1
|
Zheng D, Cen J, Chen P, Zou L, Zou J, Li Q, Lu S. Exploring potentially synthetic genes related to diarrhetic shellfish toxins production in Prorocentrum sp. via comparative transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117695. [PMID: 39808879 DOI: 10.1016/j.ecoenv.2025.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Harmful algal blooms (HABs), exacerbated by climate change and environmental disturbances, pose global challenges due to marine toxin contamination, particularly diarrhetic shellfish toxins (DSTs). DSTs are prevalent marine toxins, and understanding their synthesis is vital for managing fisheries and mitigating environmental triggers. This study delves into the synthesis mechanisms of DSTs in Prorocentrum arenarium and Prorocentrum lima, which vary in toxin types and concentrations. We conducted a comprehensive comparative transcriptomic analysis to identify potential toxin-related genes, focusing on polyketide synthases (PKSs) and fatty acid synthases (FASs). Our research predicted 96 PKSs and 91 FASs genes, with a detailed examination of their sequences to elucidate dinophysistoxins (DTXs) synthesis. Additionally, we analyzed differential gene expression of PKSs in P. arenarium under nitrogen and phosphorus-limited conditions, revealing a correlation between specific PKSs gene expression patterns and okadaic acid (OA) content variations. These findings suggest a potential role of the fatty acid biosynthesis pathway in DSTs synthesis. While not completely uncovering the biosynthetic pathway of DSTs, our study offers crucial insights and genomic resources for future research on dinoflagellate toxin production mechanisms.
Collapse
Affiliation(s)
- Danlin Zheng
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Jingyi Cen
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Peiliang Chen
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Ligong Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Jian Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Qun Li
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Songhui Lu
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China.
| |
Collapse
|
2
|
Mauger M, Makarchuk I, Molter Y, Sansone A, Melin F, Chaignon P, Schaeffer P, Adam P, Schünemann V, Hellwig P, Ferreri C, Chatgilialoglu C, Seemann M. Towards Bacterial Resistance via the Membrane Strategy: Enzymatic, Biophysical and Biomimetic Studies of the Lipid cis-trans Isomerase of Pseudomonas aeruginosa. Chembiochem 2025; 26:e202400844. [PMID: 39541259 PMCID: PMC11727003 DOI: 10.1002/cbic.202400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
The lipid cis-trans isomerase (Cti) is a periplasmic heme-c enzyme found in several bacteria including Pseudomonas aeruginosa, a pathogen known for causing nosocomial infections. This metalloenzyme catalyzes the cis-trans isomerization of unsaturated fatty acids in order to rapidly modulate membrane fluidity in response to stresses that impede bacterial growth. As a consequence, breakthrough in the elucidation of the mechanism of this metalloenzyme might lead to new strategies to combat bacterial antibiotic resistance. We report the first comprehensive biochemical, electrochemical and spectroscopic characterization of a Cti enzyme. This has been possible by the successful purification of Cti from P. aeruginosa (Pa-Cti) in favorable yields with enzyme activity of 0.41 μmol/min/mg when tested with palmitoleic acid. Through a synergistic approach involving enzymology, site-directed mutagenesis, Raman spectroscopy, Mössbauer spectroscopy and electrochemistry, we identified the heme coordination and redox state, pinpointing Met163 as the sixth ligand of the FeII of heme-c in Pa-Cti. Significantly, the development of an innovative assay based on liposomes demonstrated for the first time that Cti catalyzes cis-trans isomerization directly using phospholipids as substrates without the need of protein partners, answering the important question about the substrate of Cti within the bacterial membrane.
Collapse
Affiliation(s)
- Mickaël Mauger
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177Université de Strasbourg, CNRS67000StrasbourgFrance
| | - Iryna Makarchuk
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe UMR 7140Université de Strasbourg, CNRS67000StrasbourgFrance
| | - Yasmin Molter
- Department of PhysicsUniversity of Kaiserslautern-LandauErwin-Schrödinger-Str. 4667663KaiserslauternGermany
| | - Anna Sansone
- Institute for Organic Synthesis and PhotoreactivityNational Research Council40129BolognaItaly
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe UMR 7140Université de Strasbourg, CNRS67000StrasbourgFrance
| | - Philippe Chaignon
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177Université de Strasbourg, CNRS67000StrasbourgFrance
| | - Philippe Schaeffer
- Equipe Biogéochimie Moléculaire, Institut de Chimie de Strasbourg UMR 7177Université de Strasbourg, CNRS67000StrasbourgFrance
| | - Pierre Adam
- Equipe Biogéochimie Moléculaire, Institut de Chimie de Strasbourg UMR 7177Université de Strasbourg, CNRS67000StrasbourgFrance
| | - Volker Schünemann
- Department of PhysicsUniversity of Kaiserslautern-LandauErwin-Schrödinger-Str. 4667663KaiserslauternGermany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe UMR 7140Université de Strasbourg, CNRS67000StrasbourgFrance
- Institut Universitaire de France (IUF)France
| | - Carla Ferreri
- Institute for Organic Synthesis and PhotoreactivityNational Research Council40129BolognaItaly
| | - Chryssostomos Chatgilialoglu
- Institute for Organic Synthesis and PhotoreactivityNational Research Council40129BolognaItaly
- Center for Advanced TechnologiesAdam Mickiewicz University61–614PoznańPoland
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177Université de Strasbourg, CNRS67000StrasbourgFrance
| |
Collapse
|
3
|
Waters JK, Eijkelkamp BA. Bacterial acquisition of host fatty acids has far-reaching implications on virulence. Microbiol Mol Biol Rev 2024; 88:e0012624. [PMID: 39475267 DOI: 10.1128/mmbr.00126-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
SUMMARYThe lipid homeostasis pathways of bacterial pathogens have been studied comprehensively for their biochemical functionality. However, new and refined technologies have supported the interrogation of bacterial lipid and fatty acid homeostasis mechanisms in more complex environments, such as mammalian host niches. In particular, emerging findings on the breadth and depth of host fatty acid uptake have demonstrated their importance beyond merely fatty acid utilization for membrane synthesis, as they can contribute to virulence factor regulation, pathogenesis, and group-based behaviors. Lipid homeostasis is also intertwined with other metabolic and physiological processes in the bacterial cells, which appear to be largely unique per species, but overarching themes can be derived. This review combines the latest biochemical and structural findings and places these in the context of bacterial pathogenesis, thereby shedding light on the far-reaching implications of lipid homeostasis on bacterial success.
Collapse
Affiliation(s)
- Jack K Waters
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Cheng M, Qu G, Xu R, Ren N. Research on the conversion of biowaste to MCCAs: A review of recent advances in the electrochemical synergistic anaerobic pathway. CHEMOSPHERE 2024; 366:143430. [PMID: 39353474 DOI: 10.1016/j.chemosphere.2024.143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Medium-chain carboxylic acids (MCCAs) show great promise as commercial chemicals due to their high energy density, significant product value, and wide range of applications. The production of MCCAs from waste biomass through coupling chain extension with anaerobic fermentation represents a new and innovative approach to biomass utilization. This review provides an overview of the principles of MCCAs production through coupled chain extension and anaerobic fermentation, as well as the extracellular electron transfer pathways and microbiological effects involved. Emphasis is placed on the mechanisms, limitations, and microbial interactions in MCCAs production, elucidating metabolic pathways, potential influencing factors, and the cooperative and competitive relationships among various microorganisms. Additionally, this paper delves into a novel technology for the bio-electrocatalytic generation of MCCAs, which promotes electron transfer through the use of different three-dimensional electrodes, various electrical stimulation methods, and hydrogen-assisted approaches. The insights and conclusions from previous studies, as well as the identification of existing challenges, will be valuable for the further development of high-product-selectivity strategies and environmentally friendly treatments.
Collapse
Affiliation(s)
- Minhua Cheng
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, Yunnan, 650500, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, Yunnan, 650500, China.
| | - Rui Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, Yunnan, 650500, China
| | - Nanqi Ren
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
5
|
Chen S, Rao M, Jin W, Hu M, Chen D, Ge M, Mao W, Qian X. Metabolomic analysis in Amycolatopsis keratiniphila disrupted the competing ECO0501 pathway for enhancing the accumulation of vancomycin. World J Microbiol Biotechnol 2024; 40:297. [PMID: 39126539 DOI: 10.1007/s11274-024-04105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Vancomycin is a clinically important glycopeptide antibiotic against Gram-positive pathogenic bacteria, especially methicillin-resistant Staphylococcus aureus. In the mutant strain of Amycolatopsis keratiniphila HCCB10007 Δeco-cds4-27, the production of ECO-0501 was disrupted, but enhanced vancomycin yield by 55% was observed compared with the original strain of A. keratiniphila HCCB10007. To gain insights into the mechanism of the enhanced production of vancomycin in the mutant strain, comparative metabolomics analyses were performed between the mutant strain and the original strain, A. keratiniphila HCCB10007 via GC-TOF-MS and UPLC-HRMS. The results of PCA and OPLS-DA revealed a significant distinction of the intracellular metabolites between the two strains during the fermentation process. 64 intracellular metabolites, which involved in amino acids, fatty acids and central carbon metabolism, were identified as differential metabolites. The high-yield mutant strain maintained high levels of glucose-1-phosphate and glucose-6-phosphate and they declined with the increases of vancomycin production. Particularly, a strong association of fatty acids accumulation as well as 3,5-dihydroxyphenylacetic acid and non-proteinogenic amino acid 3,5-dihydroxyphenylglycine (Dpg) with enhancement of vancomycin production was observed in the high-yield mutant strain, indicating that the consumption of fatty acid pools might be beneficial for giving rise to 3,5-dihydroxyphenylacetic acid and Dpg which further lead to improve vancomycin production. In addition, the lower levels of glyoxylic acid and lactic acid and the higher levels of sulfur amino acids might be beneficial for improving vancomycin production. These findings proposed more advanced elucidation of metabolomic characteristics in the high-yield strain for vancomycin production and could provide potential strategies to enhance the vancomycin production.
