1
|
Cao C, Yue S, Lu A, Liang C. Host-Gut Microbiota Metabolic Interactions and Their Role in Precision Diagnosis and Treatment of Gastrointestinal Cancers. Pharmacol Res 2024; 207:107321. [PMID: 39038631 DOI: 10.1016/j.phrs.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The critical role of the gut microbiome in gastrointestinal cancers is becoming increasingly clear. Imbalances in the gut microbial community, referred to as dysbiosis, are linked to increased risks for various forms of gastrointestinal cancers. Pathogens like Fusobacterium and Helicobacter pylori relate to the onset of esophageal and gastric cancers, respectively, while microbes such as Porphyromonas gingivalis and Clostridium species have been associated with a higher risk of pancreatic cancer. In colorectal cancer, bacteria such as Fusobacterium nucleatum are known to stimulate the growth of tumor cells and trigger cancer-promoting pathways. On the other hand, beneficial microbes like Bifidobacteria offer a protective effect, potentially inhibiting the development of gastrointestinal cancers. The potential for therapeutic interventions that manipulate the gut microbiome is substantial, including strategies to engineer anti-tumor metabolites and employ microbiota-based treatments. Despite the progress in understanding the influence of the microbiome on gastrointestinal cancers, significant challenges remain in identifying and understanding the precise contributions of specific microbial species and their metabolic products. This knowledge is essential for leveraging the role of the gut microbiome in the development of precise diagnostics and targeted therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
2
|
Xu Y, Le J, Qin J, Zhang Y, Yang J, Chen Z, Li C, Qian X, Zhang A. Decoding the microbiota metabolome in hepatobiliary and pancreatic cancers: Pathways to precision diagnostics and targeted therapeutics. Pharmacol Res 2024; 208:107364. [PMID: 39181345 DOI: 10.1016/j.phrs.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
We delve into the critical role of the gut microbiota and its metabolites in the pathogenesis and progression of hepatobiliary and pancreatic (HBP) cancers, illuminating an urgent need for breakthroughs in diagnostic and therapeutic strategies. Given the high mortality rates associated with HBP cancers, which are attributed to aggressive recurrence, metastasis, and poor responses to chemotherapy, exploring microbiome research presents a promising frontier. This research highlights how microbial metabolites, including secondary bile acids, short-chain fatty acids, and lipopolysaccharides, crucially influence cancer cell behaviors such as proliferation, apoptosis, and immune evasion, significantly contributing to the oncogenesis and progression of HBP cancers. By integrating the latest findings, we discuss the association of microbial alterations with HBP cancers, key metabolites, and their implications, and how metabolomics and microbiomics can enhance diagnostic precision. Furthermore, the paper explores strategies for targeted therapies through microbiome metabolomics, including the direct therapeutic effects of microbiome metabolites and potential synergistic effects on conventional therapies. We also recognize that the field of microbial metabolites for the diagnosis and treatment of tumors still has a lot of problems to be solved. The aim of this study is to pioneer microbial metabolite research and provide a reference for HBP cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yuemiao Xu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiahan Le
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiangjiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuhua Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jiaying Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhuo Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Changyu Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Qian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| | - Aiqin Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| |
Collapse
|
3
|
Ferenc K, Jarmakiewicz-Czaja S, Sokal-Dembowska A, Stasik K, Filip R. Common Denominator of MASLD and Some Non-Communicable Diseases. Curr Issues Mol Biol 2024; 46:6690-6709. [PMID: 39057041 PMCID: PMC11275402 DOI: 10.3390/cimb46070399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, steatohepatitis has been designated as metabolic dysfunction-associated steatohepatitis (MASLD). MASLD risk factors mainly include metabolic disorders but can also include genetic, epigenetic, and environmental factors. Disease entities such as obesity, diabetes, cardiovascular disease, and MASLD share similar pathomechanisms and risk factors. Moreover, a bidirectional relationship is observed between the occurrence of certain chronic diseases and MASLD. These conditions represent a global public health problem that is responsible for poor quality of life and high mortality. It seems that paying holistic attention to these problems will not only help increase the chances of reducing the incidence of these diseases but also assist in the prevention, treatment, and support of patients.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (K.F.)
| | - Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Katarzyna Stasik
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (K.F.)
- IBD Unit, Department of Gastroenterology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (K.F.)
- IBD Unit, Department of Gastroenterology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
4
|
Lu W, Aihaiti A, Abudukeranmu P, Liu Y, Gao H. Unravelling the role of intratumoral bacteria in digestive system cancers: current insights and future perspectives. J Transl Med 2024; 22:545. [PMID: 38849871 PMCID: PMC11157735 DOI: 10.1186/s12967-024-05320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 06/09/2024] Open
Abstract
Recently, research on the human microbiome, especially concerning the bacteria within the digestive system, has substantially advanced. This exploration has unveiled a complex interplay between microbiota and health, particularly in the context of disease. Evidence suggests that the gut microbiome plays vital roles in digestion, immunity and the synthesis of vitamins and neurotransmitters, highlighting its significance in maintaining overall health. Conversely, disruptions in these microbial communities, termed dysbiosis, have been linked to the pathogenesis of various diseases, including digestive system cancers. These bacteria can influence cancer progression through mechanisms such as DNA damage, modulation of the tumour microenvironment, and effects on the host's immune response. Changes in the composition and function within the tumours can also impact inflammation, immune response and cancer therapy effectiveness. These findings offer promising avenues for the clinical application of intratumoral bacteria for digestive system cancer treatment, including the potential use of microbial markers for early cancer detection, prognostication and the development of microbiome-targeted therapies to enhance treatment outcomes. This review aims to provide a comprehensive overview of the pivotal roles played by gut microbiome bacteria in the development of digestive system cancers. Additionally, we delve into the specific contributions of intratumoral bacteria to digestive system cancer development, elucidating potential mechanisms and clinical implications. Ultimately, this review underscores the intricate interplay between intratumoral bacteria and digestive system cancers, underscoring the pivotal role of microbiome research in transforming diagnostic, prognostic and therapeutic paradigms for digestive system cancers.
Collapse
Affiliation(s)
- Weiqin Lu
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | | | - Yajun Liu
- Aksu First People's Hospital, Xinjiang, China
| | - Huihui Gao
- Cancer Center, Department of Hospital Infection Management and Preventive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wang S, He Y, Wang J, Luo E. Re-exploration of immunotherapy targeting EMT of hepatocellular carcinoma: Starting from the NF-κB pathway. Biomed Pharmacother 2024; 174:116566. [PMID: 38631143 DOI: 10.1016/j.biopha.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancies worldwide, and its high morbidity and mortality have brought a heavy burden to the global public health system. Due to the concealment of its onset, the limitation of treatment, the acquisition of multi-drug resistance and radiation resistance, the treatment of HCC cannot achieve satisfactory results. Epithelial mesenchymal transformation (EMT) is a key process that induces progression, distant metastasis, and therapeutic resistance to a variety of malignant tumors, including HCC. Therefore, targeting EMT has become a promising tumor immunotherapy method for HCC. The NF-κB pathway is a key regulatory pathway for EMT. Targeting this pathway has shown potential to inhibit HCC infiltration, invasion, distant metastasis, and therapeutic resistance. At present, there are still some controversies about this pathway and new ideas of combined therapy, which need to be further explored. This article reviews the progress of immunotherapy in improving EMT development in HCC cells by exploring the mechanism of regulating EMT.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China
| | - Yan He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Jun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China
| | - En Luo
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
6
|
Perez-Moreno E, Oyanadel C, de la Peña A, Hernández R, Pérez-Molina F, Metz C, González A, Soza A. Galectins in epithelial-mesenchymal transition: roles and mechanisms contributing to tissue repair, fibrosis and cancer metastasis. Biol Res 2024; 57:14. [PMID: 38570874 PMCID: PMC10993482 DOI: 10.1186/s40659-024-00490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Galectins are soluble glycan-binding proteins that interact with a wide range of glycoproteins and glycolipids and modulate a broad spectrum of physiological and pathological processes. The expression and subcellular localization of different galectins vary among tissues and cell types and change during processes of tissue repair, fibrosis and cancer where epithelial cells loss differentiation while acquiring migratory mesenchymal phenotypes. The epithelial-mesenchymal transition (EMT) that occurs in the context of these processes can include modifications of glycosylation patterns of glycolipids and glycoproteins affecting their interactions with galectins. Moreover, overexpression of certain galectins has been involved in the development and different outcomes of EMT. This review focuses on the roles and mechanisms of Galectin-1 (Gal-1), Gal-3, Gal-4, Gal-7 and Gal-8, which have been involved in physiologic and pathogenic EMT contexts.
Collapse
Affiliation(s)
- Elisa Perez-Moreno
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile
| | - Ronny Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francisca Pérez-Molina
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Metz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile.
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
7
|
Liu Q, Yang Y, Pan M, Yang F, Yu Y, Qian Z. Role of the gut microbiota in tumorigenesis and treatment. Theranostics 2024; 14:2304-2328. [PMID: 38646653 PMCID: PMC11024857 DOI: 10.7150/thno.91700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/01/2024] [Indexed: 04/23/2024] Open
Abstract
The gut microbiota is a crucial component of the intricate microecosystem within the human body that engages in interactions with the host and influences various physiological processes and pathological conditions. In recent years, the association between dysbiosis of the gut microbiota and tumorigenesis has garnered increasing attention, as it is recognized as a hallmark of cancer within the scientific community. However, only a few microorganisms have been identified as potential drivers of tumorigenesis, and enhancing the molecular understanding of this process has substantial scientific importance and clinical relevance for cancer treatment. In this review, we delineate the impact of the gut microbiota on tumorigenesis and treatment in multiple types of cancer while also analyzing the associated molecular mechanisms. Moreover, we discuss the utility of gut microbiota data in cancer diagnosis and patient stratification. We further outline current research on harnessing microorganisms for cancer treatment while also analyzing the prospects and challenges associated with this approach.
