1
|
Zhou W, Zhang Q, Chen J, Gan J, Li Y, Zou J. Angiopoietin-4 expression and potential mechanisms in carcinogenesis: Current achievements and perspectives. Clin Exp Med 2024; 24:224. [PMID: 39294405 PMCID: PMC11410924 DOI: 10.1007/s10238-024-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/23/2024] [Indexed: 09/20/2024]
Abstract
As one of the factors regulating tumour angiogenesis, angiopoietin-4 (ANGPT4), which plays an important role in promoting tumour proliferation, survival, expansion and angiogenesis, is highly expressed in some tumours, such as lung adenocarcinoma, glioblastoma and ovarian cancer. This may be related to the fact that ANGPT4 affects the blood vessels and lymphatic system of the tumour. Specifically, ANGPT4 could play an effective role in promoting cancer by affecting the tyrosine kinase receptor TIE2, ERK1/2 and PI3K/AKT signalling pathways. Therefore, ANGPT4 may be an important biomarker for the occurrence and development of cancer and poor prognosis. In addition, the inhibition of ANGPT4 may be a useful cancer treatment. This paper reviews the latest preclinical research on ANGPT4, emphasizes its role in tumourigenesis and broadens our understanding of the carcinogenic function of ANGPT4 and the development of ANGPT4 inhibitors. This is the latest version of the revised version of the previous article.
Collapse
Affiliation(s)
- Wenchao Zhou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qunfeng Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junling Chen
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinpeng Gan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
2
|
Xu L, Jin X, Lu Y, Zheng B, Zheng Z, Chen L, Zhu H. Increased PLAGL1 Gene Methylation in Cord Blood is Positively Correlated with Brain Injury in Chorioamniotic Preterm Infants. Biochem Genet 2024:10.1007/s10528-024-10762-0. [PMID: 38564096 DOI: 10.1007/s10528-024-10762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
The study aims to explore the epigenetic mechanisms of neurodevelopmental impairment accompanied in chorioamniotic preterm infants. Our study included 16 full-term infants and 69 preterm infants. The methylation status of the pleomorphic adenoma gene-like 1 (PLAGL1) gene in the cord blood was determined by pyrosequencing. Brain B-ultrasonography and magnetic resonance imaging (MRI) were performed to diagnose brain injury. The activity of candidate fragments of PLAGL1 and the effect of methylation on PLAGL1 activity were evaluated by double luciferase reporter assay. The data showed that there were no differences in the methylation levels of each Cytosine-phosphate-Guanine (CpG) site of PLAGL1 between full-term and preterm infants. Within preterm infants, the methylation levels of the CpG2, CpG3, CpG4, and CpG5 sites were increased in the chorioamnionitis group compared with the no chorioamnionitis group. The areas under curves (AUCs) of the receiver operating characteristic (ROC) curves of CpG2, CpG3, CpG4, and CpG5 were 0.656, 0.653, 0.670, and 0.712, respectively. Meanwhile, the methylation level of the CpG2 site was increased in preterm babies with brain injury compared with those without brain injury, and the AUC of CpG2 was 0.648, with a sensitivity of 75.9% and a specificity of 50.0%. A double luciferase reporter assay revealed that PLAGL1 fragments had enhancer-like activity and that the methylated form of PLAGL1 weakened this activity. Thus, PLAGL1 hypermethylation in chorioamniotic preterm infants is positively correlated with brain injury. Our results suggest a potential use for PLAGL1 methylation as a biomarker in the diagnosis of brain injury.
Collapse
Affiliation(s)
- Limin Xu
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, People's Republic of China.
| | - Xiamin Jin
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Younan Lu
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Bangxu Zheng
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Zhoushu Zheng
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Lili Chen
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Huaqiang Zhu
- Zhejiang Pharmaceutical University, Ningbo, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
M N N, J K, S R S, Raavi V. Methylation Status of IGF-Axis Genes in the Placenta of South Indian Neonates with Appropriate and Small for Gestational Age. Fetal Pediatr Pathol 2024; 43:5-20. [PMID: 37975569 DOI: 10.1080/15513815.2023.2280660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Altered methylation patterns of insulin-like growth factor (IGF)-axis genes in small for gestational age (SGA) have been reported in different populations. In the present study, we analyzed the methylation status of IGF-axis genes in the placenta of appropriate for gestational age (AGA) and SGA neonates of South Indian women. METHODS Placental samples were collected from AGA (n = 40) and SAG (n = 40) neonates. The methylation of IGF-axis genes promoter was analyzed using MS-PCR. RESULTS IGF2, H19, IGF1, and IGFR1 genes promoter methylation was 2.5, 1.5, 5, and 7.5% lower in SGA compared to AGA, respectively. Co-methylation of IGF-axis genes promoter was 40% and 20% in AGA and SGA, respectively. IGF-axis gene promoter methylation significantly (p < 0.05) influenced the levels of IGFBP3 protein, birth weight, mitotic index, gestational weeks, and IGFR1 and IGFR2 gene expression. CONCLUSION IGF-axis genes methylation was lower in SGA than in AGA, and the methylation significantly influenced the IGF-axis components.
