1
|
Xu Y, He C, Xi Y, Zhang Y, Bai Y. Gut microbiota and immunosenescence in cancer. Semin Cancer Biol 2024; 104-105:32-45. [PMID: 39127266 DOI: 10.1016/j.semcancer.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Cancer is generally defined as a disease of aging. With aging, the composition, diversity and functional characteristics of the gut microbiota occur changes, with a decline of beneficial commensal microbes triggered by intrinsic and extrinsic factors (e.g., diet, drugs and chronic health conditions). Nowadays, dysbiosis of the gut microbiota is recognized as a hallmark of cancer. At the same time, aging is accompanied by changes in innate and adaptive immunity, known as immunosenescence, as well as chronic low-grade inflammation, known as inflammaging. The elevated cancer incidence and mortality in the elderly are linked with aging-associated alterations in the gut microbiota that elicit systemic metabolic alterations, leading to immune dysregulation with potentially tumorigenic effects. The gut microbiota and immunosenescence might both affect the response to treatment in cancer patients. In-depth understanding of age-associated alterations in the gut microbiota and immunity will shed light on the risk of cancer development and progression in the elderly. Here, we describe the aging-associated changes of the gut microbiota in cancer, and review the evolving understanding of the gut microbiota-targeted intervention strategies. Furthermore, we summarize the knowledge on the cellular and molecular mechanisms of immunosenescence and its impact on cancer. Finally, we discuss the latest knowledge about the relationships between gut microbiota and immunosenescence, with implications for cancer therapy. Intervention strategies targeting the gut microbiota may attenuate inflammaging and rejuvenate immune function to provide antitumor benefits in elderly patients.
Collapse
Affiliation(s)
- Yaozheng Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Ying Xi
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| |
Collapse
|
2
|
Keizer HG, Brands R, Oosting RS, Seinen W. A comprehensive model for the biochemistry of ageing, senescence and longevity. Biogerontology 2024; 25:615-626. [PMID: 38441836 DOI: 10.1007/s10522-024-10097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 07/02/2024]
Abstract
Various models for ageing, each focussing on different biochemical and/or cellular pathways have been proposed. This has resulted in a complex and non-coherent portrayal of ageing. Here, we describe a concise and comprehensive model for the biochemistry of ageing consisting of three interacting signalling hubs. These are the nuclear factor kappa B complex (NFκB), controlling the innate immune system, the mammalian target for rapamycin complex, controlling cell growth, and the integrated stress responses, controlling homeostasis. This model provides a framework for most other, more detailed, biochemical pathways involved in ageing, and explains why ageing involves chronic inflammation, cellular senescence, and vulnerability to environmental stress, while starting with the spontaneous formation of advanced glycation end products. The totality of data underlying this model suggest that the gradual inhibition of the AMPK-ISR probably determines the maximal lifespan. Based on this model, anti-ageing drugs in general, are expected to show hormetic dose response curves. This complicates the process of dose-optimization. Due to its specific mechanism of action, the anti-aging drug alkaline phosphatase is an exception to this rule, because it probably exhibits saturation kinetics.
Collapse
Affiliation(s)
| | - R Brands
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
| | - Ronald Sake Oosting
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
| | - Willem Seinen
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
3
|
Schaefer JK, Engert V, Valk SL, Singer T, Puhlmann LM. Mapping pathways to neuronal atrophy in healthy, mid-aged adults: From chronic stress to systemic inflammation to neurodegeneration? Brain Behav Immun Health 2024; 38:100781. [PMID: 38725445 PMCID: PMC11081785 DOI: 10.1016/j.bbih.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Growing evidence implicates systemic inflammation in the loss of structural brain integrity in natural ageing and disorder development. Chronic stress and glucocorticoid exposure can potentiate inflammatory processes and may also be linked to neuronal atrophy, particularly in the hippocampus and the human neocortex. To improve understanding of emerging maladaptive interactions between stress and inflammation, this study examined evidence for glucocorticoid- and inflammation-mediated neurodegeneration in healthy mid-aged adults. N = 169 healthy adults (mean age = 39.4, 64.5% female) were sampled from the general population in the context of the ReSource Project. Stress, inflammation and neuronal atrophy were quantified using physiological indices of chronic stress (hair cortisol (HCC) and cortisone (HEC) concentration), systemic inflammation (interleukin-6 (IL-6), high-sensitive C-reactive protein (hs-CRP)), the systemic inflammation index (SII), hippocampal volume (HCV) and cortical thickness (CT) in regions of interest. Structural equation models were used to examine evidence for pathways from stress and inflammation to neuronal atrophy. Model fit indices indicated good representation of stress, inflammation, and neurological data through the constructed models (CT model: robust RMSEA = 0.041, robust χ2 = 910.90; HCV model: robust RMSEA <0.001, robust χ2 = 40.95). Among inflammatory indices, only the SII was positively associated with hair cortisol as one indicator of chronic stress (β = 0.18, p < 0.05). Direct and indirect pathways from chronic stress and systemic inflammation to cortical thickness or hippocampal volume were non-significant. In exploratory analysis, the SII was inversely related to mean cortical thickness. Our results emphasize the importance of considering the multidimensionality of systemic inflammation and chronic stress, with various indicators that may represent different aspects of the systemic reaction. We conclude that inflammation and glucocorticoid-mediated neurodegeneration indicated by IL-6 and hs-CRP and HCC and HEC may only emerge during advanced ageing and disorder processes, still the SII could be a promising candidate for detecting associations between inflammation and neurodegeneration in younger and healthy samples. Future work should examine these pathways in prospective longitudinal designs, for which the present investigation serves as a baseline.
Collapse
Affiliation(s)
- Julia K. Schaefer
- Cognitive Neuropsychology, Department of Psychology, Ludwig-Maximilians-Universität München, Germany
| | - Veronika Engert
- Research Group “Social Stress and Family Health”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Clinic, Friedrich-Schiller University, Jena, Germany
| | - Sofie L. Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tania Singer
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| | - Lara M.C. Puhlmann
- Research Group “Social Stress and Family Health”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
4
|
Napolitano M, Potestio L, Nocerino M, Patruno C. Considerations for managing elderly patients with atopic dermatitis. Expert Rev Clin Immunol 2024; 20:501-511. [PMID: 38193289 DOI: 10.1080/1744666x.2024.2301967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Atopic dermatitis (AD) diagnosis in elderly is challenging, due to its clinical polymorphism and the lack of diagnostic biomarkers. Moreover, the chronicity of the disease and the complex pathogenetic mechanism, make elderly AD management challenging. AREAS COVERED A narrative review of the current literature was performed using the PubMed, Medline, Embase, and Cochrane Skin databases, by researching the following terms: 'atopic dermatitis,' 'clinical phenotypes,' 'eczema,' 'elderly patients,' 'elderly type atopic dermatitis,' 'eczema clinical presentation.' The aim was to report the current knowledge on pathogenesis, clinical presentation, and treatment options of elderly AD. EXPERT OPINION Elderly type AD has recently been identified as a separate entity, with an increasing prevalence. With aging, both immunosenescence and barrier alterations can cause or modify AD presentation. Moreover, a chronic proinflammatory state (so-called 'inflammaging') is often present in elderly subjects. Older patients with AD may present with peculiar immunophenotypic profile, making AD diagnosis challenging. Similarly, the chronicity of the disease and the complex pathogenetic mechanism, make AD management a challenge. Indeed, systemic therapies for AD are often contraindicated or not tolerated and the management of elderly type AD is often burdened with numerous difficulties, leading to undertreated disease. Even if dupilumab and tralokinumab represent a valuable therapeutic weapon, more data on safety of JAK inhibitors are required.
Collapse
Affiliation(s)
- Maddalena Napolitano
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Luca Potestio
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Mariateresa Nocerino
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Cataldo Patruno
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Zheng H, Hua D, Jin X, Zheng X. The association of depressive sarcopenia and cognitive decline among the elderly: Evidence from the Survey of Health and Retirement in Europe. J Affect Disord 2024; 347:492-499. [PMID: 38065476 DOI: 10.1016/j.jad.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/09/2023] [Accepted: 12/02/2023] [Indexed: 01/08/2024]
Abstract
OBJECTIVES The present study aimed to explore the relationship between baseline different sarcopenia statuses combined with different depression statuses and long-term cognitive functions. METHODS Finally, a total of 4289 individuals aged 50 years or older from wave 2 to wave 8 of the Survey of Health, Ageing and Retirement in Europe were included in this study. The generalized estimated equation model was used to explore the baseline effect of depression with sarcopenia on long-term cognitive function. Stratified Analyses according to gender, education, region, and family economic level were performed. Sensitivity analyses of wave 5 to wave 8 were conducted to ensure the robustness of the results. RESULTS Groups of depression with non-sarcopenia (β = -0.40, 95%CI: -0.59 ~ -0.20, P < 0.001), non-depression with sarcopenia (β = -1.11, 95%CI: -1.91 ~ -0.31, P = 0.007), and depression with sarcopenia (β = -1.19, 95%CI: -1.89 ~ -0.50, P = 0.001) were inversely associated with cognition scores compared with the group of non-depression with non-sarcopenia. Stratified Analysis displayed differences in negative association of depression status with sarcopenia status and cognition. Sensitivity analyses yielded similar results. Other than numeracy, depression with sarcopenia (β = -1.81, 95%CI: -2.45 ~ -1.18, P < 0.001; β = -10.68, 95%CI: -1.05 ~ -0.31, P < 0.001; β = -0.51, 95%CI: -0.65 ~ -0.37, P < 0.001; β = -0.41, 95%CI: -0.55 ~ -0.27, P < 0.001) were inversely associated with cognitive function, orientation, words list learning test and fluency. CONCLUSIONS Preliminary depressive sarcopenia appears to increase the risk of cognitive decline. There was a downward trend in total cognitive function. The effect of depression combined with sarcopenia on cognitive function may exist in differences in gender, education, region, and family economic level.
Collapse
Affiliation(s)
- Han Zheng
- Department of Public Health, Wuxi Maternal and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Da Hua
- Ministry of Public Health, Wuxi Maternal and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Xin Jin
- Reproductive Medicine Centre, Wuxi Maternal and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China.
| | - Xiaowei Zheng
- Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Shan Z, Cheng N, Zhu J, Chen F, Ji J, Meilibana. Analysis of intestinal flora in elderly Uygur patients with sarcopenia. Immun Inflamm Dis 2024; 12:e1097. [PMID: 38270306 PMCID: PMC10802132 DOI: 10.1002/iid3.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 01/26/2024] Open
Abstract
OBJECTIVE This study was designed to analyze the structural characteristics of the intestinal flora of elderly Uygur patients with sarcopenia, thereby providing new ideas for clinical treatment. METHODS Firstly, fecal samples were collected from 40 elderly Uygur patients with sarcopenia (Sarcopenia group) and 40 healthy people (Control group). Next, significant differences in the intestinal flora between the two groups were analyzed based on 16S rDNA high-throughput sequencing. The linear discriminant analysis effect size (LEfSe) was used to estimate the magnitude of the effect of each component (species) abundance on the differential effect. Additionally, an analysis was also performed on the relationship between the intestinal flora and the cytokines in the peripheral blood of patients with sarcopenia. RESULTS The results of β diversity showed that there were differences in the structure of the intestinal flora between the two groups. Besides, the phylum level of intestinal flora between the two groups was not significantly different. However, the difference was significant in the intestinal flora at the order, family, and genus levels between the two groups. Among them, Lachnoclostridium, Photobacterium, Anaerobic Bacillus, Hydrogenophilus, and Eubacterium were enriched in the Sarcopenia group; Prevotella 9, Firmicutes FCS020 group, Streptobacillus, Aggregatibacter, Corynebacterium, Clostridium Difficile, and Haloanaerobium were enriched in the Control group. The LEfSe outcomes further showed that Lachnoclostridium was highly enriched in the Sarcopenia group; Prevotella 9 and Firmicutes FCS020 group were significantly enriched in the Control group. Furthermore, the relative abundance of Lachnoclostridium and Streptobacillus were significantly different in patients with high and low IL-6 levels. CONCLUSION In conclusion, Lachnoclostridium is significantly enriched in the intestines of elderly Uygur patients with sarcopenia; the increase in Lachnoclostridium abundance and the decrease in Streptobacillus abundance are associated with high levels of IL-6. Therefore, abnormal intestinal flora is related to inflammatory reflexes in patients with sarcopenia.