Collapse
Affiliation(s)
- Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Effenberger M, Grander C, Grabherr F, Tilg H. Nonalcoholic Fatty Liver Disease and the Intestinal Microbiome: An Inseparable Link. J Clin Transl Hepatol 2023; 11:1498-1507. [PMID: 38161503 PMCID: PMC10752805 DOI: 10.14218/jcth.2023.00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 01/03/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) particularly affects patients with type 2 diabetes and obesity. The incidence of NAFLD has increased significantly over the last decades and is now pandemically across the globe. It is a complex systemic disease comprising hepatic lipid accumulation, inflammation, lipotoxicity, gut dysbiosis, and insulin resistance as main features and with the potential to progress to cirrhosis and hepatocellular carcinoma (HCC). In numerous animal and human studies the gut microbiota plays a key role in the pathogenesis of NAFLD, NAFLD-cirrhosis and NAFLD-associated HCC. Lipotoxicity is the driver of inflammation, insulin resistance, and liver injury. Likewise, western diet, obesity, and metabolic disorders may alter the gut microbiota, which activates innate and adaptive immune responses and fuels hereby hepatic and systemic inflammation. Indigestible carbohydrates are fermented by the gut microbiota to produce important metabolites, such as short-chain fatty acids and succinate. Numerous animal and human studies suggested a pivotal role of these metabolites in the progression of NAFLD and its comorbidities. Though, modification of the gut microbiota and/or the metabolites could even be beneficial in patients with NAFLD, NAFLD-cirrhosis, and NAFLD-associated HCC. In this review we collect the evidence that exogenous and endogenous hits drive liver injury in NAFLD and propel liver fibrosis and the progressing to advanced disease stages. NAFLD can be seen as the product of a complex interplay between gut microbiota, the immune response and metabolism. Thus, the challenge will be to understand its pathogenesis and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Mahmud S, Hamza A, Lee YB, Min JK, Islam R, Dogsom O, Park JB. Lipopolysaccharide Stimulates A549 Cell Migration through p-Tyr 42 RhoA and Phospholipase D1 Activity. Biomolecules 2023; 14:6. [PMID: 38275747 PMCID: PMC10813223 DOI: 10.3390/biom14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Cell migration is a crucial contributor to metastasis, a critical process associated with the mortality of cancer patients. The initiation of metastasis is triggered by epithelial-mesenchymal transition (EMT), along with the changes in the expression of EMT marker proteins. Inflammation plays a significant role in carcinogenesis and metastasis. Lipopolysaccharide (LPS), a typical inflammatory agent, promoted the generation of superoxide through the activation of p-Tyr42 RhoA, Rho-dependent kinase 2 (ROCK2), and the phosphorylation of p47phox. In addition, p-Tyr42 RhoA activated phospholipase D1 (PLD1), with PLD1 and phosphatidic acid (PA) being involved in superoxide production. PA also regulated the expression of EMT proteins. Consequently, we have identified MHY9 (Myosin IIA, NMIIA) as a PA-binding protein in response to LPS. MYH9 also contributed to cell migration and the alteration in the expression of EMT marker proteins. Co-immunoprecipitation revealed the formation of a complex involving p-Tyr42 RhoA, PLD1, and MYH9. These proteins were found to be distributed in both the cytosol and nucleus. In addition, we have found that p-Tyr42 RhoA PLD1 and MYH9 associate with the ZEB1 promoter. The suppression of ZEB1 mRNA levels was achieved through the knockdown of RhoA, PLD1, and MYH9 using si-RNAs. Taken together, we propose that p-Tyr42 RhoA and PLD1, responsible for producing PA, and PA-bound MYH9 are involved in the regulation of ZEB1 expression, thereby promoting cell migration.
Collapse
Affiliation(s)
- Shohel Mahmud
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Amir Hamza
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
| | - Yoon-Beom Lee
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
| | - Jung-Ki Min
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
| | - Rokibul Islam
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Oyungerel Dogsom
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- Department of Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
10
|
Gasparro R, Pucci M, Costanzo E, Urzì O, Tinnirello V, Moschetti M, Conigliaro A, Raimondo S, Corleone V, Fontana S, Alessandro R. Citral-Enriched Fraction of Lemon Essential Oil Mitigates LPS-Induced Hepatocyte Injuries. BIOLOGY 2023; 12:1535. [PMID: 38132361 PMCID: PMC10740427 DOI: 10.3390/biology12121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Lemon essential oil (LEO) is known for its aromatic and healthy properties; however, less consideration is given to the biological properties of the fractions obtained from LEO. This study aims to evaluate the ability of a citral-enriched fraction obtained from LEO (Cfr-LEO) to counteract lipopolysaccharide (LPS)-mediated inflammation, oxidative stress, and epithelial-mesenchymal transition (EMT) in healthy human hepatocytes. Human immortalized hepatocytes (THLE-2 cell line) were pretreated with Cfr-LEO and subsequently exposed to LPS at various time points. We report that the pretreatment with Cfr-LEO counteracts LPS-mediated effects by inhibiting inflammation, oxidative stress, and epithelial-mesenchymal transition in THLE-2. In particular, we found that pretreatment with Cfr-LEO reduced NF-κB activation and the subsequent proinflammatory cytokines release, ROS production, and NRF2 and p53 expression. Furthermore, the pretreatment with Cfr-LEO showed its beneficial effect in counteracting LPS-induced EMT. Taken together, these results support Cfr-LEO application in the nutraceutical research field not only for its organoleptic properties, conferred by citral enrichment, but also for its biological activity. Our study could lay the basis for the development of foods/drinks enriched with Cfr-LEO, aimed at preventing or alleviating chronic conditions associated with liver dysfunction.
Collapse
Affiliation(s)
- Roberta Gasparro
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Marzia Pucci
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Ornella Urzì
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Vincenza Tinnirello
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
- Agrumaria Corleone s.p.a., Via S. Corleone, 12—Zona Ind. Brancaccio, 90124 Palermo, Italy;
| | - Marta Moschetti
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Valeria Corleone
- Agrumaria Corleone s.p.a., Via S. Corleone, 12—Zona Ind. Brancaccio, 90124 Palermo, Italy;
| | - Simona Fontana
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| |
Collapse
|
11
|
Di Lollo V, Canciello A, Peserico A, Orsini M, Russo V, Cerveró-Varona A, Dufrusine B, El Khatib M, Curini V, Mauro A, Berardinelli P, Tournier C, Ancora M, Cammà C, Dainese E, Mincarelli LF, Barboni B. Unveiling the immunomodulatory shift: Epithelial-mesenchymal transition Alters immune mechanisms of amniotic epithelial cells. iScience 2023; 26:107582. [PMID: 37680464 PMCID: PMC10481295 DOI: 10.1016/j.isci.2023.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) changes cell phenotype by affecting immune properties of amniotic epithelial cells (AECs). The present study shows how the response to lipopolysaccharide of cells collected pre- (eAECs) and post-EMT (mAECs) induces changes in their transcriptomics profile. In fact, eAECs mainly upregulate genes involved in antigen-presenting response, whereas mAECs over-express soluble inflammatory mediator transcripts. Consistently, network analysis identifies CIITA and Nrf2 as main drivers of eAECs and mAECs immune response, respectively. As a consequence, the depletion of CIITA and Nrf2 impairs the ability of eAECs and mAECs to inhibit lymphocyte proliferation or macrophage-dependent IL-6 release, thus confirming their involvement in regulating immune response. Deciphering the mechanisms controlling the immune function of AECs pre- and post-EMT represents a step forward in understanding key physiological events wherein these cells are involved (pregnancy and labor). Moreover, controlling the immunomodulatory properties of eAECs and mAECs may be essential in developing potential strategies for regenerative medicine applications.
Collapse
Affiliation(s)
- Valeria Di Lollo
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Angelo Canciello
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Alessia Peserico
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Massimiliano Orsini
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Microbiology, Viale dell’Università 10, 35020 Legnaro (PD), Italy
| | - Valentina Russo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Adrián Cerveró-Varona
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Beatrice Dufrusine
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Valentina Curini
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Annunziata Mauro
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Massimo Ancora
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Cesare Cammà
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Enrico Dainese
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Luana Fiorella Mincarelli
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
12
|
Yang X, Zong C, Feng C, Zhang C, Smirnov A, Sun G, Shao C, Zhang L, Hou X, Liu W, Meng Y, Zhang L, Shao C, Wei L, Melino G, Shi Y. Hippo Pathway Activation in Aged Mesenchymal Stem Cells Contributes to the Dysregulation of Hepatic Inflammation in Aged Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300424. [PMID: 37544916 PMCID: PMC10520691 DOI: 10.1002/advs.202300424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Aging is always accompanied by chronic diseases which probably attribute to long-term chronic inflammation in the aging body. Whereas, the mechanism of chronic inflammation in aging body is still obscure. Mesenchymal stem cells (MSCs) are capable of local chemotaxis to sites of inflammation and play a powerful role in immune regulation. Whether degeneration of MSCs in the aging body is associated with unbalanced inflammation is still not clear. In this study, immunosuppressive properties of aged MSCs are found to be repressed. The impaired immunosuppressive function of aged MSCs is associated with lower expression of the Hippo effector Yes-associated protein 1 (YAP1) and its target gene signal transducer and activator of transcription 1 (STAT1). YAP1 regulates the transcription of STAT1 through binding with its promoter. In conclusion, a novel YAP1/STAT1 axis maintaining immunosuppressive function of MSCs is revealed and impairment of this signal pathway in aged MSCs probably resulted in higher inflammation in aged mice liver.
Collapse
Affiliation(s)
- Xue Yang
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
| | - Cangang Zhang
- Department of Pathogenic Microbiology and ImmunologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Artem Smirnov
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
| | - Gangqi Sun
- Department of Clinical PharmacologyThe Second Hospital of Anhui Medical UniversityHefei230601China
| | - Changchun Shao
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Luyao Zhang
- Department of Clinical PharmacologyThe Second Hospital of Anhui Medical UniversityHefei230601China
| | - Xiaojuan Hou
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Yan Meng
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Liying Zhang
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Gerry Melino
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
| |
Collapse
|
13
|
Tan Z, Chiu MS, Yang X, Yue M, Cheung TT, Zhou D, Wang Y, Chan AWH, Yan CW, Kwan KY, Wong YC, Li X, Zhou J, To KF, Zhu J, Lo CM, Cheng ASL, Chan SL, Liu L, Song YQ, Man K, Chen Z. Isoformic PD-1-mediated immunosuppression underlies resistance to PD-1 blockade in hepatocellular carcinoma patients. Gut 2023; 72:1568-1580. [PMID: 36450387 DOI: 10.1136/gutjnl-2022-327133] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Immune checkpoint blockade (ICB) has improved cancer treatment, yet why most hepatocellular carcinoma (HCC) patients are resistant to PD-1 ICB remains elusive. Here, we elucidated the role of a programmed cell death protein 1 (PD-1) isoform, Δ42PD-1, in HCC progression and resistance to nivolumab ICB. DESIGN We investigated 74 HCC patients in three cohorts, including 41 untreated, 28 treated with nivolumab and 5 treated with pembrolizumab. Peripheral blood mononuclear cells from blood samples and tumour infiltrating lymphocytes from tumour tissues were isolated for immunophenotyping. The functional significance of Δ42PD-1 was explored by single-cell RNA sequencing analysis and validated by functional and mechanistic studies. The immunotherapeutic efficacy of Δ42PD-1 monoclonal antibody was determined in HCC humanised mouse models. RESULTS We found distinct T cell subsets, which did not express PD-1 but expressed its isoform Δ42PD-1, accounting for up to 71% of cytotoxic T lymphocytes in untreated HCC patients. Δ42PD-1+ T cells were tumour-infiltrating and correlated positively with HCC severity. Moreover, they were more exhausted than PD-1+ T cells by single T cell and functional analysis. HCC patients treated with anti-PD-1 ICB showed effective PD-1 blockade but increased frequencies of Δ42PD-1+ T cells over time especially in patients with progressive disease. Tumour-infiltrated Δ42PD-1+ T cells likely sustained HCC through toll-like receptors-4-signalling for tumourigenesis. Anti-Δ42PD-1 antibody, but not nivolumab, inhibited tumour growth in three murine HCC models. CONCLUSION Our findings not only revealed a mechanism underlying resistance to PD-1 ICB but also identified anti-Δ42PD-1 antibody for HCC immunotherapy.
