1
|
Li L, Lin W, Wang Z, Huang R, Xia H, Li Z, Deng J, Ye T, Huang Y, Yang Y. Hormone Regulation in Testicular Development and Function. Int J Mol Sci 2024; 25:5805. [PMID: 38891991 PMCID: PMC11172568 DOI: 10.3390/ijms25115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Wanqing Lin
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
2
|
Omotehara T, Hess RA, Nakata H, Birch LA, Prins GS, Itoh M. Expression patterns of sex steroid receptors in developing mesonephros of the male mouse: three-dimensional analysis. Cell Tissue Res 2023; 393:577-593. [PMID: 37335379 DOI: 10.1007/s00441-023-03796-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
The androgen pathway via androgen receptor (AR) has received the most attention for development of male reproductive tracts. The estrogen pathway through estrogen receptor (ESR1) is also a major contributor to rete testis and efferent duct formation, but the role of progesterone via progesterone receptor (PGR) has largely been overlooked. Expression patterns of these receptors in the mesonephric tubules (MTs) and Wolffian duct (WD), which differentiate into the efferent ductules and epididymis, respectively, remain unclear because of the difficulty in distinguishing each region of the tracts. This study investigated AR, ESR1, and PGR expressions in the murine mesonephros using three-dimensional (3-D) reconstruction. The receptors were localized in serial paraffin sections of the mouse testis and mesonephros by immunohistochemistry on embryonic days (E) 12.5, 15.5, and 18.5. Specific regions of the developing MTs and WD were determined by 3-D reconstruction using Amira software. AR was found first in the specific portion of the MTs near the MT-rete junction at E12.5, and the epithelial expression showed increasing strength from cranial to the caudal regions. Epithelial expression of ESR1 was found in the cranial WD and MTs near the WD first at E15.5. PGR was weakly positive only in the MTs and cranial WD starting on E15.5. This 3-D analysis suggests that gonadal androgen acts first on the MTs near the MT-rete junction but that estrogen is the first to influence MTs near the WD, while potential PGR activity is delayed and limited to the epithelium.
Collapse
Affiliation(s)
- Takuya Omotehara
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Chicago, IL, 61821, USA
| | - Hiroki Nakata
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
| | - Lynn A Birch
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Godoi AR, Fioravante VC, Santos BM, Martinez FE, Pinheiro PFF. Maternal exposure of rats to sodium saccharin during gestation and lactation on male offspring†. Biol Reprod 2023; 108:98-106. [PMID: 36219170 DOI: 10.1093/biolre/ioac190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 01/20/2023] Open
Abstract
We investigated the effects of fetal programming in Sprague-Dawley rats through the maternal consumption of sodium saccharin on the testicular structure and function in male offspring. Feed intake and efficiency, organ and fat weight, quantification and expression of androgen receptor (AR), and proliferating cell nuclear antigen (PCNA) proteins, sperm count, and hormone levels were determined. Consumption alterations were found in the final weeks of the experiment. Decreases in AR and PCNA expression and quantification, tubular diameter, and luminal volume, and increases in epithelial and interstitial relative volumes were observed. Lower sperm count and transit, and lower estradiol concentration were also found. Sodium saccharin consumption by dams programmed male offspring by affecting the hypothalamic-pituitary-gonad axis with alterations in the Sertoli cell population, in spermatogonia proliferation, the expression and quantification of AR, and in sperm count. We hypothesized that these changes may be due to an estradiol reduction that caused the loosening of adhesion junctions of the blood-testis barrier, causing cell losses during spermatogenesis, also reflected by a decrease in tubular diameter with an increase in epithelial volume and consequent decrease in luminal volume. We conclude that maternal sodium saccharin consumption during pregnancy and lactation programmed alterations in the reproductive parameters of male offspring, thus influencing spermatogenesis.
Collapse
Affiliation(s)
- Alana Rezende Godoi
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Vanessa Caroline Fioravante
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Beatriz Melo Santos
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Francisco Eduardo Martinez
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | | |
Collapse
|
4
|
Takada M, Fukuhara D, Takiura T, Nishibori Y, Kotani M, Kiuchi Z, Kudo A, Beltcheva O, Ito-Nitta N, Nitta KR, Kimura T, Suehiro JI, Katada T, Takematsu H, Yan K. Involvement of GLCCI1 in mouse spermatogenesis. FASEB J 2023; 37:e22680. [PMID: 36468710 DOI: 10.1096/fj.202101667rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Spermatid production is a complex regulatory process in which coordination between hormonal control and apoptosis plays a pivotal role in maintaining a balanced number of sperm cells. Apoptosis in spermatogenesis is controlled by pro-apoptotic and anti-apoptotic molecules. Hormones involved in the apoptotic process during spermatogenesis include gonadotrophins, sex hormones, and glucocorticoid (GC). GC acts broadly as an apoptosis inducer by binding to its receptor (glucocorticoid receptor: GR) during organ development processes, such as spermatogenesis. However, the downstream pathway induced in GC-GR signaling and the apoptotic process during spermatogenesis remains poorly understood. We reported previously that GC induces full-length glucocorticoid-induced transcript 1 (GLCCI1-long), which functions as an anti-apoptotic mediator in thymic T cell development. Here, we demonstrate that mature murine testis expresses a novel isoform of GLCCI1 protein (GLCCI1-short) in addition to GLCCI1-long. We demonstrate that GLCCI1-long is expressed in spermatocytes along with GR. In contrast, GLCCI1-short is primarily expressed in spermatids where GR is absent; instead, the estrogen receptor is expressed. GLCCI1-short also binds to LC8, which is a known mediator of the anti-apoptotic effect of GLCCI1-long. A luciferase reporter assay revealed that β-estradiol treatment synergistically increased Glcci1-short promotor-driven luciferase activity in Erα-overexpressing cells. Together with the evidence that the conversion of testosterone to estrogen is preceded by aromatase expression in spermatids, we hypothesize that estrogen induces GLCCI1-short, which, in turn, may function as a novel anti-apoptotic mediator in mature murine testis.
Collapse
Affiliation(s)
- Masaru Takada
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Daisuke Fukuhara
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshihiko Takiura
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Yukino Nishibori
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Masashi Kotani
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Zentaro Kiuchi
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Akihiko Kudo
- Department of Microscopic Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Olga Beltcheva
- Molecular Medicine Center and Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, Bulgaria
| | - Noriko Ito-Nitta
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Kazuhiro R Nitta
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toru Kimura
- Department of Toxicology and Pharmacology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jun-Ichi Suehiro
- Department of Toxicology and Pharmacology, Kyorin University School of Medicine, Tokyo, Japan
| | - Tomohisa Katada
- Department of Toxicology and Pharmacology, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiromu Takematsu
- Department of Molecular Cell Biology, Faculty of Medical Technology, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Kunimasa Yan
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Adamczewska D, Słowikowska-Hilczer J, Walczak-Jędrzejowska R. The Fate of Leydig Cells in Men with Spermatogenic Failure. Life (Basel) 2022; 12:570. [PMID: 35455061 PMCID: PMC9028943 DOI: 10.3390/life12040570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
The steroidogenic cells in the testicle, Leydig cells, located in the interstitial compartment, play a vital role in male reproductive tract development, maintenance of proper spermatogenesis, and overall male reproductive function. Therefore, their dysfunction can lead to all sorts of testicular pathologies. Spermatogenesis failure, manifested as azoospermia, is often associated with defective Leydig cell activity. Spermatogenic failure is the most severe form of male infertility, caused by disorders of the testicular parenchyma or testicular hormone imbalance. This review covers current progress in knowledge on Leydig cells origin, structure, and function, and focuses on recent advances in understanding how Leydig cells contribute to the impairment of spermatogenesis.