Collapse
Affiliation(s)
- Zimei Shan
- People's Hospital of Xinjiang Uygur Autonomous RegionUrumqiChina
| | - Na Cheng
- People's Hospital of Xinjiang Uygur Autonomous RegionUrumqiChina
| | - Jia Zhu
- People's Hospital of Xinjiang Uygur Autonomous RegionUrumqiChina
| | - Fei Chen
- People's Hospital of Xinjiang Uygur Autonomous RegionUrumqiChina
| | - Jiani Ji
- People's Hospital of Xinjiang Uygur Autonomous RegionUrumqiChina
| | - Meilibana
- People's Hospital of Xinjiang Uygur Autonomous RegionUrumqiChina
| |
Collapse
|
7
|
Eren N, Gerike S, Üsekes B, Peters O, Cosma NC, Hellmann-Regen J. Effects of autologous serum on TREM2 and APOE in a personalized monocyte-derived macrophage assay of late-onset Alzheimer's patients. Immun Ageing 2023; 20:52. [PMID: 37833781 PMCID: PMC10576307 DOI: 10.1186/s12979-023-00376-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Age-associated deterioration of the immune system contributes to a chronic low-grade inflammatory state known as "inflammaging" and is implicated in the pathogenesis of late-onset Alzheimer's disease (LOAD). Whether changes in the tissue environment caused by circulatory factors associated with aging may alter the innate immune response is unknown. Monocyte-derived macrophages (Mo-MФs) infiltrating the brain alongside microglia are postulated to play a modulatory role in LOAD and both express triggering receptor expressed on myeloid cells 2 (TREM2). Apolipoprotein E (APOE) acts as a ligand for TREM2, and their role in amyloid beta (Aβ) clearance highlights their importance in LOAD. However, the influence of the patient's own milieu (autologous serum) on the synthesis of TREM2 and APOE in infiltrating macrophages remains unknown. OBJECTIVES To functionally assess patient-specific TREM2 and APOE synthesis, we designed a personalized assay based on Mo-MФs using monocytes from LOAD patients and matched controls (CO). We assessed the influence of each participant's own milieu, by examining the effect of short- (1 day) and long- (10 days) term differentiation of the cells in the presence of the donor´s autologous serum (AS) into M1-, M2- or M0-macrophages. Additionally, sex differences and Aβ-uptake ability in short- and long-term differentiated Mo-MФs were assessed. RESULTS We showed a time-dependent increase in TREM2 and APOE protein levels in LOAD- and CO-derived cells. While AS did not differentially modulate TREM2 compared to standard fetal calf serum (FCS), AS decreased APOE levels in M2 macrophages but increased levels in M1 macrophages. Interestingly, higher levels of TREM2 and lower levels of APOE were detected in female- than in male- LOAD patients. Finally, we report decreased Aβ-uptake in long-term differentiated CO- and LOAD-derived cells, particularly in APOEε4(+) carriers. CONCLUSIONS We demonstrate for the first time the suitability of a personalized Mo-MФ cell culture-based assay for studying functional TREM2 and APOE synthesis in a patient's own aged milieu. Our strategy may thus provide a useful tool for future research on diagnostic and therapeutic aspects of personalized medicine.
Collapse
Affiliation(s)
- Neriman Eren
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Susanna Gerike
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Berk Üsekes
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Center for Mental Health (DZPG) Partner Site Berlin, Berlin, Germany
| | - Nicoleta-Carmen Cosma
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Julian Hellmann-Regen
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| |
Collapse
|
8
|
Gong CX, Ma C, Irge DD, Li SM, Chen SM, Zhou SX, Zhao XX, Li HY, Li JY, Yang YM, Xiang L, Zhang Q. Gastrodia elata and parishin ameliorate aging induced 'leaky gut' in mice: Correlation with gut microbiota. Biomed J 2023; 46:100547. [PMID: 35811058 PMCID: PMC10345228 DOI: 10.1016/j.bj.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/31/2021] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The aging-induced decrease in intestinal barrier function contributes to many age-related diseases. Studies on preventive measures for "leaky gut" may help improve the quality of life of geriatric patients. The potent anti-aging effect of Gastrodia elata and parishin, which is one of its active ingredients, has been reported previously. However, their effects on the gut remain elusive, and the effect of parishin on mammals has not been studied. METHODS We used quantitative RT-PCR, western blotting, immunohistochemical analysis, and 16S rRNA sequencing to investigate the effect of G. elata and parishin on the intestinal barrier function of D-Gal-induced aging mice. RESULTS G. elata and parishin prevented the decrease in tight junction protein (TJP) expression and morphological changes, modulated the composition of fecal microbiota to a healthier state, and reversed the translocation of microbial toxins and systemic inflammation. The correlation analyses showed that TJP expression and systemic inflammation were significantly positively or negatively correlated with the composition of fecal microbiota after G. elata and parishin administration. Additionally, TJP expression was also correlated with systemic inflammation. Moreover, G. elata and parishin administration reversed the decreased or increased expression of aging-related biomarkers, such as FOXO3a, SIRT1, CASPASE3 and P21, in the gut. CONCLUSIONS These results suggested that G. elata and parishin could prevent gut aging and ameliorate the "leaky gut" of aged mice and that the underlying mechanism is related to the mutual correlations among barrier function, fecal microbiota composition, and inflammation.
Collapse
Affiliation(s)
- Cai-Xia Gong
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng Ma
- Protein Facility, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dejene Disasa Irge
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shu-Min Li
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Si-Min Chen
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shi-Xian Zhou
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Xiu Zhao
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Han-Yu Li
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-You Li
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yun-Mei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Mitochondrial homeostasis: a potential target for delaying renal aging. Front Pharmacol 2023; 14:1191517. [PMID: 37397494 PMCID: PMC10308014 DOI: 10.3389/fphar.2023.1191517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Mitochondria, which are the energy factories of the cell, participate in many life activities, and the kidney is a high metabolic organ that contains abundant mitochondria. Renal aging is a degenerative process associated with the accumulation of harmful processes. Increasing attention has been given to the role of abnormal mitochondrial homeostasis in renal aging. However, the role of mitochondrial homeostasis in renal aging has not been reviewed in detail. Here, we summarize the current biochemical markers associated with aging and review the changes in renal structure and function during aging. Moreover, we also review in detail the role of mitochondrial homeostasis abnormalities, including mitochondrial function, mitophagy and mitochondria-mediated oxidative stress and inflammation, in renal aging. Finally, we describe some of the current antiaging compounds that target mitochondria and note that maintaining mitochondrial homeostasis is a potential strategy against renal aging.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
10
|
Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 2023; 8:200. [PMID: 37179335 PMCID: PMC10182360 DOI: 10.1038/s41392-023-01451-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Infection susceptibility, poor vaccination efficacy, age-related disease onset, and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging (known as immunosenescence). During aging, organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers, termed inflammaging. This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases. Thymic involution, naïve/memory cell ratio imbalance, dysregulated metabolism, and epigenetic alterations are striking features of immunosenescence. Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells, and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging. Although the underlying molecular mechanisms remain to be addressed, it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence. Potential counteractive measures will be discussed, including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence. In recent years, immunosenescence has attracted increasing attention for its role in tumor development. As a result of the limited participation of elderly patients, the impact of immunosenescence on cancer immunotherapy is unclear. Despite some surprising results from clinical trials and drugs, it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Qimeng Liang
- Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 4500052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
12
|
Li T, Yan X, Du X, Huang F, Wang N, Ni N, Ren J, Zhao Y, Jia Z. Extrapulmonary tuberculosis in China: a national survey. Int J Infect Dis 2023; 128:69-77. [PMID: 36509333 DOI: 10.1016/j.ijid.2022.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Extrapulmonary tuberculosis (EPTB) is not a notifiable infectious disease in China but is a heavy burden on public health. However, the epidemic situation of EPTB nationwide is unclear. This study aimed to investigate the magnitude and main subtypes of EPTB in China. METHODS We conducted a national cross-sectional study with multistage, stratified cluster random sampling during 2020-2021. We calculated proportions of EPTB in all patients with TB by organs. Logistic regression models were used to estimate odds ratios by characteristics. RESULTS A total of 6843 patients with TB were included. Of them, 24.6% were patients with EPTB, and the proportion of EPTB solo was 21.3%. Higher EPTB burden was observed in children, female patients, clinically diagnosed patients, provincial-level and prefectural-level health facilities, and Central and West China. EPTB occurred most frequently in respiratory (35.5%), musculoskeletal (15.8%), and peripheral lymphatic (15.8%) systems with top three subtypes, including tuberculous pleurisy (35.0%), spinal TB (9.8%) and cervical tuberculous lymphadenopathy (7.9%). With the increase of age, proportion of peripheral lymphatic TB decreased, and proportion rank of genitourinary TB rose. CONCLUSION It is essential to strengthen the diagnosis and treatment capacity for EPTB in primary medical facilities. EPTB should be added to the National Tuberculosis Program as a notifiable disease.
Collapse
Affiliation(s)
- Tao Li
- Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Peking University, Beijing, China
| | - Xiangyu Yan
- School of Public Health, Peking University, Beijing, China
| | - Xin Du
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fei Huang
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ni Wang
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ni Ni
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingjuan Ren
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanlin Zhao
- Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Zhongwei Jia
- School of Public Health, Peking University, Beijing, China; Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China; Center for Drug Abuse Control and Prevention, National Institute of Health Data Science, Peking University, Beijing, China.
| |
Collapse
|
13
|
Tetlow AM, Jackman BM, Alhadidy MM, Perumal V, Morgan DG, Gordon MN. Influence of Host Age on Intracranial AAV9 TauP301L Induced Tauopathy. J Alzheimers Dis 2023; 93:365-378. [PMID: 36970910 PMCID: PMC10540220 DOI: 10.3233/jad-221276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Advanced age is the greatest risk factor for the development of Alzheimer's disease (AD). This implies that some aspect of the aged milieu is possibly accelerating the development of AD related pathologies. OBJECTIVE We hypothesized that intracranially injected with AAV9 tauP301L may cause a greater degree of pathology in old versus young mice. METHODS Animals were injected with viral vectors overexpressing the mutant tauP301L or control protein (green fluorescent protein, GFP) into the brains of mature, middle-aged, and old C57BL/6Nia mice. The tauopathy phenotype was monitored four months after injection using behavioral, histological, and neurochemical measures. RESULTS Phosphorylated-tau immunostaining (AT8) or Gallyas staining of aggregated tau increased with age, but other measures of tau accumulation were not significantly affected. Overall, AAV-tau injected mice had impaired radial arm water maze performance, increased microglial activation, and showed evidence of hippocampal atrophy. Aging impaired open field and rotarod performance in both AAV-tau and control mice. The efficiency of viral transduction and gene expression were the same at all animal ages. CONCLUSION We conclude that tauP301L over expression results in a tauopathy phenotype with memory impairment and accumulation of aggregated tau. However, the effects of aging on this phenotype are modest and not detected by some markers of tau accumulation, similar to prior work on this topic. Thus, although age does influence the development of tauopathy, it is likely that other factors, such as ability to compensate for tau pathology, are more responsible for the increased risk of AD with advanced age.
Collapse
Affiliation(s)
- Amber M. Tetlow
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
- School of Aging Studies, University of South Florida, Tampa, FL, USA
- Neuroscience Institute, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Brianna M. Jackman
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Mohammed M. Alhadidy
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Varshini Perumal
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - David G. Morgan
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Marcia N. Gordon
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
14
|
Kim D, Kiprov DD, Luellen C, Lieb M, Liu C, Watanabe E, Mei X, Cassaleto K, Kramer J, Conboy MJ, Conboy IM. Old plasma dilution reduces human biological age: a clinical study. GeroScience 2022; 44:2701-2720. [PMID: 35999337 PMCID: PMC9398900 DOI: 10.1007/s11357-022-00645-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 01/07/2023] Open
Abstract
This work extrapolates to humans the previous animal studies on blood heterochronicity and establishes a novel direct measurement of biological age. Our results support the hypothesis that, similar to mice, human aging is driven by age-imposed systemic molecular excess, the attenuation of which reverses biological age, defined in our work as a deregulation (noise) of 10 novel protein biomarkers. The results on biological age are strongly supported by the data, which demonstrates that rounds of therapeutic plasma exchange (TPE) promote a global shift to a younger systemic proteome, including youthfully restored pro-regenerative, anticancer, and apoptotic regulators and a youthful profile of myeloid/lymphoid markers in circulating cells, which have reduced cellular senescence and lower DNA damage. Mechanistically, the circulatory regulators of the JAK-STAT, MAPK, TGF-beta, NF-κB, and Toll-like receptor signaling pathways become more youthfully balanced through normalization of TLR4, which we define as a nodal point of this molecular rejuvenation. The significance of our findings is confirmed through big-data gene expression studies.