Collapse
Affiliation(s)
- Nithya M N
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, Karnataka, India
| | - Krishnappa J
- Department of Paediatrics, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, Karnataka, India
| | - Sheela S R
- Department of Obstetrics and Gynaecology, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, Karnataka, India
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, Karnataka, India
| |
Collapse
|
4
|
Zhou WC, Zhang QF, Chen JL, Gan JP, Li YK, Zou J. Angiopoietin4 (ANGPT4) expression and potential mechanisms in carcinogenesis: current achievements and perspectives. Clin Exp Med 2023; 23:4449-4456. [PMID: 37659993 DOI: 10.1007/s10238-023-01178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Angiopoietin4(ANGPT4) which plays a significant role in endothelial cell proliferation, survival, angiogenesis and expansion in tumors and other pathological states is a significant regulator of tumor angiogenesis. ANGPT4 expression is enhanced in many cancer cells. For example, the overexpression of ANGPT4 promotes the formation, development and progress of lung adenocarcinoma, glioblastoma and ovarian cancer. Related studies show that ANGPT4 encourages the proliferation, survival and invasion of tumor cells, while promoting the expansion of the tumor vascular system and affecting the tumor immune microenvironment. ANGPT4 can also promote carcinogenesis by affecting the ERK1/2, PI3K/AKT and other signal pathways downstream of tyrosine kinase with immunoglobulin-like and EGF-like domains 2(TIE2) and TIE2. Therefore, ANGPT4 may be a potential and significant biomarker for predicting malignant tumor progression and adverse outcomes. In addition, inhibition of ANGPT4 may be a meaningful cancer treatment. This paper reviews the latest research results of ANGPT4 in preclinical research, and emphasizes its role in carcinogenesis. Additional research on the carcinogenic function of ANGPT4 could provide new insights into cancer biology and novel methods for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Wen-Chao Zhou
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Qun-Feng Zhang
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jun-Ling Chen
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jin-Peng Gan
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yu-Kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
5
|
Rossi M, Seidita I, Vannuccini S, Prisinzano M, Donati C, Petraglia F. Epigenetics, endometriosis and sex steroid receptors: An update on the epigenetic regulatory mechanisms of estrogen and progesterone receptors in patients with endometriosis. VITAMINS AND HORMONES 2023; 122:171-191. [PMID: 36863793 DOI: 10.1016/bs.vh.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Endometriosis is a benign gynecological disease affecting ∼10% of reproductive-aged women and is defined as the presence of endometrial glands and stroma outside the uterine cavity. Endometriosis can cause a variety of health problems, from pelvic discomfort to catamenial pneumothorax, but it's mainly linked with severe and chronic pelvic pain, dysmenorrhea, and deep dyspareunia, as well as reproductive issues. The pathogenesis of endometriosis involves an endocrine dysfunction, with estrogen dependency and progesterone resistance, and inflammatory mechanism activation, together with impaired cell proliferation and neuroangiogenesis. The present chapter aims to discuss the main epigenetic mechanisms related to estrogen receptors (ERs) and progesterone receptors (PRs) in patients with endometriosis. There are numerous epigenetic mechanisms participating in endometriosis, regulating the expression of the genes encoding these receptors both indirectly, through the regulation of transcription factors, and directly, through DNA methylation, histone modifications, micro RNAs and long noncoding RNAs. This represents an open field of investigation, which may lead to important clinical implications such as the development of epigenetic drugs for the treatment of endometriosis and the identification of specific and early biomarkers for the disease.
Collapse
Affiliation(s)
- Margherita Rossi
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Isabelle Seidita
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Silvia Vannuccini
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Matteo Prisinzano
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Chiara Donati
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Felice Petraglia
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
6
|
Harary D, Akinyemi A, Charron MJ, Fuloria M. Fetal Growth and Intrauterine Epigenetic Programming of Obesity and Cardiometabolic Disease. Neoreviews 2022; 23:e363-e372. [PMID: 35641462 PMCID: PMC10100845 DOI: 10.1542/neo.23-6-e363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Epidemiologic studies have shown an association between an adverse intrauterine environment (eg, exposure to malnutrition) and an increased risk of developing cardiometabolic disease in adulthood. These studies laid the foundation for the developmental origins of health and disease hypothesis, which states that limited nutrient supply to the fetus results in physiologic and metabolic adaptations that favor survival but result in unfavorable consequences in the offspring if there is excess nutrition after birth. This discrepancy in the pre- and postnatal milieus, perceived as stress by the offspring, may confer an increased risk of developing cardiometabolic disease later in life. Thus, early life exposures result in programming or changes in cellular memory that have effects on health throughout the life course. One of the mechanisms by which programming occurs is via epigenetic modifications of genes, processes that result in functionally relevant changes in genes (ie, gene expression) without an alteration in the genotype. In this review, we will describe how fetal exposures, including under- and overnutrition, affect neonatal and childhood growth and the future risk for cardiometabolic disease.