Collapse
Affiliation(s)
- Shuo Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Min Rao
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
- Zhejiang Pharmaceutical Co., Ltd, Shaoxing, China
| | - Wenxiang Jin
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Mengyi Hu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
- Zhejiang Pharmaceutical Co., Ltd, Shaoxing, China
| | - Wenwei Mao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiuping Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Chin WC, Zhou YZ, Wang HY, Feng YT, Yang RY, Huang ZF, Yang YL. Bacterial polyynes uncovered: a journey through their bioactive properties, biosynthetic mechanisms, and sustainable production strategies. Nat Prod Rep 2024; 41:977-989. [PMID: 38284321 DOI: 10.1039/d3np00059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: up to 2023Conjugated polyynes are natural compounds characterized by alternating single and triple carbon-carbon bonds, endowing them with distinct physicochemical traits and a range of biological activities. While traditionally sourced mainly from plants, recent investigations have revealed many compounds originating from bacterial strains. This review synthesizes current research on bacterial-derived conjugated polyynes, delving into their biosynthetic routes, underscoring the variety in their molecular structures, and examining their potential applications in biotechnology. Additionally, we outline future directions for metabolic and protein engineering to establish more robust and stable platforms for their production.
Collapse
Affiliation(s)
- Wei-Chih Chin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yang-Zhi Zhou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Hao-Yung Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Yu-Ting Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ru-Yin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Zih-Fang Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
7
|
Liu Y, Chen L, Duan Y, Li R, Yang Z, Liu S, Li G. Recent progress and prospects for chain elongation of transforming biomass waste into medium-chain fatty acids. CHEMOSPHERE 2024; 355:141823. [PMID: 38552798 DOI: 10.1016/j.chemosphere.2024.141823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Chain elongation technology utilises microorganisms in anaerobic digestion to transform waste biomass into medium-chain fatty acids that have greater economic value. This innovative technology expands upon traditional anaerobic digestion methods, requiring abundant substrates that serve as electron donors and acceptors, and inoculating microorganisms with chain elongation functions. While this process may result in the production of by-products and elicit competitive responses, toxicity suppression of microorganisms by substrates and products remains a significant obstacle to the industrialisation of chain elongation technology. This study provides a comprehensive overview of existing research on widely employed electron donors and their synthetic reactions, competitive reactions, inoculum selection, toxicity inhibition of substrates and products, and increased chain elongation approaches. Additionally, it presents actionable recommendations for future research and development endeavours in this domain, intending to inspire and guide researchers in advancing the frontiers of chain elongation technology.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China.
| | - Long Chen
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Yacong Duan
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Guoting Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| |
Collapse
|
8
|
Liu T, Li J, Hao X, Meng J. Efficient caproic acid production from lignocellulosic biomass by bio-augmented mixed microorganisms. BIORESOURCE TECHNOLOGY 2024; 399:130565. [PMID: 38461870 DOI: 10.1016/j.biortech.2024.130565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Producing caproic acid via carboxylate platform is an environmentally-friendly approach for treating lignocellulosic agricultural waste. However, its implementation is still challenged by low product yields and selectivity. A microbiome named cellulolytic acid-producing microbiome (DCB), proficient in producing cellulolytic acid, was successfully acquired and shows promise for producing high-level caproic acid. In this study, a bioaugmentation method utilizing Clostridium kluyveri is proposed to enhance caproic acid yield of DCB using rice straw. With exogenous ethanol, bioaugmentation with Clostridium kluyveri significantly improved the caproic acid concentration and selectivity by 7 times and 4.5 times, achieving 12.9 g/L and 55.1 %, respectively. The addition of Clostridium kluyveri introduced reverse β-oxidation pathway, a more efficient caproic acid production pathway. Meanwhile, bioaugmentation enriched the bacteria proficient in degrading straw and producing short-chain fatty acids, providing more substrates for caproic acid production. This study provides potential bioaugmentation strategies for optimizing caproic acid yield from lignocellulosic biomass.
Collapse
Affiliation(s)
- Tianshu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyu Hao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Liu Y, Duan Y, Chen L, Yang Z, Yang X, Liu S, Song G. Research on the Resource Recovery of Medium-Chain Fatty Acids from Municipal Sludge: Current State and Future Prospects. Microorganisms 2024; 12:680. [PMID: 38674623 PMCID: PMC11051992 DOI: 10.3390/microorganisms12040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The production of municipal sludge is steadily increasing in line with the production of sewage. A wealth of organic contaminants, including nutrients and energy, are present in municipal sludge. Anaerobic fermentation can be used to extract useful resources from sludge, producing hydrogen, methane, short-chain fatty acids, and, via further chain elongation, medium-chain fatty acids. By comparing the economic and use values of these retrieved resources, it is concluded that a high-value resource transformation of municipal sludge can be achieved via the production of medium-chain fatty acids using anaerobic fermentation, which is a hotspot for future research. In this study, the selection of the pretreatment method, the method of producing medium-chain fatty acids, the influence of the electron donor, and the technique used to enhance product synthesis in the anaerobic fermentation process are introduced in detail. The study outlines potential future research directions for medium-chain fatty acid production using municipal sludge. These acids could serve as a starting point for investigating other uses for municipal sludge.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Y.D.); (L.C.); (Z.Y.); (X.Y.); (S.L.); (G.S.)
| | | | | | | | | | | | | |
Collapse
|
10
|
Pan H, Wei L, Zhao H, Xiao Y, Li Z, Ding H. Perception of the Biocontrol Potential and Palmitic Acid Biosynthesis Pathway of Bacillus subtilis H2 through Merging Genome Mining with Chemical Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4834-4848. [PMID: 38401001 DOI: 10.1021/acs.jafc.3c06411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Bacillus has been widely studied for its potential to protect plants from pathogens. Here, we report the whole genome sequence of Bacillus subtilis H2, which was isolated from the tea garden soil of Guiyang Forest Park. Strain H2 showed a broad spectrum of antagonistic activities against many plant fungal pathogens and bacteria pathogens, including the rice blast fungus Magnaporthe oryzae, and showed a good field control effect against rice blast. The complete genome of B. subtilis H2 contained a 4,160,635-bp circular chromosome, with an average G + C content of 43.78%. Through the genome mining of strain H2, we identified 7 known antimicrobial compound biosynthetic gene clusters (BGCs) including sporulation killing factor, surfactin, bacillaene, fengycin, bacillibactin, subtilosin A, and bacilysin. Palmitic acid (PA), a secondary metabolite, was detected and identified in the H2 strain through genome mining analysis and gas chromatography-mass spectrometry (GC-MS). Additionally, we propose, for the first time, that the type II fatty acid synthesis (FAS) pathway in Bacillus is responsible for PA biosynthesis. This finding was confirmed by studying the antimicrobial activity of PA and conducting reverse transcription-quantitative polymerase chain reaction (RT-qPCR) experiments. We also identified numerous genes associated with plant-bacteria interactions in the H2 genome, including more than 94 colonization-related genes, more than 34 antimicrobial genes, and more than 13 plant growth-promoting genes. These findings contribute to our understanding of the biocontrol mechanisms of B. subtilis H2 and have potential applications in crop disease control.
Collapse
Affiliation(s)
- Hang Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Longfeng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Hao Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang 550004, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Haixia Ding
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Chang H, Ji R, Zhu Z, Wang Y, Yan S, He D, Jia Q, Huang P, Cheng T, Wang R, Zhou Y. Target identification, and optimization of dioxygenated amide derivatives as potent antibacterial agents with FabH inhibitory activity. Eur J Med Chem 2024; 265:116064. [PMID: 38159483 DOI: 10.1016/j.ejmech.2023.116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
The enzyme FabH plays a critical role in the initial step of fatty acid biosynthesis, which is vital for the survival of bacteria. As a result, FabH has emerged as an appealing target for the development of novel antibacterial agents. In this study, employing the chemical proteomics method, we validated the previously identified skeleton amide derivatives bearing dioxygenated rings, potentially formed through metabolic processes. Building upon the proteomics findings, we then synthesized and evaluated 32 compounds containing N-heterocyclic amides for their antimicrobial activity for future optimizing the deoxygenated amides. Several compounds demonstrated potent antimicrobial properties with low toxicity, particularly compound 25, which exhibited remarkable potential as an agent with an MIC range of 1.25-3.13 μg/mL against the tested bacterial strains and an IC50 of 2.0 μM against E. coli-derived FabH. Furthermore, we evaluated nine analogues with relatively low MIC values through cytotoxicity and hemolytic activity assessments, Lipinski's rule-of-five criteria, and in silico ADMET predictions to ascertain their druggability potential. Notably, a detailed docking simulation was performed to investigate the binding interactions of compound 25 within the binding pocket of E. coli FabH, which encouragingly revealed strong binding interactions. Based on our findings, compound 25 emerges as the optimal candidate for in vivo therapy aimed at treating infected skin defects. Remarkably, the application of compound 25 demonstrated a significant reduction in the duration of wound infection and notably accelerated the healing process of infected wounds, achieving an impressive 94 % healing rate by day 10.