Collapse
Affiliation(s)
- Daehwan Kim
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | | | - Connor Luellen
- Biophysics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Michael Lieb
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Chao Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Etsuko Watanabe
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Xiaoyue Mei
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | | | - Joel Kramer
- Brain Aging Center, UCSF, San Francisco, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
15
|
Wang Y, Lai Y, Fan X, Zhao Y. Macrophage migration inhibitory factor is vital for inflammatory properties and survival of peripheral blood leukocytes via enhancing mitochondrial function in Ctenopharyngodon idellus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:518-526. [PMID: 36272522 DOI: 10.1016/j.fsi.2022.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic protein implicated in a broad spectrum of inflammatory and proliferative disorders. The gene sequence of grass carp (Ctenopharyngodon idella) was identified and the expression level of it was regulated by cadmium exposure in our previous study. To further clarify the immune-regulatory activity of grass carp MIF, MIF was over-expressed and interfered in grass carp peripheral blood leukocytes via transfection of plasmids pcDNA3.1-MIF-EGFP and pLKO.1-shRNA-EGFP-puro, respectively. Subsequently, survival, phagocytic capacity, mitochondrial function and cytokine production of the transfected leukocytes were assayed. The results shown that grass carp MIF was necessary for leukocyte survival, because it enhanced leukocyte viability and inhibited cell apoptosis, while MIF interference disrupted the cell viability and induced leukocyte apoptosis. The effect might benefit from improved mitochondrial function as evidenced by increased ATP production, which was due to maintained mitochondrial trans-membrane potential. In addition, MIF is essential for neutral red uptake into leukocyte, and it provoked chemokine monocyte chemotactic protein-1 (MCP-1), pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα), interleukin 1β (IL1β), interleukin 6 (IL6), interleukin 8 (IL8), and suppressed anti-inflammatory cytokine interleukin 10 (IL10) production. These results indicated that grass carp MIF played a vital role in regulating inflammatory properties and survival of peripheral blood leukocytes.
Collapse
Affiliation(s)
- Yilin Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, PR China
| | - Yaling Lai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, PR China
| | - Xianyang Fan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, PR China
| | - Yanying Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, PR China.
| |
Collapse
|
16
|
Dong C, Miao Y, Zhao R, Yang M, Guo A, Xue Z, Li T, Zhang Q, Bao Y, Shen C, Sun C, Yang Y, Gu X, Jin Y, Li R, Xu M, Guo J, Zong Z, Zhou W, He M, Wang D, Su J, Zhang X, Zeng X, Gao J, Gu Z. Single-Cell Transcriptomics Reveals Longevity Immune Remodeling Features Shared by Centenarians and Their Offspring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204849. [PMID: 36354175 PMCID: PMC9799020 DOI: 10.1002/advs.202204849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Indexed: 05/02/2023]
Abstract
Centenarians, who show mild infections and low incidence of tumors, are the optimal model to investigate healthy aging. However, longevity related immune characteristics has not been fully revealed largely due to lack of appropriate controls. In this study, single-cell transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) derived from seven centenarians (CEN), six centenarians' offspring (CO), and nine offspring spouses or neighbors (Control, age-matched to CO) are performed to investigate the shared immune features between CEN and CO. The results indicate that among all 12 T cell clusters, the cytotoxic-phenotype-clusters (CPC) and the naïve-phenotype-clusters (NPC) significantly change between CEN and ontrol. Compared to Control, both CEN and CO are characterized by depleted NPC and increased CPC, which is dominated by CD8+ T cells. Furthermore, CPC from CEN and CO share enhanced signaling pathways and transcriptional factors associated with immune response, and possesse similar T-cell-receptor features, such as high clonal expansion. Interestingly, rather than a significant increase in GZMK+ CD8 cells during aging, centenarians show accumulation of GZMB+ and CMC1+ CD8 T cells. Collectively, this study unveils an immune remodeling pattern reflected by both quantitative increase and functional reinforcement of cytotoxic T cells which are essential for healthy aging.
Collapse
Affiliation(s)
- Chen Dong
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Ya‐ru Miao
- Center for Artificial Intelligence BiologyHubei Bioinformatics & Molecular Imaging Key LaboratoryKey Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Rui Zhao
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Mei Yang
- Center for Artificial Intelligence BiologyHubei Bioinformatics & Molecular Imaging Key LaboratoryKey Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - An‐yuan Guo
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
- Center for Artificial Intelligence BiologyHubei Bioinformatics & Molecular Imaging Key LaboratoryKey Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Zhong‐hui Xue
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Teng Li
- Key Laboratory of Molecular Virology & ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200025China
| | - Qiong Zhang
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Yanfeng Bao
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Chen Shen
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Chi Sun
- Department of GeriatricsAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Ying Yang
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Xi‐xi Gu
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Yi Jin
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Rong Li
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Min Xu
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Jia‐xin Guo
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Zhi‐ying Zong
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Wei Zhou
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Mei He
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Dan‐ni Wang
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Jian‐you Su
- Laboratory CenterAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Xiao‐ming Zhang
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
- Key Laboratory of Molecular Virology & ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200025China
| | - Xu‐hui Zeng
- Institute of Reproductive MedicineMedical SchoolNantong UniversityNantong226001China
| | - Jian‐lin Gao
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| | - Zhi‐feng Gu
- Research Center of Clinical MedicineResearch Center of Gerontology and LongevityKey Laboratory of ImmunologyResearch Center of NursingDepartment of RheumatologyAffiliated Hospital of Nantong UniversityNantong UniversityNantong226001China
| |
Collapse
|
17
|
Preconditioned Mesenchymal Stromal Cell-Derived Extracellular Vesicles (EVs) Counteract Inflammaging. Cells 2022; 11:cells11223695. [PMID: 36429124 PMCID: PMC9688039 DOI: 10.3390/cells11223695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Inflammaging is one of the evolutionarily conserved mechanisms underlying aging and is defined as the long-term consequence of the chronic stimulation of the innate immune system. As macrophages are intimately involved in initiating and regulating the inflammatory process, their dysregulation plays major roles in inflammaging. The paracrine factors, and in particular extracellular vesicles (EVs), released by mesenchymal stromal cells (MSCs) retain immunoregulatory effects on innate and adaptive immune responses. In this paper, we demonstrate that EVs derived from MSCs preconditioned with hypoxia inflammatory cytokines exerted an anti-inflammatory role in the context of inflammaging. In this study, macrophages isolated from aged mice presented elevated pro-inflammatory factor levels already in basal conditions compared to the young counterpart, and this pre-activation status increased when cells were challenged with IFN-γ. EVs were able to attenuate the age-associated inflammation, inducing a decrease in the expression of TNF-α, iNOS, and the NADase CD38. Moreover, we demonstrate that EVs counteracted the mitochondrial dysfunction that affected the macrophages, reducing lipid peroxidation and hindering the age-associated impairment of mitochondrial complex I activity, oxygen consumption, and ATP synthesis. These results indicate that preconditioned MSC-derived EVs might be exploited as new anti-aging therapies in a variety of age-related diseases.
Collapse
|
18
|
Jehan C, Sabarly C, Rigaud T, Moret Y. Senescence of the immune defences and reproductive trade-offs in females of the mealworm beetle, Tenebrio molitor. Sci Rep 2022; 12:19747. [PMID: 36396809 PMCID: PMC9671880 DOI: 10.1038/s41598-022-24334-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
In the theory of ageing, it has been assumed that ageing is associated with a decline in somatic defences, including the immune system, as a consequence of a trade-off with reproduction. While overall immunity suffers from age-related deterioration (immune senescence), the different components of the immune response appear to age differently. It is also likely that investment among the many arms of the immune system and reproduction with age is finely adjusted to the organisms' reproductive strategy. We investigated this possibility in females of Tenebrio molitor, a species of long-lived insect with reproductive strategies similar to those of long-lived mammals. We specifically tested the effects of immunological challenges imposed early or late in adult life on immune pathway activation as well as fertility early and late in life. We found complex patterns of changes in immune defences with age and age-specific immune challenges with contrasted relationships with female reproduction. While cellular and enzymatic defences showed signs of ageing, they did not trade-off with reproduction. By contrast, the induced antibacterial immune response was found to be unaffected by age and to be highly connected to female fecundity. These findings suggest that these immunological pathways have different functions with regard to female ageing in this insect species.
Collapse
Affiliation(s)
- Charly Jehan
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Camille Sabarly
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Thierry Rigaud
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Yannick Moret
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France.
| |
Collapse
|
19
|
Caruso C, Accardi G, Aiello A, Calabrò A, Ligotti ME, Candore G. Lessons from Sicilian Centenarians for Anti-Ageing Medicine. The Oxi-Inflammatory Status. Transl Med UniSa 2022; 24:16-23. [PMID: 36447947 PMCID: PMC9673988 DOI: 10.37825/2239-9754.1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023] Open
Abstract
Population ageing is a great achievement of humanity, but it also represents a challenge that the Western world is currently facing, as ageing is associated with increased susceptibility to age-related inflammatory diseases. Therefore, it is necessary to fully understand the mechanisms of healthy ageing to prevent the harmful aspects of ageing. The study of long living individuals (LLIs) is a great model for trying to achieve this goal. Accordingly, the oxy-inflammatory status of Sicilian LLIs was reviewed in the present paper. Based on the reported data, anti-inflammatory and anti-oxidative stress strategies have been discussed, useful for delaying or avoiding the onset of age-related diseases, thus favouring a healthy ageing process.
Collapse
|
20
|
Lu X, Yang YM, Lu YQ. Immunosenescence: A Critical Factor Associated With Organ Injury After Sepsis. Front Immunol 2022; 13:917293. [PMID: 35924237 PMCID: PMC9339684 DOI: 10.3389/fimmu.2022.917293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Progressive immune dysfunction associated with aging is known as immunosenescence. The age-related deterioration of immune function is accompanied by chronic inflammation and microenvironment changes. Immunosenescence can affect both innate and acquired immunity. Sepsis is a systemic inflammatory response that affects parenchymal organs, such as the respiratory system, cardiovascular system, liver, urinary system, and central nervous system, according to the sequential organ failure assessment (SOFA). The initial immune response is characterized by an excess release of inflammatory factors, followed by persistent immune paralysis. Moreover, immunosenescence was found to complement the severity of the immune disorder following sepsis. Furthermore, the immune characteristics associated with sepsis include lymphocytopenia, thymus degeneration, and immunosuppressive cell proliferation, which are very similar to the characteristics of immunosenescence. Therefore, an in-depth understanding of immunosenescence after sepsis and its subsequent effects on the organs may contribute to the development of promising therapeutic strategies. This paper focuses on the characteristics of immunosenescence after sepsis and rigorously analyzes the possible underlying mechanism of action. Based on several recent studies, we summarized the relationship between immunosenescence and sepsis-related organs. We believe that the association between immunosenescence and parenchymal organs might be able to explain the delayed consequences associated with sepsis.
Collapse
Affiliation(s)
- Xuan Lu
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yun-Mei Yang
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yuan-Qiang Lu
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Yuan-Qiang Lu,
| |
Collapse
|
21
|
Assessment of humoral immunity and nutritionally essential trace elements in steady-state sickle cell disease Nigerian children before and after Prevenar 13 pneumococcal vaccination. BLOOD SCIENCE 2022; 4:170-173. [PMID: 36518602 PMCID: PMC9742099 DOI: 10.1097/bs9.0000000000000115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Children with sickle cell disease (SCD) are particularly prone to pneumococcal infection and administration of Prevenar 13 pneumococcal vaccine in Nigerian children with SCD is yet to be wide spread. This call for the need to study humoral immune responses stimulated by Prevenar 13 pneumococcal vaccine in SCD children to confirm the benefit or otherwise for the use of Prevenar 13 pneumococcal vaccine. Method The levels of humoral (innate and adaptive) immune factors and associated nutritionally essential trace elements were determined following Prevenar 13 pneumococcal vaccination of 23 Nigerian children with SCD. Serum innate humoral immune factors [Complement factors (C1q and C4), transferrin, ferritin, and C-reactive protein (CRP)] and adaptive humoral immune factors [IgG, IgA, IgM, and IgE] were determined using ELISA. Nutritionally essential trace elements such as iron (Fe), copper (Cu), and zinc (Zn) were measured also using an atomic absorption spectrophotometer. Results The serum levels of certain innate humoral immune factors (ferritin, CRP, and C4), only one adaptive humoral immune factors (IgE), and essential trace elements (Fe, Zn, and Cu) were significantly elevated in children with SCD post Prevenar 13 pneumococcal vaccination when compared to prevaccination levels. Conclusion Vaccination of children with SCD with Prevenar 13 pneumococcal vaccine was associated with increased levels of more innate humoral immune factors than adaptive factors. This study thus supports the administration of Prevenar 13 pneumococcal vaccination to children with SCD.