Collapse
Affiliation(s)
- Zhiwu Tan
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People's Republic of China
| | - Mei Sum Chiu
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xinxiang Yang
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ming Yue
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Tan To Cheung
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Dongyan Zhou
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People's Republic of China
| | - Yuewen Wang
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chi Wing Yan
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ka Yi Kwan
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yik Chun Wong
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xin Li
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jiye Zhu
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chung Mau Lo
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Stephen Lam Chan
- Department of Clinical Oncology and State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Li Liu
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People's Republic of China
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Kwan Man
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People's Republic of China
| |
Collapse
|
14
|
Feng W, Chen J, Huang W, Wang G, Chen X, Duan L, Yin Y, Chen X, Zhang B, Sun M, Luo X, Nie Y, Fan D, Wu K, Xia L. HMGB1-mediated elevation of KLF7 facilitates hepatocellular carcinoma progression and metastasis through upregulating TLR4 and PTK2. Theranostics 2023; 13:4042-4058. [PMID: 37554278 PMCID: PMC10405848 DOI: 10.7150/thno.84388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023] Open
Abstract
Background: Metastasis is a major cause of HCC-related deaths with no effective pharmacotherapies. Chronic inflammation promotes HCC dissemination, however, its underlying mechanisms are not fully understood. Here, we investigated the role of Krüppel-like factor 7 (KLF7) in inflammation-provoked HCC metastasis and proposed therapeutic strategies for KLF7-positive patients. Methods: The expression of KLF7 in human HCC specimens were examined by immunohistochemistry and quantitative real-time PCR. The luciferase reporter assays and chromatin immunoprecipitation assays were conducted to explore the transcriptional regulation related to KLF7. Orthotopic xenograft models and DEN/CCl4-induced HCC models were established to evaluate HCC progression and metastasis. Results: KLF7 overexpression promotes HCC metastasis through transactivating toll-like receptor 4 (TLR4) and protein tyrosine kinase 2 (PTK2) expression. High mobility group box 1 (HMGB1) upregulates KLF7 expression through the TLR4/advanced glycosylation end-product specific receptor (RAGE)-PI3K-AKT-NF-κB pathway, forming an HMGB1-KLF7-TLR4 positive feedback loop. The HMGB1-KLF7-TLR4/PTK2 axis is gradually activated during the progression of inflammation-HCC transition. Genetic depletion of KLF7 impedes HMGB1-mediated HCC progression and metastasis. The combined application of TLR4 inhibitor TAK-242 and PTK2 inhibitor defactinib alleviates HCC progression and metastasis induced by the HMGB1-KLF7 axis. In human HCCs, KLF7 expression is positively correlated with cytoplasmic HMGB1, p-p65, TLR4, and PTK2 levels, and patients positively co-expressing HMGB1/KLF7, p-p65/KLF7, KLF7/TLR4 or KLF7/PTK2 exhibit the worst prognosis. Conclusions: HMGB1-induced KLF7 overexpression facilitates HCC progression and metastasis by upregulating TLR4 and PTK2. Genetic ablation of KLF7 via AAV gene therapy and combined blockade of TLR4 and PTK2 represents promising therapy strategies for KLF7-positive HCC patients.
Collapse
Affiliation(s)
- Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lili Duan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
15
|
Papadakos SP, Arvanitakis K, Stergiou IE, Lekakis V, Davakis S, Christodoulou MI, Germanidis G, Theocharis S. The Role of TLR4 in the Immunotherapy of Hepatocellular Carcinoma: Can We Teach an Old Dog New Tricks? Cancers (Basel) 2023; 15:2795. [PMID: 37345131 DOI: 10.3390/cancers15102795] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is a leading cause of cancer-related death worldwide. Immunotherapy has emerged as the mainstay treatment option for unresectable HCC. Toll-like receptor 4 (TLR4) plays a crucial role in the innate immune response by recognizing and responding primarily to bacterial lipopolysaccharides. In addition to its role in the innate immune system, TLR4 has also been implicated in adaptive immunity, including specific anti-tumor immune responses. In particular, the TLR4 signaling pathway seems to be involved in the regulation of several cancer hallmarks, such as the continuous activation of cellular pathways that promote cell division and growth, the inhibition of programmed cell death, the promotion of several invasion and metastatic mechanisms, epithelial-to-mesenchymal transition, angiogenesis, drug resistance, and epigenetic modifications. Emerging evidence further suggests that TLR4 signaling holds promise as a potential immunotherapeutic target in HCC. The aim of this review was to explore the multilayer aspects of the TLR4 signaling pathway, regarding its role in liver diseases and HCC, as well as its potential utilization as an immunotherapy target for HCC.
Collapse
Affiliation(s)
- Stavros P Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna E Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasileios Lekakis
- Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Spyridon Davakis
- First Department of Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
16
|
Hemann EA, Knoll ML, Wilkins CR, Subra C, Green R, García-Sastre A, Thomas PG, Trautmann L, Ireton RC, Loo YM, Gale M. A Small Molecule RIG-I Agonist Serves as an Adjuvant to Induce Broad Multifaceted Influenza Virus Vaccine Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1247-1256. [PMID: 36939421 PMCID: PMC10149148 DOI: 10.4049/jimmunol.2300026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/10/2023] [Indexed: 03/21/2023]
Abstract
Retinoic acid-inducible gene I (RIG-I) is essential for activating host cell innate immunity to regulate the immune response against many RNA viruses. We previously identified that a small molecule compound, KIN1148, led to the activation of IFN regulatory factor 3 (IRF3) and served to enhance protection against influenza A virus (IAV) A/California/04/2009 infection. We have now determined direct binding of KIN1148 to RIG-I to drive expression of IFN regulatory factor 3 and NF-κB target genes, including specific immunomodulatory cytokines and chemokines. Intriguingly, KIN1148 does not lead to ATPase activity or compete with ATP for binding but activates RIG-I to induce antiviral gene expression programs distinct from type I IFN treatment. When administered in combination with a vaccine against IAV, KIN1148 induces both neutralizing Ab and IAV-specific T cell responses compared with vaccination alone, which induces comparatively poor responses. This robust KIN1148-adjuvanted immune response protects mice from lethal A/California/04/2009 and H5N1 IAV challenge. Importantly, KIN1148 also augments human CD8+ T cell activation. Thus, we have identified a small molecule RIG-I agonist that serves as an effective adjuvant in inducing noncanonical RIG-I activation for induction of innate immune programs that enhance adaptive immune protection of antiviral vaccination.
Collapse
Affiliation(s)
- Emily A. Hemann
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Megan L. Knoll
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Courtney R. Wilkins
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Caroline Subra
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, and the U.S. Military HIV Research Program, Bethesda, Maryland, USA
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Department of Medicine, Division of Infectious Diseases, Department of Pathology, Molecular and Cell-Based Medicine, The Tisch Cancer Institute, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Lydie Trautmann
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, and the U.S. Military HIV Research Program, Bethesda, Maryland, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Renee C. Ireton
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Yueh-Ming Loo
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Saliem SS, Bede SY, Abdulkareem AA, Abdullah BH, Milward MR, Cooper PR. Gingival tissue samples from periodontitis patients demonstrate epithelial-mesenchymal transition phenotype. J Periodontal Res 2023; 58:247-255. [PMID: 36575609 DOI: 10.1111/jre.13086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To determine the expression of key epithelial-mesenchymal transition (EMT) markers in gingival tissue samples collected from patients with periodontitis. BACKGROUND Epithelial-mesenchymal transition is a process responsible for shifting epithelial-phenotype to mesenchymal-phenotype leading to loss of epithelial-barrier function. Thus, EMT could be involved as a pathogenic mechanism in periodontitis as both conditions share common promoters and signalling pathways. MATERIALS AND METHODS Gingival tissue samples were collected from patients with periodontitis (case) and healthy periodontium (control). Periodontal parameters including bleeding on probing, probing pocket depth (PPD), and clinical attachment loss were recorded. Paraffinized tissue samples were processed and immunohistochemically stained to determine the expression of key EMT markers which included E-cadherin, β-catenin, Snail1 and vimentin. RESULTS The majority of cases (n = 65, 72.2%) were diagnosed with periodontitis stage 3 or 4, grade b or c vs 25 (27.8%) subjects with intact healthy periodontium. Discontinuity of epithelium was detected in up to 80.9% of periodontitis cases associated with reduced number of epithelial layers as compared to controls. Immunohistochemical expression of epithelial markers (E-cadherin and β-catenin) was significantly downregulated in periodontitis patients as compared with controls. Periodontitis cases exhibited significant upregulation of Snail1 expression. Furthermore, cytoplasmic vimentin (66.2%) and nuclear β-catenin (27.7%) were solely expressed in periodontally diseased tissues compared with control. Epithelial markers, E-cadherin and β-catenin, were significantly negatively correlated with increasing PPD, while vimentin showed positive correlation with this parameter. CONCLUSION There were marked downregulation of epithelial molecules and upregulation of mesenchymal markers in gingival tissues derived from periodontitis patients, suggesting expression of the EMT phenotype in the pathological epithelial lining of periodontal pockets.
Collapse
Affiliation(s)
- Saif S Saliem
- College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Salwan Y Bede
- College of Dentistry, University of Baghdad, Baghdad, Iraq
| | | | | | | | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Das BK. Altered gut microbiota in hepatocellular carcinoma: Insights into the pathogenic mechanism and preclinical to clinical findings. APMIS 2022; 130:719-740. [PMID: 36321381 DOI: 10.1111/apm.13282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. It is usually the result of pre-existing liver damage caused by hepatitis B and/or C virus infection, alcohol consumption, nonalcoholic steatohepatitis (NASH), aflatoxin exposure, liver cirrhosis, obesity, and diabetes. A growing body of evidence suggests that gut microbes have a role in cancer genesis. More research into the microbiome gut-liver axis has recently contributed to understanding how the gut microbiome facilitates liver disease or even HCC progression. This review focuses on the preclinical results of gut-related hepatocarcinogenesis and probiotics, prebiotics, and antibiotics as therapeutic interventions to maintain gut microbial flora and minimize HCC-associated symptoms. Understanding the mechanistic link between the gut microbiota, host, and cancer progression could aid us in elucidating the cancer-related pathways and drive us toward preventing HCC-associated gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Bhrigu Kumar Das
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science (Assam Science and Technology University), Guwahati, Assam, India
| |
Collapse
|
19
|
Islam MS, Morshed MR, Babu G, Khan MA. The role of inflammations and EMT in carcinogenesis. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 5:100055. [DOI: 10.1016/j.adcanc.2022.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
20
|
Single Nucleotide Polymorphisms of Toll-like Receptor 4 in Hepatocellular Carcinoma-A Single-Center Study. Int J Mol Sci 2022; 23:ijms23169430. [PMID: 36012696 PMCID: PMC9409058 DOI: 10.3390/ijms23169430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor leading to significant morbidity and mortality; its exact genetic background is largely unrecognized. Toll-like receptor-4 (TLR4) reacts with lipopolysaccharides, molecules found in the outer membrane of Gram-negative bacteria. In damaged liver, TLR4 expression is upregulated, leading to hepatic inflammation and injury. We tried to investigate the role of the two most common single-nucleotide polymorphisms (SNPs) of TLR4 in HCC-genesis. Aged > 18 years old, cirrhotic patients were included in this study. Exclusion criteria were non-HCC tumors and HIV co-infection. TLR4 SNPs association with HCC occurrence was the primary endpoint, and associations with all-cause and liver-related mortality, as well as time durations between diagnosis of cirrhosis and HCC development or death and diagnosis of HCC and death were secondary endpoints. A total of 52 out of 260 included patients had or developed HCC. TLR4 SNPs showed no correlation with primary or secondary endpoints, except for the shorter duration between HCC development and death in patients with TLR4 mutations. Overall, TLR4 SNPs showed no correlation with carcinogenesis or deaths in patients with liver cirrhosis; patients with TLR4 SNPs that developed HCC had lower survival rates, a finding that should be further evaluated.