Collapse
Affiliation(s)
- Haoyun Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Ruiying Ji
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Zhiyu Zhu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Yapin Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Shaopeng Yan
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Dan He
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Qike Jia
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Peng Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Tao Cheng
- Pharmaron (Ningbo) Technology Development Co. Ltd., Ningbo, 315336, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| | - Yang Zhou
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China.
| |
Collapse
|
12
|
Yang Q, Deng S, Preibsch H, Schade T, Koch A, Berezhnoy G, Zizmare L, Fischer A, Gückel B, Staebler A, Hartkopf AD, Pichler BJ, la Fougère C, Hahn M, Bonzheim I, Nikolaou K, Trautwein C. Image-guided metabolomics and transcriptomics reveal tumour heterogeneity in luminal A and B human breast cancer beyond glucose tracer uptake. Clin Transl Med 2024; 14:e1550. [PMID: 38332687 PMCID: PMC10853679 DOI: 10.1002/ctm2.1550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Breast cancer is a metabolically heterogeneous disease, and although the concept of heterogeneous cancer metabolism is known, its precise role in human breast cancer is yet to be fully elucidated. METHODS We investigated in an explorative approach a cohort of 42 primary mamma carcinoma patients with positron emission tomography/magnetic resonance imaging (PET/MR) prior to surgery, followed by histopathology and molecular diagnosis. From a subset of patients, which showed high metabolic heterogeneity based on tracer uptake and pathology classification, tumour centre and periphery specimen tissue samples were further investigated by a targeted breast cancer gene expression panel and quantitative metabolomics by nuclear magnetic resonance (NMR) spectroscopy. All data were analysed in a combinatory approach. RESULTS [18 F]FDG (2-deoxy-2-[fluorine-18]fluoro-d-glucose) tracer uptake confirmed dominance of glucose metabolism in the breast tumour centre, with lower levels in the periphery. Additionally, we observed differences in lipid and proliferation related genes between luminal A and B subtypes in the centre and periphery. Tumour periphery showed elevated acetate levels and enrichment in lipid metabolic pathways genes especially in luminal B. Furthermore, serine was increased in the periphery and higher expression of thymidylate synthase (TYMS) indicated one-carbon metabolism increased in tumour periphery. The overall metabolic activity based on [18 F]FDG uptake of luminal B subtype was higher than that of luminal A and the difference between the periphery and centre increased with tumour grade. CONCLUSION Our analysis indicates variations in metabolism among different breast cancer subtypes and sampling locations which details the heterogeneity of the breast tumours. Correlation analysis of [18 F]FDG tracer uptake, transcriptome and tumour metabolites like acetate and serine facilitate the search for new candidates for metabolic tracers and permit distinguishing luminal A and B. This knowledge may help to differentiate subtypes preclinically or to provide patients guide for neoadjuvant therapy and optimised surgical protocols based on individual tumour metabolism.
Collapse
Affiliation(s)
- Qianlu Yang
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
| | - Sisi Deng
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| | - Heike Preibsch
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
| | - Tim‐Colin Schade
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - André Koch
- Department of Women's HealthUniversity Hospital TuebingenTuebingenGermany
| | - Georgy Berezhnoy
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
| | - Laimdota Zizmare
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| | - Anna Fischer
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Brigitte Gückel
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
| | - Annette Staebler
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | | | - Bernd J. Pichler
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
| | - Christian la Fougère
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
- Department of Nuclear Medicine and Clinical Molecular ImagingUniversity Hospital TuebingenTuebingenGermany
| | - Markus Hahn
- Department of Women's HealthUniversity Hospital TuebingenTuebingenGermany
| | - Irina Bonzheim
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Konstantin Nikolaou
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
| | - Christoph Trautwein
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| |
Collapse
|
13
|
Stevens ET, Van Beeck W, Blackburn B, Tejedor-Sanz S, Rasmussen ARM, Carter ME, Mevers E, Ajo-Franklin CM, Marco ML. Lactiplantibacillus plantarum uses ecologically relevant, exogenous quinones for extracellular electron transfer. mBio 2023; 14:e0223423. [PMID: 37982640 PMCID: PMC10746273 DOI: 10.1128/mbio.02234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE While quinones are essential for respiratory microorganisms, their importance for microbes that rely on fermentation metabolism is not understood. This gap in knowledge hinders our understanding of anaerobic microbial habitats, such in mammalian digestive tracts and fermented foods. We show that Lactiplantibacillus plantarum, a model fermentative lactic acid bacteria species abundant in human, animal, and insect microbiomes and fermented foods, uses multiple exogenous, environmental quinones as electron shuttles for a hybrid metabolism involving EET. Interestingly, quinones both stimulate this metabolism as well as cause oxidative stress when extracellular electron acceptors are absent. We also found that quinone-producing, lactic acid bacteria species commonly enriched together with L. plantarum in food fermentations accelerate L. plantarum growth and medium acidification through a mainly quinone- and EET-dependent mechanism. Thus, our work provides evidence of quinone cross-feeding as a key ecological feature of anaerobic microbial habitats.
Collapse
Affiliation(s)
- Eric T. Stevens
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Wannes Van Beeck
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Benjamin Blackburn
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sara Tejedor-Sanz
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alycia R. M. Rasmussen
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Mackenzie E. Carter
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Emily Mevers
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Caroline M. Ajo-Franklin
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biosciences, Rice University, Houston, USA
| | - Maria L. Marco
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| |
Collapse
|
14
|
Kobalter S, Voit A, Bekerle-Bogner M, Rudalija H, Haas A, Wriessnegger T, Pichler H. Tuning Fatty Acid Profile and Yield in Pichia pastoris. Bioengineering (Basel) 2023; 10:1412. [PMID: 38136003 PMCID: PMC10741089 DOI: 10.3390/bioengineering10121412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Fatty acids have been supplied for diverse non-food, industrial applications from plant oils and animal fats for many decades. Due to the massively increasing world population demanding a nutritious diet and the thrive to provide feedstocks for industrial production lines in a sustainable way, i.e., independent from food supply chains, alternative fatty acid sources have massively gained in importance. Carbohydrate-rich side-streams of agricultural production, e.g., molasses, lignocellulosic waste, glycerol from biodiesel production, and even CO2, are considered and employed as carbon sources for the fermentative accumulation of fatty acids in selected microbial hosts. While certain fatty acid species are readily accumulated in native microbial metabolic routes, other fatty acid species are scarce, and host strains need to be metabolically engineered for their high-level production. We report the metabolic engineering of Pichia pastoris to produce palmitoleic acid from glucose and discuss the beneficial and detrimental engineering steps in detail. Fatty acid secretion was achieved through the deletion of fatty acyl-CoA synthetases and overexpression of the truncated E. coli thioesterase 'TesA. The best strains secreted >1 g/L free fatty acids into the culture medium. Additionally, the introduction of C16-specific ∆9-desaturases and fatty acid synthases, coupled with improved cultivation conditions, increased the palmitoleic acid content from 5.5% to 22%.
Collapse
Affiliation(s)
- Simon Kobalter
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010 Graz, Austria; (S.K.)
| | - Alena Voit
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010 Graz, Austria; (S.K.)
| | - Myria Bekerle-Bogner
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010 Graz, Austria; (S.K.)
| | - Haris Rudalija
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010 Graz, Austria; (S.K.)
| | - Anne Haas
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010 Graz, Austria; (S.K.)
| | - Tamara Wriessnegger
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010 Graz, Austria; (S.K.)
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010 Graz, Austria; (S.K.)
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
15
|
Albayrak E, Koçer S, Mutlu O. Identification of novel compounds against Acinetobacter baumannii 3-oxoacyl-[acyl-carrier-protein] synthase I (FabB) via comprehensive structure-based computational approaches. J Mol Graph Model 2023; 124:108565. [PMID: 37454410 DOI: 10.1016/j.jmgm.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/18/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Acinetobacter baumannii is one of the most serious opportunistic pathogens according to WHO. The difference between bacterial and mammalian fatty acid biosynthesis pathways makes FASII enzymes attractive targets in drug discovery. 3-oxoacyl-[acyl-carrier-protein] synthase I (FabB) from the FAS II pathway catalyze the condensation of malonyl ACP with acyl-ACP, and elongates the fatty acid chain by two carbons. To investigate potential inhibitors of the A. baumannii FabB, we used computational approaches including homology modeling, high-throughput virtual screening, molecular docking, molecular dynamics simulations, and MM-GBSA free energy calculations. After the high-throughput virtual screening, the resulting ligands were further screened using the QM-polarized ligand docking (QPLD) and induced fit docking (IFD) approaches. Molecular dynamics simulations were performed for 100 ns. And according to binding free energy calculations, we have identified nine compounds with the best binding affinities. Three of these compounds were selected for an additional 1 μs MD simulation to assess ligand stability. Two of them named L6 and L7 showed promised stability and affinity to the target. Here, we present novel compounds against A. baumannii FabB via structure-based computational approaches. These compounds might pave the way for the design of new lead structures and inhibitors for multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Esra Albayrak
- Marmara University, Faculty of Science, Department of Biology, Goztepe Campus, 34722, Kadikoy, Istanbul, Turkey
| | - Sinem Koçer
- Istanbul Yeni Yuzyil University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 34010, Cevizlibag, Istanbul, Turkey
| | - Ozal Mutlu
- Marmara University, Faculty of Science, Department of Biology, Goztepe Campus, 34722, Kadikoy, Istanbul, Turkey.
| |
Collapse
|
16
|
Sztain T, Corpuz JC, Bartholow TG, Hernandez JOS, Jiang Z, Mellor DA, Heberlig GW, La Clair JJ, McCammon JA, Burkart MD. Interface Engineering of Carrier-Protein-Dependent Metabolic Pathways. ACS Chem Biol 2023; 18:2014-2022. [PMID: 37671411 PMCID: PMC10807135 DOI: 10.1021/acschembio.3c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Carrier-protein-dependent metabolic pathways biosynthesize fatty acids, polyketides, and non-ribosomal peptides, producing metabolites with important pharmaceutical, environmental, and industrial properties. Recent findings demonstrate that these pathways rely on selective communication mechanisms involving protein-protein interactions (PPIs) that guide enzyme reactivity and timing. While rational design of these PPIs could enable pathway design and modification, this goal remains a challenge due to the complex nature of protein interfaces. Computational methods offer an encouraging avenue, though many score functions fail to predict experimental observables, leading to low success rates. Here, we improve upon the Rosetta score function, leveraging experimental data through iterative rounds of computational prediction and mutagenesis, to design a hybrid fatty acid-non-ribosomal peptide initiation pathway. By increasing the weight of the electrostatic score term, the computational protocol proved to be more predictive, requiring fewer rounds of iteration to identify mutants with high in vitro activity. This allowed efficient design of new PPIs between a non-ribosomal peptide synthetase adenylation domain, PltF, and a fatty acid synthase acyl carrier protein, AcpP, as validated by activity and structural studies. This method provides a promising platform for customized pathway design, establishing a standard for carrier-protein-dependent pathway engineering through PPI optimization.