Collapse
Affiliation(s)
| | | | - Renata Walczak-Jędrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 92-213 Lodz, Poland; (D.A.); (J.S.-H.)
| |
Collapse
|
6
|
Using adverse outcome pathways to contextualise (Q)SAR predictions for reproductive toxicity – A case study with aromatase inhibition. Reprod Toxicol 2022; 108:43-55. [DOI: 10.1016/j.reprotox.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022]
|
7
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Menad R, Fernini M, Lakabi L, Smaï S, Gernigon-Spychalowicz T, Farida K, Bonnet X, Moudilou E, Exbrayat JM. Androgen and estrogen receptors immunolocalization in the sand rat (Psammomys Obesus) cauda epididymis. Acta Histochem 2021; 123:151683. [PMID: 33508524 DOI: 10.1016/j.acthis.2021.151683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/06/2022]
Abstract
Both androgens and estrogens play key, albeit incompletely described, roles in the functioning of the epididymis. Because this tightly-coiled tubular structure is compartmented, precise mapping of the distribution of sex steroid's receptors is important. Such receptors have been located in the first segments (caput, corpus), but the last part (cauda) remains poorly explored. We used immunochemistry to localize androgen (AR) and estrogen (ESR1 and ESR2) receptors in the cauda in the fat sand rat (Psammomys obesus). We compared results obtained during the breeding versus resting seasons. We also used individuals castrated, or castrated then treated with testosterone, or subjected to the ligation of their efferent ducts. During the breeding season, in principal cells, we found strong staining both for AR and ESR1 in the apical cytoplasm, and strong staining for ESR2 in the nucleus. During the resting season, principal cells were positive for AR and ESR1, but negative for ESR2. In castrated animals, staining was null for ESR2 and AR, and weak for ESR1. In castrated then treated animals, immuno-expression was restored but only for AR and ESR1. Following efferent duct ligation, AR reactivity decreased while ESR1 and ESR2 provided strong staining. Broadly similar, but not fully identical patterns were observed in basal cells. They were positive for ESR2 and AR during the breeding season, but not for ESR1. During the resting season, staining was modest for ESR1 and AR and negative for ESR2. In all experimentally treated animals, we observed weak staining for AR and ESR1, and a lack of signal for ESR2. Overall, this study provides strong evidence that androgens and estrogens are involved in the seasonal regulation of the whole epididymis in the fat sand rat, with marked differences between caput and cauda (the corpus is highly reduced in rodent).
Collapse
|
9
|
Nurliani A, Sasaki M, Budipitojo T, Tsubota T, Kitamura N. Morphological and Histological Studies on the Epididymis and Deferent Duct of the Sunda Porcupine (Hystrix javanica). MAMMAL STUDY 2020. [DOI: 10.3106/ms2019-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Anni Nurliani
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Motoki Sasaki
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Teguh Budipitojo
- Department of Anatomy, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | - Nobuo Kitamura
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
10
|
Zhao H, You X, Chen Q, Yang S, Ma Q, He Y, Liu C, Dun Y, Wu J, Zhang C, Yuan D. Icariin Improves Age-Related Testicular Dysfunction by Alleviating Sertoli Cell Injury via Upregulation of the ER α/Nrf2-Signaling Pathway. Front Pharmacol 2020; 11:677. [PMID: 32528279 PMCID: PMC7247842 DOI: 10.3389/fphar.2020.00677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/24/2020] [Indexed: 01/15/2023] Open
Abstract
Sertoli cells play crucial roles in spermatogenesis and are impaired by aging. Icariin, a flavonoid from Epimedium, has been reported to exhibit anti-aging effects and improve testicular dysfunction in the clinical setting. However, whether icariin improves age-related degeneration of testicular function via protection from Sertoli cell injury remains unclear. In the present study, we evaluated the protective effect of icariin on Sertoli cell injury and explored the possible mechanism(s) in vivo and in vitro. Dietary administration of icariin for 4 months significantly ameliorated the age-related decline in testicular function by increasing testicular and epididymal weights and indices, sperm count and sperm viability, testicular testosterone and estradiol concentrations, and seminiferous tubule diameters and heights. In addition, icariin protected age-related Sertoli cells from injury as evidenced by an analysis of Sertoli cell number, ultrastructure, and function. Such changes were accompanied by upregulation of ERα and Nrf2 signaling in Sertoli cells. Parallel in vitro studies also demonstrated that icariin inhibited untoward effects on the TM4 mouse Sertoli cell line with concomitant upregulation of ERα and Nrf2 signaling. Conversely, ERα siRNA reversed icariin-mediated protection of Sertoli cell injury. Our data suggest that icariin effectively ameliorates age-related degeneration of testicular function by alleviating Sertoli cell injury via the ERα/Nrf2 signal-transduction pathway. Thus, mitigating Sertoli cell damage via the ERα/Nrf2 signaling pathway likely represents a promising strategy for the prevention of age-related testicular dysfunction.
Collapse
Affiliation(s)
- Haixia Zhao
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Xu You
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Qian Chen
- College of Medical Science, China Three Gorges University, Yichang, China.,The Second People's Hospital of Yichang, China Three Gorges University, Yichang, China
| | - Siqi Yang
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Qiongyan Ma
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yumin He
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Chaoqi Liu
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yaoyan Dun
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Jie Wu
- Material Analysis and Testing Center, China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Ding Yuan
- College of Medical Science, China Three Gorges University, Yichang, China
| |
Collapse
|
11
|
Hess RA, Cooke PS. Estrogen in the male: a historical perspective. Biol Reprod 2019; 99:27-44. [PMID: 29438493 PMCID: PMC6044326 DOI: 10.1093/biolre/ioy043] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
Estrogens have traditionally been considered female hormones. Nevertheless, the presence of estrogen in males has been known for over 90 years. Initial studies suggested that estrogen was deleterious to male reproduction because exogenous treatments induced developmental abnormalities. However, demonstrations of estrogen synthesis in the testis and high concentrations of 17β-estradiol in rete testis fluid suggested that the female hormone might have a function in normal male reproduction. Identification of estrogen receptors and development of biological radioisotope methods to assess estradiol binding revealed that the male reproductive tract expresses estrogen receptor extensively from the neonatal period to adulthood. This indicated a role for estrogens in normal development, especially in efferent ductules, whose epithelium is the first in the male reproductive tract to express estrogen receptor during development and a site of exceedingly high expression. In the 1990s, a paradigm shift occurred in our understanding of estrogen function in the male, ushered in by knockout mouse models where estrogen production or expression of its receptors was not present. These knockout animals revealed that estrogen's main receptor (estrogen receptor 1 [ESR1]) is essential for male fertility and development of efferent ductules, epididymis, and prostate, and that loss of only the membrane fraction of ESR1 was sufficient to induce extensive male reproductive abnormalities and infertility. This review provides perspectives on the major discoveries and developments that led to our current knowledge of estrogen's importance in the male reproductive tract and shaped our evolving concept of estrogen's physiological role in the male.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Zhou R, Wu J, Liu B, Jiang Y, Chen W, Li J, He Q, He Z. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cell Mol Life Sci 2019; 76:2681-2695. [PMID: 30980107 PMCID: PMC11105226 DOI: 10.1007/s00018-019-03101-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Spermatogenesis is fundamental to the establishment and maintenance of male reproduction, whereas its abnormality results in male infertility. Somatic cells, including Leydig cells, myoid cells, and Sertoli cells, constitute the microenvironment or the niche of testis, which is essential for regulating normal spermatogenesis. Leydig cells are an important component of the testicular stroma, while peritubular myoid cells are one of the major cell types of seminiferous tubules. Here we addressed the roles and mechanisms of Leydig cells and myoid cells in the regulation of spermatogenesis. Specifically, we summarized the biological features of Leydig cells and peritubular myoid cells, and we introduced the process of testosterone production and its major regulation. We also discussed other hormones, cytokines, growth factors, transcription factors and receptors associated with Leydig cells and myoid cells in mediating spermatogenesis. Furthermore, we highlighted the issues that are worthy of further studies in the regulation of spermatogenesis by Leydig cells and peritubular myoid cells. This review would provide novel insights into molecular mechanisms of the somatic cells in controlling spermatogenesis, and it could offer new targets for developing therapeutic approaches of male infertility.