Collapse
|
21
|
Persistent TLR4 Activation Promotes Hepatocellular Carcinoma Growth through Positive Feedback Regulation by LIN28A/Let-7g miRNA. Int J Mol Sci 2022; 23:ijms23158419. [PMID: 35955552 PMCID: PMC9369227 DOI: 10.3390/ijms23158419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic inflammation caused by liver damage or infection plays an important role in the development and progression of hepatocellular carcinoma (HCC). The activation of Toll-like receptors 4 (TLR4) is involved in HCC tumorigenesis. Moreover, high TLR4 expression in HCC has been linked to poor prognosis. Although the expression of TLR4 in HCC is relatively low compared to hematopoietic cells, it is important to explore the molecular mechanism leading to the elevation of TLR4 in HCC. In this study, we aimed to investigate the positive regulating loop for TLR4 expression in HCC in response to chronic inflammation. Our results confirm that the mRNA expression of TLR4 and proinflammatory cytokines, including interleukin 6 (IL6) and C-C motif chemokine ligand 2 (CCL2), positively correlate in human HCC samples. High TLR4 expression in HCC is more susceptible to lipopolysaccharide (LPS); TLR4 activation in HCC provides growth and survival advantages and thus promotes tumorigenesis. It has been shown that the LIN28/let-7 microRNA (miRNA) axis is a downstream effector of the TLR4 signal pathway, and let-7 miRNA is a potential post-transcriptional regulator for TLR4. Thus, we investigated the correlation between TLR4 and LIN28A mRNA and let-7g miRNA in HCC clinical samples and found that the expression of TLR4 was positively correlated with LIN28A and negatively correlated with let-7g miRNA. Moreover, by culturing PLC/PRF5 (PLC5) HCC cells in low-dose LPS-containing medium to mimic chronic inflammation for persistent TLR4 activation, the mRNA and protein levels of TLR4 and LIN28A were elevated, and let-7g miRNA was decreased. Furthermore, the 3' untranslated region (3’UTR) of TLR4 mRNA was shown to be the target of let-7g miRNA, suggesting that inhibition of let-7g miRNA is able to increase TLR4 mRNA. While parental PLC5 cells have a low susceptibility to LPS-induced cell growth, long-term LPS exposure for PLC5 cells leads to increased proliferation, cytokine expression and stemness properties. In conclusion, our studies demonstrate positive feedback regulation for chronic TLR4 activation in the modulation of TLR4 expression level through the LIN28A/let-7g pathway in HCC and suggest a connection between chronic inflammation and TLR4 expression level in HCC for promoting tumorigenesis.
Collapse
|
22
|
Wang L, Cao ZM, Zhang LL, Li JM, Lv WL. The Role of Gut Microbiota in Some Liver Diseases: From an Immunological Perspective. Front Immunol 2022; 13:923599. [PMID: 35911738 PMCID: PMC9326173 DOI: 10.3389/fimmu.2022.923599] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is a microecosystem composed of various microorganisms. It plays an important role in human metabolism, and its metabolites affect different tissues and organs. Intestinal flora maintains the intestinal mucosal barrier and interacts with the immune system. The liver is closely linked to the intestine by the gut-liver axis. As the first organ that comes into contact with blood from the intestine, the liver will be deeply influenced by the gut microbiota and its metabolites, and the intestinal leakage and the imbalance of the flora are the trigger of the pathological reaction of the liver. In this paper, we discuss the role of gut microbiota and its metabolites in the pathogenesis and development of autoimmune liver diseases((including autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis), metabolic liver disease such as non-alcoholic fatty liver disease, cirrhosisits and its complications, and liver cancer from the perspective of immune mechanism. And the recent progress in the treatment of these diseases was reviewed from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Li Wang
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | - Zheng-Min Cao
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | | | - Juan-mei Li
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-liang Lv
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Liu Y, Baba Y, Ishimoto T, Gu X, Zhang J, Nomoto D, Okadome K, Baba H, Qiu P. Gut microbiome in gastrointestinal cancer: a friend or foe? Int J Biol Sci 2022; 18:4101-4117. [PMID: 35844804 PMCID: PMC9274484 DOI: 10.7150/ijbs.69331] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/04/2022] [Indexed: 12/07/2022] Open
Abstract
The impact of the gut microbiome on host health is becoming increasingly recognized. To date, there is growing evidence that the complex characteristics of the microbial community play key roles as potential biomarkers and predictors of responses in cancer therapy. Many studies have shown that altered commensal bacteria lead to cancer susceptibility and progression in diverse pathways. In this review, we critically assess the data for gut microbiota related to gastrointestinal cancer, including esophageal, gastric, pancreatic, colorectal cancer, hepatocellular carcinoma and cholangiocarcinoma. Importantly, the underlying mechanisms of gut microbiota involved in cancer occurrence, prevention and treatment are elucidated. The purpose of this review is to provide novel insights for applying this understanding to the development of new therapeutic strategies in gastrointestinal cancer by targeting the microbial community.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning province, China
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Next-Generation Surgical Therapy Development, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning province, China
| | - Jun Zhang
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Daichi Nomoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuo Okadome
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| |
Collapse
|
24
|
Luo W, Guo S, Zhou Y, Zhao J, Wang M, Sang L, Chang B, Wang B. Hepatocellular Carcinoma: How the Gut Microbiota Contributes to Pathogenesis, Diagnosis, and Therapy. Front Microbiol 2022; 13:873160. [PMID: 35572649 PMCID: PMC9092458 DOI: 10.3389/fmicb.2022.873160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is gaining increasing attention, and the concept of the "gut-liver axis" is gradually being recognized. Leaky gut resulting from injury and/or inflammation can cause the translocation of flora to the liver. Microbiota-associated metabolites and components mediate the activation of a series of signalling pathways, thereby playing an important role in the development of hepatocellular carcinoma (HCC). For this reason, targeting the gut microbiota in the diagnosis, prevention, and treatment of HCC holds great promise. In this review, we summarize the gut microbiota and the mechanisms by which it mediates HCC development, and the characteristic alterations in the gut microbiota during HCC pathogenesis. Furthermore, we propose several strategies to target the gut microbiota for the prevention and treatment of HCC, including antibiotics, probiotics, faecal microbiota transplantation, and immunotherapy.
Collapse
Affiliation(s)
- Wenyu Luo
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- The Second Clinical College, China Medical University, Shenyang, China
| | - Shiqi Guo
- The Second Clinical College, China Medical University, Shenyang, China
| | - Yang Zhou
- The Second Clinical College, China Medical University, Shenyang, China
| | - Jingwen Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengyao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bingyuan Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Bacterial Translocation in Gastrointestinal Cancers and Cancer Treatment. Biomedicines 2022; 10:biomedicines10020380. [PMID: 35203589 PMCID: PMC8962358 DOI: 10.3390/biomedicines10020380] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been increasing evidence that gut microbiota is associated with the onset and exacerbation of various diseases, such as gastrointestinal cancer. For instance, it is well known that local inflammation of the intestinal tract in colorectal cancer that is caused by the increased number of Fusobacterium, due to changes in the intestinal bacterial flora, is involved in carcinogenesis. In contrast, gut bacteria or their products, pathogen-associated molecular patterns, not only cause intestinal inflammation but also invade the bloodstream through dysbiosis and gut barrier dysfunction, thereby leading to systemic inflammation, namely bacterial translocation. The involvement of bacterial translocation in the carcinogenesis of gastrointestinal cancers and their prognosis is increasingly being recognized. The Toll-like receptor signaling pathways plays an important role in the carcinogenesis of such cancers. In addition, bacterial translocation influences the treatment of cancers such as surgery and chemotherapy. In this review, we outline the concept of bacterial translocation, summarize the current knowledge on the relationship between gut bacteria and gastrointestinal cancer, and provide future perspectives of this field.
Collapse
|
26
|
Zhou C, Zheng J, Fan Y, Wu J. TI: NLRP3 Inflammasome-Dependent Pyroptosis in CNS Trauma: A Potential Therapeutic Target. Front Cell Dev Biol 2022; 10:821225. [PMID: 35186932 PMCID: PMC8847380 DOI: 10.3389/fcell.2022.821225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
Central nervous system (CNS) trauma, including traumatic brain injury (TBI) and traumatic spinal cord injury (SCI), is characterized by high morbidity, disability, and mortality. TBI and SCI have similar pathophysiological mechanisms and are often accompanied by serious inflammatory responses. Pyroptosis, an inflammation-dependent programmed cell death, is becoming a major problem in CNS post-traumatic injury. Notably, the pyrin domain containing 3 (NLRP3) inflammasome is a key protein in the pyroptosis signaling pathway. Therefore, underlying mechanism of the NLRP3 inflammasome in the development of CNS trauma has attracted much attention. In this review, we briefly summarize the molecular mechanisms of NLRP3 inflammasome in pyroptosis signaling pathway, including its prime and activation. Moreover, the dynamic expression pattern, and roles of the NLRP3 inflammasome in CNS post-traumatic injury are summarized. The therapeutic applications of NLRP3 inflammasome activation inhibitors are also discussed.