Collapse
Affiliation(s)
| | | | - Thomas G. Bartholow
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Javier O. Sanlley Hernandez
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ziran Jiang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Desirae A. Mellor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Graham W. Heberlig
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
17
|
Kudo R, Yamano R, Yu J, Koike S, Haditomo AHC, de Freitas MAM, Tsuchiya J, Mino S, Thompson F, Romalde JL, Kasai H, Sakai Y, Sawabe T. Genome taxonomy of the genus Neptuniibacter and proposal of Neptuniibacter victor sp. nov. isolated from sea cucumber larvae. PLoS One 2023; 18:e0290060. [PMID: 37582072 PMCID: PMC10426996 DOI: 10.1371/journal.pone.0290060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
A Gram-staining-negative, oxidase-positive, strictly aerobic rod-shaped bacterium, designated strain PT1T, was isolated from the laboratory-reared larvae of the sea cucumber Apostichopus japonicus. A phylogenetic analysis based on the 16S rRNA gene nucleotide sequences revealed that PT1T was closely related to Neptuniibacter marinus ATR 1.1T (= CECT 8938T = DSM 100783T) and Neptuniibacter caesariensis MED92T (= CECT 7075T = CCUG 52065T) showing 98.2% and 98.1% sequence similarity, respectively. However, the average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) values among these three strains were 72.0%-74.8% and 18.3%-19.5% among related Neptuniibacter species, which were below 95% and 70%, respectively, confirming the novel status of PT1T. The average amino acid identity (AAI) values of PT1T showing 74-77% among those strains indicated PT1T is a new species in the genus Neptuniibacter. Based on the genome-based taxonomic approach, Neptuniibacter victor sp. nov. is proposed for PT1T. The type strain is PT1T (JCM 35563T = LMG 32868T).
Collapse
Affiliation(s)
- Rika Kudo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Ryota Yamano
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shotaro Koike
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Alfabetian Harjuno Condro Haditomo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Aquaculture Department, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Mayanne A. M. de Freitas
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jiro Tsuchiya
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Fabiano Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jesús L. Romalde
- Departamento de Microbiología y Parasitología, CRETUS & CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago, Spain
| | - Hisae Kasai
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
18
|
Su H, Lin J. Biosynthesis pathways of expanding carbon chains for producing advanced biofuels. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:109. [PMID: 37400889 DOI: 10.1186/s13068-023-02340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/11/2023] [Indexed: 07/05/2023]
Abstract
Because the thermodynamic property is closer to gasoline, advanced biofuels (C ≥ 6) are appealing for replacing non-renewable fossil fuels using biosynthesis method that has presented a promising approach. Synthesizing advanced biofuels (C ≥ 6), in general, requires the expansion of carbon chains from three carbon atoms to more than six carbon atoms. Despite some specific biosynthesis pathways that have been developed in recent years, adequate summary is still lacking on how to obtain an effective metabolic pathway. Review of biosynthesis pathways for expanding carbon chains will be conducive to selecting, optimizing and discovering novel synthetic route to obtain new advanced biofuels. Herein, we first highlighted challenges on expanding carbon chains, followed by presentation of two biosynthesis strategies and review of three different types of biosynthesis pathways of carbon chain expansion for synthesizing advanced biofuels. Finally, we provided an outlook for the introduction of gene-editing technology in the development of new biosynthesis pathways of carbon chain expansion.
Collapse
Affiliation(s)
- Haifeng Su
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural and Resources, Xian, 710075, Shanxi, China
| | - JiaFu Lin
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
19
|
Mechanism for the synthesis of medium-chain 1-alkenes from fatty acids catalyzed by binuclear iron UndA decarboxylase. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
20
|
Zhu Y, Gao H, Zhang J, Zhao J, Qi Q, Wang Q. De novo design of the global transcriptional factor Cra-regulated promoters enables highly sensitive glycolysis flux biosensor for dynamic metabolic control. Microb Biotechnol 2023; 16:605-617. [PMID: 36541030 PMCID: PMC9948231 DOI: 10.1111/1751-7915.14166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
Glycolytic flux is a fundamental index in microbial cell factories. A glycolytic flux biosensor that can monitor glucose metabolism efficiency is a promising strategy in rewiring metabolic flux to balance growth and biosynthesis. A key design feature of the glycolytic flux biosensors is the interaction between the global transcriptional factor Cra and its regulated promoters. However, overexpression and mutation of Cra has unpredictable effects on global metabolism in Escherichia coli. Therefore, new orthogonal biosensor design strategies should be developed to circumvent metabolic issues. In this report, the promoters in glycolytic flux biosensor were replaced with synthetic promoters of varying strengths or phage-derived promoters, and the Cra DNA-binding sites were deployed into promoters at different positions and distances to yield biosensors. The de nova biosensors that depended on Cra could sense Fructose-1,6-diphosphate (FBP) with broad dynamic ranges and low basal leakage. Then the negative-response biosensors were applied to fine-tune the target ATP synthesis gene, leading to the desired increase in pyruvate production (the highest 9.66 g/L) and cell growth. Moreover, the membrane synthesis gene plsC was also dynamically activated by the positive-response biosensor, leading to effective accumulation of lycopene in the cell membrane and a 50-fold increase in lycopene titre (100.3 mg/L) when compared with the control strain, demonstrating the effective and broader usages of our biosensors.
Collapse
Affiliation(s)
- Yuan Zhu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huaxiao Gao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jingyu Zhao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
21
|
Strategies to Enhance the Biosynthesis of Monounsaturated Fatty Acids in Escherichia coli. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
22
|
Wang L, Yang H, Wu M, Zhang J, Zhang H, Mao Z, Chen X. Integrative transcriptome and proteome revealed high-yielding mechanisms of epsilon-poly-L-lysine by Streptomyces albulus. Front Microbiol 2023; 14:1123050. [PMID: 37152744 PMCID: PMC10157215 DOI: 10.3389/fmicb.2023.1123050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction ε-poly-L-lysine (ε-PL) is a high value, widely used natural antimicrobial peptide additive for foods and cosmetic products that is mainly produced by Streptomyces albulus. In previous work, we developed the high-yield industrial strain S. albulus WG-608 through successive rounds of engineering. Methods Here, we use integrated physiological, transcriptomic, and proteomics association analysis to resolve the complex mechanisms underlying high ε-PL production by comparing WG-608 with the progenitor strain M-Z18. Results Our results show that key genes in the glycolysis, pentose phosphate pathway, glyoxylate pathway, oxidative phosphorylation, and L-lysine biosynthesis pathways are differentially upregulated in WG-608, while genes in the biosynthetic pathways for fatty acids, various branched amino acids, and secondary metabolite by-products are downregulated. This regulatory pattern results in the introduction of more carbon atoms into L-lysine biosynthesis and ε-PL production. In addition, significant changes in the regulation of DNA replication, transcription, and translation, two component systems, and quorum sensing may facilitate the adaptability to environmental pressure and the biosynthesis of ε-PL. Overexpression of ppk gene and addition of polyP6 further enhanced the ε-PL production. Discussion This study enables comprehensive understanding of the biosynthetic mechanisms of ε-PL in S. albulus WG-608, while providing some genetic modification and fermentation strategies to further improve the ε-PL production.
Collapse
|
23
|
Park WS, Shin KS, Jung HW, Lee Y, Sathesh-Prabu C, Lee SK. Combinatorial Metabolic Engineering Strategies for the Enhanced Production of Free Fatty Acids in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13913-13921. [PMID: 36200488 DOI: 10.1021/acs.jafc.2c04621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, we evaluated the effects of several metabolic engineering strategies in a systematic and combinatorial manner to enhance the free fatty acid (FFA) production in Escherichia coli. The strategies included (i) overexpression of mutant thioesterase I ('TesAR64C) to efficiently release the FFAs from fatty acyl-ACP; (ii) coexpression of global regulatory protein FadR; (iii) heterologous expression of methylmalonyl-CoA carboxyltransferase and phosphoenolpyruvate carboxylase to synthesize fatty acid precursor molecule malonyl-CoA; and (iv) disruption of genes associated with membrane proteins (GusC, MdlA, and EnvR) to improve the cellular state and export the FFAs outside the cell. The synergistic effects of these genetic modifications in strain SBF50 yielded 7.2 ± 0.11 g/L FFAs at the shake flask level. In fed-batch cultivation under nitrogen-limiting conditions, strain SBF50 produced 33.6 ± 0.02 g/L FFAs with a productivity of 0.7 g/L/h from glucose, which is the maximum titer reported in E. coli to date. Combinatorial metabolic engineering approaches can prove to be highly useful for the large-scale production of FA-derived chemicals and fuels.
Collapse
Affiliation(s)
- Woo Sang Park
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwang Soo Shin
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Wook Jung
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yongjoo Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chandran Sathesh-Prabu
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
24
|
Luo J, Efimova E, Volke DC, Santala V, Santala S. Engineering cell morphology by CRISPR interference in Acinetobacter baylyi ADP1. Microb Biotechnol 2022; 15:2800-2818. [PMID: 36005297 DOI: 10.1111/1751-7915.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
Microbial production of intracellular compounds can be engineered by redirecting the carbon flux towards products and increasing the cell size. Potential engineering strategies include exploiting clustered regularly interspaced short palindromic repeats interference (CRISPRi)-based tools for controlling gene expression. Here, we applied CRISPRi for engineering Acinetobacter baylyi ADP1, a model bacterium for synthesizing intracellular storage lipids, namely wax esters. We first established an inducible CRISPRi system for strain ADP1, which enables tightly controlled repression of target genes. We then targeted the glyoxylate shunt to redirect carbon flow towards wax esters. Second, we successfully employed CRISPRi for modifying cell morphology by repressing ftsZ, an essential gene required for cell division, in combination with targeted knock-outs to generate significantly enlarged filamentous or spherical cells respectively. The engineered cells sustained increased wax ester production metrics, demonstrating the potential of cell morphology engineering in the production of intracellular lipids.