Collapse
Affiliation(s)
- David Harary
- Department of Pediatrics, Division of Neonatology, Children's Hospital at Montefiore, Bronx, NY
| | | | - Maureen J Charron
- Departments of †Biochemistry
- Obstetrics & Gynecology and Women's Health, and
- Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY
| | - Mamta Fuloria
- Department of Pediatrics, Division of Neonatology, Children's Hospital at Montefiore, Bronx, NY
| |
Collapse
|
7
|
Aoki S, Higashimoto K, Hidaka H, Ohtsuka Y, Aoki S, Mishima H, Yoshiura KI, Nakabayashi K, Hata K, Yatsuki H, Hara S, Ohba T, Katabuchi H, Soejima H. Aberrant hypomethylation at imprinted differentially methylated regions is involved in biparental placental mesenchymal dysplasia. Clin Epigenetics 2022; 14:64. [PMID: 35581658 PMCID: PMC9115938 DOI: 10.1186/s13148-022-01280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Placental mesenchymal dysplasia (PMD) is a morphological abnormality resembling partial hydatidiform moles. It is often associated with androgenetic/biparental mosaicism (ABM) and complicated by Beckwith-Wiedemann syndrome (BWS), an imprinting disorder. These phenomena suggest an association between PMD and aberrant genomic imprinting, particularly of CDKN1C and IGF2. The existence of another type of PMD containing the biparental genome has been reported. However, the frequency and etiology of biparental PMD are not yet fully understood. RESULTS We examined 44 placental specimens from 26 patients with PMD: 19 of these were macroscopically normal and 25 exhibited macroscopic PMD. Genotyping by DNA microarray or short tandem repeat analysis revealed that approximately 35% of the macroscopic PMD specimens could be classified as biparental, while the remainder were ABM. We performed a DNA methylation analysis using bisulfite pyrosequencing of 15 placenta-specific imprinted differentially methylated regions (DMRs) and 36 ubiquitous imprinted DMRs. As expected, most DMRs in the macroscopic PMD specimens with ABM exhibited the paternal epigenotype. Importantly, the biparental macroscopic PMD specimens exhibited frequent aberrant hypomethylation at seven of the placenta-specific DMRs. Allelic expression analysis using single-nucleotide polymorphisms revealed that five imprinted genes associated with these aberrantly hypomethylated DMRs were biallelically expressed. Frequent aberrant hypomethylation was observed at five ubiquitous DMRs, including GRB10 but not ICR2 or ICR1, which regulate the expression of CDKN1C and IGF2, respectively. Whole-exome sequencing performed on four biparental macroscopic PMD specimens did not reveal any pathological genetic abnormalities. Clinical and molecular analyses of babies born from pregnancies with PMD revealed four cases with BWS, each exhibiting different molecular characteristics, and those between BWS and PMD specimens were not always the same. CONCLUSION These data clarify the prevalence of biparental PMD and ABM-PMD and strongly implicate hypomethylation of DMRs in the pathogenesis of biparental PMD, particularly placenta-specific DMRs and the ubiquitous GRB10, but not ICR2 or ICR1. Aberrant hypomethylation of DMRs was partial, indicating that it occurs after fertilization. PMD is an imprinting disorder, and it may be a missing link between imprinting disorders and placental disorders incompatible with life, such as complete hydatidiform moles and partial hydatidiform moles.
Collapse
Affiliation(s)
- Saori Aoki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| | - Hidenori Hidaka
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Yasufumi Ohtsuka
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Shigehisa Aoki
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Satoshi Hara
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Takashi Ohba
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| |
Collapse
|
8
|
Mori T, Ueno K, Tokunaga K, Kawai Y, Matsuda K, Nishida N, Komine K, Saito S, Nagasaki M. A single-nucleotide-polymorphism in the 5′-flanking region of MSX1 gene as a predictive marker candidate for platinum-based therapy of esophageal carcinoma. Ther Adv Med Oncol 2022; 14:17588359221080580. [PMID: 35251318 PMCID: PMC8891864 DOI: 10.1177/17588359221080580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Platinum derivatives are important treatment options for patients with esophageal carcinoma (EC), and a predictive marker for platinum-based therapy is needed for precision medicine. Patients and methods: This study contained two cohorts consisting of EC patients treated using platinum-based chemoradiation therapy (CRT) as the first-line and another external cohort of nationwide clinicogenomic data from the BioBank Japan (BBJ). Results: Genome-wide association study (GWAS) of therapeutic outcomes, refractory disease or not, following platinum-based CRT as first-line in 94 patients in the first cohort suggested the association of 89 SNPs using p < 0.0001. The top 10 SNPs selected from each chromosomal region by odds ratio were evaluated for progression-free survival (PFS) and overall survival (OS) hazard ratios in the first cohort, resulting in four candidates (p < 0.0025). The four selected candidates were re-evaluated in another cohort of 24 EC patients, which included patients prospectively enrolled in this study to fulfill the sample size statistically suggested by the results of the first cohort, and of the four, only rs3815544 was replicated (p < 0.0125). Furthermore, this candidate genotype of rs3815544 proceeded to the re-evaluation study in an external cohort consisting of EC patients treated with platinum derivatives and/or by radiation therapy as the first-line treatment in BBJ, which confirmed that the alternative allele (G) of rs3815544 was statistically associated with non-response (SD or PD) to platinum-based therapy in EC patients (odds ratio = 1.801, p = 0.048). The methylation QTL database as well as online clinicogenomic databases suggested that the region including rs3815544 may regulate MSX1 expression through CpG methylation, and this down-regulation was statistically associated with poor prognosis after platinum-based therapies for EC. Conclusion: rs3815544 is a novel candidate predictive marker for platinum-based EC therapy.