Collapse
Affiliation(s)
- Conghui Zhou
- The First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinfeng Zheng
- The First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunpeng Fan
- The First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junsong Wu
- Department of Orthopaedics of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Junsong Wu,
| |
Collapse
|
27
|
Lu JW, Lin LI, Sun Y, Liu D, Gong Z. Effect of Lipopolysaccharides on Liver Tumor Metastasis of twist1a/krasV12 Double Transgenic Zebrafish. Biomedicines 2022; 10:biomedicines10010095. [PMID: 35052775 PMCID: PMC8773574 DOI: 10.3390/biomedicines10010095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
The poor prognosis of patients diagnosed with hepatocellular carcinoma (HCC) is directly associated with the multi-step process of tumor metastasis. TWIST1, a basic helix-loop-helix (bHLH) transcription factor, is the most important epithelial-mesenchymal transition (EMT) gene involved in embryonic development, tumor progression, and metastasis. However, the role that TWIST1 gene plays in the process of liver tumor metastasis in vivo is still not well understood. Zebrafish can serve as a powerful model for cancer research. Thus, in this study, we crossed twist1a+ and kras+ transgenic zebrafish, which, respectively, express hepatocyte-specific mCherry and enhanced green fluorescent protein (EGFP); they also drive overexpression of their respective transcription factors. This was found to exacerbate the development of metastatic HCC. Fluorescence of mCherry and EGFP-labeled hepatocytes revealed that approximately 37.5% to 45.5% of the twist1a+/kras+ double transgenic zebrafish exhibited spontaneous tumor metastasis from the liver to the abdomen and tail areas, respectively. We also investigated the inflammatory effects of lipopolysaccharides (LPS) on the hepatocyte-specific co-expression of twist1a+ and kras+ in double transgenic zebrafish. Following LPS exposure, co-expression of twist1a+ and kras+ was found to increase tumor metastasis by 57.8%, likely due to crosstalk with the EMT pathway. Our results confirm that twist1a and kras are important mediators in the development of metastatic HCC. Taken together, our in-vivo model demonstrated that co-expression of twist1a+/kras+ in conjunction with exposure to LPS enhanced metastatic HCC offers a useful platform for the study of tumor initiation and metastasis in liver cancer.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan;
- Correspondence: (J.-W.L.); (Z.G.); Tel.: +65-6516-2860 (Z.G.)
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan;
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Yuxi Sun
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Dong Liu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Correspondence: (J.-W.L.); (Z.G.); Tel.: +65-6516-2860 (Z.G.)
| |
Collapse
|
28
|
Peruhova M, Peshevska-Sekulovska M, Velikova T. Interactions between human microbiome, liver diseases, and immunosuppression after liver transplant. World J Immunol 2021; 11:11-16. [DOI: 10.5411/wji.v11.i2.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
In liver transplant patients, solid tumors and post-transplant lymphoproliferative disorders have emerged as significant long-term mortality causes. In addition, it is assumed that de novo malignancy after liver transplantation (LT) is the second-leading cause of death after cardiovascular complications. Well-established risk factors for post-transplant lymphoproliferative disorders and solid tumors are calcineurin inhibitors, tacrolimus, and cyclosporine, the cornerstones of all immunosuppressive therapies used after LT. The loss of immunocompetence facilitated by the host immune system due to prolonged immunosuppressive therapy leads to cancer development, including LT patients. Furthermore, various mechanisms such as bacterial dysbiosis, activation through microbe-associated molecular patterns, leaky gut, and bacterial metabolites can drive cancer-promoting liver inflammation, fibrosis, and genotoxicity. Therefore, changes in human microbiota composition may contribute further to de novo carcinogenesis associated with the severe immunosuppression after LT.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | | | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| |
Collapse
|
29
|
Fu K, Shao L, Mei L, Li H, Feng Y, Tian W, Huan Y, Cao R. Tanshinone ⅡA inhibits the lipopolysaccharide-induced epithelial-mesenchymal transition and protects bovine endometrial epithelial cells from pyolysin-induced damage by modulating the NF-κB/Snail2 signaling pathway. Theriogenology 2021; 176:217-224. [PMID: 34628084 DOI: 10.1016/j.theriogenology.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022]
Abstract
Mixed infection with Escherichia coli and Trueperella pyogenes (T. pyogenes) leads to purulent endometritis, but the underlying molecular mechanisms remain unclear. The aim of this study was to investigate the effect of tanshinone ⅡA (Tan ⅡA) on E. coli and T. pyogenes -induced purulent endometritis and explore the underlying mechanism. First, lipopolysaccharide (LPS) isolated from E. coli and bacteria-free filtrates (BFFs) isolated from T. pyogenes were used to induce a model of bovine endometrial epithelial cell (bEEC) damage in vitro. bEECs were pretreated with or without Tan ⅡA for 2 h, before LPS and BFFs were introduced to induce damage to investigate the protective effect of Tan IIA. Then, the cytolytic activity and inflammatory response in bEECs were examined using CCK-8, LDH and RT-qPCR assays. Furthermore, we confirmed the molecular mechanism by which Tan ⅡA reversed the damaged phenotypes in LPS- and BFFs-induced bEECs via the NF-κB/Snail2 pathway using qPCR and Western blotting. Tan ⅡA significantly decreased the cytolytic activity and inflammatory response in LPS- and BFFs-induced bEECs. In addition, Tan ⅡA reversed the dysregulation of E-cadherin, N-cadherin and vimentin. Moreover, Tan ⅡA significantly inhibited the activation of the NF-κB signaling pathway and decreased the expression level of Snail2, which is the main regulator of the epithelial-mesenchymal transition (EMT). In summary, Tan ⅡA inhibits the LPS-induced EMT and protects bEECs from pyolysin-induced damage by modulating the NF-κB/Snail2 signaling pathway.
Collapse
Affiliation(s)
- Kaiqiang Fu
- Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, People's Republic of China
| | - Lingzhen Shao
- Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, People's Republic of China
| | - Lian Mei
- Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, People's Republic of China
| | - Huatao Li
- Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, People's Republic of China
| | - Yanni Feng
- Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, People's Republic of China
| | - Wenru Tian
- Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, People's Republic of China
| | - Yanjun Huan
- Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, People's Republic of China
| | - Rongfeng Cao
- Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, People's Republic of China.
| |
Collapse
|
30
|
Liao KC, Chuo V, Fagg WS, Modahl CM, Widen S, Garcia-Blanco MA. The RNA binding protein Quaking represses splicing of the Fibronectin EDA exon and downregulates the interferon response. Nucleic Acids Res 2021; 49:10034-10045. [PMID: 34428287 PMCID: PMC8464043 DOI: 10.1093/nar/gkab732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Quaking (QKI) controls RNA metabolism in many biological processes including innate immunity, where its roles remain incompletely understood. To illuminate these roles, we performed genome scale transcriptome profiling in QKI knockout cells with or without poly(I:C) transfection, a double-stranded RNA analog that mimics viral infection. Analysis of RNA-sequencing data shows that QKI knockout upregulates genes induced by interferons, suggesting that QKI is an immune suppressor. Furthermore, differential splicing analysis shows that QKI primarily controls cassette exons, and among these events, we noted that QKI silences splicing of the extra domain A (EDA) exon in fibronectin (FN1) transcripts. QKI knockout results in elevated production and secretion of FN1-EDA protein, which is a known activator of interferons. Consistent with an upregulation of the interferon response in QKI knockout cells, our results show reduced production of dengue virus-2 and Japanese encephalitis virus in these cells. In conclusion, we demonstrate that QKI downregulates the interferon system and attenuates the antiviral state.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vanessa Chuo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - W Samuel Fagg
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cassandra M Modahl
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore
| | - Steven Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mariano A Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
31
|
Shao C, Yang X, Jing Y, Hou X, Huang Y, Zong C, Gao L, Liu W, Jiang J, Ye F, Shi J, Zhao Q, Li R, Zhang X, Wei L. The stemness of hepatocytes is maintained by high levels of lipopolysaccharide via YAP1 activation. Stem Cell Res Ther 2021; 12:342. [PMID: 34112239 PMCID: PMC8193885 DOI: 10.1186/s13287-021-02421-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background The liver possesses a powerful regeneration ability, which is correlated with the stemness of hepatocytes in the portal vein (PV). However, the mechanism underlying the maintenance of hepatocyte stemness has not been elucidated. Here, we hypothesized that high levels of lipopolysaccharide from the portal vein might maintain the stemness of hepatocytes in the PV area. Methods First, we examined the location of hepatic stem cells and the concentration of lipopolysaccharide (LPS) in the portal vein and inferior vena cava. Then, we assessed the effect of LPS on stemness maintenance in mice by using antibiotics to eliminate LPS and knocking out the LPS receptor, TLR4. In vitro, the effect of LPS on the stemness of hepatocytes was investigated by colony and sphere formation assays and assessment of pluripotent and stem cell marker expression. Furthermore, we studied the mechanism by which LPS regulates the stemness of hepatocytes. Finally, we ligated the portal vein branch to further verify the effect of LPS. Results We found that a high level of LPS from the portal vein was correlated with the location of hepatic stem cells in the PV area, and elimination of LPS by antibiotics inhibited the expression of the stemness marker. LPS promoted colony and sphere formation and induced the upregulation of pluripotent and stem cell markers in AML12 cells. Furthermore, in the reprogramming medium, LPS facilitated the dedifferentiation of mature hepatocytes into hepatic progenitor-like cells, which exhibited a bipotent differentiation capacity in vivo and in vitro. Mechanistically, LPS bound TLR4 to regulate stemness of hepatocytes via the activation of YAP1 signaling, and blockade of YAP1 abolished the LPS-induced cell stemness and upregulation of pluripotent markers. Conclusions Our study implies a correlation between LPS/TLR4/YAP1 signaling and cell stemness, and LPS was shown to be involved in stemness maintenance of hepatocytes in the PV area. LPS might be used to induce the dedifferentiation of mature hepatocytes into progenitor-like cells for repair of liver injury. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02421-7.
Collapse
Affiliation(s)
- Changchun Shao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaojuan Hou
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yihua Huang
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Chen Zong
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Wenting Liu
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Junxia Shi
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
32
|
Kim H, Lee DS, An TH, Park HJ, Kim WK, Bae KH, Oh KJ. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int J Mol Sci 2021; 22:ijms22094495. [PMID: 33925827 PMCID: PMC8123490 DOI: 10.3390/ijms22094495] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Liver disease is the spectrum of liver damage ranging from simple steatosis called as nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC). Clinically, NAFLD and type 2 diabetes coexist. Type 2 diabetes contributes to biological processes driving the severity of NAFLD, the primary cause for development of chronic liver diseases. In the last 20 years, the rate of non-viral NAFLD/NASH-derived HCC has been increasing rapidly. As there are currently no suitable drugs for treatment of NAFLD and NASH, a class of thiazolidinediones (TZDs) drugs for the treatment of type 2 diabetes is sometimes used to improve liver failure despite the risk of side effects. Therefore, diagnosis, prevention, and treatment of the development and progression of NAFLD and NASH are important issues. In this review, we will discuss the pathogenesis of NAFLD/NASH and NAFLD/NASH-derived HCC and the current promising pharmacological therapies of NAFLD/NASH. Further, we will provide insights into "adipose-derived adipokines" and "liver-derived hepatokines" as diagnostic and therapeutic targets from NAFLD to HCC.