Collapse
Affiliation(s)
- Rui Zhou
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jingrouzi Wu
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bang Liu
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yiqun Jiang
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Chen
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jian Li
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Quanyuan He
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zuping He
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
13
|
Motile cilia of the male reproductive system require miR-34/miR-449 for development and function to generate luminal turbulence. Proc Natl Acad Sci U S A 2019; 116:3584-3593. [PMID: 30659149 DOI: 10.1073/pnas.1817018116] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cilia are cell-surface, microtubule-based organelles that project into extracellular space. Motile cilia are conserved throughout eukaryotes, and their beat induces the flow of fluid, relative to cell surfaces. In mammals, the coordinated beat of motile cilia provides highly specialized functions associated with the movement of luminal contents, as seen with metachronal waves transporting mucus in the respiratory tract. Motile cilia are also present in the male and female reproductive tracts. In the female, wave-like motions of oviductal cilia transport oocytes and embryos toward the uterus. A similar function has been assumed for motile cilia in efferent ductules of the male-i.e., to transport immotile sperm from rete testis into the epididymis. However, we report here that efferent ductal cilia in the male do not display a uniform wave-like beat to transport sperm solely in one direction, but rather exert a centripetal force on luminal fluids through whip-like beating with continual changes in direction, generating turbulence, which maintains immotile spermatozoa in suspension within the lumen. Genetic ablation of two miRNA clusters (miR-34b/c and -449a/b/c) led to failure in multiciliogenesis in murine efferent ductules due to dysregulation of numerous genes, and this mouse model allowed us to demonstrate that loss of efferent duct motile cilia causes sperm aggregation and agglutination, luminal obstruction, and sperm granulomas, which, in turn, induce back-pressure atrophy of the testis and ultimately male infertility.
Collapse
|
14
|
Martins-Santos E, Pimenta CG, Campos PRN, Oliveira AG, Mahecha GAB, Oliveira CA. Atrazine affects the morphophysiology, tissue homeostasis and aromatase expression in the efferent ductules of adult rats with mild alterations in the ventral prostate. CHEMOSPHERE 2018; 193:958-967. [PMID: 29874772 DOI: 10.1016/j.chemosphere.2017.11.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
The widely used herbicide atrazine is a potent endocrine disruptor known to cause increased aromatase expression and transient increase in testicular weight followed by remarkable testis atrophy. However, whether the effects of atrazine on the testes are primary or secondary to dysfunctions in other components of male reproductive tract remains unknown. Given the high sensitivity of the efferent ductules to estrogen imbalance and the similarity to alterations previously described for other disruptors of these ductules function, and the testicular alterations observed after atrazine exposure, we hypothesized that the efferent ductules could be a target for atrazine. Herein we characterized the efferent ductules and the ventral prostate of adult Wistar rats treated with 200 mg/kg/day of atrazine for 7, 15, and 40 days. Additionally, we evaluated if the effects of atrazine in these organs could be reduced after discontinuation of the treatment. Atrazine exposure resulted in mild effects on the ventral prostate, but remarkable alterations on the efferent ductules, including luminal dilation, reduced epithelial height, and disruption of the epithelial homeostasis, which coincides with increased aromatase expression. Together with our previous data, these results suggest that at least part of the testicular effects of atrazine may be secondary to the alterations in the efferent ductules.
Collapse
Affiliation(s)
- Elisângela Martins-Santos
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - Cristiano Guimarães Pimenta
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - Pollyana Rabelo Nunes Campos
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - André Gustavo Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | | | - Cleida Aparecida Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
15
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
16
|
Nanjappa MK, Mesa AM, Tevosian SG, de Armas L, Hess RA, Bagchi IC, Cooke PS. Membrane estrogen receptor 1 is required for normal reproduction in male and female mice. JOURNAL OF ENDOCRINOLOGY AND REPRODUCTION : JER 2017; 21:1-14. [PMID: 34321782 PMCID: PMC8315114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Steroid hormones, acting through their cognate nuclear receptors, are critical for many reproductive and non-reproductive functions. Over the past two decades, it has become increasingly clear that in addition to cytoplasmic/nuclear steroid receptors that alter gene transcription when liganded, a small fraction of cellular steroid receptors are localized to the cell membranes, where they mediate rapid steroid hormone effects. 17β-Estradiol (E2), a key steroid hormone for both male and female reproduction, acts predominately through its main receptor, estrogen receptor 1 (ESR1). Most ESR1 is nuclear; however, 5-10% of ESR1 is localized to the cell membrane after being palmitoylated at cysteine 451 in mice. This review discusses reproductive phenotypes of a newly-developed mouse model with a C451A point mutation that precludes membrane targeting of ESR1. This transgenic mouse, termed the nuclear-only ESR1 (NOER) mouse, shows extensive male and female reproductive abnormalities and infertility despite normally functional nuclear ESR1 (nESR1). These results provide the first in vivo evidence that membrane-initiated E2/ESR1 signaling is required for normal male and female reproductive functions and fertility. Signaling mechanisms for membrane ESR1 (mESR1), as well as how mESR1 works with nESR1 to mediate estrogen effects, are still being established. We discuss some possible mechanisms by which mESR1 might facilitate nESR1 signaling, as well as the emerging evidence that mESR1 might be a major mediator of epigenetic effects of estrogens, which are potentially linked to various adult-onset pathologies.
Collapse
Affiliation(s)
| | - Ana M. Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Sergei G. Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Laura de Armas
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Rex A. Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Effects of Short-Term Treatment with Estrogen Receptor Agonist on Morphological Changes in Reproductive Organs of Adult Male Mice. Appl Microsc 2016. [DOI: 10.9729/am.2016.46.4.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Gray SL, Lackey BR, Boone WR. Effects of Panax ginseng, zearalenol, and estradiol on sperm function. J Ginseng Res 2015; 40:251-9. [PMID: 27616901 PMCID: PMC5005360 DOI: 10.1016/j.jgr.2015.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/03/2015] [Accepted: 08/16/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Estrogen signaling pathways are modulated by exogenous factors. Panax ginseng exerts multiple activities in biological systems and is classified as an adaptogen. Zearalenol is a potent mycoestrogen that may be present in herbs and crops arising from contamination or endophytic association. The goal of this study was to investigate the impact of P. ginseng, zearalenol and estradiol in tests on spermatozoal function. METHODS The affinity of these compounds for estrogen receptor (ER)-alpha and beta (ERα and ERβ)-was assessed in receptor binding assays. Functional tests on boar spermatozoa motility, movement and kinematic parameters were conducted using a computer-assisted sperm analyzer. Tests for capacitation, acrosome reaction (AR), and chromatin decondensation in spermatozoa were performed using microscopic analysis. RESULTS Zearalenol-but not estradiol (E2)- or ginseng-treated spermatozoa-decreased the percentage of overall, progressive, and rapid motile cells. Zearalenol also decreased spontaneous AR and increased chromatin decondensation. Ginseng decreased chromatin decondensation in response to calcium ionophore and decreased AR in response to progesterone (P4) and ionophore. CONCLUSION Zearalenol has adverse effects on sperm motility and function by targeting multiple signaling cascades, including P4, E2, and calcium pathways. Ginseng protects against chromatin damage and thus may be beneficial to reproductive fitness.