Collapse
Affiliation(s)
- Takahiro Mori
- Departments of Clinical Oncology and Gastroenterological Surgery, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara 252-0392, Kanagawa, Japan
- Laboratory of Tumor Immunology, Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Nao Nishida
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Keigo Komine
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Sakae Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masao Nagasaki
- Center for the Promotion of Interdisciplinary Education and Research, and nd Center for Genomic Midicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
9
|
Hu R, Yu Y, Wang H. The LMCD1-AS1/miR-526b-3p/OSBPL5 axis promotes cell proliferation, migration and invasion in non-small cell lung cancer. BMC Pulm Med 2022; 22:30. [PMID: 35000595 PMCID: PMC8744214 DOI: 10.1186/s12890-022-01820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To explore the specific role and regulatory mechanism of oxysterol binding protein like 5 (OSBPL5) in non-small cell lung cancer (NSCLC). METHODS AND RESULTS Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that OSBPL5 expression was notably elevated in NSCLC tissues and cell lines, and Kaplan-Meier analysis manifested that high OSBPL5 expression was closely related to the poor prognosis of NSCLC patients. Besides, according to the results from western blot analysis, cell counting kit-8, EdU and Transwell assays, knockdown of OSBPL5 suppressed NSCLC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) process. Additionally, by performing qRT-PCR analysis, luciferase reporter and RNA pull-down assays, we verified that OSBPL5 was a downstream target of miR-526b-3p and long noncoding RNA (lncRNA) LMCD1-AS1 served as a sponge for miR-526b-3p. Moreover, from rescue assays, we observed that OSBPL5 overexpression offset LMCD1-AS1 knockdown-mediated inhibition in cell proliferation, migration, invasion and EMT in NSCLC. CONCLUSIONS This paper was the first to probe the molecular regulatory mechanism of OSBPL5 involving the LMCD1-AS1/miR-526b-3p axis in NSCLC and our results revealed that the LMCD1-AS1/miR-526b-3p/OSBPL5 axis facilitates NSCLC cell proliferation, migration, invasion and EMT, which may offer a novel therapeutic direction for NSCLC.
Collapse
Affiliation(s)
- Rui Hu
- Department of Thoracic Surgery, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying, 257034, Shandong, China
| | - Yankai Yu
- Department of Thoracic Surgery, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying, 257034, Shandong, China
| | - Haining Wang
- Department of Thoracic Surgery, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying, 257034, Shandong, China.
| |
Collapse
|
10
|
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update 2021; 26:799-840. [PMID: 33043357 PMCID: PMC7600289 DOI: 10.1093/humupd/dmaa028] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal maternal–placental–foetal physiology and pathologies. OBJECTIVE AND RATIONALE To date, many studies have examined the human placental transcriptome, but often within a narrow focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cellular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes, summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the potential of transcript profiling in future studies. SEARCH METHODS The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute dataset repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’ and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies. OUTCOMES The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complications, exposures during pregnancy and in vitro placental cultures. The median sample size was 13 (interquartile range 8–29). Transcriptome studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more recent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully considered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized. WIDER IMPLICATIONS Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.
Collapse
Affiliation(s)
- Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Extensive Placental Methylation Profiling in Normal Pregnancies. Int J Mol Sci 2021; 22:ijms22042136. [PMID: 33669975 PMCID: PMC7924820 DOI: 10.3390/ijms22042136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
The placental methylation pattern is crucial for the regulation of genes involved in trophoblast invasion and placental development, both key events for fetal growth. We investigated LINE-1 methylation and methylome profiling using a methylation EPIC array and the targeted methylation sequencing of 154 normal, full-term pregnancies, stratified by birth weight percentiles. LINE-1 methylation showed evidence of a more pronounced hypomethylation in small neonates compared with normal and large for gestational age. Genome-wide methylation, performed in two subsets of pregnancies, showed very similar methylation profiles among cord blood samples while placentae from different pregnancies appeared very variable. A unique methylation profile emerged in each placenta, which could represent the sum of adjustments that the placenta made during the pregnancy to preserve the epigenetic homeostasis of the fetus. Investigations into the 1000 most variable sites between cord blood and the placenta showed that promoters and gene bodies that are hypermethylated in the placenta are associated with blood-specific functions, whereas those that are hypomethylated belong mainly to pathways involved in cancer. These features support the functional analogies between a placenta and cancer. Our results, which provide a comprehensive analysis of DNA methylation profiling in the human placenta, suggest that its peculiar dynamicity can be relevant for understanding placental plasticity in response to the environment.