Collapse
Affiliation(s)
- Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| |
Collapse
|
33
|
Kairaluoma V, Kemi N, Huhta H, Pohjanen VM, Helminen O. Prognostic role of TLR4 and TLR2 in hepatocellular carcinoma. Acta Oncol 2021; 60:554-558. [PMID: 33502274 DOI: 10.1080/0284186x.2021.1877346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Valtteri Kairaluoma
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Niko Kemi
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Heikki Huhta
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Vesa-Matti Pohjanen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olli Helminen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
34
|
Banday MM, Kumar A, Vestal G, Sethi J, Patel KN, O'Neill EB, Finan J, Cheng F, Lin M, Davis NM, Goldberg H, Coppolino A, Mallidi HR, Dunning J, Visner G, Gaggar A, Seyfang A, Sharma NS. N-myc-interactor mediates microbiome induced epithelial to mesenchymal transition and is associated with chronic lung allograft dysfunction. J Heart Lung Transplant 2021; 40:447-457. [PMID: 33781665 DOI: 10.1016/j.healun.2021.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recent evidence suggests a role for lung microbiome in occurrence of chronic lung allograft dysfunction (CLAD). However, the mechanisms linking the microbiome to CLAD are poorly delineated. We investigated a possible mechanism involved in microbial modulation of mucosal response leading to CLAD with the hypothesis that a Proteobacteria dominant lung microbiome would inhibit N-myc-interactor (NMI) expression and induce epithelial to mesenchymal transition (EMT). METHODS Explant CLAD, non-CLAD, and healthy nontransplant lung tissue were collected, as well as bronchoalveolar lavage from 14 CLAD and matched non-CLAD subjects, which were followed by 16S rRNA amplicon sequencing and quantitative polymerase chain reaction (PCR) analysis. Pseudomonas aeruginosa (PsA) or PsA-lipopolysaccharide was cocultured with primary human bronchial epithelial cells (PBEC). Western blot analysis and quantitative reverse transcription (qRT) PCR was performed to evaluate NMI expression and EMT in explants and in PsA-exposed PBECs. These experiments were repeated after siRNA silencing and upregulation (plasmid vector) of EMT regulator NMI. RESULTS 16S rRNA amplicon analyses revealed that CLAD patients have a higher abundance of phyla Proteobacteria and reduced abundance of the phyla Bacteroidetes. At the genera level, CLAD subjects had an increased abundance of genera Pseudomonas and reduced Prevotella. Human CLAD airway cells showed a downregulation of the N-myc-interactor gene and presence of EMT. Furthermore, exposure of human primary bronchial epithelial cells to PsA resulted in downregulation of NMI and induction of an EMT phenotype while NMI upregulation resulted in attenuation of this PsA-induced EMT response. CONCLUSIONS CLAD is associated with increased bacterial biomass and a Proteobacteria enriched airway microbiome and EMT. Proteobacteria such as PsA induces EMT in human bronchial epithelial cells via NMI, demonstrating a newly uncovered mechanism by which the microbiome induces cellular metaplasia.
Collapse
Affiliation(s)
- Mudassir M Banday
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Archit Kumar
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Grant Vestal
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Jaskaran Sethi
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Kapil N Patel
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Edward B O'Neill
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Jon Finan
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Feng Cheng
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Muling Lin
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Nicole M Davis
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Hilary Goldberg
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Antonio Coppolino
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hari R Mallidi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - John Dunning
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Gary Visner
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amit Gaggar
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Andreas Seyfang
- University of South Florida Morsani College of Medicine/Molecular Medicine, Tampa, Florida
| | - Nirmal S Sharma
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
35
|
Hassan HM, Al-Wahaibi LH, Shehatou GS, El-Emam AA. Adamantane-linked isothiourea derivatives suppress the growth of experimental hepatocellular carcinoma via inhibition of TLR4-MyD88-NF-κB signaling. Am J Cancer Res 2021; 11:350-369. [PMID: 33575076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, in vitro cytotoxic effects of seven adamantyl isothiourea derivatives were evaluated against five human tumor cell lines using the MTT assay. Compounds 5 and 6 were found to be the most active derivatives particularly against hepatocellular carcinoma (HCC). To decipher the potential mechanisms involved, in vivo studies were conducted in rats by inducing HCC via chronic thioacetamide (TAA) administration (200 mg/kg, i.p., twice weekly) for 16 weeks. Compounds 5 and 6 were administered to HCC rats, at a dose of 10 mg/kg/day, for further 2 weeks. In vitro and in vivo antitumor activities of compounds 5 and 6 were compared to those of the anticancer drug doxorubicin (DOXO). In the HCC rat model, compounds 5 and 6 significantly reduced serum levels of ALT, AST with ALP and α-fetoprotein. H & E and Masson trichrome staining revealed that both compounds suppressed hepatocyte tumorigenesis and diminished fibrosis, inflammation and other histopathological alterations. Mechanistically, compounds 5 and 6 markedly decreased protein expression levels of α-SMA, sEH, p-NF-κB p65, TLR4, MyD88, TRAF-6, TNF-α, IL-1β and TGF-β1, whereas they increased caspase-3 expression in liver tissues of HCC rats. In most analyses, the effects of compound 6 were more comparable to DOXO than compound 5. These findings suggested that the compounds 5 and 6 displayed in vitro and in vivo cytotoxic potential against HCC, probably via inhibition of TLR4-MyD88-NF-κB signaling.
Collapse
Affiliation(s)
- Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology International Costal Road, Gamasa 11152, Mansoura, Egypt
| | - Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University Riyadh 11671, Saudi Arabia
| | - George Sg Shehatou
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology International Costal Road, Gamasa 11152, Mansoura, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University Mansoura 35516, Egypt
| | - Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516, Egypt
| |
Collapse
|
36
|
Jiang X, Yuan J, Dou Y, Zeng D, Xiao S. Lipopolysaccharide Affects the Proliferation and Glucose Metabolism of Cervical Cancer Cells Through the FRA1/MDM2/p53 Pathway. Int J Med Sci 2021; 18:1030-1038. [PMID: 33456361 PMCID: PMC7807182 DOI: 10.7150/ijms.47360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022] Open
Abstract
Previous studies have found that LPS and FRA1 play opposite roles in cervical cancer. In addition, LPS functions by regulating the expression of FRA1 in many disease models, but there is currently no study of their relationship in the energy metabolism of tumor cells. This study, therefore, investigates the effects of LPS on FRA1-mediated glucose metabolism and the possible mechanisms it may have in cervical cancer cells. We constructed FRA1 stable overexpressing/ empty vector cervical cancer cell lines, where glucose consumption, the level of lactic acid production and the expression of energy metabolism related molecules were detected under the stimulation of LPS. At the same time, the changes in proliferation ability of cervical cancer cells were detected. We discovered that LPS promotes glucose consumption, lactic acid production, pentose phosphate bypass, and inhibits aerobic oxidation, by inhibiting the expression of FRA1; and that LPS promotes the growth of cervical cancer cells. Our results indicate that LPS affects the proliferation and glucose metabolism of cervical cancer cells through the FRA1/MDM2/p53 pathway.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Department of Obstetrics, The People's Hospital of Qijiang District, Chongqing 401420, China
| | - Jing Yuan
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yingyu Dou
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Da Zeng
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
37
|
Narayanankutty A, Sasidharan A, Job JT. Targeting Toll like Receptors in Cancer: Role of TLR Natural and Synthetic Modulators. Curr Pharm Des 2020; 26:5040-5053. [DOI: 10.2174/1381612826666200720235058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
Background:
Toll like receptors (TLRs) are a group of transmembrane receptors belonging to the
broad class pattern recognition receptors (PRR), involved in recognition of Pathogen Associated Molecular Patterns
(PAMPs) thereby inducing an immune response. Apart from these exogenous PAMPs, numerous endogenous
PAMPs are also ligands for various TLRs thereby activating the TLR dependent immune response, subsequently
leading to the onset of an inflammatory response. Prolonged activation of TLR by these endogenous
PAMPs leads to chronic inflammatory insults to the body and which in turn alters the proliferative patterns of the
cells, which ultimately leads to the development of cancer.
Objectives:
The present review aims to provide a detailed outline of the differential roles of various TLRs in
cancer and the possible use of them as a therapeutic target.
Methods:
Data were collected from PubMed/Sciencedirect/Web of Science database and sorted; the latest literature
on TLRs was incorporated in the review.
Results:
Among the different TLRs, few are reported to be anti-neoplastic, which controls the cell growth and
multiplication in response to the endogenous signals. On the contrary, numerous studies have reported the procarcinogenic
potentials of TLRs. Hence, TLRs have emerged as a potential target for the prevention and treatment
of various types of cancers. Several molecules, such as monoclonal antibodies, small molecule inhibitors and
natural products have shown promising anticancer potential by effectively modulating the TLR signalling.
Conclusion:
Toll-like receptors play vital roles in the process of carcinogenesis, hence TLR targeting is a promising
approach for cancer prevention.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut, Kerala-673 008, India
| | | | - Joice T. Job
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut, Kerala-673 008, India
| |
Collapse
|
38
|
Ding Z, Wu X, Wang Y, Ji S, Zhang W, Kang J, Li J, Fei G. Melatonin prevents LPS-induced epithelial-mesenchymal transition in human alveolar epithelial cells via the GSK-3β/Nrf2 pathway. Biomed Pharmacother 2020; 132:110827. [PMID: 33065391 DOI: 10.1016/j.biopha.2020.110827] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Oxidative stress plays a critical role in pulmonary fibrosis after acute lung injury (ALI), and epithelial-mesenchymal transition (EMT) events are involved in this process. The purpose of this study was to investigate the protective effects of melatonin, a natural antioxidant, on lipopolysaccharide (LPS)-induced EMT in human alveolar epithelial cells. METHODS Human type II alveolar epithelial cell-derived A549 cells were incubated with LPS and melatonin alone or in combination for up to 24 h. The morphological changes of the treated cells were evaluated as well as indexes of oxidative stress. EMT-related proteins and the Nrf2 signaling pathway were detected by western blot analysis and immunofluorescence staining, respectively. To further investigate the underlying mechanisms, the effects of melatonin on cells transfected Nrf2 short hairpin RNA (shRNA) and the PI3K / GSK-3β signaling pathway were evaluated. RESULTS Treatment with melatonin upregulated Nrf2 expression, inhibited LPS-induced cell morphological change, reversed the expressions of EMT-related proteins, and reduced reactive oxygen species (ROS) production in A549 cells, as well as the levels of malondialdehyde (MDA) and anti-oxidative enzymes. Yet, the effects of melatonin were almost completely abolished in cells transfected Nrf2 shRNA. Furthermore, the data demonstrated that melatonin could activate the PI3K/AKT signaling pathway, resulting in phosphorylation of GSK-3β (Ser9) and upregulation of the Nrf2 protein in A549 cells, which ultimately attenuated LPS-induced EMT. CONCLUSION The present study is the first to demonstrate that melatonin can protect human alveolar epithelial cells against oxidative stress by effectively inhibiting LPS-induced EMT, which was mostly dependent on upregulation of the Nrf2 pathway via the PI3K/GSK-3β axis. Further studies are warranted to investigate the role of melatonin for the treatment of oxidative stress-associated diseases, as well as pulmonary fibrosis after ALI.