Collapse
Affiliation(s)
- Sandra L Gray
- Endocrine Physiology Laboratory, Animal and Veterinary Science Department, Clemson University, Clemson, SC, USA
| | - Brett R Lackey
- Endocrine Physiology Laboratory, Animal and Veterinary Science Department, Clemson University, Clemson, SC, USA
| | - William R Boone
- ART Laboratories, Department of Obstetrics and Gynecology, Greenville Health System University Medical Group, Greenville, SC, USA
| |
Collapse
|
19
|
Hess RA. Disruption of estrogen receptor signaling and similar pathways in the efferent ductules and initial segment of the epididymis. SPERMATOGENESIS 2014; 4:e979103. [PMID: 26413389 PMCID: PMC4581051 DOI: 10.4161/21565562.2014.979103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023]
Abstract
Seminiferous tubular atrophy may involve indirectly the disruption of estrogen receptor-α (ESR1) function in efferent ductules of the testis. ESR1 helps to maintain fluid resorption by the ductal epithelium and the inhibition or stimulation of this activity in rodent species will lead to fluid accumulation in the lumen. If not resolved, the abnormal buildup of fluid in the head of the epididymis and efferent ductules becomes a serious problem for the testis, as it leads to an increase in testis weight, tubular dilation and seminiferous epithelial degeneration, as well as testicular atrophy. The same sequence of pathogenesis occurs if the efferent ductule lumen becomes occluded. This review provides an introduction to the role of estrogen in the male reproductive tract but focuses on the various overlapping mechanisms that could induce efferent ductule dysfunction and fluid backpressure histopathology. Although efferent ductules are difficult to find, their inclusion in routine histological evaluations is recommended, as morphological images of these delicate tubules may be essential for understanding the mechanism of testicular injury, especially if dilations are observed in the rete testis and/or seminiferous tubules. Signature Lesion: The rete testis and efferent ductules can appear dilated, as if the lumens were greatly expanded with excess fluid or the accumulation of sperm. Because the efferent ductules resorb most of the fluid arriving from the rete testis lumen, one of two mechanisms is likely to be involved: a) reduced fluid uptake, which has been caused by the disruption in estrogen receptor signaling or associated pathways; or b) an increased rate of fluid resorption, which results in luminal occlusion. Both mechanisms can lead to a temporary increase in testicular weight, tubular dilation and atrophy of the seminiferous tubules.
Collapse
Affiliation(s)
- Rex A Hess
- Reproductive Biology & Toxicology; Department of Comparative Biosciences; College of Veterinary Medicine; University of Illinois ; Urbana, IL USA
| |
Collapse
|
20
|
Beguelini MR, Falleiros LR, Góes RM, Rahal P, Morielle-Versute E, Taboga SR. Differential expression of aromatase, estrogen receptor alpha and 17β-HSD associated with the processes of total testicular regression and recrudescence in the bat Myotis nigricans (Chiroptera: Vespertilionidae). Gen Comp Endocrinol 2014; 201:53-64. [PMID: 24726986 DOI: 10.1016/j.ygcen.2014.03.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 12/25/2022]
Abstract
Despite the worldwide distribution and many unique reproductive adaptations that bats present, many aspects of their reproductive hormonal regulation have not been adequately studied, especially in species that presented patterns of total testicular regression. Thus, this study aimed to evaluate the testicular expression of 17β-HSD type 1, aromatase and ERα in the bat Myotis nigricans, during the four periods of its reproductive cycle. Immunoreactivity for ERα was detected only in the cytoplasm of elongated spermatids and in the nuclei of spermatogonia and Sertoli cells. Expression of aromatase was observed in round and elongated spermatids and in Sertoli and Leydig cells. Immunoreactivity for 17β-HSD was restricted to the cytoplasm of Leydig cells. The three expression patterns varied significantly during the four periods of the reproductive cycle. Expression of ERα and aromatase in spermatids was continuous, while expression of ERα in spermatogonia occurred only in initial types (Ap). Expression of ERα and aromatase in Sertoli cells varied, with expression only in periods of spermatogenetic activities; and the same variation was observed for the expression of aromatase and 17β-HSD in Leydig cells. We, therefore, propose that the processes of total testicular regression and posterior recrudescence suffered by M. nigricans from September to January in the northwest of the São Paulo State of Brazil, are directly regulated by testosterone and estrogen. This occurs via the production of testosterone by 17β-HSD, its conversion into estrogen by aromatase, and activation/deactivation of Sertoli cells' AR and spermatogonia's ERα.
Collapse
Affiliation(s)
- Mateus R Beguelini
- Department of Biology, UNESP - Univ Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil.
| | - Luiz R Falleiros
- Department of Biology, UNESP - Univ Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil.
| | - Rejane M Góes
- Department of Biology, UNESP - Univ Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil.
| | - Paula Rahal
- Department of Biology, UNESP - Univ Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil.
| | - Eliana Morielle-Versute
- Department of Zoology and Botany, UNESP - Univ Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil.
| | - Sebastião R Taboga
- Department of Biology, UNESP - Univ Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil.
| |
Collapse
|
21
|
Pereira MFN, Fernandes SAF, Nascimento AR, Siu ER, Hess RA, Oliveira CA, Porto CS, Lazari MFM. Effects of the oestrogen receptor antagonist Fulvestrant on expression of genes that affect organization of the epididymal epithelium. Andrology 2014; 2:559-71. [PMID: 24782439 DOI: 10.1111/j.2047-2927.2014.00219.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 12/20/2022]
Abstract
The role of oestrogens in epididymal function is still unclear. Knockout of the oestrogen receptor ESR1 (Esr1(-/-) ) or treatment with the anti-oestrogen Fulvestrant affect epididymal milieu and sperm motility. We investigated the effect of in vivo treatment of rats with Fulvestrant on: (i) expression of genes that may be important for the architecture and function of the epididymal epithelium: prominins 1 and 2, metalloproteinase 7, claudin 7, beta-catenin and cadherin 13, and (ii) levels of oestradiol and testosterone, and expression of oestrogen and androgen receptors, in the initial segment (IS), caput, corpus and cauda epididymis. Fulvestrant (i) reduced gene expression of prominin 1 (variant 1) in the caput, reduced prominin 1 protein content in the caput epididymis and in the efferent ductules, and increased the localization of prominin 1 in microvilli of the caput and corpus; (ii) reduced gene expression of prominin 2 in the corpus and cauda epididymis; (iii) increased the metalloproteinase 7 content in the apical region of principal cells from IS/caput; (iv) reduced in the corpus epididymis, but increased in the efferent ductules, the cadherin 13 mRNA level; (v) reduced testosterone but increased oestradiol levels in the corpus and cauda; (vi) increased the androgen receptor protein content in all regions of the epididymis, and the oestrogen receptor GPER in the corpus and cauda epididymis. In conclusion, treatment with Fulvestrant induced regional-specific changes in hormonal and steroid receptor content, and affected expression of proteins important for epithelial organization and absorption/secretion. The mechanisms of oestrogen action may differ among epididymal regions, which may contribute to determine region-specific sperm functions.
Collapse
Affiliation(s)
- M F N Pereira
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Misiakiewicz K, Kolasa A, Kondarewicz A, Marchlewicz M, Wiszniewska B. Expression of the c-Kit receptor in germ cells of the seminiferous epithelium in rats with hormonal imbalance. Reprod Biol 2013; 13:333-40. [DOI: 10.1016/j.repbio.2013.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 11/28/2022]
|
23
|
Effects of Alternate Treatment of Estrogen Receptor Antagonist and Agonist on Morphology of Male Reproductive Organs of Adult Mice. Appl Microsc 2013. [DOI: 10.9729/am.2013.43.3.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Maqdasy S, Baptissart M, Vega A, Baron S, Lobaccaro JMA, Volle DH. Cholesterol and male fertility: what about orphans and adopted? Mol Cell Endocrinol 2013; 368:30-46. [PMID: 22766106 DOI: 10.1016/j.mce.2012.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 12/24/2022]
Abstract
The link between cholesterol homeostasis and male fertility has been clearly suggested in patients who suffer from hyperlipidemia and metabolic syndrome. This has been confirmed by the generation of several transgenic mouse models or in animals fed with high cholesterol diet. Next to the alteration of the endocrine signaling pathways through steroid receptors (androgen and estrogen receptors); "orphan" and "adopted" nuclear receptors, such as the Liver X Receptors (LXRs), the Proliferating Peroxisomal Activated Receptors (PPARs) or the Liver Receptor Homolog-1 (LRH-1), have been involved in this cross-talk. These transcription factors show distinct expression patterns in the male genital tract, explaining the large panel of phenotypes observed in transgenic male mice and highlighting the importance of lipid homesostasis and the complexity of the molecular pathways involved. Increasing our knowledge of the roles of these nuclear receptors in male germ cell differentiation could help in proposing new approaches to either treat infertile men or define new strategies for contraception.