Collapse
|
22
|
Wu D, Zhang Y, Li J, Fan Z, Xu Q, Wang L. Assessment of chicken intestinal hydrolysates as a new protein source to replace fishmeal on the growth performance, antioxidant capacity and intestinal health of common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2022; 125:161-170. [PMID: 35561948 DOI: 10.1016/j.fsi.2022.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Promoting circular economy by transforming food residues into alternative high-value protein sources for aquaculture feed is a new way to develop alternative raw materials for fishmeal. This study systematically evaluated the effects of chicken intestinal hydrolysates (CIH) on the intestinal immune health of common carp through growth performance, antioxidant capacity, and intestinal immunity analysis in order to replace fishmeal. Five iso-nitrogenous and iso-lipidic experimental feeds were formulated to replace 0% (CIH-0), 25% (CIH-25), 50% (CIH-50), 75% (CIH-75) and 100% (CIH-100) of the fishmeal with CIH. Each experimental diet was fed to triplicate groups of 30 carp for 8 weeks. The results revealed that no significant differences in the final body weight, weight gain rate, feed coefficient radio, feed intake and protein efficiency ratio were found among the CIH-0, CIH-25, and CIH-50 groups, while the final body weight and weight gain rate in the CIH-75 and CIH-100 groups were significantly decreased and the feed coefficient radio was significantly increased. The aspartate aminotransferase of all CIH groups were significantly decrease, and the total protein, albumin did not differ among the CIH-0, CIH-25, CIH-50, and CIH-75 groups. The trypsin content was significantly increased in the CIH-75 and CIH-100 groups. No significant differences in the antioxidant index (catalase, glutathione peroxidase and malonaldehyde) were found among all CIH groups compared with the CIH-0 group. The expression levels of pro-inflammatory cytokines IL-1β and TNF-α were significantly down-regulated in the CIH-50 group and anti-inflammatory cytokines IL-10 and TGF-β2 were significantly up-regulated in the CIH-50 and CIH-75 groups. No significant differences in the expression levels of claudin-1, claudin-7 and claudin-11 were observed between the CIH-0 and CIH-50 groups, while the expression levels of ZO-1, occludin and MLCK were significantly up-regulated in the CIH-50 group compared with the CIH-0 group. The expression level of claudin-1 was down-regulated in the CIH-75 and CIH-100 groups. Hence, the study demonstrated the potential of CIH as a novel protein source for replacing fishmeal, and replacing 50% of fishmeal with CIH did not significantly influence the growth performance, immune responses, and intestinal barrier of common carp (Cyprinus carpio).
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Qiyou Xu
- School of Life Science, Huzhou University, Huzhou, 313000, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| |
Collapse
|
23
|
Rabhi N, Desevin K, Belkina AC, Tilston-Lunel A, Varelas X, Layne MD, Farmer SR. Obesity-induced senescent macrophages activate a fibrotic transcriptional program in adipocyte progenitors. Life Sci Alliance 2022; 5:5/5/e202101286. [PMID: 35181634 PMCID: PMC8860101 DOI: 10.26508/lsa.202101286] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
This study demonstrates that senescent CD9+ macrophages in obese visceral fat of mice secrete osteopontin that promotes ECM deposition by adipogenic progenitor cells expressing Pdgfra and Pdgfrb. Adipose tissue fibrosis is regulated by the chronic and progressive metabolic imbalance caused by differences in caloric intake and energy expenditure. By exploring the cellular heterogeneity within fibrotic adipose tissue, we demonstrate that early adipocyte progenitor cells expressing both platelet-derived growth factor receptor (PDGFR) α and β are the major contributors to extracellular matrix deposition. We show that the fibrotic program is promoted by senescent macrophages. These macrophages were enriched in the fibrotic stroma and exhibit a distinct expression profile. Furthermore, we demonstrate that these cells display a blunted phagocytotic capacity and acquire a senescence-associated secretory phenotype. Finally, we determined that osteopontin, which was expressed by senescent macrophages in the fibrotic environment promoted progenitor cell proliferation, fibrotic gene expression, and inhibited adipogenesis. Our work reveals that obesity promotes macrophage senescence and provides a conceptual framework for the discovery of rational therapeutic targets for metabolic and inflammatory disease associated with obesity.
Collapse
Affiliation(s)
- Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Kathleen Desevin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Anna C Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
24
|
Tang P, Liang E, Zhang X, Feng Y, Song H, Xu J, Wu M, Pang Y. Prevalence and Risk Factors of Subclinical Tuberculosis in a Low-Incidence Setting in China. Front Microbiol 2022; 12:731532. [PMID: 35087480 PMCID: PMC8787132 DOI: 10.3389/fmicb.2021.731532] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives: Subclinical tuberculosis (TB) represents a substantial proportion of individuals with TB disease, although limited evidence is available to understand the epidemiological characteristics of these cases. We aimed to explore the prevalence of subclinical patients with TB and identify the underlying association between the subclinical TB cases in the study setting and the Beijing genotype. Methods: A retrospective study was conducted among patients with incident TB at the Fifth People’s Hospital of Suzhou between January and December 2018. A total of 380 patients with TB were included in our analysis. Results: Of the 380 patients, 81.8% were active TB cases, whereas the other 18.2% were subclinical TB cases. Compared with patients aged 65 years and older, the risk of having subclinical TB is higher among younger patients. The use of smear, culture, and Xpert identified 3, 16, and 13 subclinical TB cases, respectively. When using a combination of positive culture and Xpert results, the sensitivity improved to 33.3%. In addition, the neutrophil-to-lymphocyte ratio was significantly elevated in the active TB group compared with that in the subclinical TB group. We also observed that the proportion of the Beijing genotype in the subclinical TB group was significantly lower than that in the active TB group. Conclusion: To conclude, our data demonstrate that approximately one-fifth of patients with TB were subclinical in Suzhou. Mycobacterium tuberculosis could be detected by the existing microbiologic diagnostics in one-third of patients with subclinical TB. The patients with subclinical TB are more prone to having low neutrophil-to-lymphocyte ratio values than those with active TB. Additionally, non-Beijing genotype strains are associated with subclinical TB.
Collapse
Affiliation(s)
- Peijun Tang
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Ermin Liang
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yanjun Feng
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Huafeng Song
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Junchi Xu
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Meiying Wu
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Wu Z, Ma H, Liu Z, Zheng L, Yu Z, Cao S, Fang W, Wu L, Li W, Liu G, Huang J, Tang Y. wSDTNBI: a novel network-based inference method for virtual screening. Chem Sci 2022; 13:1060-1079. [PMID: 35211272 PMCID: PMC8790893 DOI: 10.1039/d1sc05613a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, the rapid development of network-based methods for the prediction of drug-target interactions (DTIs) provides an opportunity for the emergence of a new type of virtual screening (VS), namely, network-based VS. Herein, we reported a novel network-based inference method named wSDTNBI. Compared with previous network-based methods that use unweighted DTI networks, wSDTNBI uses weighted DTI networks whose edge weights are correlated with binding affinities. A two-pronged approach based on weighted DTI and drug-substructure association networks was employed to calculate prediction scores. To show the practical value of wSDTNBI, we performed network-based VS on retinoid-related orphan receptor γt (RORγt), and purchased 72 compounds for experimental validation. Seven of the purchased compounds were confirmed to be novel RORγt inverse agonists by in vitro experiments, including ursonic acid and oleanonic acid with IC50 values of 10 nM and 0.28 μM, respectively. Moreover, the direct contact between ursonic acid and RORγt was confirmed using the X-ray crystal structure, and in vivo experiments demonstrated that ursonic acid and oleanonic acid have therapeutic effects on multiple sclerosis. These results indicate that wSDTNBI might be a powerful tool for network-based VS in drug discovery.
Collapse
Affiliation(s)
- Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Hui Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Zehui Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Lulu Zheng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Shuying Cao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Wenqing Fang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Lili Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jin Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
26
|
Chen L, Ding B, Wu L, Qiu J, Li Q, Ye Z, Yang J. Transcriptome Analysis Reveals the Mechanism of Natural Ovarian Ageing. Front Endocrinol (Lausanne) 2022; 13:918212. [PMID: 35909541 PMCID: PMC9329525 DOI: 10.3389/fendo.2022.918212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The decline in the quantity and quality of oocytes due to ovarian ageing in women is now a significant threat to reproductive health today as the concept of delayed fertility becomes widespread. However, the molecular mechanisms of natural ovarian ageing have not been fully elucidated. METHOD Here, we used transcriptomic data from 180 normal ovarian tissues from GTEx V8 to analyze the expression profile of ovarian tissues from women with age segments of 20-29 (22 individuals), 30-39 (14 individuals), 40-49 (37 individuals), 50-59 (61 individuals), 60-69 (42 individuals), and 70-79 (4 individuals), respectively. XCELL was used to assess the infiltration score of 64 cell types of the ovary. WGCNA was used to characterize the co-expression network during the natural aging of the ovary. ClusterprofileR was used for functional enrichment analysis of co-expression modules. MsViper was used for master regulator analysis. RESULTS The infiltration score of endothelial cells and activated antigen-presenting cells during natural ovarian ageing increased significantly at ages 30-39, 40-49, and then decreased, whereas CD4+ Tcm increased with age. WGCNA identified six co-expression modules from ovarian tissue transcriptomic data species. The red module was significantly and positively correlated with senescence and CD4+ Tcm, and the turquoise module was significantly and positively correlated with Endothelial Cells. We further explored ovarian tissue for women aged 20-29 and 30-39 years. The GSEA results showed that the Chemokine signaling pathway was significantly activated in the 30-39-year-old group, while Oocyte meiosis was significantly inhibited. Finally, the results of msviper found that transcription factors such as KDM1A, PRDM5, ZNF726, PPARG, FOXJ2, and GLI2 were mainly activated in the 20-29 years group, while VAV1, RUNX3, ZC3H12D, MYCL, and IRF5 were mainly activated in the 30-39 years group and that these transcription factor activities were diagnostic of natural ovarian ageing (AUC: 0.65-0.71). CONCLUSION Natural ageing of the ovary is significantly correlated with immune cell infiltration and activation of inflammation-related signaling pathways, with inflammation levels reaching a maximum during early ovarian ageing (30-39, 40-49) and then gradually decreasing after that. These studies provide a research basis for exploring the mechanisms of natural ovarian ageing.
Collapse
Affiliation(s)
- Lili Chen
- Anhui University of Traditional Chinese Medicine Affiliated Chuzhou Hospital of Integrated Chinese and Western Medicine, Chuzhou, China
| | - Bo Ding
- Southeast University Affiliated Zhongda Hospital, Nanjing, China
| | - Liju Wu
- Anhui University of Traditional Chinese Medicine Affiliated Chuzhou Hospital of Integrated Chinese and Western Medicine, Chuzhou, China
| | - Jialing Qiu
- Anhui University of Traditional Chinese Medicine Affiliated Chuzhou Hospital of Integrated Chinese and Western Medicine, Chuzhou, China
| | - Qiong Li
- Anhui University of Traditional Chinese Medicine Affiliated Chuzhou Hospital of Integrated Chinese and Western Medicine, Chuzhou, China
| | - Zheng Ye
- Southeast University Affiliated Zhongda Hospital, Nanjing, China
| | - Jinmei Yang
- Anhui University of Traditional Chinese Medicine Affiliated Chuzhou Hospital of Integrated Chinese and Western Medicine, Chuzhou, China
- *Correspondence: Jinmei Yang,
| |
Collapse
|
27
|
Wan Y, Li X, Slevin E, Harrison K, Li T, Zhang Y, Klaunig JE, Wu C, Shetty AK, Dong XC, Meng F. Endothelial dysfunction in pathological processes of chronic liver disease during aging. FASEB J 2021; 36:e22125. [PMID: 34958687 PMCID: PMC8782255 DOI: 10.1096/fj.202101426r] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Abstract
Aging is associated with gradual changes in liver structure and physiological/pathological functions in hepatic cells including hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells (HSCs), and liver sinusoidal endothelial cells (LSECs). LSECs are specialized hepatic endothelial cells that regulate liver homeostasis. These cells actively impact the hepatic microenvironment as they have fenestrations and a thin morphology to allow substance exchange between circulating blood and the liver tissue. As aging occurs, LSECs have a reduction in both the number and size of fenestrations, which is referred to as pseudocapillarization. This along with the aging of the liver leads to increased oxidative stress, decreased availability of nitric oxide, decreased hepatic blood flow, and increased inflammatory cytokines in LSECs. Vascular aging can also lead to hepatic hypoxia, HSC activation, and liver fibrosis. In this review, we described the basic structure of LSECs, and the effect of LSECs on hepatic inflammation and fibrosis during aging process. We briefly summarized the changes of hepatic microcirculation during liver inflammation, the effect of aging on the clearance function of LSECs, the interactions between LSECs and immunity, hepatocytes or other hepatic nonparenchymal cells, and the therapeutic intervention of liver diseases by targeting LSECs and vascular system. Since LSECs play an important role in the development of liver fibrosis and the changes of LSEC phenotype occur in the early stage of liver fibrosis, the study of LSECs in the fibrotic liver is valuable for the detection of early liver fibrosis and the early intervention of fibrotic response.