Collapse
|
12
|
Turturice BA, Theorell J, Koenig MD, Tussing-Humphreys L, Gold DR, Litonjua AA, Oken E, Rifas-Shiman SL, Perkins DL, Finn PW. Perinatal granulopoiesis and risk of pediatric asthma. eLife 2021; 10:e63745. [PMID: 33565964 PMCID: PMC7889076 DOI: 10.7554/elife.63745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
There are perinatal characteristics, such as gestational age, reproducibly associated with the risk for pediatric asthma. Identification of biologic processes influenced by these characteristics could facilitate risk stratification or new therapeutic targets. We hypothesized that transcriptional changes associated with multiple epidemiologic risk factors would be mediators of pediatric asthma risk. Using publicly available transcriptomic data from cord blood mononuclear cells, transcription of genes involved in myeloid differentiation was observed to be inversely associated with a pediatric asthma risk stratification based on multiple perinatal risk factors. This gene signature was validated in an independent prospective cohort and was specifically associated with genes localizing to neutrophil-specific granules. Further validation demonstrated that umbilical cord blood serum concentration of PGLYRP-1, a specific granule protein, was inversely associated with mid-childhood current asthma and early-teen FEV1/FVCx100. Thus, neutrophil-specific granule abundance at birth predicts risk for pediatric asthma and pulmonary function in adolescence.
Collapse
Affiliation(s)
- Benjamin A Turturice
- Department of Microbiology and Immunology, University of IllinoisChicagoUnited States
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
| | - Juliana Theorell
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
| | - Mary Dawn Koenig
- Department of Women, Children and Family Health Science, College of Nursing, University of IllinoisChicagoUnited States
| | | | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Environmental Health, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Augusto A Litonjua
- Division of Pulmonary Medicine, Department of Pediatrics, University of RochesterRochesterUnited States
| | - Emily Oken
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care InstituteBostonUnited States
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care InstituteBostonUnited States
| | - David L Perkins
- Department of Medicine, Division of Nephrology, University of IllinoisChicagoUnited States
- Department of Bioengineering, University of IllinoisChicagoUnited States
| | - Patricia W Finn
- Department of Microbiology and Immunology, University of IllinoisChicagoUnited States
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
- Department of Bioengineering, University of IllinoisChicagoUnited States
| |
Collapse
|
13
|
Robinson N, Brown H, Antoun E, Godfrey KM, Hanson MA, Lillycrop KA, Crozier SR, Murray R, Pearce MS, Relton CL, Albani V, McKay JA. Childhood DNA methylation as a marker of early life rapid weight gain and subsequent overweight. Clin Epigenetics 2021; 13:8. [PMID: 33436068 PMCID: PMC7805168 DOI: 10.1186/s13148-020-00952-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND High early postnatal weight gain has been associated with childhood adiposity; however, the mechanism remains unknown. DNA methylation is a hypothesised mechanism linking early life exposures and subsequent disease. However, epigenetic changes associated with high early weight gain have not previously been investigated. Our aim was to investigate the associations between early weight gain, peripheral blood DNA methylation, and subsequent overweight/obese. Data from the UK Avon Longitudinal study of Parents and Children (ALSPAC) cohort were used to estimate associations between early postnatal weight gain and epigenome-wide DNA CpG site methylation (Illumina 450 K Methylation Beadchip) in blood in childhood (n = 125) and late adolescence (n = 96). High weight gain in the first year (a change in weight z-scores > 0.67), both unconditional (rapid weight gain) and conditional on birthweight (rapid thrive), was related to individual CpG site methylation and across regions using the meffil pipeline, with and without adjustment for cell type proportions, and with 5% false discovery rate correction. Variation in methylation at high weight gain-associated CpG sites was then examined with regard to body composition measures in childhood and adolescence. Replication of the differentially methylated CpG sites was sought using whole-blood DNA samples from 104 children from the UK Southampton Women's Survey. RESULTS Rapid infant weight gain was associated with small (+ 1% change) increases in childhood methylation (age 7) for two distinct CpG sites (cg01379158 (NT5M) and cg11531579 (CHFR)). Childhood methylation at one of these CpGs (cg11531579) was also higher in those who experienced rapid weight gain and were subsequently overweight/obese in adolescence (age 17). Rapid weight gain was not associated with differential DNA methylation in adolescence. Childhood methylation at the cg11531579 site was also suggestively associated with rapid weight gain in the replication cohort. CONCLUSIONS This study identified associations between rapid weight gain in infancy and small increases in childhood methylation at two CpG sites, one of which was replicated and was also associated with subsequent overweight/obese. It will be important to determine whether loci are markers of early rapid weight gain across different, larger populations. The mechanistic relevance of these differentially methylated sites requires further investigation.