Collapse
|
25
|
Zduńczyk S, Janowski T, Raś A, Barański W. Activity of steroid sulphatase and estrogen sulphotransferase in the boar epididymis during the postpubertal period. Reprod Biol 2012; 12:374-8. [DOI: 10.1016/j.repbio.2012.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 03/30/2012] [Indexed: 11/28/2022]
|
26
|
Zhang M, Sheng X, Zhang H, Wang Q, Xu M, Weng Q, Watanabe G, Taya K. Seasonal changes in morphology and immunoreactivity of PDGF-A and its receptor PDGFR-α in the epididymis of wild ground squirrels (Citellus dauricus Brandt). J Reprod Dev 2012; 58:353-9. [PMID: 22447327 DOI: 10.1262/jrd.2011-017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The platelet-derived growth factor (PDGF) system is expressed and can exert its biological role in the male reproductive system including the maintenance of morphological structure and function of the epididymis. The aim of this study was to clarify the relationship between the PDGF system and seasonal changes in morphology of the wild ground squirrel epididymis during the breeding and nonbreeding seasons. Hematoxylin-eosin (HE) staining was used to observe the epididymal morphology and histology. Immunohistochemistry and Western blotting were performed to detect the immunoreactivities of PDGF-A and B and PDGFR-α. Significant seasonal changes in epididymal morphology were observed in the breeding and nonbreeding seasons. The proportions of the three compartments (interstitial tissue, epithelium and lumen of the duct) revealed distinct variances. Strong immunostaining of PDGF-A was present in the myoid cell and on the sperm in the breeding season, whereas there was a faint signal in the myoid cell in the nonbreeding season. PDGFR-α was expressed in all cell types of the epithelium throughout the whole seasonal cycle, and immunostaining of PDGFR-α in the breeding season was significantly stronger compared with that of the nonbreeding season. PDGF-B was not detected in the epididymis of wild ground squirrels. These results suggested that seasonal morphological changes in epididymis were correlated with immunoreactivities of PDGF-A and its receptor PDGFR-α and that PDGF-A and PDGFR-α might function as paracrine, autocrine or apocrine factors in wild ground squirrels.
Collapse
Affiliation(s)
- Mengyuan Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pholpramool C, Borwornpinyo S, Dinudom A. Role of Na+ /H+ exchanger 3 in the acidification of the male reproductive tract and male fertility. Clin Exp Pharmacol Physiol 2011; 38:403-9. [PMID: 21480944 DOI: 10.1111/j.1440-1681.2011.05525.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
1. Male fertility is a complex process that is dependent on sex hormones and the normal function of the reproductive organs. Defects of these organs result in abnormal sperm production and function, which, in turn, lead to infertility. 2. Spermatozoa released from the testis are unable to move and fertilize with eggs. These features, known as sperm maturation, are acquired during their transit through the epididymis. 3. Among several processes that take place in the epididymis, absorption and acidification of the luminal fluid are essential for sperm maturation, sperm storage and fertility. Currently, the mechanism by which acidification occurs in the epididymis is still not fully understood. 4. The epididymis is fully equipped with the proteins required for acid/base transport, such as Na(+) /H(+) exchanger 3 (NHE3, SLC9A3), vacuolar-type adenosine triphosphatase (V-ATPase) and various isoforms of enzyme carbonic anhydrase (CA). 5. Most studies, so far, have focused on the role of V-ATPase on H(+) secretion and acidification of the epididymis. The involvement of NHE3 in creating the acidic environment of the epididymal spermatozoa receives little attention. 6. This review presents evidence for and discusses the role of NHE3 in the acidification of the male reproductive tract and its requirement for male fertility.
Collapse
Affiliation(s)
- Chumpol Pholpramool
- Departments of Physiology Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | | | | |
Collapse
|
28
|
Abstract
Estrogen's presence in the male reproductive system has been known for over 60 years, but its potential function in the epididymis remains an important area of investigation. Estrogen is synthesized by germ cells, producing a relatively high concentration in rete testis fluid. There are two estrogen receptors (ESR), the presence of which in the head of the epididymis is well documented and consistent between species; however, in other regions of the epididymis, their expression appears to be isotype, species, and cell specific. ESR1 is expressed constitutively in the epididymis; however, its presence is downregulated by high doses of estrogen, making the design of experiments complicated, as the phenotype of the Cyp19a1(-/-) mouse does not resemble that of the Esr1(-/-) mouse. Ligand-independent and DNA-binding Esr1 mutant models further demonstrate the complexity and importance of both signaling pathways in maintenance of efferent ductules and epididymis. Data now reveal the presence of not only classical nuclear receptors, but also cytoplasmic ESR and rapid responding membrane receptors; however, their importance in the epididymis remains undetermined. ESR1 regulates ion transport and water reabsorption in the efferent ducts and epididymis, and its regulation of other associated genes is continually being uncovered. In the male, some genes, such as Aqp9 and Slc9a3, contain both androgen and estrogen response elements and are dually regulated by these hormones. While estrogen pathways are a necessity for fertility in the male, future studies are needed to understand the interplay between androgens and estrogens in epididymal tissues, particularly in cell types that contain both receptors and their cofactors.
Collapse
Affiliation(s)
- Avenel Joseph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | |
Collapse
|
29
|
Abstract
The role of oestrogens in male reproductive tract physiology has for a long time been a subject of debate. The testis produces significant amounts of oestrogenic hormones, via aromatase, and oestrogen receptors (ERs)alpha (ESR1) and ERbeta (ESR2) are selectively expressed in cells of the testis as well as the epididymal epithelium, depending upon species. This review summarizes the current knowledge concerning the presence and activity of aromatase and ERs in testis and sperm and the potential roles that oestrogens may have in mammalian spermatogenesis. Data show that physiology of the male gonad is in part under the control of a balance of androgens and oestrogens, with aromatase serving as a modulator.
Collapse
Affiliation(s)
- Serge Carreau
- Department of Biochemistry, University of Caen, EA 2608, USC 2006 INRA, IFR 146, 14032 Caen, France
| | | |
Collapse
|
30
|
Gomes GRO, Yasuhara F, Siu ER, Fernandes SAF, Avellar MCW, Lazari MFM, Porto CS. In vivo treatments with fulvestrant and anastrozole differentially affect gene expression in the rat efferent ductules. Biol Reprod 2010; 84:52-61. [PMID: 20826728 DOI: 10.1095/biolreprod.110.085340] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Estrogen plays a key role in maintaining the morphology and function of the efferent ductules. We previously demonstrated that the antiestrogen fulvestrant markedly affected gene expression in the rat efferent ductules. The mechanism of fulvestrant action to modulate gene expression may involve not only the blockade of ESR1 and ESR2 estrogen receptors, but also the activation of ESR1 and ESR2 when the receptors are tethered to AP-1 or SP1 transcription factors, or the activation of the G protein-coupled estrogen receptor 1. We therefore compared the effects of two strategies to interfere with estrogen action in the rat efferent ductules: treatment with fulvestrant or with the aromatase inhibitor anastrozole. Whereas fulvestrant markedly increased Mmp7 and Spp1, and reduced Nptx1 mRNA levels, no changes were observed with anastrozole. Fulvestrant caused changes in epithelial morphology that were not seen with anastrozole. Fulvestrant shifted MMP7 immunolocalization in the epithelial cells from the supranuclear to the apical region; this effect was less pronounced with anastrozole. In vitro studies of (35)S-methionine incorporation showed that protein release was increased, whereas tissue protein content in the efferent ductules of fulvestrant-treated rats was decreased. Although fulvestrant markedly affected gene expression, no changes were observed on AP-1 and SP1 DNA-binding activity. The blockade of ESRs seems to be the major reason explaining the differences between both treatments. At least some of the effects of fulvestrant appear to result from compensatory mechanisms activated by the dramatic changes caused by ESR1 blockade.
