conclusions The device was capable of carrying out the RPA reaction and detecting meaningful amounts of synthetic Plasmodium DNA in a self-sealing and self-contained device. This device may be a step towards making nucleic acid tests more accessible for malaria detection.
Collapse
Affiliation(s)
- Michael S Cordray
- Rice University Department of Bioengineering, 6100 Main St., Houston, TX, 77005, USA.
| | | |
Collapse
|
41
|
Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics. BIOSENSORS-BASEL 2015; 5:577-601. [PMID: 26287254 PMCID: PMC4600173 DOI: 10.3390/bios5030577] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/02/2015] [Accepted: 08/07/2015] [Indexed: 11/30/2022]
Abstract
The inability to diagnose numerous diseases rapidly is a significant cause of the disparity of deaths resulting from both communicable and non-communicable diseases in the developing world in comparison to the developed world. Existing diagnostic instrumentation usually requires sophisticated infrastructure, stable electrical power, expensive reagents, long assay times, and highly trained personnel which is not often available in limited resource settings. This review will critically survey and analyse the current lateral flow-based point-of-care (POC) technologies, which have made a major impact on diagnostic testing in developing countries over the last 50 years. The future of POC technologies including the applications of microfluidics, which allows miniaturisation and integration of complex functions that facilitate their usage in limited resource settings, is discussed The advantages offered by such systems, including low cost, ruggedness and the capacity to generate accurate and reliable results rapidly, are well suited to the clinical and social settings of the developing world.
Collapse
|
42
|
Alladin-Mustan BS, Mitran CJ, Gibbs-Davis JM. Achieving room temperature DNA amplification by dialling in destabilization. Chem Commun (Camb) 2015; 51:9101-4. [DOI: 10.1039/c5cc01548k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ability to amplify nucleic acid sequences at room temperature without the need for any heating element has been achieved, which has promise in bio-diagnostics employed at the point of care.
Collapse
|