Collapse
Affiliation(s)
- Jin Luo
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Daniel Christoph Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
25
|
Yamano R, Yu J, Jiang C, Harjuno Condro Haditomo A, Mino S, Sakai Y, Sawabe T. Taxonomic revision of the genus Amphritea supported by genomic and in silico chemotaxonomic analyses, and the proposal of Aliamphritea gen. nov. PLoS One 2022; 17:e0271174. [PMID: 35947547 PMCID: PMC9365125 DOI: 10.1371/journal.pone.0271174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, aerobic bacterium, designated strain PT3T was isolated from laboratory-reared larvae of the Japanese sea cucumber Apostichopus japonicus. Phylogenetic analysis based on the 16S rRNA gene nucleotide sequences revealed that PT3T was closely related to Amphritea ceti RA1T (= KCTC 42154T = NBRC 110551T) and Amphritea spongicola MEBiC05461T (= KCCM 42943T = JCM 16668T) both with 98.3% sequence similarity, however, average nucleotide identity (ANI) and in silico DNA-DNA hybridization (in silico DDH) values among these three strains were below 95% and 70%, respectively, confirming the novelty of PT3T. Furthermore, the average amino acid identity (AAI) values of PT3T against other Amphritea species were on the reported genus delineation boundary (64-67%). Multilocus sequence analysis using four protein-coding genes (recA, mreB, rpoA, and topA) further demonstrated that PT3T, Amphritea ceti and Amphritea spongicola formed a monophyletic clade clearly separate from other members of the genus Amphritea. Three strains (PT3T, A. ceti KCTC 42154T and A. spongicola JCM 16668T) also showed higher similarities in their core genomes compared to those of the other Amphritea spp. Based on the genome-based taxonomic approach, Aliamphritea gen. nov. was proposed together with the reclassification of the genus Amphritea and Aliamphritea ceti comb. nov. (type strain RA1T = KCTC 42154T = NBRC 110551T), Aliamphritea spongicola comb. nov. (type strain MEBiC05461T = KCCM 42943T = JCM 16668T), and Aliamphritea hakodatensis sp. nov. (type strain PT3T = JCM 34607T = KCTC 82591T) were suggested.
Collapse
Affiliation(s)
- Ryota Yamano
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Alfabetian Harjuno Condro Haditomo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Aquaculture Department, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
26
|
Kaku M, Ishidaira M, Satoh S, Ozaki M, Kohari D, Chohnan S. Fatty Acid Production by Enhanced Malonyl-CoA Supply in Escherichia coli. Curr Microbiol 2022; 79:269. [PMID: 35881256 DOI: 10.1007/s00284-022-02969-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/07/2022] [Indexed: 11/24/2022]
Abstract
The expression of exogenous genes encoding acetyl-CoA carboxylase (Acc) and pantothenate kinase (CoaA) in Escherichia coli enable highly effective fatty acid production. Acc-only strains grown at 37 °C or 23 °C produced an approximately twofold increase in fatty acid content, and additional expression of CoaA achieved a further twofold accumulation. In the presence of pantothenate, which is the starting material for the CoA biosynthetic pathway, the size of the intracellular CoA pool at 23 °C was comparable to that at 30 °C during cultivation, and more than 500 mg/L of culture containing cellular fatty acids was produced, even at 23 °C. However, the highest yield of cellular fatty acids (1100 mg/L of culture) was produced in cells possessing the gene encoding type I bacterial fatty acid synthase (FasA) along with the acc and coaA, when the transformant was cultivated at 30 °C in M9 minimal salt medium without pantothenate or IPTG. This E. coli transformant contained 141 mg/L of oleic acid attributed to FasA under noninducible conditions. The increased fatty acid content was brought about by a greatly improved specific productivity of 289 mg/g of dry cell weight. Thus, the effectiveness of the foreign acc and coaA in fatty acid production was unambiguously confirmed at culture temperatures of 23 °C to 37 °C. Cofactor engineering in E. coli using the exogenous coaA and acc genes resulted in fatty acid production over 1 g/L of culture and could effectively function at 23 °C.
Collapse
Affiliation(s)
- Moena Kaku
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Mei Ishidaira
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Shusaku Satoh
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Miho Ozaki
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Daisuke Kohari
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Shigeru Chohnan
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan.
| |
Collapse
|
27
|
Winkelman DC, Nikolau BJ. The Effects of Carbon Source and Growth Temperature on the Fatty Acid Profiles of Thermobifida fusca. Front Mol Biosci 2022; 9:896226. [PMID: 35720111 PMCID: PMC9198275 DOI: 10.3389/fmolb.2022.896226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The aerobic, thermophilic Actinobacterium, Thermobifida fusca has been proposed as an organism to be used for the efficient conversion of plant biomass to fatty acid-derived precursors of biofuels or biorenewable chemicals. Despite the potential of T. fusca to catabolize plant biomass, there is remarkably little data available concerning the natural ability of this organism to produce fatty acids. Therefore, we determined the fatty acids that T. fusca produces when it is grown on different carbon sources (i.e., glucose, cellobiose, cellulose and avicel) and at two different growth temperatures, namely at the optimal growth temperature of 50°C and at a suboptimal temperature of 37°C. These analyses establish that T. fusca produces a combination of linear and branched chain fatty acids (BCFAs), including iso-, anteiso-, and 10-methyl BCFAs that range between 14- and 18-carbons in length. Although different carbon sources and growth temperatures both quantitatively and qualitatively affect the fatty acid profiles produced by T. fusca, growth temperature is the greater modifier of these traits. Additionally, genome scanning enabled the identification of many of the fatty acid biosynthetic genes encoded by T. fusca.
Collapse
Affiliation(s)
| | - Basil J. Nikolau
- Department of Biochemistry, Biophysics and Molecular Biology and the Center of Metabolic Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
28
|
Loss of β-Ketoacyl Acyl Carrier Protein Synthase III Activity Restores Multidrug-Resistant Escherichia coli Sensitivity to Previously Ineffective Antibiotics. mSphere 2022; 7:e0011722. [PMID: 35574679 PMCID: PMC9241538 DOI: 10.1128/msphere.00117-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative pathogens are a major concern for global public health due to increasing rates of antibiotic resistance and the lack of new drugs. A major contributing factor toward antibiotic resistance in Gram-negative bacteria is their formidable outer membrane, which acts as a permeability barrier preventing many biologically active antimicrobials from reaching the intracellular targets and thus limiting their efficacy.
Collapse
|
29
|
Koreti D, Kosre A, Jadhav SK, Chandrawanshi NK. A comprehensive review on oleaginous bacteria: an alternative source for biodiesel production. BIORESOUR BIOPROCESS 2022; 9:47. [PMID: 38647556 PMCID: PMC10992283 DOI: 10.1186/s40643-022-00527-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 01/19/2023] Open
Abstract
Due to continuously increasing population, industrialization, and environmental pollution, lead to generating high energy demand which suitable for our environment. Biodiesel is an alternative renewable fuel source. According to the feedstock of production, biodiesel has been categorized into four generations. The main disadvantage of the first and second generation is the raw material processing cost that the challenge for its industrial-level production. Oleaginous bacteria that contain more than 20% lipid of their cellular biomass can be a good alternative and sustainable feedstock. Oleaginous bacteria used as feedstock have numerous advantages, such as their high growth rate, being easy to cultivate, utilizing various substrates for growth, genetic or metabolic modifications possible. In addition, some species of bacteria are capable of carbon dioxide sequestration. Therefore, oleaginous bacteria can be a significant resource for the upcoming generation's biodiesel production. This review discusses the biochemistry of lipid accumulation, screening techniques, and lipid accumulation factors of oleaginous bacteria, in addition to the overall general biodiesel production process. This review also highlights the biotechnological approach for oleaginous bacteria strain improvement that can be future used for biodiesel production and the advantages of using general biodiesel in place of conventional fuel, along with the discussion about global policies and the prospect that promotes biodiesel production from oleaginous bacteria.
Collapse
Affiliation(s)
- Deepali Koreti
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Anjali Kosre
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | | |
Collapse
|
30
|
Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8050427. [PMID: 35628683 PMCID: PMC9144191 DOI: 10.3390/jof8050427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Microbial lipids have been a hot topic in the field of metabolic engineering and synthetic biology due to their increased market and important applications in biofuels, oleochemicals, cosmetics, etc. This review first compares the popular hosts for lipid production and explains the four modules for lipid synthesis in yeast, including the fatty acid biosynthesis module, lipid accumulation module, lipid sequestration module, and fatty acid modification module. This is followed by a summary of metabolic engineering strategies that could be used for enhancing each module for lipid production. In addition, the efforts being invested in improving the production of value-added fatty acids in engineered yeast, such as cyclopropane fatty acid, ricinoleic acid, gamma linoleic acid, EPA, and DHA, are included. A discussion is further made on the potential relationships between lipid pathway engineering and consequential changes in cellular physiological properties, such as cell membrane integrity, intracellular reactive oxygen species level, and mitochondrial membrane potential. Finally, with the rapid development of synthetic biology tools, such as CRISPR genome editing tools and machine learning models, this review proposes some future trends that could be employed to engineer yeast with enhanced intracellular lipid production while not compromising much of its cellular health.