Collapse
Affiliation(s)
- Ying Wan
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China, China
| | - Xuedong Li
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China, China
| | - Elise Slevin
- Indiana Center for Liver Research, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kelly Harrison
- Department of Transplant Surgery, Baylor Scott & White Memorial Hospital, Temple, Texas, USA
| | - Tian Li
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China, China
| | - Yudian Zhang
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China, China
| | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M College of Medicine, College Station, Texas, USA
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fanyin Meng
- Indiana Center for Liver Research, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Kang W, Liu S, Du J, Tang P, Chen H, Liu J, Ma J, Li M, Qin J, Shu W, Zong P, Zhang Y, Dong Y, Yang Z, Mei Z, Deng Q, Wang P, Han W, Yan X, Chen L, Zhao X, Tan L, Li F, Zheng C, Liu H, Li X, A E, Du Y, Liu F, Cui W, Wang Q, Chen X, Han J, Xie Q, Feng Y, Liu W, Yang S, Zhang J, Zheng J, Chen D, Yao X, Ren T, Li Y, Li Y, Wu L, Song Q, Shen X, Zhang J, Liu Y, Guo S, Yan K, Yang M, Lei D, Zhang Y, Wu M, Lia N, Tang S. The epidemiology of concurrent extrapulmonary tuberculosis in inpatients with extrapulmonary tuberculosis lesions in China: a large-scale observational multi-center investigation. Int J Infect Dis 2021; 115:79-85. [PMID: 34781005 DOI: 10.1016/j.ijid.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022] Open
Abstract
AIMS A high proportion of all tuberculosis (TB) cases present with extrapulmonary tuberculosis (EPTB), including concurrent EPTB involving more than one extrapulmonary lesion site within the body. However, previous reports only characterised lesions of single-site EPTB cases. This study aimed to investigate epidemiological characteristics and association rules of concurrent EPTB cases in China. METHODS An observational multi-centre study was carried out in China from Jan 2011 to Dec 2017 that included a total of 208,214 patients with EPTB lesions. Multivariable logistic regression analysis was used to identify associations between gender and age with concurrent EPTB. Association rules were analysed for significance using the Apriori algorithm. RESULTS The most prevalent form of EPTB lesion was tuberculous pleurisy (49.8%), followed by bronchial tuberculosis (14.8%) and tuberculous meningitis (7.6%). The most predominant concurrent EPTB case type was tuberculous pleurisy concurrent with tuberculous peritonitis (1.80%). Altogether 22 association rules were identified that included 20 strong association rules, among which highest confidence rates were found for tuberculous myelitis concurrent with tuberculous meningitis and sacral TB concurrent with lumbar vertebral TB. Moreover, association rules of EPTB concurrent with other EPTB types were found to vary with gender and age. The confidence rate of tuberculous myelitis concurrent with tuberculous meningitis was higher in females (83.67%) than males and highest in patients of ages 25-34 years (87.50%). CONCLUSIONS Many types of concurrent EPTB were found. Thus, greater awareness of concurrent EPTB disease characteristics is needed to ensure timely clinical diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Wanli Kang
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | | | - Jian Du
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Peijun Tang
- The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu, China
| | - Hongyan Chen
- Shenyang Chest Hospital, Liaoning, Shenyang, China
| | - Jianxiong Liu
- Guang Zhou Chest Hospital, Guangzhou, Guangdong, China
| | - Jinshan Ma
- Chest Hospital of Xinjiang, Urumqi, Xinjiang, China
| | - Mingwu Li
- The Third People's Hospital of Kunming, Kunming, Yunnan, China
| | - Jingmin Qin
- Shandong Provincial Chest Hospital, Jinan, Shandong, China
| | - Wei Shu
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Peilan Zong
- Jiangxi Chest Hospital, Nanchang, Jiangxi, China
| | - Yi Zhang
- Chang Chun Infectious Diseases Hospital, Changchun, Jilin, China
| | - Yongkang Dong
- Taiyuan Fourth People's Hospital, Taiyuan, Shanxi, China
| | - Zhiyi Yang
- Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, China
| | | | - Qunyi Deng
- Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Pu Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenge Han
- Weifang NO.2 People's Hospital, Weifang, Shandong, China
| | - Xiaofeng Yan
- Chongqing Public Health Medical Center, Chongqing, China
| | - Ling Chen
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Xinguo Zhao
- The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Lei Tan
- TB Hospital of Siping City, Siping, Jilin, China
| | - Fujian Li
- Baoding Hospital for Infectious Disease, Baoding, Hebei, China
| | - Chao Zheng
- The First Affiliated of Xiamen University, Xiamen, Fujian, China
| | - Hongwei Liu
- Shenyang Chest Hospital, Liaoning, Shenyang, China
| | - Xinjie Li
- Guang Zhou Chest Hospital, Guangzhou, Guangdong, China
| | - Ertai A
- Chest Hospital of Xinjiang, Urumqi, Xinjiang, China
| | - Yingrong Du
- The Third People's Hospital of Kunming, Kunming, Yunnan, China
| | - Fenglin Liu
- Shandong Provincial Chest Hospital, Jinan, Shandong, China
| | - Wenyu Cui
- Chang Chun Infectious Diseases Hospital, Changchun, Jilin, China
| | - Quanhong Wang
- Taiyuan Fourth People's Hospital, Taiyuan, Shanxi, China
| | - Xiaohong Chen
- Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, China
| | | | - Qingyao Xie
- Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yanmei Feng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyu Liu
- Weifang NO.2 People's Hospital, Weifang, Shandong, China
| | - Song Yang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Jianyong Zhang
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Jian Zheng
- The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Dawei Chen
- Baoding Hospital for Infectious Disease, Baoding, Hebei, China
| | - Xiangyang Yao
- The First Affiliated of Xiamen University, Xiamen, Fujian, China
| | - Tong Ren
- Shenyang Chest Hospital, Liaoning, Shenyang, China
| | - Yan Li
- Guang Zhou Chest Hospital, Guangzhou, Guangdong, China
| | - Yuanyuan Li
- Chest Hospital of Xinjiang, Urumqi, Xinjiang, China
| | - Lei Wu
- The Third People's Hospital of Kunming, Kunming, Yunnan, China
| | - Qiang Song
- Shandong Provincial Chest Hospital, Jinan, Shandong, China
| | - Xinghua Shen
- The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu, China
| | - Jian Zhang
- Chang Chun Infectious Diseases Hospital, Changchun, Jilin, China
| | | | - Shuliang Guo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun Yan
- Weifang NO.2 People's Hospital, Weifang, Shandong, China
| | - Mei Yang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Dan Lei
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Yanli Zhang
- Baoding Hospital for Infectious Disease, Baoding, Hebei, China
| | - Meiying Wu
- The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu, China.
| | - Ng Lia
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Shenjie Tang
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| |
Collapse
|
29
|
Djafari F, Eslahi M, Zandi N, Pazoki B, Reza Amini M, Shab-Bidar S. The inverse association of body adiposity index and bone health in the older adults: A report from a developing country. Int J Clin Pract 2021; 75:e14718. [PMID: 34378289 DOI: 10.1111/ijcp.14718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/08/2021] [Indexed: 11/29/2022] Open
Abstract
The ageing process influences body composition and could be related to bone health. The current study was set out to evaluate the association between body adiposity index (BAI) and bone health in older adults. This is a cross-sectional study performed on 178 elderly persons (51 men and 127 women) with a mean age of 67.04 (range: 60-83) who was referred to the determined 25 health centres in Tehran. The anthropometric measurements were done. Further, serum 25-hydroxy vitamin D (25(OH)D), parathormone (PTH), high-sensitivity C-reactive protein (hs-CRP), osteocalcin and urine C-terminal telopeptide I (CTX-I) were collected. The mean of body mass index (P < .001), body weight (P = .002), body fat (P < .001), waist circumference (P < .001), hip circumference (P < .001), urine CTX-I concentration (P = .011), 25(OH)D (P = .030), was higher in the highest BAI category in comparison with the lowest one. BAI was negatively correlated with urine CTX-I concentration (r=-0.165, P = .028). Moreover, linear regression showed an inverse association between BAI with urine CTX-I (β = -0.165, P = .025) and 25(OH)D (β = -0.039, P = .029). Moreover, the percentage of body fat was positively associated with serum hs-CRP (β = 0.026, P = .002). Our study showed a significant inverse association between BAI with urinary CTX-I which shows the effect of obesity on bone health. This study suggests that more clinical and prospective studies for monitoring body fat may have some favourable impacts on bone health.
Collapse
Affiliation(s)
- Farhang Djafari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Masoumeh Eslahi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nadia Zandi
- Tehran University of Medical Science (TUMS), Tehran, Iran
| | | | - Mohammad Reza Amini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
30
|
Pu YC, Wang R, Liu HH, Lu SP, Tang FX, Hou YM. Immunosenescence along with direct physiological allocation trade-offs between life history and immunity in the red palm weevil Rhynchophorus ferrugineus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104143. [PMID: 34051204 DOI: 10.1016/j.dci.2021.104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Recent works have generally indicated that insects exhibit two immune response strategies: external and internal immune defense. However, the immune-related trade-offs and physiological regulatory mechanisms in red palm weevil, a major invasive pest, remain unclear. Based on postinfection survivorship experiments, we initially measured baseline constitutive external immunity (antibacterial activity of external secretions) and internal immunity (phenoloxidase and antibacterial activity of hemolymph) in uninfected individuals. Then, we challenged the individual immune system and examined subsequent investment in immune function. Our data showed that multiple factors (instar, age, sex, mating status, immune treatment) interacted to affect immune components and infection outcomes, but the magnitude and nature of the impact varied in each case. Although immune senescence is a common phenomenon in which immune function decreases with age, different components of the immune system changed differentially. Notably, mating activity may impose an immunity-related cost, with some evidence of sexual dimorphism and age-associated differences. Finally, parameters related to life-history traits usually decreased temporarily because of increased immunity, suggesting that the ultimate consequences of immune function fitness may be physiologically traded off with other fitness aspects, including growth, development, mating, reproduction, and longevity. These results reveal the complex factors that impact immunity as well as the physiological regulation of individual immunity, which may determine the evolution and outcome of immune senescence and trade-offs.
Collapse
Affiliation(s)
- Yu-Chen Pu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Rui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hui-Hui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Sheng-Ping Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fan-Xi Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
31
|
Santaolalla A, Sollie S, Rislan A, Josephs DH, Hammar N, Walldius G, Garmo H, Karagiannis SN, Van Hemelrijck M. Association between serum markers of the humoral immune system and inflammation in the Swedish AMORIS study. BMC Immunol 2021; 22:61. [PMID: 34488637 PMCID: PMC8420021 DOI: 10.1186/s12865-021-00448-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the onset of inflammatory cascades may profoundly influence the nature of antibody responses, the interplay between inflammatory and humoral (antibody) immune markers remains unclear. Thus, we explored the reciprocity between the humoral immune system and inflammation and assessed how external socio-demographic factors may influence these interactions. From the AMORIS cohort, 5513 individuals were identified with baseline measurements of serum humoral immune [immunoglobulin G, A & M (IgG, IgA, IgM)] and inflammation (C-reactive protein (CRP), albumin, haptoglobin, white blood cells (WBC), iron and total iron-binding capacity) markers measured on the same day. Correlation analysis, principal component analysis and hierarchical clustering were used to evaluate biomarkers correlation, variation and associations. Multivariate analysis of variance was used to assess associations between biomarkers and educational level, socio-economic status, sex and age. RESULTS Frequently used serum markers for inflammation, CRP, haptoglobin and white blood cells, correlated together. Hierarchical clustering and principal component analysis confirmed the interaction between these main biological responses, showing an acute response component (CRP, Haptoglobin, WBC, IgM) and adaptive response component (Albumin, Iron, TIBC, IgA, IgG). A socioeconomic gradient associated with worse health outcomes was observed, specifically low educational level, older age and male sex were associated with serum levels that indicated infection and inflammation. CONCLUSIONS These findings indicate that serum markers of the humoral immune system and inflammation closely interact in response to infection or inflammation. Clustering analysis presented two main immune response components: an acute and an adaptive response, comprising markers of both biological pathways. Future studies should shift from single internal marker assessment to multiple humoral and inflammation serum markers combined, when assessing risk of clinical outcomes such as cancer.