Collapse
Affiliation(s)
- N Robinson
- Population Health Sciences, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, UK.
| | - H Brown
- Population Health Sciences, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Elie Antoun
- Institute of Developmental Sciences, Biological Sciences and NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Mark A Hanson
- Institute of Developmental Sciences, Biological Sciences and NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Karen A Lillycrop
- Institute of Developmental Sciences, Biological Sciences and NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Sarah R Crozier
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Robert Murray
- Institute of Developmental Sciences, Biological Sciences and NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - M S Pearce
- Population Health Sciences, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - C L Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - V Albani
- Population Health Sciences, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - J A McKay
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Luo D, Yang Q, Wang H, Tan M, Zou Y, Liu J. A predictive model for assessing prognostic risks in gastric cancer patients using gene expression and methylation data. BMC Med Genomics 2021; 14:14. [PMID: 33407483 PMCID: PMC7789242 DOI: 10.1186/s12920-020-00856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The role(s) of epigenetic reprogramming in gastric cancer (GC) remain obscure. This study was designed to identify methylated gene markers with prognostic potential for GC. METHODS Five datasets containing gene expression and methylation profiles from GC samples were collected from the GEO database, and subjected to meta-analysis. All five datasets were subjected to quality control and then differentially expressed genes (DEGs) and differentially expressed methylation genes (DEMGs) were selected using MetaDE. Correlations between gene expression and methylation status were analysed using Pearson coefficient correlation. Then, enrichment analyses were conducted to identify signature genes that were significantly different at both the gene expression and methylation levels. Cox regression analyses were performed to identify clinical factors and these were combined with the signature genes to create a prognosis-related predictive model. This model was then evaluated for predictive accuracy and then validated using a validation dataset. RESULTS This study identified 1565 DEGs and 3754 DEMGs in total. Of these, 369 were differentially expressed at both the gene and methylation levels. We identified 12 signature genes including VEGFC, FBP1, NR3C1, NFE2L2, and DFNA5 which were combined with the clinical data to produce a novel prognostic model for GC. This model could effectively split GC patients into two groups, high- and low-risk with these observations being confirmed in the validation dataset. CONCLUSION The differential methylation of the 12 signature genes, including VEGFC, FBP1, NR3C1, NFE2L2, and DFNA5, identified in this study may help to produce a functional predictive model for evaluating GC prognosis in clinical samples.
Collapse
Affiliation(s)
- Dan Luo
- Department of General Surgery, Chengdu Fifth People’s Hospital, 33 Mashi St, Chengdu, 610000 Sichuan China
| | - QingLing Yang
- Department of Pulmonary and Critical Care Medicine, Chengdu Fifth People’s Hospital, 33 Mashi St, Chengdu, 610000 Sichuan China
| | - HaiBo Wang
- Department of General Surgery, Chengdu Fifth People’s Hospital, 33 Mashi St, Chengdu, 610000 Sichuan China
| | - Mao Tan
- Department of General Surgery, Chengdu Fifth People’s Hospital, 33 Mashi St, Chengdu, 610000 Sichuan China
| | - YanLei Zou
- Department of General Surgery, Chengdu Fifth People’s Hospital, 33 Mashi St, Chengdu, 610000 Sichuan China
| | - Jian Liu
- Department of General Surgery, Chengdu Fifth People’s Hospital, 33 Mashi St, Chengdu, 610000 Sichuan China
| |
Collapse
|
15
|
Ke H, Wu Y, Wang R, Wu X. Creation of a Prognostic Risk Prediction Model for Lung Adenocarcinoma Based on Gene Expression, Methylation, and Clinical Characteristics. Med Sci Monit 2020; 26:e925833. [PMID: 33021972 PMCID: PMC7549534 DOI: 10.12659/msm.925833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background This study aimed to identify important marker genes in lung adenocarcinoma (LACC) and establish a prognostic risk model to predict the risk of LACC in patients. Material/Methods Gene expression and methylation profiles for LACC and clinical information about cases were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, respectively. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) between cancer and control groups were selected through meta-analysis. Pearson coefficient correlation analysis was performed to identify intersections between DEGs and DMGs and a functional analysis was performed on the genes that were correlated. Marker genes and clinical factors significantly related to prognosis were identified using univariate and multivariate Cox regression analyses. Risk prediction models were then created based on the marker genes and clinical factors. Results In total, 1975 DEGs and 2095 DMGs were identified. After comparison, 16 prognosis-related genes (EFNB2, TSPAN7, INPP5A, VAMP2, CALML5, SNAI2, RHOBTB1, CKB, ATF7IP2, RIMS2, RCBTB2, YBX1, RAB27B, NFATC1, TCEAL4, and SLC16A3) were selected from 265 overlapping genes. Four clinical factors (pathologic N [node], pathologic T [tumor], pathologic stage, and new tumor) were associated with prognosis. The prognostic risk prediction models were constructed and validated with other independent datasets. Conclusions An integrated model that combines clinical factors and gene markers is useful for predicting risk of LACC in patients. The 16 genes that were identified, including EFNB2, TSPAN7, INPP5A, VAMP2, and CALML5, may serve as novel biomarkers for diagnosis of LACC and prediction of disease prognosis.