Collapse
|
31
|
Keaney D, Lucey B, Quinn N, Finn K. The Effects of Freeze-Thaw and UVC Radiation on Microbial Survivability in a Selected Mars-like Environment. Microorganisms 2022; 10:microorganisms10030576. [PMID: 35336151 PMCID: PMC8956125 DOI: 10.3390/microorganisms10030576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to determine survivability of Escherichia coli, Deinococcus radiodurans and Paraburkholderia fungorum under Mars-simulated conditions for freeze-thawing (−80 °C to +30 °C) and UV exposure alone and in combination. E. coli ATCC 25922, D. radiodurans and P. fungorum remained viable following 20 successive freeze-thaw cycles, exhibiting viabilities of 2.3%, 96% and 72.6%, respectively. E. coli ATCC 9079 was non-recoverable by cycle 9. When exposed to UV irradiation, cells withstood doses of 870 J/m2 (E. coli ATCC 25922), 200 J/m2 (E. coli ATCC 9079), 50,760 J/m2 (D. radiodurans) and 44,415 J/m2 (P. fungorum). Data suggests P. fungorum is highly UV-resistant. Combined freeze-thawing with UV irradiation showed freezing increased UV resistance in E. coli ATCC 25922, E. coli DSM 9079 and D. radiodurans by 6-fold, 30-fold and 1.2-fold, respectively. Conversely, freezing caused P. fungorum to exhibit a 1.75-fold increase in UV susceptibility. Strain-dependent experimentation demonstrated that freezing increases UV resistance and prolongs survival. These findings suggest that exposure to short wavelength UV rays (254 nm) and temperature cycles resembling the daily fluctuating conditions on Mars do not significantly affect survival of D. radiodurans, P. fungorum and E. coli ATCC 25922 following 20 days of exposure.
Collapse
Affiliation(s)
- Daniel Keaney
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland; (D.K.); (B.L.)
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland; (D.K.); (B.L.)
| | - Noreen Quinn
- Department of Mathematics, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Galway-Mayo Institute of Technology, Old Dublin Road, H91 T8NW Galway, Ireland
- Correspondence:
| |
Collapse
|
32
|
Kim IJ, Bayer T, Terholsen H, Bornscheuer U. α-Dioxygenases (α-DOXs): Promising biocatalysts for the environmentally friendly production of aroma compounds. Chembiochem 2022; 23:e202100693. [PMID: 35107200 PMCID: PMC9305512 DOI: 10.1002/cbic.202100693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Indexed: 11/14/2022]
Abstract
Fatty aldehydes (FALs) can be derived from fatty acids (FAs) and related compounds and are frequently used as flavors and fragrances. Although chemical methods have been conventionally used, their selective biotechnological production aiming at more efficient and eco‐friendly synthetic routes is in demand. α‐Dioxygenases (α‐DOXs) are heme‐dependent oxidative enzymes biologically involved in the initial step of plant FA α‐oxidation during which molecular oxygen is incorporated into the Cα‐position of a FA (Cn) to generate the intermediate FA hydroperoxide, which is subsequently converted into the shortened corresponding FAL (Cn‐1). α‐DOXs are promising biocatalysts for the flavor and fragrance industries, they do not require NAD(P)H as cofactors or redox partner proteins, and they have a broad substrate scope. Here, we highlight recent advances in the biocatalytic utilization of α‐DOXs with emphasis on newly discovered cyanobacterial α‐DOXs as well as analytical methods to measure α‐DOX activity in vitro and in vivo.
Collapse
Affiliation(s)
- In Jung Kim
- University of Greifswald: Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Thomas Bayer
- University of Greifswald: Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Henrik Terholsen
- Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Uwe Bornscheuer
- Greifswald University, Dept. of Biotechnology & Enzyme Catalysis, Felix-Hausdorff-Str. 4, 17487, Greifswald, GERMANY
| |
Collapse
|
33
|
Nang SC, Li M, Harper M, Mandela E, Bergen PJ, Rolain JM, Zhu Y, Velkov T, Li J. Polymyxin causes cell envelope remodeling and stress responses in mcr-1-harboring Escherichia coli. Int J Antimicrob Agents 2021; 59:106505. [PMID: 34954369 DOI: 10.1016/j.ijantimicag.2021.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
Polymyxins remain important last-line antibiotics against multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance is emerging and the mobile polymyxin resistance gene, mcr is contributing to the wide dissemination of polymyxin resistance, especially among Escherichia coli, with mcr-1 being the most commonly found variant. The objective of this study was to provide mechanistic insights into concentration-dependent transcriptomic responses of mcr-harboring E. coli following polymyxin treatment. An mcr-1-carrying clinical isolate of E. coli (LH30) was treated with polymyxin B at 2 and 8 mg/L. Bacterial cultures were collected before and 1 h following treatment for viable counting and transcriptomic analysis. Growth of E. coli LH30 was unaffected by 2 mg/L polymyxin B, whereas killing of ∼2 log10 cfu/mL occurred with 8 mg/L at 1 h. All four phosphoethanolamine (pEtN) transferase genes (mcr-1, eptA, eptB and eptC) were upregulated (FC=2.4-4.0) by 8 mg/L polymyxin B, indicating that pEtN modifications were the preferred polymyxin resistance mechanism. The higher polymyxin B concentration also affected the expression of genes involved in fatty acid, lipopolysaccharide, lipid A, phospholipid biosynthesis, iron homeostasis and oxidative stress pathways. Our transcriptomic analysis revealed that cell envelope remodeling, pEtN modification, iron acquisition and oxidative stress protective mechanisms play a key role in the survival of mcr-carrying E. coli treated with polymyxin. These findings provide new mechanistic information at the gene expression level to counter polymyxin resistance.
Collapse
Affiliation(s)
- Sue C Nang
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Victoria, Australia
| | - Mengyao Li
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Marina Harper
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Victoria, Australia
| | - Eric Mandela
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Victoria, Australia
| | - Phillip J Bergen
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Victoria, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Victoria, Australia.
| |
Collapse
|
34
|
Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 2021; 20:221. [PMID: 34876155 PMCID: PMC8650507 DOI: 10.1186/s12934-021-01712-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.
Collapse
Affiliation(s)
- Felix Abeln
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
35
|
Wu Q, Jiang Y, Chen Y, Liu M, Bao X, Guo W. Opportunities and challenges in microbial medium chain fatty acids production from waste biomass. BIORESOURCE TECHNOLOGY 2021; 340:125633. [PMID: 34315125 DOI: 10.1016/j.biortech.2021.125633] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Medium chain fatty acids (MCFAs) that produced from affordable waste biomass via chain elongation (CE) technology are recognized as the potential alternatives to part fossil-derived chemicals, contributing to the sustainable development of economy and environment. The purpose of this review is to provide comprehensive analyses on the opportunities and challenges of MCFAs production and application. First, both two microbial MCFAs synthesis pathways of reverse β-oxidation and fatty acid biosynthesis were introduced/compared in detail to give readers a thorough understanding of the CE process, with the expectation of further boosting MCFAs production by well distinguishing them. Furthermore, the six key MCFAs production bottlenecks, corresponding research progresses, and possible solutions were analyzed. Five major MCFAs production strategies with their production mechanism, performances, and characteristics were also critically assessed. Additionally, the commercial production status was introduced, and future alternative production mode and research priorities were also recommended.
Collapse
Affiliation(s)
- Qinglian Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xian Bao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
36
|
Schnorr SL, Berry D. Lipid synthesis at the trophic base as the source for energy management to build complex structures. Curr Opin Biotechnol 2021; 73:364-373. [PMID: 34735986 DOI: 10.1016/j.copbio.2021.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
The review explores the ecological basis for bacterial lipid metabolism in marine and terrestrial ecosystems. We discuss ecosystem stressors that provoked early organisms to modify their lipid membrane structures, and where these stressors are found across a variety of environments. A major role of lipid membranes is to manage cellular energy utility, including how energy is used for signal propagation. As different environments are imbued with properties that necessitate variation in energy regulation, bacterial lipid synthesis has undergone incalculable permutations of functional trial and error. This may hold clues for how biotechnology can improvise a short-hand version of the evolutionary gauntlet to stimulate latent functional competences for the synthesis of rare lipids. Reducing human reliance on marine resources and deriving solutions for production of essential nutrients is a pressing problem in sustainable agriculture and aquaculture, as well as timely considering the increasing fragility of human health in an aging population.
Collapse
Affiliation(s)
- Stephanie L Schnorr
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria; Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
| |
Collapse
|
37
|
Eungrasamee K, Incharoensakdi A, Lindblad P, Jantaro S. Overexpression of lipA or glpD_RuBisCO in the Synechocystis sp. PCC 6803 Mutant Lacking the Aas Gene Enhances Free Fatty-Acid Secretion and Intracellular Lipid Accumulation. Int J Mol Sci 2021; 22:ijms222111468. [PMID: 34768898 PMCID: PMC8583886 DOI: 10.3390/ijms222111468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Although engineered cyanobacteria for the production of lipids and fatty acids (FAs) are intelligently used as sustainable biofuel resources, intracellularly overproduced FAs disturb cellular homeostasis and eventually generate lethal toxicity. In order to improve their production by enhancing FFAs secretion into a medium, we constructed three engineered Synechocystis 6803 strains including KA (a mutant lacking the aas gene), KAOL (KA overexpressing lipA, encoding lipase A in membrane lipid hydrolysis), and KAOGR (KA overexpressing quadruple glpD/rbcLXS, related to the CBB cycle). Certain contents of intracellular lipids and secreted FFAs of all engineered strains were higher than those of the wild type. Remarkably, the KAOL strain attained the highest level of secreted FFAs by about 21.9%w/DCW at day 5 of normal BG11 cultivation, with a higher growth rate and shorter doubling time. TEM images provided crucial evidence on the morphological changes of the KAOL strain, which accumulated abundant droplets on regions of thylakoid membranes throughout the cell when compared with wild type. On the other hand, BG11-N condition significantly induced contents of both intracellular lipids and secreted FFAs of the KAOL strain up to 37.2 and 24.5%w/DCW, respectively, within 5 days. Then, for the first time, we shone a spotlight onto the overexpression of lipA in the aas mutant of Synechocystis as another potential strategy to achieve higher FFAs secretion with sustainable growth.