Collapse
Affiliation(s)
- Aida Santaolalla
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, 3rd Floor, Bermondsey Wing, London, SE1 9RT, UK. .,Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Sam Sollie
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, 3rd Floor, Bermondsey Wing, London, SE1 9RT, UK
| | - Ali Rislan
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, 3rd Floor, Bermondsey Wing, London, SE1 9RT, UK
| | - Debra H Josephs
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, 3rd Floor, Bermondsey Wing, London, SE1 9RT, UK.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, UK
| | - Niklas Hammar
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Goran Walldius
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hans Garmo
- Regional Cancer Center, Uppsala/Örebro, Uppsala University Hospital, Uppsala, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sophia N Karagiannis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Mieke Van Hemelrijck
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, 3rd Floor, Bermondsey Wing, London, SE1 9RT, UK.,Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Mok DZL, Chan CYY, Ooi EE, Chan KR. The effects of aging on host resistance and disease tolerance to SARS-CoV-2 infection. FEBS J 2021; 288:5055-5070. [PMID: 33124149 PMCID: PMC8518758 DOI: 10.1111/febs.15613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/08/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a large-scale pandemic that is afflicting millions of individuals in over 200 countries. The clinical spectrum caused by SARS-CoV-2 infections can range from asymptomatic infection to mild undifferentiated febrile illness to severe respiratory disease with multiple complications. Elderly patients (aged 60 and above) with comorbidities such as cardiovascular diseases and diabetes mellitus appear to be at highest risk of a severe disease outcome. To protect against pulmonary immunopathology caused by SARS-CoV-2 infection, the host primarily depends on two distinct defense strategies: resistance and disease tolerance. Resistance is the ability of the host to suppress and eliminate incoming viruses. By contrast, disease tolerance refers to host responses that promote host health regardless of their impact on viral replication. Disruption of either resistance or disease tolerance mechanisms or both could underpin predisposition to elevated risk of severe disease during viral infection. Aging can disrupt host resistance and disease tolerance by compromising immune functions, weakening of the unfolded protein response, progressive mitochondrial dysfunction, and altering metabolic processes. A comprehensive understanding of the molecular mechanisms underlying declining host defense in elderly individuals could thus pave the way to provide new opportunities and approaches for the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Darren Z. L. Mok
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| | | | - Eng Eong Ooi
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
- Viral Research & Experimental Medicine Center @ SingHealth/Duke‐NUS (ViREMiCS)SingaporeSingapore
- Singapore‐MIT Alliance in Research and TechnologyAntimicrobial Resistance Interdisciplinary Research GroupSingaporeSingapore
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
- Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Kuan Rong Chan
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
33
|
Hirschenberger M, Hunszinger V, Sparrer KMJ. Implications of Innate Immunity in Post-Acute Sequelae of Non-Persistent Viral Infections. Cells 2021; 10:2134. [PMID: 34440903 PMCID: PMC8391718 DOI: 10.3390/cells10082134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Non-persistent viruses classically cause transient, acute infections triggering immune responses aimed at the elimination of the pathogen. Successful viruses evolved strategies to manipulate and evade these anti-viral defenses. Symptoms during the acute phase are often linked to dysregulated immune responses that disappear once the patient recovers. In some patients, however, symptoms persist or new symptoms emerge beyond the acute phase. Conditions resulting from previous transient infection are termed post-acute sequelae (PAS) and were reported for a wide range of non-persistent viruses such as rota-, influenza- or polioviruses. Here we provide an overview of non-persistent viral pathogens reported to be associated with diverse PAS, among them chronic fatigue, auto-immune disorders, or neurological complications and highlight known mechanistic details. Recently, the emergence of post-acute sequelae of COVID-19 (PASC) or long COVID highlighted the impact of PAS. Notably, PAS of non-persistent infections often resemble symptoms of persistent viral infections, defined by chronic inflammation. Inflammation maintained after the acute phase may be a key driver of PAS of non-persistent viruses. Therefore, we explore current insights into aberrant activation of innate immune signaling pathways in the post-acute phase of non-persistent viruses. Finally, conclusions are drawn and future perspectives for treatment and prevention of PAS are discussed.
Collapse
|
34
|
Shintouo CM, Shey RA, Mets T, Vanhamme L, Souopgui J, Ghogomu SM, Njemini R. Onchocerciasis Fingerprints in the Geriatric Population: Does Host Immunity Play a Role? Trop Med Infect Dis 2021; 6:tropicalmed6030153. [PMID: 34449738 PMCID: PMC8396225 DOI: 10.3390/tropicalmed6030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
One of the most debilitating consequences of aging is the progressive decline in immune function, known as immunosenescence. This phenomenon is characterized by a shift in T-cell phenotypes, with a manifest decrease of naive T-cells-dealing with newly encountered antigens-and a concomitant accumulation of senescent and regulatory T-cells, leading to a greater risk of morbidity and mortality in older subjects. Additionally, with aging, several studies have unequivocally revealed an increase in the prevalence of onchocerciasis infection. Most lymphatic complications, skin and eye lesions due to onchocerciasis are more frequent among the elderly population. While the reasons for increased susceptibility to onchocerciasis with age are likely to be multi-factorial, age-associated immune dysfunction could play a key role in the onset and progression of the disease. On the other hand, there is a growing consensus that infection with onchocerciasis may evoke deleterious effects on the host's immunity and exacerbate immune dysfunction. Indeed, Onchocerca volvulus has been reported to counteract the immune responses of the host through molecular mimicry by impairing T-cell activation and interfering with the processing of antigens. Moreover, reports indicate impaired cellular and humoral immune responses even to non-parasite antigens in onchocerciasis patients. This diminished protective response may intensify the immunosenescence outcomes, with a consequent vulnerability of those affected to additional diseases. Taken together, this review is aimed at contributing to a better understanding of the immunological and potential pathological mechanisms of onchocerciasis in the older population.
Collapse
Affiliation(s)
- Cabirou Mounchili Shintouo
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium; (C.M.S.); (T.M.)
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (R.A.S.); (S.M.G.)
| | - Robert Adamu Shey
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (R.A.S.); (S.M.G.)
| | - Tony Mets
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium; (C.M.S.); (T.M.)
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies Campus, 126040 Gosselies, Belgium; (L.V.); (J.S.)
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies Campus, 126040 Gosselies, Belgium; (L.V.); (J.S.)
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (R.A.S.); (S.M.G.)
| | - Rose Njemini
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium; (C.M.S.); (T.M.)
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-24774241
| |
Collapse
|
35
|
Sun J, Zhang H, Song Z, Jin L, Yang J, Gu J, Ye D, Yu X, Yang J. The negative impact of increasing age and underlying cirrhosis on the sensitivity of adenosine deaminase in the diagnosis of tuberculous peritonitis: a cross-sectional study in eastern China. Int J Infect Dis 2021; 110:204-212. [PMID: 34332087 DOI: 10.1016/j.ijid.2021.07.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Our study aimed to evaluate the correlation between the sensitivity of adenosine deaminase (ADA) testing for the diagnosis of tuberculous peritonitis (TBP) and patient age or cirrhosis status. METHODS Clinical data for patients clinically diagnosed with TPB (n = 132) or not (n = 147) were assessed. ADA activity was compared among three age groups (< 45 yr, 45-60 yr, and ≥ 60 yr) and among cirrhosis-related subgroups. Cut-off values for the ADA test were analyzed among three patient populations (young non-cirrhotic, n = 97; older non-cirrhotic, n = 115; cirrhotic, n = 67), and validated in a cohort of 259 participants. RESULTS According to the multivariate regression analyses, age < 45 yr is highly predictive of TBP risk. The young non-cirrhotic TBP patients had higher ADA activity than the middle-aged or old controls (p < 0.01). Significantly decreased activity and efficacy of ADA were observed in the cirrhotic subgroup/population, regardless of age or cohort. For the above-mentioned two non-cirrhotic populations in the validation cohort, the ADA test showed excellent performance using thresholds of 30.5 IU/L and 20.5 IU/L, with respective sensitivities of 91.1% and 92.6%. CONCLUSIONS ADA activity is negatively associated with increasing age and underlying cirrhosis. Optimizing cut-off values for the ADA test can increase its sensitivity in non-cirrhotic individuals older than 45 years.
Collapse
Affiliation(s)
- Jian Sun
- Department of Infectious Diseases, the First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Huatang Zhang
- Department of Infectious Diseases, the First Hospital of Quanzhou, Fujian Medical University, Quanzhou 362000, China
| | - Zhiwei Song
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou 318000, China
| | - Lei Jin
- Department of Gastroenterology, the Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Jian Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Jun Gu
- Department of Gastroenterology, the Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Dan Ye
- Department of Infectious Diseases, Taizhou Municipal Hospital, Taizhou 318000, China
| | - Xueping Yu
- Department of Infectious Diseases, the First Hospital of Quanzhou, Fujian Medical University, Quanzhou 362000, China.
| | - Jianghua Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China.
| |
Collapse
|
36
|
Capai L, Masse S, Fourié T, Decarreaux D, Canarelli J, Simeoni MH, Amroun A, Mohammed-Ali S, Saba Villarroel PM, de Lamballerie X, Charrel R, Falchi A. Impact of the Second Epidemic Wave of SARS-CoV-2: Increased Exposure of Young People. Front Public Health 2021; 9:715192. [PMID: 34381756 PMCID: PMC8350127 DOI: 10.3389/fpubh.2021.715192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023] Open
Abstract
We aimed to use serological surveillance based on serial cross-sectional sampling of residual sera obtained from clinical laboratories to compare the differences in age and sex profiles of infected persons in the first and second waves of SARS-CoV-2 in Corsica, France. Residual sera were obtained, including samples from individuals of all ages collected for routine screening or clinical management by clinical laboratories. All the sera collected were tested for the presence of anti-SARS-CoV-2 IgG using a kit for semi-quantitative detection of IgG antibodies against the S1 domain of the viral spike protein (ELISA-S). Samples that were borderline and positive in ELISA-S were tested with an in-house virus neutralization test. During the second-wave period, we collected between 6 November, 2020 and 12 February, 2021, 4,505 sera from patients aged 0-101 years (60.4% women). The overall weighted seroprevalence of residual sera collected during the second-wave period [8.04% (7.87-9.61)] was significantly higher than the overall weighted seroprevalence estimated at the end of the first wave between 16 April and 15 June, 2020 [5.46% (4.37-7.00)] (p-value = 0.00025). Ninety-eight (30.1%) of the 326 samples tested in the VNT assay had a positive neutralization antibody titer. Estimated seroprevalence increased significantly for men [odds ratio (OR) OR = 1.80 (1.30-2.54); p-value = 0.00026] and for people under 30 years of age [OR = 2.17 (1.46-3.28); p-value = 0.000032]. This increase was observed in young adults aged 20-29 years among whom antibody frequencies were around four-fold higher than those observed at the end of the first wave. In conclusion, our seroprevalence estimates, including the proportion of the participants who had produced neutralizing antibodies, indicate that in February, 2021 the population of Corsica was still far from being protected against SARS-Cov-2 by "herd immunity."