Collapse
Affiliation(s)
- Zhenxing Ding
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Yueguo Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Shuang Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Wenying Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Jiaying Kang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Jiajia Li
- Center Lab of The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China
| | - Guanghe Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022 Anhui, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, China.
| |
Collapse
|
39
|
Angrini M, Varthaman A, Cremer I. Toll-Like Receptors (TLRs) in the Tumor Microenvironment (TME): A Dragon-Like Weapon in a Non-fantasy Game of Thrones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:145-173. [DOI: 10.1007/978-3-030-44518-8_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Giuffrè M, Campigotto M, Campisciano G, Comar M, Crocè LS. A story of liver and gut microbes: how does the intestinal flora affect liver disease? A review of the literature. Am J Physiol Gastrointest Liver Physiol 2020; 318:G889-G906. [PMID: 32146836 DOI: 10.1152/ajpgi.00161.2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Each individual is endowed with a unique gut microbiota (GM) footprint that mediates numerous host-related physiological functions, such as nutrient metabolism, maintenance of the structural integrity of the gut mucosal barrier, immunomodulation, and protection against microbial pathogens. Because of increased scientific interest in the GM, its central role in the pathophysiology of many intestinal and extraintestinal conditions has been recognized. Given the close relationship between the gastrointestinal tract and the liver, many pathological processes have been investigated in the light of a microbial-centered hypothesis of hepatic damage. In this review we introduce to neophytes the vast world of gut microbes, including prevalent bacterial distribution in healthy individuals, how the microbiota is commonly analyzed, and the current knowledge of the role of GM in liver disease pathophysiology. Also, we highlight the potentials and downsides of GM-based therapy.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy
| | - Michele Campigotto
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy
| | - Giuseppina Campisciano
- Istituto di Ricovero e Cura a Carattere Scientifico Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Manola Comar
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Lory Saveria Crocè
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy.,Clinica Patologie del Fegato, Azienda Sanitaria Universitaria Integrata di Trieste, Italy.,Fondazione Italiana Fegato, Trieste, Italy
| |
Collapse
|
41
|
Lin L, Wang D, Qu S, Zhao H, Lin Y. miR-370-3p Alleviates Ulcerative Colitis-Related Colorectal Cancer in Mice Through Inhibiting the Inflammatory Response and Epithelial-Mesenchymal Transition. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1127-1141. [PMID: 32214798 PMCID: PMC7078899 DOI: 10.2147/dddt.s238124] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Introduction Ulcerative colitis (UC) is a chronic and inflammatory bowel disease. UC-associated colorectal cancer (UC-CRC) is one of the most severe complications of long-standing UC. In the present study, we explored the effects of miR-370-3p on UC-CRC in vivo and investigated its underlying mechanisms in vivo and in vitro. Methods Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to induce UC-CRC in C57BL/6 mice. AOM/DSS-induced mice were treated with 5×108 pfu miR-370-3p overexpressing-adenovirus via tail-vein injection every two weeks. Results We found that miR-370-3p significantly improved the body weights and survival rates and inhibited the tumorigenesis of UC-CRC in AOM/DSS mice. Mechanically, miR-370-3p inhibited AOM/DSS-induced inflammatory response by decreasing tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) through targeting toll-like receptor 4 (TLR4), as demonstrated by down-regulation of TLR4, cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and phosphorylated epidermal growth factor receptor (pEGFR). miR-370-3p decreased the expression of tumor-associated proteins, including p53, β-catenin, and ki67 in AOM/DSS-treated mice. Additionally, miR-370-3p remarkably inhibited epithelial-mesenchymal transition (EMT) via increasing E-cadherin expression and reducing N-cadherin and Vimentin expression in vivo. Further studies showed that miR-370-3p repressed proliferation and EMT of colon cancer cells in vitro. Moreover, we proved that miR-370-3p decreased the expression of tumor-associated proteins and reversed EMT by regulating β-catenin in colon cancer cells. Conclusion Taken together, miR-370-3p alleviated UC-CRC by inhibiting the inflammatory response and EMT in mice, which suggested miR-370-3p as a novel potential target for UC-CRC therapy.
Collapse
Affiliation(s)
- Lianjie Lin
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Dongxu Wang
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Suxuan Qu
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Hong Zhao
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Gastroenterology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang 110035, People's Republic of China
| | - Yan Lin
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
42
|
The Antitumor Efficacy of β-Elemene by Changing Tumor Inflammatory Environment and Tumor Microenvironment. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6892961. [PMID: 32149121 PMCID: PMC7054771 DOI: 10.1155/2020/6892961] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory mediators and inflammatory cells in the inflammatory microenvironment promote the transformation of normal cells to cancer cells in the early stage of cancer, promote the growth and development of cancer cells, and induce tumor immune escape. The monomeric active ingredient β-elemene is extracted from the traditional Chinese medicine Curcuma wenyujin and has been proven to have good anti-inflammatory and antitumor activities in clinical applications for more than 20 years in China. Recent studies have found that this traditional Chinese medicine plays a vital role in macrophage infiltration and M2 polarization, as well as in regulating immune disorders, and it even regulates the transcription factors NF-κB and STAT3 to alter inflammation, tumorigenesis, and development. In addition, β-elemene regulates not only different inflammatory factors (such as TNF-α, IFN, TGF-β, and IL-6/10) but also oxidative stress in vivo and in vitro. The excellent anti-inflammatory and antitumor effects of β-elemene and its ability to alter the inflammatory microenvironment of tumors have been gradually elaborated. Although the study of monomeric active ingredients in traditional Chinese medicines is insufficient in terms of quality and quantity, the pharmacological effects of more active ingredients of traditional Chinese medicines will be revealed after β-elemene.
Collapse
|
43
|
Jiang N, Xie F, Chen L, Chen F, Sui L. The effect of TLR4 on the growth and local inflammatory microenvironment of HPV-related cervical cancer in vivo. Infect Agent Cancer 2020; 15:12. [PMID: 32095158 PMCID: PMC7027303 DOI: 10.1186/s13027-020-0279-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cervical cancer is the most common malignancy of the female lower genital tract. In our previous study, we found that TLR4 promotes cervical cancer cell growth in vitro. The aim of this study was to further explore the role of TLR4 in HPV-related cervical cancer in vivo by using a nude mouse xenograft model. METHODS Cervical cancer-derived HeLa and CaSki cells (5 × 107/mL) were either stimulated with an optimal concentration of LPS for the appropriate time (HeLa cells were treated with 1 μg/mL LPS for 1 h, and CaSki cells were treated with 2 μg/mL LPS for 1.5 h) or transfected with TLR4 shRNA and then injected subcutaneously into the dorsal right posterior side of nude mice. The shortest width and longest diameter of the transplanted tumors in the nude mice were measured every 3 days.TLR4, IL-6,iNOS, IL-8,COX-2, MIP-3α, TGF-β1 and VEGF expression levels in the transplanted tumor tissue were detected by immunohistochemistry. RESULTS The tumor formation rate was 100% in both HeLa and CaSki nude mouse groups. The tumors grew faster, and the cachexia symptoms were more serious in the LPS groups than in the control group. In contrast, the tumors grew slower, and the cachexia symptoms were milder in the TLR4-silenced groups. TLR4, iNOS, IL-6, MIP-3α and VEGF were highly expressed in the transplanted tumor tissues from the LPS groups, and their expression levels were decreased in the TLR4-silenced groups. CONCLUSION TLR4 expression is closely associated with the tumorigenesis and growth of HPV-positive cervical cancer; TLR4 promotes HPV-positive cervical tumor growth and facilitates the formation of a local immunosuppressive microenvironment. Eventually, these conditions may lead to cervical cancer development.
Collapse
Affiliation(s)
- Ninghong Jiang
- Medical center for diagnosis and treatment of cervical disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011 China
| | - Feng Xie
- Medical center for diagnosis and treatment of cervical disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011 China
| | - Limei Chen
- Medical center for diagnosis and treatment of cervical disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011 China
| | - Fang Chen
- Medical center for diagnosis and treatment of cervical disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011 China
| | - Long Sui
- Medical center for diagnosis and treatment of cervical disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011 China
| |
Collapse
|
44
|
Gowing SD, Cool-Lartigue JJ, Spicer JD, Seely AJE, Ferri LE. Toll-like receptors: exploring their potential connection with post-operative infectious complications and cancer recurrence. Clin Exp Metastasis 2020; 37:225-239. [PMID: 31975313 DOI: 10.1007/s10585-020-10018-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
Cancer is the leading cause of death in North America. Despite modern advances in cancer therapy, many patients will ultimately develop cancer metastasis resulting in mortality. Surgery to resect early stage solid malignancies remains the cornerstone of cancer treatment. However, surgery places patients at risk of developing post-operative infectious complications that are linked to earlier cancer metastatic recurrence and cancer mortality. Toll-like receptors (TLRs) are evolutionarily-conserved sentinel receptors of the innate immune system that are activated by microbial products present during infection, leading to activation of innate immunity. Numerous types of solid cancer cells also express TLRs, with their activation augmenting their ability to metastasize. Similarly, healthy host-tissue TLRs activated during infection induce a prometastatic environment in the host. Cancer cells additionally secrete TLR activating ligands that activate both cancer TLRs and host TLRs to promote metastasis. Consequently, TLRs are an attractive therapeutic candidate to target infection-induced cancer metastasis and progression.