Collapse
Affiliation(s)
- Kamonchanock Eungrasamee
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.E.); (A.I.)
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.E.); (A.I.)
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry–Ångström, Uppsala University, Box 523, SE-75120 Uppsala, Sweden;
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.E.); (A.I.)
- Correspondence: ; Tel.: +66-(0)2-218-5431; Fax: +66-(0)2-218-5418
| |
Collapse
|
38
|
Aamer Mehmood M, Shahid A, Malik S, Wang N, Rizwan Javed M, Nabeel Haider M, Verma P, Umer Farooq Ashraf M, Habib N, Syafiuddin A, Boopathy R. Advances in developing metabolically engineered microbial platforms to produce fourth-generation biofuels and high-value biochemicals. BIORESOURCE TECHNOLOGY 2021; 337:125510. [PMID: 34320777 DOI: 10.1016/j.biortech.2021.125510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Producing bio-based chemicals is imperative to establish an eco-friendly circular bioeconomy. However, the compromised titer of these biochemicals hampers their commercial implementation. Advances in genetic engineering tools have enabled researchers to develop robust strains producing desired titers of the next-generation biofuels and biochemicals. The native and non-native pathways have been extensively engineered in various host strains via pathway reconstruction and metabolic flux redirection of lipid metabolism and central carbon metabolism to produce myriad biomolecules including alcohols, isoprenoids, hydrocarbons, fatty-acids, and their derivatives. This review has briefly covered the research efforts made during the previous decade to produce advanced biofuels and biochemicals through engineered microbial platforms along with the engineering approaches employed. The efficiency of the various techniques along with their shortcomings is also covered to provide a comprehensive overview of the progress and future directions to achieve higher titer of fourth-generation biofuels and biochemicals while keeping environmental sustainability intact.
Collapse
Affiliation(s)
- Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Shahid
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sana Malik
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Muhammad Rizwan Javed
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Nabeel Haider
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Pradeep Verma
- Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer-305801, Rajasthan, India
| | - Muhammad Umer Farooq Ashraf
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nida Habib
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Achmad Syafiuddin
- Department of Public Health, Universitas Nahdlatul Ulama Surabaya, 60237 Surabaya, East Java, Indonesia
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA.
| |
Collapse
|
39
|
Rizo J, Guillén D, Díaz-Ruiz G, Wacher C, Encarnación S, Sánchez S, Rodríguez-Sanoja R. Metaproteomic Insights Into the Microbial Community in Pozol. Front Nutr 2021; 8:714814. [PMID: 34490328 DOI: 10.3389/fnut.2021.714814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
Abstract
Pozol is an acidic, refreshing, and non-alcoholic traditional Mayan beverage made with nixtamalized corn dough that is fermented spontaneously. The extensive analysis of the microbiology, biochemistry and metaproteomics of pozol allowed the construction of a comprehensive image of the fermentation system. The main changes in both the substrate and the microbiota occurred in the first 9 h of fermentation. The increase in microorganisms correlated with the drop in pH and with the decrease in the contents of carbohydrates, lipids, and nitrogen, which shows that this stage has the highest metabolic activity. Bacterial proteins were mainly represented by those of lactic acid bacteria, and among them, the proteins from genus Streptococcus was overwhelmingly the most abundant. Yeast proteins were present in all the analyzed samples, while proteins from filamentous fungi increased up to 48 h. The metaproteomic approach allowed us to identify several previously unknown enzyme complexes in the system. Additionally, enzymes for hydrolysis of starch, hemicellulose and cellulose were found, indicating that all these substrates can be used as a carbon source by the microbiota. Finally, enzymes related to the production of essential intermediates involved in the synthesis of organic acids, acetoin, butanediol, fatty acids and amino acids important for the generation of compounds that contribute to the sensorial quality of pozol, were found.
Collapse
Affiliation(s)
- Jocelin Rizo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Díaz-Ruiz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Encarnación
- Departamento de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
40
|
Mauger M, Ferreri C, Chatgilialoglu C, Seemann M. The bacterial protective armor against stress: The cis-trans isomerase of unsaturated fatty acids, a cytochrome-c type enzyme. J Inorg Biochem 2021; 224:111564. [PMID: 34418715 DOI: 10.1016/j.jinorgbio.2021.111564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Bacteria have evolved several outstanding strategies to resist to compounds or factors that compromise their survival. The first line of defense of the cell against environmental stresses is the membrane with fatty acids as fundamental building blocks of phospholipids. In this review, we focus on a periplasmic heme enzyme that catalyzes the cis-trans isomerization of unsaturated fatty acids to trigger a decrease in the fluidity of the membrane in order to rapidly counteract the danger. We particularly detailed the occurrence of such cis-trans isomerase in Nature, the different stresses that are at the origin of the double bond isomerization, the first steps in the elucidation of the mechanism of this peculiar metalloenzyme and some aspects of its regulation.
Collapse
Affiliation(s)
- Mickaël Mauger
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg/CNRS 4, rue Blaise Pascal, 67070 Strasbourg, France
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche - ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | | | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg/CNRS 4, rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|
41
|
LuxAB-Based Microbial Cell Factories for the Sensing, Manufacturing and Transformation of Industrial Aldehydes. Catalysts 2021. [DOI: 10.3390/catal11080953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The application of genetically encoded biosensors enables the detection of small molecules in living cells and has facilitated the characterization of enzymes, their directed evolution and the engineering of (natural) metabolic pathways. In this work, the LuxAB biosensor system from Photorhabdus luminescens was implemented in Escherichia coli to monitor the enzymatic production of aldehydes from primary alcohols and carboxylic acid substrates. A simple high-throughput assay utilized the bacterial luciferase—previously reported to only accept aliphatic long-chain aldehydes—to detect structurally diverse aldehydes, including aromatic and monoterpene aldehydes. LuxAB was used to screen the substrate scopes of three prokaryotic oxidoreductases: an alcohol dehydrogenase (Pseudomonas putida), a choline oxidase variant (Arthrobacter chlorophenolicus) and a carboxylic acid reductase (Mycobacterium marinum). Consequently, high-value aldehydes such as cinnamaldehyde, citral and citronellal could be produced in vivo in up to 80% yield. Furthermore, the dual role of LuxAB as sensor and monooxygenase, emitting bioluminescence through the oxidation of aldehydes to the corresponding carboxylates, promises implementation in artificial enzyme cascades for the synthesis of carboxylic acids. These findings advance the bio-based detection, preparation and transformation of industrially important aldehydes in living cells.
Collapse
|
42
|
Rondel FM, Hosseini R, Sahoo B, Knyazev S, Mandric I, Stewart F, Măndoiu II, Pasaniuc B, Porozov Y, Zelikovsky A. Pipeline for Analyzing Activity of Metabolic Pathways in Planktonic Communities Using Metatranscriptomic Data. J Comput Biol 2021; 28:842-855. [PMID: 34264744 PMCID: PMC8575064 DOI: 10.1089/cmb.2021.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this article, we present our novel pipeline for analysis of metabolic activity using a microbial community's metatranscriptome sequence data set for validation. Our method is based on expectation-maximization (EM) algorithm and provides enzyme expression and pathway activity levels. Further expanding our analysis, we consider individual enzymatic activity and compute enzyme participation coefficients to approximate the metabolic pathway activity more accurately. We apply our EM pathways pipeline to a metatranscriptomic data set of a plankton community from surface waters of the Northern Gulf of Mexico. The data set consists of RNA-seq data and respective environmental parameters, which were sampled at two depths, six times a day over multiple 24-hour cycles. Furthermore, we discuss microbial dependence on day-night cycle within our findings based on a three-way correlation of the enzyme expression during antipodal times-midnight and noon. We show that the enzyme participation levels strongly affect the metabolic activity estimates: that is, marginal and multiple linear regression of enzymatic and metabolic pathway activity correlated significantly with the recorded environmental parameters. Our analysis statistically validates that EM-based methods produce meaningful results, as our method confirms statistically significant dependence of metabolic pathway activity on the environmental parameters, such as salinity, temperature, brightness, and a few others.
Collapse
Affiliation(s)
| | - Roya Hosseini
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Bikram Sahoo
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Sergey Knyazev
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Igor Mandric
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Frank Stewart
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Ion I. Măndoiu
- Computer Science & Engineering Department, University of Connecticut, Storrs, Connecticut, USA
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Yuri Porozov
- World-Class Research Center “Digital biodesign and personalized healthcare,” I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Computational Biology, Sirius University of Science and Technology, Sochi, Russia
| | - Alexander Zelikovsky
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
- World-Class Research Center “Digital biodesign and personalized healthcare,” I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
43
|
Ambaye TG, Vaccari M, Bonilla-Petriciolet A, Prasad S, van Hullebusch ED, Rtimi S. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112627. [PMID: 33991767 DOI: 10.1016/j.jenvman.2021.112627] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 05/08/2023]
Abstract
Due to increasing anthropogenic activities, especially industry and transport, the fossil fuel demand and consumption have increased proportionally, causing serious environmental issues. This attracted researchers and scientists to develop new alternative energy sources. Therefore, this review covers the biofuel production potential and challenges related to various feedstocks and advances in process technologies. It has been concluded that the biofuels such as biodiesel, ethanol, bio-oil, syngas, Fischer-Tropsch H2, and methane produced from crop plant residues, micro- and macroalgae and other biomass wastes using thermo-bio-chemical processes are an eco-friendly route for an energy source. Biofuels production and their uses in industries and transportation considerably minimize fossil fuel dependence. Literature analysis showed that biofuels generated from energy crops and microalgae could be the most efficient and attractive process. Recent progress in the field of biofuels using genetic engineering has larger perspectives in commercial-scale production. However, its large-scale production is still challenging; hence, to resolve this problem, it is essential to convert biomass in biofuels by developing novel technology to increase biofuel production to fulfil the current and future energy demand.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy; Mekelle University, Department of Chemistry, Mekelle, Ethiopia.