Collapse
Affiliation(s)
- Lisandru Capai
- UR 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Shirley Masse
- UR 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Toscane Fourié
- Unité des Virus Émergents: Aix Marseille University, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Dorine Decarreaux
- UR 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | | | | | - Abdennour Amroun
- Unité des Virus Émergents: Aix Marseille University, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Souand Mohammed-Ali
- Unité des Virus Émergents: Aix Marseille University, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Paola Mariela Saba Villarroel
- Unité des Virus Émergents: Aix Marseille University, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents: Aix Marseille University, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Rémi Charrel
- Unité des Virus Émergents: Aix Marseille University, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Alessandra Falchi
- UR 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| |
Collapse
|
37
|
ALICI G, HARBALIOĞLU H, GENÇ Ö, ALLAHVERDİYEV S, YILDIRIM A, ER F, KURT İH, QUİSİ A. High-sensitivity cardiac troponin I and D-dimer are risk factors for in-hospital mortality of adult patients with COVID-19: A retrospective cohort study. EGE TIP DERGISI 2021. [DOI: 10.19161/etd.950576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
38
|
Wu D, Fan Z, Li J, Zhang Y, Wang C, Xu Q, Wang L. Evaluation of Alpha-Ketoglutarate Supplementation on the Improvement of Intestinal Antioxidant Capacity and Immune Response in Songpu Mirror Carp ( Cyprinus carpio) After Infection With Aeromonas hydrophila. Front Immunol 2021; 12:690234. [PMID: 34220849 PMCID: PMC8250152 DOI: 10.3389/fimmu.2021.690234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/04/2021] [Indexed: 11/24/2022] Open
Abstract
As an intermediate substance of the tricarboxylic acid cycle and a precursor substance of glutamic acid synthesis, the effect of alpha-ketoglutarate on growth and protein synthesis has been extensively studied. However, its prevention and treatment of pathogenic bacteria and its mechanism have not yet been noticed. To evaluate the effects of alpha-ketoglutarate on intestinal antioxidant capacity and immune response of Songpu mirror carp, a total of 360 fish with an average initial weight of 6.54 ± 0.08 g were fed diets containing alpha-ketoglutarate with 1% for 8 weeks. At the end of the feeding trial, the fish were challenged with Aeromonas hydrophila for 2 weeks. The results indicated that alpha-ketoglutarate supplementation significantly increased the survival rate of carp after infection with Aeromonas hydrophila (P < 0.05), and the contents of immune digestion enzymes including lysozyme, alkaline phosphatase and the concentration of complement C4 were markedly enhanced after alpha-ketoglutarate supplementation (P < 0.05). Also, appropriate alpha-ketoglutarate increased the activities of total antioxidant capacity and catalase and prevented the up-regulation in the mRNA expression levels of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-8 (P < 0.05). Furthermore, the mRNA expression levels of toll-like receptor 4 (TLR4), and nuclear factor kappa-B (NF-κB) were strikingly increased after infection with Aeromonas hydrophila (P < 0.05), while the TLR4 was strikingly decreased with alpha-ketoglutarate supplementation (P < 0.05). Moreover, the mRNA expression levels of tight junctions including claudin-1, claudin-3, claudin-7, claudin-11 and myosin light chain kinases (MLCK) were upregulated after alpha-ketoglutarate supplementation (P < 0.05). In summary, the appropriate alpha-ketoglutarate supplementation could increase survival rate, strengthen the intestinal enzyme immunosuppressive activities, antioxidant capacities and alleviate the intestinal inflammation, thereby promoting the intestinal immune responses and barrier functions of Songpu mirror carp via activating TLR4/MyD88/NF-κB and MLCK signaling pathways after infection with Aeromonas hydrophila.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Chang'an Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Qiyou Xu
- School of Life Science, Huzhou University, Huzhou, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
39
|
Zheng Y, Liu T, Li Q, Li J. Integrated analysis of long non-coding RNAs (lncRNAs) and mRNA expression profiles identifies lncRNA PRKG1-AS1 playing important roles in skeletal muscle aging. Aging (Albany NY) 2021; 13:15044-15060. [PMID: 34051073 PMCID: PMC8221296 DOI: 10.18632/aging.203067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/28/2021] [Indexed: 12/27/2022]
Abstract
This study aimed to identify long non-coding RNAs (lncRNAs) involving in the skeletal muscle aging process. Skeletal muscle samples from old and young subjects were collected for lncRNA-sequencing. Differentially expressed genes (DEGs) and DElncRNAs between young and old groups were identified and a co-expression network was built. Further, a dexamethasone-induced muscle atrophy cell model was established to characterize the function of a critical lncRNA. A total of 424 DEGs, including 271 upregulated genes and 153 downregulated genes as well as 152 DElncRNAs including 76 up-regulated and 76 down-regulated lncRNAs were obtained. Functional analysis demonstrated that the DEGs were significantly related to immune response. Coexpression network demonstrated lncRNA AC004797.1, PRKG1-AS1 and GRPC5D-AS1 were crucial lncRNAs. Their expressions were further validated by qRT-PCR in human skeletal muscle and the muscle atrophy cell model. Further in vitro analysis suggested that knock-down of PRKG1-AS1 could significantly increase cell viability and decrease cell apoptosis. qRT-PCR and western blot analyses demonstrated that knock-down of PRKG1-AS1 could increase the expression of MyoD, MyoG and Mef2c. This study demonstrated that lncRNAs of GPRC5D-AS1, AC004797.1 and PRKG1-AS1 might involve the aging-associated disease processes.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Ting Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Qun Li
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Jie Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| |
Collapse
|
40
|
Effect of deep neuromuscular blockade on serum cytokines and postoperative delirium in elderly patients undergoing total hip replacement: A prospective single-blind randomised controlled trial. Eur J Anaesthesiol 2021; 38:S58-S66. [PMID: 33399376 DOI: 10.1097/eja.0000000000001414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Deep neuromuscular blockade (NMB) may reduce muscle injury and related inflammation. The inflammation is one of the pathophysiological processes of peri-operative complications. OBJECTIVE To compare the degree of inflammation and related postoperative complications including postoperative delirium (POD) and peri-operative bleeding according to the degree of NMB during general anaesthesia for total hip replacement. DESIGN A prospective, single-blind, randomised controlled trial. SETTING Tertiary, university hospital, single centre. PATIENTS Eighty-two patients undergoing total hip replacement surgery were included in the final analysis. INTERVENTIONS Moderate (Mod) and deep (Deep) NMB groups. MAIN OUTCOME MEASURES The changes in inflammatory cytokines were measured. The incidence of POD was evaluated by using confusion assessment method (CAM). The differences of postoperative bleeding and peri-operative oxygenation in both groups were also measured. RESULTS The NMB reversal duration was significantly longer in the Mod NMB group than in the Deep NMB group. Changes in interleukin-6 were significantly smaller in the Deep NMB group than in the Mod NMB group (P < 0.001). The incidence of POD was not significantly different between groups (34 versus 17% in Mod and Deep NMB groups, respectively; P = 0.129). The amount of postoperative bleeding until postoperative day 2 was significantly greater in the Mod NMB group than in the Deep NMB group (P = 0.027). CONCLUSION Our findings suggest that inflammation related to peri-operative complications could be associated with the depth of NMB during total hip replacement. However, the incidence of POD might not be associated to the depth of NMB. TRIAL REGISTRATION National Library of Medicine (NLM) at the National Institutes of Health (NIH) of United States. (Identifier: NCT02507609). Online address: http://clinicaltrials.gov.
Collapse
|
41
|
Li Y, Zhang Y, Zeng X. γδ T Cells Participating in Nervous Systems: A Story of Jekyll and Hyde. Front Immunol 2021; 12:656097. [PMID: 33868300 PMCID: PMC8044362 DOI: 10.3389/fimmu.2021.656097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
γδ T cells are distributed in various lymphoid and nonlymphoid tissues, and act as early responders in many conditions. Previous studies have proven their significant roles in infection, cancer, autoimmune diseases and tissue maintenance. Recently, accumulating researches have highlighted the crosstalk between γδ T cells and nervous systems. In these reports, γδ T cells maintain some physiological functions of central nervous system by secreting interleukin (IL) 17, and neurons like nociceptors can in turn regulate the activity of γδ T cells. Moreover, γδ T cells are involved in neuroinflammation such as stroke and multiple sclerosis. This review illustrates the relationship between γδ T cells and nervous systems in physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Gasparoto TH, Dalboni TM, Amôr NG, Abe AE, Perri G, Lara VS, Vieira NA, Gasparoto CT, Campanelli AP. Fcγ receptors on aging neutrophils. J Appl Oral Sci 2021; 29:e20200770. [PMID: 33825754 PMCID: PMC8011831 DOI: 10.1590/1678-7757-2020-0770] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Neutrophils are key effector cells of the innate immune system. They recognize antigens through membrane receptors, which are expressed during their maturation and activation. Neutrophils express FcγRII (CD32), FcγRIII (CD16), and FcγRI (CD64) after being activated by different factors such as cytokines and bacterial products. These receptors are involved with phagocytosis of IgG-opsonized microbes and enhance defense mechanisms. Based on that, our study seeks to compare the expression of FcγRII, FcγRIII, FcγRI, and CD11b on neutrophils from elderly and young subjects and their expression after in vitro activation with cytokines and LPS. METHODOLOGY Neutrophils were isolated from human peripheral blood and from mice bone marrow by density gradient. After isolation, FCγRs expression was immediately analyzed by flow cytometry or after in vitro stimulation. RESULTS In freshly isolated cells, the percentage of FcγRIIIb+ and CD11b+ neutrophils were higher in samples from young individuals; FcγRIIIa expression was more prominent on aged neutrophils; FcγRIA expression was similar in all samples analyzed. Exposure to CXCL8 and LPS resulted in a higher percentage of FcγRIa+ neutrophils on elderly individuals' samples but lower when compared with neutrophils from young donors. We observed that LPS caused an increase in FcγRIIa expression on aging human neutrophils. In contrast, FcγRIIIb expression in response to CXCL8 and LPS stimulation was not altered in the four groups. CD11b expression was lower in neutrophils from elderly individuals even in response to LPS and CXCL8. In mice, we observed differences only regarding CD11b expression, which was increased on aged neutrophils. LPS exposure caused an increase in all FcγRs. CONCLUSIONS Our results suggest that, in humans, the overall pattern of FcγR expression and integrin CD11b are altered during aging and immunosenescence might contribute to age-related infection.
Collapse
Affiliation(s)
- Thaís Helena Gasparoto
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Thalita Marcato Dalboni
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Nádia Ghinelli Amôr
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Aneli Eiko Abe
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Graziela Perri
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Vanessa Soares Lara
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Estomatologia (Patologia Oral), Bauru, SP, Brasil
| | | | - Carlos Teodoro Gasparoto
- Universidade de São Paulo, Faculdade de Medicina de São Paulo, Departamento de Saúde Pública, São Paulo, Brasil
| | - Ana Paula Campanelli
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| |
Collapse
|
43
|
Castro-Herrera VM, Lown M, Fisk HL, Owen-Jones E, Lau M, Lowe R, Hood K, Gillespie D, Hobbs FDR, Little P, Butler CC, Miles EA, Calder PC. Relationships Between Age, Frailty, Length of Care Home Residence and Biomarkers of Immunity and Inflammation in Older Care Home Residents in the United Kingdom. FRONTIERS IN AGING 2021; 2:599084. [PMID: 35821989 PMCID: PMC9261419 DOI: 10.3389/fragi.2021.599084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 01/16/2023]
Abstract
Aging is associated with changes to the immune system, collectively termed immunosenescence and inflammageing. However, the relationships among age, frailty, and immune parameters in older people resident in care homes are not well described. We assessed immune and inflammatory parameters in 184 United Kingdom care home residents aged over 65 years and how they relate to age, frailty index, and length of care home residence. Linear regression was used to identify the independent contribution of age, frailty, and length of care home residence to the various immune parameters as dependent variables. Participants had a mean age (±SD) of 85.3 ± 7.5 years, had been residing in the care home for a mean (±SD) of 1.9 ± 2.2 years at the time of study commencement, and 40.7% were severely frail. Length of care home residence and frailty index were correlated but age and frailty index and age and length of care home residence were not significantly correlated. All components of the full blood count, apart from total lymphocytes, were within the reference range; 31% of participants had blood lymphocyte numbers below the lower value of the reference range. Among the components of the full blood count, platelet numbers were positively associated with frailty index. Amongst plasma inflammatory markers, C-reactive protein (CRP), interleukin-1 receptor antagonist (IL-1ra), soluble E-selectin and interferon gamma-induced protein 10 (IP-10) were positively associated with frailty. Plasma soluble vascular cell adhesion molecule 1 (sVCAM-1), IP-10 and tumor necrosis factor receptor II (TNFRII) were positively associated with age. Plasma monocyte chemoattractant protein 1 was positively associated with length of care home residence. Frailty was an independent predictor of platelet numbers, plasma CRP, IL-1ra, IP-10, and sE-selectin. Age was an independent predictor of activated monocytes and plasma IP-10, TNFRII and sVCAM-1. Length of care home residence was an independent predictor of plasma MCP-1. This study concludes that there are independent links between increased frailty and inflammation and between increased age and inflammation amongst older people resident in care homes in the United Kingdom. Since, inflammation is known to contribute to morbidity and mortality in older people, the causes and consequences of inflammation in this population should be further explored.