Collapse
Affiliation(s)
- Honggang Ke
- Department of Cardiovascular and Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Yunyu Wu
- Qixiu Campus, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Runjie Wang
- Department of Oncology, Wuxi People's Hospital, Wuxi, Jiangsu, China (mainland)
| | - Xiaohong Wu
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University and Wuxi 4th People's Hospital, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
16
|
Sullivan-Pyke C, Mani S, Rhon-Calderon EA, Ord T, Coutifaris C, Bartolomei MS, Mainigi M. Timing of exposure to gonadotropins has differential effects on the conceptus: evidence from a mouse model†. Biol Reprod 2020; 103:854-865. [PMID: 32584398 DOI: 10.1093/biolre/ioaa109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/23/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Superovulation with gonadotropins alters the hormonal milieu during early embryo development and placentation, and may be responsible for fetal and placental changes observed after in vitro fertilization (IVF). We hypothesized that superovulation has differential effects depending on timing of exposure. To test our hypothesis, we isolated the effect of superovulation on pre- and peri-implantation mouse embryos. Blastocysts were obtained from either natural mating or following superovulation and mating, and were transferred into naturally mated or superovulated pseudopregnant recipient mice. Fetal weight was significantly lower after peri-implantation exposure to superovulation, regardless of preimplantation exposure (p = 0.006). Placentas derived from blastocysts exposed to superovulation pre- and peri-implantation were larger than placentas derived from natural blastocysts that are transferred into a natural or superovulated environment (p < 0.05). Fetal-to-placental weight ratio decreased following superovulation during the pre- or peri-implantation period (p = 0.05, 0.01, respectively) and these effects were additive. Peg3 DNA methylation levels were decreased in placentas derived from exposure to superovulation both pre- and peri-implantation compared with unexposed embryos and exposure of the preimplantation embryo only. Through RNA sequencing on placental tissue, changes were identified in genes involved in immune system regulation, specifically interferon signaling, which has been previously implicated in implantation and maintenance of early pregnancy in mice. Overall, we found that the timing of exposure to gonadotropin stimulation can have differential effects on fetal and placental growth. These findings could impact clinical practice and underscores the importance of dissecting the role of procedures utilized during IVF on pregnancy complications.
Collapse
Affiliation(s)
| | - Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric A Rhon-Calderon
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Teri Ord
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christos Coutifaris
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Tekola-Ayele F, Zeng X, Ouidir M, Workalemahu T, Zhang C, Delahaye F, Wapner R. DNA methylation loci in placenta associated with birthweight and expression of genes relevant for early development and adult diseases. Clin Epigenetics 2020; 12:78. [PMID: 32493484 PMCID: PMC7268466 DOI: 10.1186/s13148-020-00873-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/21/2020] [Indexed: 02/03/2023] Open
Abstract
Background Birthweight marks an important milestone of health across the lifespan, including cardiometabolic disease risk in later life. The placenta, a transient organ at the maternal-fetal interface, regulates fetal growth. Identifying genetic loci where DNA methylation in placenta is associated with birthweight can unravel genomic pathways that are dysregulated in aberrant fetal growth and cardiometabolic diseases in later life. Results We performed placental epigenome-wide association study (EWAS) of birthweight in an ethnic diverse cohort of pregnant women (n = 301). Methylation at 15 cytosine-(phosphate)-guanine sites (CpGs) was associated with birthweight (false discovery rate (FDR) < 0.05). Methylation at four (26.7%) CpG sites was associated with placental transcript levels of 15 genes (FDR < 0.05), including genes known to be associated with adult lipid traits, inflammation and oxidative stress. Increased methylation at cg06155341 was associated with higher birthweight and lower FOSL1 expression, and lower FOSL1 expression was correlated with higher birthweight. Given the role of the FOSL1 transcription factor in regulating developmental processes at the maternal-fetal interface, epigenetic mechanisms at this locus may regulate fetal development. We demonstrated trans-tissue portability of methylation at four genes (MLLT1, PDE9A, ASAP2, and SLC20A2) implicated in birthweight by a previous study in cord blood. We also found that methylation changes known to be related to maternal underweight, preeclampsia and adult type 2 diabetes were associated with lower birthweight in placenta. Conclusion We identified novel placental DNA methylation changes associated with birthweight. Placental epigenetic mechanisms may underlie dysregulated fetal development and early origins of adult cardiometabolic diseases. Clinical trial registration ClinicalTrials.gov, NCT00912132
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, room 3204, Bethesda, MD, 20892, USA.