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | | | - Shiv Prasad
- Centre for Environment Science &Climate Resilient Agriculture (CESCRA) Indian Agricultural Research Institute New Delhi, 110012, India
| | | | - Sami Rtimi
- Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
44
|
The Rhizobacterium Pseudomonas alcaligenes AVO110 Induces the Expression of Biofilm-Related Genes in Response to Rosellinia necatrix Exudates. Microorganisms 2021; 9:microorganisms9071388. [PMID: 34202389 PMCID: PMC8304167 DOI: 10.3390/microorganisms9071388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
The rhizobacterium Pseudomonas alcaligenes AVO110 exhibits antagonism toward the phytopathogenic fungus Rosellinia necatrix. This strain efficiently colonizes R. necatrix hyphae and is able to feed on their exudates. Here, we report the complete genome sequence of P. alcaligenes AVO110. The phylogeny of all available P. alcaligenes genomes separates environmental isolates, including AVO110, from those obtained from infected human blood and oyster tissues, which cluster together with Pseudomonas otitidis. Core and pan-genome analyses showed that P. alcaligenes strains encode highly heterogenic gene pools, with the AVO110 genome encoding the largest and most exclusive variable region (~1.6 Mb, 1795 genes). The AVO110 singletons include a wide repertoire of genes related to biofilm formation, several of which are transcriptionally modulated by R. necatrix exudates. One of these genes (cmpA) encodes a GGDEF/EAL domain protein specific to Pseudomonas spp. strains isolated primarily from the rhizosphere of diverse plants, but also from soil and water samples. We also show that CmpA has a role in biofilm formation and that the integrity of its EAL domain is involved in this function. This study contributes to a better understanding of the niche-specific adaptations and lifestyles of P. alcaligenes, including the mycophagous behavior of strain AVO110.
Collapse
|
45
|
Mannan AA, Bates DG. Designing an irreversible metabolic switch for scalable induction of microbial chemical production. Nat Commun 2021; 12:3419. [PMID: 34103495 PMCID: PMC8187666 DOI: 10.1038/s41467-021-23606-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/07/2021] [Indexed: 01/05/2023] Open
Abstract
Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell's native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production.
Collapse
Affiliation(s)
- Ahmad A Mannan
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Declan G Bates
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
46
|
Guardini Z, Dall’Osto L, Barera S, Jaberi M, Cazzaniga S, Vitulo N, Bassi R. High Carotenoid Mutants of Chlorella vulgaris Show Enhanced Biomass Yield under High Irradiance. PLANTS 2021; 10:plants10050911. [PMID: 34062906 PMCID: PMC8147269 DOI: 10.3390/plants10050911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022]
Abstract
Microalgae represent a carbon-neutral source of bulk biomass, for extraction of high-value compounds and production of renewable fuels. Due to their high metabolic activity and reproduction rates, species of the genus Chlorella are highly productive when cultivated in photobioreactors. However, wild-type strains show biological limitations making algal bioproducts expensive compared to those extracted from other feedstocks. Such constraints include inhomogeneous light distribution due to high optical density of the culture, and photoinhibition of the surface-exposed cells. Thus, the domestication of algal strains for industry makes it increasingly important to select traits aimed at enhancing light-use efficiency while withstanding excess light stress. Carotenoids have a crucial role in protecting against photooxidative damage and, thus, represent a promising target for algal domestication. We applied chemical mutagenesis to Chlorella vulgaris and selected for enhanced tolerance to the carotenoid biosynthesis inhibitor norflurazon. The NFR (norflurazon-resistant) strains showed an increased carotenoid pool size and enhanced tolerance towards photooxidative stress. Growth under excess light revealed an improved carbon assimilation rate of NFR strains with respect to WT. We conclude that domestication of Chlorella vulgaris, by optimizing both carotenoid/chlorophyll ratio and resistance to photooxidative stress, boosted light-to-biomass conversion efficiency under high light conditions typical of photobioreactors. Comparison with strains previously reported for enhanced tolerance to singlet oxygen, reveals that ROS resistance in Chlorella is promoted by at least two independent mechanisms, only one of which is carotenoid-dependent.
Collapse
|
47
|
Cardiolipin aids in lipopolysaccharide transport to the gram-negative outer membrane. Proc Natl Acad Sci U S A 2021; 118:2018329118. [PMID: 33833055 DOI: 10.1073/pnas.2018329118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In Escherichia coli, cardiolipin (CL) is the least abundant of the three major glycerophospholipids in the gram-negative cell envelope. However, E. coli harbors three distinct enzymes that synthesize CL: ClsA, ClsB, and ClsC. This redundancy suggests that CL is essential for bacterial fitness, yet CL-deficient bacteria are viable. Although multiple CL-protein interactions have been identified, the role of CL still remains unclear. To identify genes that impact fitness in the absence of CL, we analyzed high-density transposon (Tn) mutant libraries in combinatorial CL synthase mutant backgrounds. We found LpxM, which is the last enzyme in lipid A biosynthesis, the membrane anchor of lipopolysaccharide (LPS), to be critical for viability in the absence of clsA Here, we demonstrate that CL produced by ClsA enhances LPS transport. Suppressors of clsA and lpxM essentiality were identified in msbA, a gene that encodes the indispensable LPS ABC transporter. Depletion of ClsA in ∆lpxM mutants increased accumulation of LPS in the inner membrane, demonstrating that the synthetic lethal phenotype arises from improper LPS transport. Additionally, overexpression of ClsA alleviated ΔlpxM defects associated with impaired outer membrane asymmetry. Mutations that lower LPS levels, such as a YejM truncation or alteration in the fatty acid pool, were sufficient in overcoming the synthetically lethal ΔclsA ΔlpxM phenotype. Our results support a model in which CL aids in the transportation of LPS, a unique glycolipid, and adds to the growing repertoire of CL-protein interactions important for bacterial transport systems.
Collapse
|
48
|
Awad G, Garnier A. Maximization of saturated fatty acids through the production of P450BM3 monooxygenase in the engineered Escherichia coli. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
(p)ppGpp/GTP and Malonyl-CoA Modulate Staphylococcus aureus Adaptation to FASII Antibiotics and Provide a Basis for Synergistic Bi-Therapy. mBio 2021; 12:mBio.03193-20. [PMID: 33531402 PMCID: PMC7858065 DOI: 10.1128/mbio.03193-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major human bacterial pathogen for which new inhibitors are urgently needed. Antibiotic development has centered on the fatty acid synthesis (FASII) pathway, which provides the building blocks for bacterial membrane phospholipids. Fatty acid biosynthesis (FASII) enzymes are considered valid targets for antimicrobial drug development against the human pathogen Staphylococcus aureus. However, incorporation of host fatty acids confers FASII antibiotic adaptation that compromises prospective treatments. S. aureus adapts to FASII inhibitors by first entering a nonreplicative latency period, followed by outgrowth. Here, we used transcriptional fusions and direct metabolite measurements to investigate the factors that dictate the duration of latency prior to outgrowth. We show that stringent response induction leads to repression of FASII and phospholipid synthesis genes. (p)ppGpp induction inhibits synthesis of malonyl-CoA, a molecule that derepresses FapR, a key regulator of FASII and phospholipid synthesis. Anti-FASII treatment also triggers transient expression of (p)ppGpp-regulated genes during the anti-FASII latency phase, with concomitant repression of FapR regulon expression. These effects are reversed upon outgrowth. GTP depletion, a known consequence of the stringent response, also occurs during FASII latency, and is proposed as the common signal linking these responses. We next showed that anti-FASII treatment shifts malonyl-CoA distribution between its interactants FapR and FabD, toward FapR, increasing expression of the phospholipid synthesis genes plsX and plsC during outgrowth. We conclude that components of the stringent response dictate malonyl-CoA availability in S. aureus FASII regulation, and contribute to latency prior to anti-FASII-adapted outgrowth. A combinatory approach, coupling a (p)ppGpp inducer and an anti-FASII, blocks S. aureus outgrowth, opening perspectives for bi-therapy treatment.
Collapse
|
50
|
Krishnan A, McNeil BA, Stuart DT. Biosynthesis of Fatty Alcohols in Engineered Microbial Cell Factories: Advances and Limitations. Front Bioeng Biotechnol 2020; 8:610936. [PMID: 33344437 PMCID: PMC7744569 DOI: 10.3389/fbioe.2020.610936] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
Concerns about climate change and environmental destruction have led to interest in technologies that can replace fossil fuels and petrochemicals with compounds derived from sustainable sources that have lower environmental impact. Fatty alcohols produced by chemical synthesis from ethylene or by chemical conversion of plant oils have a large range of industrial applications. These chemicals can be synthesized through biological routes but their free forms are produced in trace amounts naturally. This review focuses on how genetic engineering of endogenous fatty acid metabolism and heterologous expression of fatty alcohol producing enzymes have come together resulting in the current state of the field for production of fatty alcohols by microbial cell factories. We provide an overview of endogenous fatty acid synthesis, enzymatic methods of conversion to fatty alcohols and review the research to date on microbial fatty alcohol production. The primary focus is on work performed in the model microorganisms, Escherichia coli and Saccharomyces cerevisiae but advances made with cyanobacteria and oleaginous yeasts are also considered. The limitations to production of fatty alcohols by microbial cell factories are detailed along with consideration to potential research directions that may aid in achieving viable commercial scale production of fatty alcohols from renewable feedstock.
Collapse
Affiliation(s)
- Anagha Krishnan
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Bonnie A McNeil
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - David T Stuart
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|