Collapse
Affiliation(s)
- Gisele Renata Oliveira Gomes
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, Instituto Nacional de Farmacologia e Biologia Molecular, Vila Clementino, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Joseph A, Shur BD, Ko C, Chambon P, Hess RA. Epididymal hypo-osmolality induces abnormal sperm morphology and function in the estrogen receptor alpha knockout mouse. Biol Reprod 2010; 82:958-67. [PMID: 20130266 DOI: 10.1095/biolreprod.109.080366] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Estrogen receptor-alpha (ESR1) is highly expressed in the efferent ductules of all species studied as well as in the epididymal epithelium in mice and other select species. Male mice lacking ESR1 (Esr1KO) are infertile, but transplantation studies demonstrated that Esr1KO germ cells are capable of fertilization when placed in a wild-type reproductive tract. These results suggest that extratesticular regions, such as the efferent ductules and epididymis, are the major source of pathological changes in Esr1KO males. Previous studies have shown alterations in ion and fluid transporters in the efferent duct and epididymal epithelia of Esr1KO males, leading to misregulation of luminal fluid pH. To determine the effect of an altered epididymal milieu on Esr1KO sperm, we assayed sperm morphology in the different regions of the epididymis. Sperm recovered from the epididymis exhibited abnormal flagellar coiling and increased incidence of spontaneous acrosome reactions, both of which are consistent with exposure to abnormal epididymal fluid. Analysis of the epididymal fluid revealed that the osmolality of the Esr1KO fluid was reduced relative to wild type, consistent with prior reports of inappropriate fluid absorption from the efferent ductules. This, along with the finding that morphological defects increased with transit through the epididymal duct, suggests that the anomalies in sperm are a consequence of the abnormal luminal environment. Consistent with this, incubating Esr1KO sperm in a more wild-type-like osmotic environment significantly rescued the abnormal flagellar coiling. This work demonstrates that Esr1KO mice exhibit an abnormal fluid environment in the lumen of the efferent ducts and epididymis, precluding normal sperm maturation and instead resulting in progressive deterioration of sperm that contributes to infertility.
Collapse
Affiliation(s)
- Avenel Joseph
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois 61802, USA
| | | | | | | | | |
Collapse
|
32
|
Volle DH, Decourteix M, Garo E, McNeilly J, Fenichel P, Auwerx J, McNeilly AS, Schoonjans K, Benahmed M. The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice. J Clin Invest 2009; 119:3752-64. [PMID: 19884658 DOI: 10.1172/jci38521] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 09/09/2009] [Indexed: 12/12/2022] Open
Abstract
Studies in rodents have shown that male sexual function can be disrupted by fetal or neonatal administration of compounds that alter endocrine homeostasis, such as the synthetic nonsteroidal estrogen diethylstilbestrol (DES). Although the molecular basis for this effect remains unknown, estrogen receptors likely play a critical role in mediating DES-induced infertility. Recently, we showed that the orphan nuclear receptor small heterodimer partner (Nr0b2), which is both a target gene and a transcriptional repressor of estrogen receptors, controls testicular function by regulating germ cell entry into meiosis and testosterone synthesis. We therefore hypothesized that some of the harmful effects of DES on testes could be mediated through Nr0b2. Here, we present data demonstrating that Nr0b2 deficiency protected mice against the negative effects of DES on testis development and function. During postnatal development, Nr0b2-null mice were resistant to DES-mediated inhibition of germ cell differentiation, which may be the result of interference by Nr0b2 with retinoid signals that control meiosis. Adult Nr0b2-null male mice were also protected against the effects of DES; however, we suggest that this phenomenon was due to the removal of the repressive effects of Nr0b2 on steroidogenesis. Together, these data demonstrate that Nr0b2 plays a critical role in the pathophysiological changes induced by DES in the mouse testis.
Collapse
Affiliation(s)
- David H Volle
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire, Hôpital l'Archet 2, Nice, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Han J, Park M, Kim JH, Kim A, Won M, Lee DR, Ko JJ, Yoon H, Sim SH, Lee K, Bae J. Increased expression of the testicular estrogen receptor alpha in adult mice exposed to low doses of methiocarb. J Appl Toxicol 2009; 29:446-51. [DOI: 10.1002/jat.1417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Netzel-Arnett S, Bugge TH, Hess RA, Carnes K, Stringer BW, Scarman AL, Hooper JD, Tonks ID, Kay GF, Antalis TM. The glycosylphosphatidylinositol-anchored serine protease PRSS21 (testisin) imparts murine epididymal sperm cell maturation and fertilizing ability. Biol Reprod 2009; 81:921-32. [PMID: 19571264 DOI: 10.1095/biolreprod.109.076273] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
An estimated 25%-40% of infertile men have idiopathic infertility associated with deficient sperm numbers and quality. Here, we identify the membrane-anchored serine protease PRSS21, also known as testisin, to be a novel proteolytic factor that directs epididymal sperm cell maturation and sperm-fertilizing ability. PRSS21-deficient spermatozoa show decreased motility, angulated and curled tails, fragile necks, and dramatically increased susceptibility to decapitation. These defects reflect aberrant maturation during passage through the epididymis, because histological and electron microscopic structural analyses showed an increased tendency for curled and detached tails as spermatozoa transit from the corpus to the cauda epididymis. Cauda epididymal spermatozoa deficient in PRSS21 fail to mount a swelling response when exposed to hypotonic conditions, suggesting an impaired ability to respond to osmotic challenges facing maturing spermatozoa in the female reproductive tract. These data suggest that aberrant regulation of PRSS21 may underlie certain secondary male infertility syndromes, such as "easily decapitated" spermatozoa in humans.
Collapse
Affiliation(s)
- Sarah Netzel-Arnett
- Center for Vascular and Inflammatory Diseases, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee EJ, Cho HW. Estrogen receptor alpha agonist propyl pyrazole triol causes alterations of the morphology and function of the mouse male reproductive system. Anim Cells Syst (Seoul) 2009. [DOI: 10.1080/19768354.2009.9647212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
|
37
|
Berger T, McCarthy M, Pearl CA, At-Taras E, Roser JF, Conley A. Reducing endogenous estrogens during the neonatal and juvenile periods affects reproductive tract development and sperm production in postpuberal boars. Anim Reprod Sci 2008; 109:218-35. [DOI: 10.1016/j.anireprosci.2007.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
|
38
|
Yasuhara F, Gomes GRO, Siu ER, Suenaga CI, Maróstica E, Porto CS, Lazari MFM. Effects of the antiestrogen fulvestrant (ICI 182,780) on gene expression of the rat efferent ductules. Biol Reprod 2008; 79:432-41. [PMID: 18495684 DOI: 10.1095/biolreprod.107.067413] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The efferent ductules express the highest amount of estrogen receptors ESR1 (ERalpha) and ESR2 (ERbeta) within the male reproductive tract. Treatment of rats with the antiestrogen fulvestrant (ICI 182,780) causes inhibition of fluid reabsorption in the efferent ductules, leading to seminiferous tubule atrophy and infertility. To provide a more comprehensive knowledge about the molecular targets for estrogen in the rat efferent ductules, we investigated the effects of ICI 182,780 treatment on gene expression using a microarray approach. Treatment with ICI 182,780 increased or reduced at least 2-fold the expression of 263 and 98 genes, respectively. Not surprisingly, several genes that encode ion channels and macromolecule transporters were affected. Interestingly, treatment with ICI 182,780 markedly altered the expression of genes related to extracellular matrix organization. Matrix metalloproteinase 7 (Mmp7), osteopontin (Spp1), and neuronal pentraxin 1 (Nptx1) were among the most altered genes in this category. Upregulation of Mmp7 and Spp1 and downregulation of Nptx1 were validated by Northern blot. Increase in Mmp7 expression was further confirmed by immunohistochemistry and probably accounted for the decrease in collagen content observed in the efferent ductules of ICI 182,780-treated animals. Downregulation of Nptx1 probably contributed to the extracellular matrix changes and decreased amyloid deposition in the efferent ductules of ICI 182,780-treated animals. Identification of new molecular targets for estrogen action may help elucidate the regulatory role of this hormone in the male reproductive tract.