Collapse
Affiliation(s)
- Vivian M. Castro-Herrera
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Vivian M. Castro-Herrera,
| | - Mark Lown
- School of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Helena L. Fisk
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eleri Owen-Jones
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Mandy Lau
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Rachel Lowe
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Kerenza Hood
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - David Gillespie
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - F. D. Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Paul Little
- School of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Christopher C. Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
44
|
Pojero F, Candore G, Caruso C, Di Bona D, Groneberg DA, Ligotti ME, Accardi G, Aiello A. The Role of Immunogenetics in COVID-19. Int J Mol Sci 2021; 22:2636. [PMID: 33807915 PMCID: PMC7961811 DOI: 10.3390/ijms22052636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is induced by SARS-CoV-2 and may arise as a variety of clinical manifestations, ranging from an asymptomatic condition to a life-threatening disease associated with cytokine storm, multiorgan and respiratory failure. The molecular mechanism behind such variability is still under investigation. Several pieces of experimental evidence suggest that genetic variants influencing the onset, maintenance and resolution of the immune response may be fundamental in predicting the evolution of the disease. The identification of genetic variants behind immune system reactivity and function in COVID-19 may help in the elaboration of personalized therapeutic strategies. In the frenetic look for universally shared treatment plans, those genetic variants that are common to other diseases/models may also help in addressing future research in terms of drug repurposing. In this paper, we discuss the most recent updates about the role of immunogenetics in determining the susceptibility to and the history of SARS-CoV-2 infection. We propose a narrative review of available data, speculating about lessons that we have learnt from other viral infections and immunosenescence, and discussing what kind of aspects of research should be deepened in order to improve our knowledge of how host genetic variability impacts the outcome for COVID-19 patients.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David A. Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Mattia E. Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| |
Collapse
|
45
|
Wang K, Basu M, Malin J, Hannenhalli S. A transcription-centric model of SNP-age interaction. PLoS Genet 2021; 17:e1009427. [PMID: 33770080 PMCID: PMC7997000 DOI: 10.1371/journal.pgen.1009427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
Complex age-associated phenotypes are caused, in part, by an interaction between an individual's genotype and age. The mechanisms governing such interactions are however not entirely understood. Here, we provide a novel transcriptional mechanism-based framework-SNiPage, to investigate such interactions, whereby a transcription factor (TF) whose expression changes with age (age-associated TF), binds to a polymorphic regulatory element in an allele-dependent fashion, rendering the target gene's expression dependent on both, the age and the genotype. Applying SNiPage to GTEx, we detected ~637 significant TF-SNP-Gene triplets on average across 25 tissues, where the TF binds to a regulatory SNP in the gene's promoter or putative enhancer and potentially regulates its expression in an age- and allele-dependent fashion. The detected SNPs are enriched for epigenomic marks indicative of regulatory activity, exhibit allele-specific chromatin accessibility, and spatial proximity to their putative gene targets. Furthermore, the TF-SNP interaction-dependent target genes have established links to aging and to age-associated diseases. In six hypertension-implicated tissues, detected interactions significantly inform hypertension state of an individual. Lastly, the age-interacting SNPs exhibit a greater proximity to the reported phenotype/diseases-associated SNPs than eSNPs identified in an interaction-independent fashion. Overall, we present a novel mechanism-based model, and a novel framework SNiPage, to identify functionally relevant SNP-age interactions in transcriptional control and illustrate their potential utility in understanding complex age-associated phenotypes.
Collapse
Affiliation(s)
- Kun Wang
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Mahashweta Basu
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Justin Malin
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
46
|
Romero G, Salama G. Relaxin abrogates genomic remodeling of the aged heart. VITAMINS AND HORMONES 2021; 115:419-448. [PMID: 33706957 DOI: 10.1016/bs.vh.2020.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
"Healthy" aging drives structural and functional changes in the heart including maladaptive electrical remodeling, fibrosis and inflammation, which lower the threshold for cardiovascular diseases such as heart failure (HF) and atrial fibrillation (AF). Despite mixed results in clinical trials, Relaxin-therapy for 2-days reduced mortality by 37% at 180-days post-treatment, in patients with acute decompensated HF. Relaxin's short lifespan (2-3h) but long-lasting protective actions suggested that relaxin acts at a genomic level to reverse maladaptive remodeling in AF, HF and aging. Our recent studies showed that a 2-week treatment with Relaxin (0.4mg/kg/day) of aged (24months old F-344 rats) increases the expression of voltage-gated Na+ channels (mRNA, Nav1.5 and INa), connexin-43, abrogates inflammatory and immune responses and reverses myocardial fibrosis and cellular hypertrophy of the aged hearts. Relaxin acts directly at a wide range of cell types in the cardiovascular system that express its cognate GPCR receptor, RXFP1. RNA-seq analysis of young and aged hearts with and without Relaxin treatment revealed that "normal" aging altered the expression of ~10% of genes expressed in the ventricles, including: ion channels, components of fibrosis, hemodynamic biomarkers, immune and inflammatory responses which were reversed by Relaxin. The extensive cardiovascular remodeling caused by Relaxin was mediated through the activation of the Wnt/β-catenin signaling pathway which was otherwise suppressed by in adult cardiomyocytes intracellular by cytosolic Dickkopf1 (Dkk1). Wnt/β-catenin signaling is a mechanism that can explain the pleiotropic actions of Relaxin and the marked reversal of genomic changes that occur in aged hearts.
Collapse
Affiliation(s)
- Guillermo Romero
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Guy Salama
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
47
|
Li Z, Huang Z, Bai L. The P2X7 Receptor in Osteoarthritis. Front Cell Dev Biol 2021; 9:628330. [PMID: 33644066 PMCID: PMC7905059 DOI: 10.3389/fcell.2021.628330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease. With the increasing aging population, the associated socio-economic costs are also increasing. Analgesia and surgery are the primary treatment options in late-stage OA, with drug treatment only possible in early prevention to improve patients' quality of life. The most important structural component of the joint is cartilage, consisting solely of chondrocytes. Instability in chondrocyte balance results in phenotypic changes and cell death. Therefore, cartilage degradation is a direct consequence of chondrocyte imbalance, resulting in the degradation of the extracellular matrix and the release of pro-inflammatory factors. These factors affect the occurrence and development of OA. The P2X7 receptor (P2X7R) belongs to the purinergic receptor family and is a non-selective cation channel gated by adenosine triphosphate. It mediates Na+, Ca2+ influx, and K+ efflux, participates in several inflammatory reactions, and plays an important role in the different mechanisms of cell death. However, the relationship between P2X7R-mediated cell death and the progression of OA requires investigation. In this review, we correlate potential links between P2X7R, cartilage degradation, and inflammatory factor release in OA. We specifically focus on inflammation, apoptosis, pyroptosis, and autophagy. Lastly, we discuss the therapeutic potential of P2X7R as a potential drug target for OA.
Collapse
Affiliation(s)
- Zihao Li
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyu Huang
- Foreign Languages College, Shanghai Normal University, Shanghai, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
48
|
Hamilton JAG, Lee MY, Hunter R, Ank RS, Story JY, Talekar G, Sisroe T, Ballak DB, Fedanov A, Porter CC, Eisenmesser EZ, Dinarello CA, Raikar SS, DeGregori J, Henry CJ. Interleukin-37 improves T-cell-mediated immunity and chimeric antigen receptor T-cell therapy in aged backgrounds. Aging Cell 2021; 20:e13309. [PMID: 33480151 PMCID: PMC7884049 DOI: 10.1111/acel.13309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/17/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Aging‐associated declines in innate and adaptive immune responses are well documented and pose a risk for the growing aging population, which is predicted to comprise greater than 40 percent of the world's population by 2050. Efforts have been made to improve immunity in aged populations; however, safe and effective protocols to accomplish this goal have not been universally established. Aging‐associated chronic inflammation is postulated to compromise immunity in aged mice and humans. Interleukin‐37 (IL‐37) is a potent anti‐inflammatory cytokine, and we present data demonstrating that IL‐37 gene expression levels in human monocytes significantly decline with age. Furthermore, we demonstrate that transgenic expression of interleukin‐37 (IL‐37) in aged mice reduces or prevents aging‐associated chronic inflammation, splenomegaly, and accumulation of myeloid cells (macrophages and dendritic cells) in the bone marrow and spleen. Additionally, we show that IL‐37 expression decreases the surface expression of programmed cell death protein 1 (PD‐1) and augments cytokine production from aged T‐cells. Improved T‐cell function coincided with a youthful restoration of Pdcd1, Lat, and Stat4 gene expression levels in CD4+ T‐cells and Lat in CD8+ T‐cells when aged mice were treated with recombinant IL‐37 (rIL‐37) but not control immunoglobin (Control Ig). Importantly, IL‐37‐mediated rejuvenation of aged endogenous T‐cells was also observed in aged chimeric antigen receptor (CAR) T‐cells, where improved function significantly extended the survival of mice transplanted with leukemia cells. Collectively, these data demonstrate the potency of IL‐37 in boosting the function of aged T‐cells and highlight its therapeutic potential to overcome aging‐associated immunosenescence.
Collapse
Affiliation(s)
- Jamie A. G. Hamilton
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Miyoung Y. Lee
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Rae Hunter
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Raira S. Ank
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Jamie Y. Story
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
- Molecular and Systems Pharmacology Graduate Program Graduate Division of Biological and Biomedical Sciences Laney Graduate School Emory University School of Medicine Atlanta GA USA
| | - Ganesh Talekar
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | | | - Dov B. Ballak
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Andrew Fedanov
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Christopher C. Porter
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Elan Z. Eisenmesser
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Charles A. Dinarello
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Sunil S. Raikar
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Immunology and Microbiology University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Pediatrics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Curtis J. Henry
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| |
Collapse
|
49
|
Wang TX, Shen DY, Wang Q, Xu XH, Wang X, Chen QX, Zhuang JX, Wang YY. Protective effects of orally administered shark compound peptides from Chiloscyllium plagiosum against acute inflammation. J Food Biochem 2021; 45:e13618. [PMID: 33491226 DOI: 10.1111/jfbc.13618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022]
Abstract
The anti-inflammatory effects of shark compound peptides (SCP) from Chiloscyllium plagiosum were investigated. Results showed that SCP enhanced the viability of RAW 264.7 macrophages in vitro in a dose-dependent manner. Orally administered SCP exhibited potent anti-inflammatory activity in lipopolysaccharide (LPS)-challenged mice by suppressing serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), as well as nitric oxide (NO). Moreover, SCP significantly inhibited the inflammatory rise of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and creatinine (CRE), while blocking the decline of cholinesterase (CHE), with an efficacy close to aspirin. This research showed that orally administered SCP from C. plagiosum notably downregulated uncontrolled inflammatory responses, and conferred substantial protection from endotoxin-induced acute hepatic damage and renal functional impairment. Therefore, oral supplementation of SCP can be used as a preventive approach to reduce the risk of inflammatory-related diseases.
Collapse
Affiliation(s)
- Tong-Xin Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Dong-Yan Shen
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qin Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xin-Heng Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xi Wang
- Marine Biomedicine Center, Tekwon Genetic Technologies Ltd, Xiamen, China
| | - Qing-Xi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiang-Xing Zhuang
- Key Laboratory of Neurodegenerative Disease and Aging Research Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yule-Yue Wang
- Marine Biomedicine Center, Tekwon Genetic Technologies Ltd, Xiamen, China
| |
Collapse
|
50
|
Pijls BG, Jolani S, Atherley A, Derckx RT, Dijkstra JIR, Franssen GHL, Hendriks S, Richters A, Venemans-Jellema A, Zalpuri S, Zeegers MP. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: a meta-analysis of 59 studies. BMJ Open 2021; 11:e044640. [PMID: 33431495 PMCID: PMC7802392 DOI: 10.1136/bmjopen-2020-044640] [Citation(s) in RCA: 307] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE We aimed to describe the associations of age and sex with the risk of COVID-19 in different severity stages ranging from infection to death. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed and Embase through 4 May 2020. STUDY SELECTION We considered cohort and case-control studies that evaluated differences in age and sex on the risk of COVID-19 infection, disease severity, intensive care unit (ICU) admission and death. DATA EXTRACTION AND SYNTHESIS We screened and included studies using standardised electronic data extraction forms and we pooled data from published studies and data acquired by contacting authors using random effects meta-analysis. We assessed the risk of bias using the Newcastle-Ottawa Scale. RESULTS We screened 11.550 titles and included 59 studies comprising 36.470 patients in the analyses. The methodological quality of the included papers was high (8.2 out of 9). Men had a higher risk for infection with COVID-19 than women (relative risk (RR) 1.08, 95% CI 1.03 to 1.12). When infected, they also had a higher risk for severe COVID-19 disease (RR 1.18, 95% CI 1.10 to 1.27), a higher need for intensive care (RR 1.38, 95% CI 1.09 to 1.74) and a higher risk of death (RR 1.50, 95% CI 1.18 to 1.91). The analyses also showed that patients aged 70 years and above have a higher infection risk (RR 1.65, 95% CI 1.50 to 1.81), a higher risk for severe COVID-19 disease (RR 2.05, 95% CI 1.27 to 3.32), a higher need for intensive care (RR 2.70, 95% CI 1.59 to 4.60) and a higher risk of death once infected (RR 3.61, 95% CI 2.70 to 4.84) compared with patients younger than 70 years. CONCLUSIONS Meta-analyses on 59 studies comprising 36.470 patients showed that men and patients aged 70 and above have a higher risk for COVID-19 infection, severe disease, ICU admission and death. PROSPERO REGISTRATION NUMBER CRD42020180085.
Collapse
Affiliation(s)
- Bart G Pijls
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Shahab Jolani
- Department of Methodology and Statistics, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Anique Atherley
- Department of Educational Research and Development, School of Health Professions Education, Maastricht University, Maastricht, The Netherlands
| | - Raissa T Derckx
- Department of General Practice, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Janna I R Dijkstra
- Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands
| | - Gregor H L Franssen
- Maastricht University Library, Maastricht University, Maastricht, The Netherlands
| | - Stevie Hendriks
- School of Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Anke Richters
- Department of Research and Development, The Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands
| | | | | | - Maurice P Zeegers
- NUTRIM School of Translational Research in Metabolism, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|