Collapse
Affiliation(s)
- S D Gowing
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada. .,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.
| | - J J Cool-Lartigue
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada.,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - J D Spicer
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada.,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - A J E Seely
- Department of Thoracic Surgery, Ottawa General Hospital, University of Ottawa, Ottawa, Canada
| | - L E Ferri
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada.,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| |
Collapse
|
45
|
Tavakolian S, Goudarzi H, Eslami G, Faghihloo E. Transcriptional Regulation of Epithelial to Mesenchymal Transition Related Genes by Lipopolysaccharide in Human Cervical Cancer Cell Line HeLa. Asian Pac J Cancer Prev 2019; 20:2455-2461. [PMID: 31450920 PMCID: PMC6852821 DOI: 10.31557/apjcp.2019.20.8.2455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Indexed: 12/29/2022] Open
Abstract
Objective: Cancer is one of the common diseases in the world, and cervical cancer is the fourth one. In this type of cancer, many risk factors, especially infectious diseases, such as human papilloma virus (HPV) and gram-negative bacteria can have important effects on the expression of epithelial to mesenchymal transition related genes like Snail,E-cadherin, and ZEB-1, responsible for connecting cell tissues. In this study, we have investigated the effect of Escherichia coli O111:B4 Lipopolysaccharide (LPS) on HPV positive cell line (HeLa), the expression level of the (Snail, E-cadherin, and ZEB-1), HPV oncogenes (E6, E7) and also microRNA-9, 192. Materials and Methods: HeLa cell line was treated with LPS to analyze Snail, E-cadherin, ZEB-1, E6, E7 and also microRNA-9, 192 expression by quantitative real-time PCR in 24, 48 and 72 hours. Results: Quantitative real-time PCR revealed a significant reduction in E-cadherin mRNA level at 10ug/L of LPS in three time-points and after 24 hours at 5ug/L of LPS; however, ZEB-1 at 10ug/L of LPS and Snail at 5, 10ug/L of LPS are up-regulated. E7 also illustrated a slight increase, but we did not find any relationship between E7 and LPS treatment. Additionally, there are upward trends in microRNA-9, 192 levels. Conclusion: The result of this study, LPS is able to reduce E-cadherin expression, caused by increase in repressor E-cadherin protein expression and some microRNAs, probably. Since bacterial infection can be in cervical site, it is likely to be effective in reducing the E-cadherin expression in the EMT and enhance cancer process, therefore; removing these infections by using the appropriate antibiotics may result in slowing down this process, which requires more research.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Circulating Microbiota-Based Metagenomic Signature for Detection of Hepatocellular Carcinoma. Sci Rep 2019; 9:7536. [PMID: 31101866 PMCID: PMC6525191 DOI: 10.1038/s41598-019-44012-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Circulating microbial dysbiosis is associated with chronic liver disease including nonalcoholic steatohepatitis and alcoholic liver disease. In this study, we evaluated whether disease-specific alterations of circulating microbiome are present in patients with cirrhosis and hepatocellular carcinoma (HCC), and their potential as diagnostic biomarkers for HCC. We performed cross-sectional metagenomic analyses of serum samples from 79 patients with HCC, 83 with cirrhosis, and 201 matching healthy controls, and validated the results in the same number of subjects. Serum bacterial DNA was analyzed using high-throughput pyrosequencing after amplification of the V3-V4 hypervariable regions of 16S rDNA. Blood microbial diversity was significantly reduced in HCC, compared with cirrhosis and control. There were significant differences in the relative abundances of several bacterial taxa that correlate with the presence of HCC, thus defining a specific blood microbiome-derived metagenomic signature of HCC. We identified 5 microbial gene markers-based model which distinguished HCC from controls with an area under the receiver-operating curve (AUC) of 0.879 and a balanced accuracy of 81.6%. In the validation, this model accurately distinguished HCC with an AUC of 0.875 and an accuracy of 79.8%. In conclusion, circulating microbiome-based signatures may be potential biomarkers for the detection HCC.
Collapse
|
47
|
Fung SW, Cheung PFY, Yip CW, Ng LWC, Cheung TT, Chong CCN, Lee C, Lai PBS, Chan AWH, Tsao GSW, Wong CH, Chan SL, Lo KW, Cheung ST. The ATP-binding cassette transporter ABCF1 is a hepatic oncofetal protein that promotes chemoresistance, EMT and cancer stemness in hepatocellular carcinoma. Cancer Lett 2019; 457:98-109. [PMID: 31100412 DOI: 10.1016/j.canlet.2019.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate multidrug resistance and cancer stem cell properties in various model systems. Yet, their biological significance in cancers, especially in hepatocellular carcinoma (HCC), remains unclear. In this study, we investigated the function of ABCF1 in HCC and explored its potential as a therapeutic target. ABCF1 was highly expressed in fetal mouse livers but not in normal adult livers. ABCF1 expression was upregulated in HCCs. These results demonstrate that ABCF1 functions as a hepatic oncofetal protein. We further demonstrated elevated ABCF1 expression in HCC cells upon acquiring chemoresistance. Suppression of ABCF1 by siRNA sensitized both parental cells and chemoresistant cells to chemotherapeutic agents. Reversely, ABCF1 overexpression promoted chemoresistance and drug efflux. In addition, overexpression of ABCF1 enhanced migration, spheroid and colony formation and epithelial-mesenchymal transition (EMT) induction. RNA sequencing analysis revealed EMT inducers HIF1α/IL8 and Sox4 as potential mediators for the oncogenic effect of ABCF1 in HCC progression. Together, this study illustrates that ABCF1 is a novel potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Sze Wai Fung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong; School of Biomedical Sciences, The University of Hong Kong, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong
| | - Phyllis Fung-Yi Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong; Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chi Wai Yip
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong; RIKEN Center for Life Science Technologies (Division of Genomic Technologies), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Linda Wing-Chi Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Tan To Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong
| | | | - Carol Lee
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Paul Bo-San Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | | | - Chi-Hang Wong
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong
| | - Stephen Lam Chan
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Siu Tim Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
48
|
Liu WT, Jing YY, Gao L, Li R, Yang X, Pan XR, Yang Y, Meng Y, Hou XJ, Zhao QD, Han ZP, Wei LX. Lipopolysaccharide induces the differentiation of hepatic progenitor cells into myofibroblasts constitutes the hepatocarcinogenesis-associated microenvironment. Cell Death Differ 2019; 27:85-101. [PMID: 31065105 DOI: 10.1038/s41418-019-0340-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/05/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) generally occurs in the presence of chronic liver injury, often as a sequela of liver fibrosis. Hepatic progenitor cells (HPCs) are known to be capable of forming both hepatocytes and cholangiocytes in chronic liver injury, which are also considered a source of myofibroblasts and tumor-initiating cells, under carcinogenic circumstances. However, the underlying mechanisms that activate HPCs to give rise to HCC are still unclear. In current study, the correlation between HPCs activation and liver fibrosis and carcinogenesis was investigated in rats and human specimens. We analyzed the role of HPCs in tumorigenesis, by transplanting exogenous HPCs in a diethylnitrosamine-induced rat HCC model. Our data indicated that HPC activation correlated with hepatic fibrosis and hepatocarcinogenesis. We further found that exogenous HPC infusion promoted liver fibrosis and hepatocarcinogenesis, while lipopolysaccharides (LPS) played an important role in this process. However, results of our study indicated that LPS did not induce HPCs to form tumor in nude mice directly. Rather, LPS induced myofibroblast-like morphology in HPCs, which enhanced the tumorigenic potential of HPCs. Further experiments showed that LPS/Toll-like receptor 4 (TLR4) signaling mediated the differentiation of HPCs into myofibroblasts and enhanced the production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which led to the aberrant expression of Ras and p53 signaling pathways in HPCs, and finally, promoted the proliferation and malignant transformation of HPCs, by long non-coding RNA regulation. Besides, examination of HCC clinical samples demonstrated that IL-6 and TNF-α production correlated with HPC activation, hepatic fibrosis, and HCC recurrence. Our study indicates that both myofibroblasts and tumor cells are derived from HPCs. HPC-derived myofibroblasts create tumor microenvironment and contribute to the proliferation and malignant transformation of HPCs. Furthermore, LPS present in the chronic liver inflammation microenvironment might play an important role in hepatocarcinogenesis, by regulating the plastic potential of HPCs.
Collapse
Affiliation(s)
- Wen-Ting Liu
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ying-Ying Jing
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiao-Rong Pan
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yang Yang
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiao-Juan Hou
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qiu-Dong Zhao
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhi-Peng Han
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| | - Li-Xin Wei
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| |
Collapse
|
49
|
Glycochenodeoxycholate promotes hepatocellular carcinoma invasion and migration by AMPK/mTOR dependent autophagy activation. Cancer Lett 2019; 454:215-223. [PMID: 30980867 DOI: 10.1016/j.canlet.2019.04.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 01/07/2023]
Abstract
Metastasis and recurrence severely impact the treatment effect of hepatocellular carcinoma (HCC). HCC complicated with cholestasis is more prone to recurrence and metastasis. Previous studies have implicated pathogenesis of HCC by bile acid; however, the underlying mechanism is unknown yet. Glycochenodeoxycholate (GCDC) is one of most important component of bile acid (BA). In the present study, the role of GCDC in HCC cells invasion was detected by in vitro and in vivo assays. GCDC was found to significantly enhance the invasive potential of HCC cells; Further studies showed that GCDC could induce autophagy activation and higher invasive capability in HCC cells. Interestingly, inhibition of autophagy by chloroquine (CQ) reversed this phenomenon. Subsequently, the correlation between TBA expression level and clinicopathological characteristics was analyzed in HCC patients. Clinically, high TBA level in HCC tissue was found to be associated with more invasive and poor survival in HCC patients. Mechanistic study showed that bile acid induced autophagy by targeting the AMPK/mTOR pathway in HCC cells. Therefore, our results suggest that bile acid may promote HCC invasion via activation of autophagy and the level of bile acid may serve as a potential useful indicator for prognosis of HCC patients.
Collapse
|
50
|
Zhou S, Du R, Wang Z, Shen W, Gao R, Jiang S, Fang Y, Shi Y, Chang A, Liu L, Liu C, Li N, Xiang R. TLR4 increases the stemness and is highly expressed in relapsed human hepatocellular carcinoma. Cancer Med 2019; 8:2325-2337. [PMID: 30957973 PMCID: PMC6536932 DOI: 10.1002/cam4.2070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Toll‐like receptor 4 (TLR4) plays an essential role in cancer progress. Here, we find that the expression of TLR4 in relapsed human hepatocellular carcinoma (HCC) clinical samples is higher than that in the non‐relapsed ones, which leads us to explore the role of TLR4 in cancer stemness. We reported that TLR4‐AKT signaling pathway was activated by lipopolysaccharides (LPS) in HCC cell lines to enhance the cancer stemness capacity, which was reflected by the increased percentage of CD133+CD49f+ population and side population, enhanced sphere formation, and the upregulation of stemness marker gene‐SOX2. Downregulation of SOX2 attenuated the enhanced HCC stemness induced by LPS, indicating SOX2 as a downstream mediator of LPS‐TLR4 signaling. The role of LPS‐TLR4 signaling in inducing HCC stemness was further confirmed by tumor xenograft experiment in vivo. Taken together, our findings provide a novel therapeutic target to prevent the recurrence of HCC.
Collapse
Affiliation(s)
- Shuang Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Renle Du
- School of Medicine, Nankai University, Tianjin, China
| | - Zhenglu Wang
- Biobank of Tianjin First Center Hospital, Tianjin, China
| | - Wenzhi Shen
- School of Medicine, Nankai University, Tianjin, China
| | - Ruifang Gao
- School of Medicine, Nankai University, Tianjin, China
| | - Shan Jiang
- School of Medicine, Nankai University, Tianjin, China
| | - Yan Fang
- School of Medicine, Nankai University, Tianjin, China
| | - Yuzhi Shi
- School of Medicine, Nankai University, Tianjin, China
| | - Antao Chang
- School of Medicine, Nankai University, Tianjin, China
| | - Lei Liu
- Biobank of Tianjin First Center Hospital, Tianjin, China
| | - Chenghu Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Na Li
- School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China.,The 2011 Project Collaborative Innovation Center for Biological Therapy, Nankai University, Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China.,The 2011 Project Collaborative Innovation Center for Biological Therapy, Nankai University, Tianjin, China
| |
Collapse
|