Collapse
Affiliation(s)
- Fabiana Yasuhara
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Arendt LM, Schuler LA. Prolactin drives estrogen receptor-alpha-dependent ductal expansion and synergizes with transforming growth factor-alpha to induce mammary tumors in males. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 172:194-202. [PMID: 18156207 DOI: 10.2353/ajpath.2008.070597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Male breast cancer is rare and has been the focus of limited research. Although the etiology is unclear, conditions increasing circulating prolactin (PRL), as well as estrogen, increase the risk of tumorigenesis. We modeled exposure to elevated PRL in transgenic mice, using the mammary-selective, estrogen-insensitive promoter neu-related lipocalin (NRL), to drive PRL expression. Male NRL-PRL mice did not develop mammary tumors. However, in cooperation with the well-characterized oncogene transforming growth factor-alpha (TGF-alpha), PRL induced mammary tumors in 100% of male bitransgenic mice. Similar to disease in human males, these tumors expressed variable levels of estrogen receptor-alpha (ER-alpha) and androgen receptors. However, carcinogenesis was not responsive to testicular steroids because castration did not alter latency to tumor development or tumor ER-alpha expression. Interestingly, both NRL-TGF-alpha/PRL and NRL-PRL males demonstrated increased ductal development, which occurred during puberty, similar to female mice. This outgrowth was diminished in NRL-PRL males treated with ICI 182,780, suggesting that PRL enhances ER-mediated growth. Treatment of MCF-7-derived cells with PRL increased phosphorylation of ER-alpha at residues implicated in unliganded ER-alpha activity. Together, these studies suggest that PRL expands the pool of cells susceptible to tumorigenesis, which is then facilitated by PRL and TGF-alpha cross talk. Activation of ER-alpha is one mechanism by which PRL may contribute to breast cancer and points to other therapeutic strategies for male patients.
Collapse
Affiliation(s)
- Lisa M Arendt
- Cellular and Molecular Biology Program, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | | |
Collapse
|
40
|
Pearl CA, At-Taras E, Berger T, Roser JF. Reduced endogenous estrogen delays epididymal development but has no effect on efferent duct morphology in boars. Reproduction 2007; 134:593-604. [PMID: 17890295 DOI: 10.1530/rep-06-0239] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The study presented herein was designed to test the hypothesis that reduced endogenous estrogen in the boar alters efferent duct morphology, epididymal morphology, and steroid receptor expression. Twenty-eight littermate pairs of boars were treated with Letrozole, an aromatase inhibitor, or with vehicle from 1 week of age until castration at 2 through 8 months. Efferent ducts and epididymides were examined for morphological development and steroid receptor expression. Efferent duct morphology was not different between control and Letrozole-treated animals at any examined age. Androgen receptor (AR), estrogen receptor α (ERα), and β (ERβ) were expressed in the epithelial cells of the efferent ducts at all ages; expression was similar in control and treated animals. Morphological development of the caput and corpus was delayed in Letrozole-treated animals, but this delay was transient since morphology was similar between control and treated animals at 8 months. The cauda did not show a delay in development, but was more developed in treated animals at 2 months. AR, ERα, and ERβ were expressed in all three epididymal regions; no difference was observed between control and treated animals. In summary, estrogen appears to be important for development of the epididymis; however, the cauda may be regulated differently than the caput and corpus. Results for the efferent ducts suggest that the normally high endogenous estrogens are not required for regulation of fluid reabsorption in the boar. It also suggests that any ER activation required for maintenance of efferent duct morphology and function is normal in Letrozole-treated boars.
Collapse
Affiliation(s)
- Christopher A Pearl
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
41
|
Oliveira AG, Telles LF, Hess RA, Mahecha GAB, Oliveira CA. Effects of the herbicide Roundup on the epididymal region of drakes Anas platyrhynchos. Reprod Toxicol 2007; 23:182-91. [PMID: 17166697 DOI: 10.1016/j.reprotox.2006.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 08/31/2006] [Accepted: 11/01/2006] [Indexed: 11/22/2022]
Abstract
Exposure to the Roundup has been shown to affect StAR protein and aromatase expression and activity, pointing out that this herbicide may cause adverse effects in animal reproduction by affecting androgen and estrogen synthesis. We tested this hypothesis by investigating the in vivo effects of the Roundup on the testis and epididymal region of drake Anas platyrhynchos. The exposure to the herbicide resulted in alterations in the structure of the testis and epididymal region as well as in the serum levels of testosterone and estradiol, with changes in the expression of androgen receptors restricted to the testis. The harmful effects were more conspicuous in the proximal efferent ductules and epididymal ducts, suggesting higher sensitivity of these segments among the male genital organs. The effects were mostly dose dependent, indicating that this herbicide may cause disorder in the morphophysiology of the male genital system of animals.
Collapse
Affiliation(s)
- André G Oliveira
- Department of Morphology of the Federal University of Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
42
|
Ruz R, Gregory M, Smith CE, Cyr DG, Lubahn DB, Hess RA, Hermo L. Expression of aquaporins in the efferent ductules, sperm counts, and sperm motility in estrogen receptor-alpha deficient mice fed lab chow versus casein. Mol Reprod Dev 2006; 73:226-37. [PMID: 16261609 PMCID: PMC1533502 DOI: 10.1002/mrd.20390] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Estrogens play an important role in the male reproductive tract, and this is especially so for the efferent ductules, where alpha-estrogen receptors (ERalpha) have been localized. Mice deficient in ERalpha (alphaERKO mice) are infertile, and the effect appears to be due in part to retention of water at the level of the efferent ductules. In the present study, we examined the consequences of ERalpha deletion on the distribution of certain aquaporins (AQPs), water protein channels, in the efferent ductules and on sperm numbers and motility. In addition, the effects of feeding mice a regular lab chow diet, which contains phytoestrogens, known to affect male reproductive tract functions, and a casein diet, which lacks phytoestrogens, were also assessed. Light microscope immunolocalizations of AQP-1 and AQP-9 revealed dramatic reduction and patchier staining in alphaERKO mice with distal areas of the efferent ductules being more affected than proximal areas. No other changes in immunolocalizations were noted as a consequence of diet. Computer-assisted sperm analyses demonstrated a 62% reduction in cauda epididymal sperm/ml in alphaERKO mice fed lab chow, whereas 87% fewer sperm/ml were observed in alphaERKO mice fed casein, suggesting an enhanced role for sperm production and concentration in a diet containing phytoestrogens. All sperm motility parameters were altered to some degree in alphaERKO mice fed lab chow. Alterations in sperm motility parameters were also detected, but were less dramatic in alphaERKO mice fed casein. These data suggest that the decrease in AQP expression in the efferent ductules of alphaERKO mice contributes in part to water retention in this tissue, eventually leading to backflow of water into the testis, with subsequent decreases in sperm concentration and motility. The data also suggest that phytoestrogens, which are present in regular lab chow, can influence the male reproductive tract with and without the presence of ERalpha, promoting efferent ductule and epididymal functions when ERalpha is expressed, but inhibiting these same functions when ERalpha is missing. Taken together the data underscore the importance of estrogens and ERalpha in maintaining sperm maturation and preventing male infertility.
Collapse
Affiliation(s)
- Ricardo Ruz
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
McCarthy MJ, At-Taras EE, Pearl CA, Nitta-Oda BS, Roser JF, Conley AJ, Berger T. Suppression of endogenous estrogen during development affects porcine epididymal sperm maturation. Mol Reprod Dev 2006; 73:1122-8. [PMID: 16804882 DOI: 10.1002/mrd.20519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogen plays an important role in male reproduction, critical for sustained fertility in some species. Reducing estrogen's interaction with its receptor(s) in monkey and mouse models is associated with reduced sperm motility and, in some cases, documented elimination of sperm fertilizing ability, suggesting that normal epididymal function may be estrogen dependent. The objective of these experiments was to evaluate the effects of reduced endogenous estrogen on development of epididymal function in the pig, a species in which males have very high levels of endogenous estrogen. Letrozole, a potent inhibitor of estrogen synthesis, was administered to neonatal boars from 1 week of age and markedly suppressed estrogen production. Epididymal function assessed as acquisition of sperm fertilizing ability (in vitro fertilization of zona-free oocytes) was reduced in Letrozole-treated animals at 24 and 28 weeks of age (23% and 30% fertilization, respectively compared with 37% and 54% in vehicle controls) but had recovered by 32 weeks of age. Cauda epididymal sperm numbers were reduced in treated animals (35% of control values at 20 weeks of age) but appeared to be recovering at 32 weeks of age. Reduction of endogenous estrogen had no effect on other aspects of epididymal function (percentage of motile sperm, sperm motion parameters, sperm head morphometrics, or ability of sperm to undergo an acrosome reaction). Reducing endogenous estrogen during postnatal development appears to have transient effects on porcine epididymal function. These transient effects suggest that the pig, with its high endogenous estrogen, may respond differently than other species to reduced estrogen synthesis.
Collapse
Affiliation(s)
- Megan J McCarthy
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, 95616-8521, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Levels of estrogen within the male reproductive tract are higher than in the general circulation and the aromatase enzyme is expressed in the adult testis. Estrogens such as estradiol (E2) modify cell function by binding to high-affinity estrogen receptors (ER). Two subtypes (ERalpha and ERbeta) have been identified. Studies in animals have shown that over- or underexposure to estrogens can have an impact on testis function. For example, mice with targeted disruption of the aromatase cyp19 gene become infertile because round spermatids fail to differentiate normally. In rodents, ERalpha is expressed in Leydig cells; ERalpha mRNA and protein are not detectable in testes from humans or primates. High levels of expression of ERalpha occur in the efferent ductules in rodents, primates, and the human. ERbeta protein has been immunolocalized to all somatic cells and to some germ cells in these same species. Messenger RNAs for splice variant isoforms of human ERbeta are expressed in human testes. Homologues of the ERbeta2 variant have been cloned from primates; this isoform does not exist in rodents and does not bind E2. Full-length ERbeta protein (ERbeta1) and ERbeta2 have differential patterns of expression in human testes. In conclusion, although estrogens are synthesized in the testis and it has been suggested that E2 may function as a germ cell survival factor, the mechanisms by which estrogens influence male fertility remain uncertain and rodents may be poor models in which to examine this.
Collapse
Affiliation(s)
- Jayne E Sierens
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | | | | | | | | |
Collapse
|
45
|
Rochira V, Granata ARM, Madeo B, Zirilli L, Rossi G, Carani C. Estrogens in males: what have we learned in the last 10 years? Asian J Androl 2005; 7:3-20. [PMID: 15685347 DOI: 10.1111/j.1745-7262.2005.00018.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the role of estrogen in men, mainly in male reproduction. The continuing increase in data obtained, and recent discoveries in this area will enable a better understanding of male physiology; these, in turn, will have important clinical implications.
Collapse
Affiliation(s)
- Vincenzo Rochira
- Integrated Department of Medicine and Medical Specialties, University of Modena and Reggio Emilia, Modena 41100, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Knee RA, Hickey DK, Beagley KW, Jones RC. Transport of IgG across the blood-luminal barrier of the male reproductive tract of the rat and the effect of estradiol administration on reabsorption of fluid and IgG by the epididymal ducts. Biol Reprod 2005; 73:688-94. [PMID: 15888731 DOI: 10.1095/biolreprod.105.041079] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In rats immunized systemically with tetanus toxoid the concentration of specific anti-tetanus-toxoid-specific IgG in fluid from the rete testis and cauda epididymidis were respectively 0.6% and 1.4% the concentration in blood serum. The extratesticular duct system reabsorbed 97% of the IgG and 99% of the fluid leaving the rete, but estradiol administration affected the site of reabsorption. In untreated rats, the ductuli efferentes reabsorbed 94% of the IgG and 96% of the fluid leaving the rete, whereas estradiol-treated rats reabsorbed 83% of the IgG and 86% of the fluid, and the ductus epididymidis fully compensated for these different effects of estradiol on the ductuli efferentes. The concentrations of IgG in secretions of the seminal vesicles and prostate gland were lower (0.1% and 0.3% respectively of the titers in blood serum) than in fluids from the extratesticular ducts, and were not affected by the administration of estradiol. RT-PCR showed that Fcgrt (neonatal Fc receptor, also known as FcRn) is expressed in the reproductive ducts, where IgG is probably transported across epithelium, being particularly strong in the ductuli efferentes (where most IgG was reabsorbed) and distal caput epididymidis. It is concluded that IgG enters the rete testis and is concentrated only 2.5-fold along the extratesticular duct system, unlike spermatozoa, which are concentrated 95-fold. Further, the ductus epididymidis can recognize and compensate for changes in function of the ductuli efferentes.
Collapse
Affiliation(s)
- Rebecca A Knee
- Discipline of Biological Sciences, Faculty of Science and Information Technology, University of Newcastle, New South Wales, Australia
| | | | | | | |
Collapse
|
47
|
Oliveira CA, Mahecha GAB, Carnes K, Prins GS, Saunders PTK, França LR, Hess RA. Differential hormonal regulation of estrogen receptors ERalpha and ERbeta and androgen receptor expression in rat efferent ductules. Reproduction 2004; 128:73-86. [PMID: 15232065 PMCID: PMC2973561 DOI: 10.1530/rep.1.00136] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogen receptors, in addition to the androgen receptor (AR), are expressed at high levels in efferent ductules of the male reproductive tract and it is now well recognized that estrogen receptor (ER) alpha is required for the maintenance of normal structure and function of the ductules. However, little is known regarding the hormonal regulation of the receptors themselves in the male. In the present study, efferent ductule ligation and castration, followed by replacement with testosterone, dihydro-testosterone (DHT) or estradiol was used to investigate the relative importance of circulating and luminal sources of steroid for the modulation of ERalpha, ERbeta and AR in rat efferent ductules. Uni- or bilateral castration and ligation did not affect the expression of ERalpha and ERbeta, but bilateral castration caused down-regulation of AR. Replacement with DHT and testosterone alone or in combination with estradiol caused the recovery of AR expression to control levels. A slight recovery of AR was also observed after estrogen replacement. ERalpha expression was decreased to nearly undetectable levels after estrogen replacement. On the other hand, ERbeta did not show evident effects following any of the treatments, suggesting a constitutive expression of this receptor. This differential modulation of the steroid hormone receptors highlights the importance of maintaining a physiological androgen-estrogen balance to regulate the structure and function of efferent ductules in the male.
Collapse
Affiliation(s)
- Cleida A Oliveira
- Department of Veterinary Biosciences, University of Illinois, 2001 S Lincoln, Urbana, Illinois 61802, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Gancarczyk M, Paziewska-Hejmej A, Carreau S, Tabarowski Z, Bilińska B. Dose- and photoperiod-dependent effects of 17beta-estradiol and the anti-estrogen ICI 182,780 on testicular structure, acceleration of spermatogenesis, and aromatase immunoexpression in immature bank voles. Acta Histochem 2004; 106:269-78. [PMID: 15350809 DOI: 10.1016/j.acthis.2004.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 03/30/2004] [Accepted: 04/05/2004] [Indexed: 11/30/2022]
Abstract
It has been known that administration of estrogens or deficiency of estrogens can affect development and/or maintenance of male gonadal functions. These hormones are able to control germ cell development, and especially spermatid production and epididymis sperm maturation. The aim of the present study was to show the effects of 17beta-estradiol and a pure anti-estrogen, ICI 182,780, on the bank vole testis. Immature bank voles reared under either short or long light cycles were injected intraperitoneally with two doses of either 17beta-estradiol (0.1 and 10 microg/g body weight, respectively) or pure anti-estrogen ICI 182,780 (10 and 100 microg/g body weight, respectively) both dissolved in 20 microl sesame oil. Control groups (from both photoperiods) received 20 microl sesame oil only. The injections were performed twice a week during 2 weeks. Exposure to the low dose of estradiol induced acceleration of the onset of spermatogenesis. This was particularly apparent in voles kept under short light cycle conditions. On the other hand, when males were treated with a high dose of estradiol or ICI 182,780, disruption of testicular structure and tubular atrophy were observed. Increased apoptosis of germ cells was evident. It is concluded that bank voles as seasonally breeding animals are a useful model for studying the role of estrogens in structure and function of the testis.
Collapse
Affiliation(s)
- Monika Gancarczyk
- Laboratory of Endocrinology and Tissue Culture, Department of Animal Physiology, Institute of Zoology, Jagiellonian University, Ingardena 6, Kraków 30-060, Poland
| | | | | | | | | |
Collapse
|