| | - Xuehuo Zeng
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, room 3204, Bethesda, MD, 20892, USA
| | - Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, room 3204, Bethesda, MD, 20892, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, room 3204, Bethesda, MD, 20892, USA
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,UMR 1283, Institut Pasteur de Lille, Lille, France
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| |
Collapse
|
18
|
Li X, Yu B, Wu X, Zhang J, Jia C, Wang Z, Zhou Q, Zhou H, Yi G, Chen X, Fu S. Associations between Placental Insulin-Like Growth Factor-1 Gene Expression, DNA Methylation and Intrauterine Growth Restriction. Health (London) 2020. [DOI: 10.4236/health.2020.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Strillacci MG, Gorla E, Ríos-Utrera A, Vega-Murillo VE, Montaño-Bermudez M, Garcia-Ruiz A, Cerolini S, Román-Ponce SI, Bagnato A. Copy Number Variation Mapping and Genomic Variation of Autochthonous and Commercial Turkey Populations. Front Genet 2019; 10:982. [PMID: 31737031 PMCID: PMC6828962 DOI: 10.3389/fgene.2019.00982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/13/2019] [Indexed: 01/02/2023] Open
Abstract
This study aims at investigating genomic diversity of several turkey populations using Copy Number Variants (CNVs). A total of 115 individuals from six Italian breeds (Colle Euganei, Bronzato Comune Italiano, Parma e Piacenza, Brianzolo, Nero d'Italia, and Ermellinato di Rovigo), seven Narragansett, 38 commercial hybrids, and 30 Mexican turkeys, were genotyped with the Affymetrix 600K single nucleotide polymorphism (SNP) turkey array. The CNV calling was performed with the Hidden Markov Model of PennCNV software and with the Copy Number Analysis Module of SVS 8.4 by Golden Helix®. CNV were summarized into CNV regions (CNVRs) at population level using BEDTools. Variability among populations has been addressed by hierarchical clustering (pvclust R package) and by principal component analysis (PCA). A total of 2,987 CNVs were identified covering 4.65% of the autosomes of the Turkey_5.0/melGal5 assembly. The CNVRs identified in at least two individuals were 362-189 gains, 116 losses, and 57 complexes. Among these regions the 51% contain annotated genes. This study is the first CNV mapping of turkey population using 600K chip. CNVs clustered the individuals according to population and their geographical origin. CNVs are known to be indicators also of adaptation, as some researches in different species are suggesting.
Collapse
Affiliation(s)
- Maria G Strillacci
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| | - Erica Gorla
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| | - Angel Ríos-Utrera
- Campo Experimental La Posta, INIFAP, Municipio de Medellín, Veracruz, Mexico
| | | | - Moises Montaño-Bermudez
- Centro Nacional de Investigación en Fisiología y Mejoramiento Animal, INIFAP, Auchitlán, Querétaro, Mexico
| | - Adriana Garcia-Ruiz
- Centro Nacional de Investigación en Fisiología y Mejoramiento Animal, INIFAP, Auchitlán, Querétaro, Mexico
| | - Silvia Cerolini
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| | - Sergio I Román-Ponce
- Centro Nacional de Investigación en Fisiología y Mejoramiento Animal, INIFAP, Auchitlán, Querétaro, Mexico
| | - Alessandro Bagnato
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
20
|
Yang M, Perisse I, Fan Z, Regouski M, Meyer-Ficca M, Polejaeva IA. Increased pregnancy losses following serial somatic cell nuclear transfer in goats. Reprod Fertil Dev 2019; 30:1443-1453. [PMID: 29769162 DOI: 10.1071/rd17323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
Serial cloning by somatic cell nuclear transfer (SCNT) is a critical tool for the expansion of precious transgenic lines or resetting the lifespan of primary transgenic cells for multiple genetic modifications. We successfully produced second-generation cloned goats using donor neonatal fibroblasts from first-generation clones. However, our attempts to produce any third-generation clones failed. SCNT efficiency decreased progressively with the clonal generations. The rate of pregnancy loss was significantly greater in recloning groups (P<0.05). While no pregnancy loss was observed during the first round of SCNT, 14 out of 21 pregnancies aborted in the second round of SCNT and all pregnancies aborted in the third round of SCNT. In this retrospective study, we also investigated the expression of 21 developmentally important genes in muscle tissue of cloned (G1) and recloned (G2) offspring. The expression of most of these genes in live clones was found to be largely comparable to naturally reproduced control goats, but fibroblast growth factor 10 (FGF10), methyl CpG binding protein 2 (MECP2) and growth factor receptor bound protein 10 (GRB10) were differentially expressed (P<0.05) in G2 goats compared with G1 and controls. To study the effects of serial cloning on DNA methylation, the methylation pattern of differentially methylated regions in imprinted genes H19 and insulin like growth factor 2 receptor (IGF2R) were also analysed. Aberrant H19 DNA methylation patterns were detected in G1 and G2 clones.
Collapse
Affiliation(s)
- Min Yang
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Iuri Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Mirella Meyer-Ficca
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| |
Collapse
|
21
|
Ince-Askan H, Mandaviya PR, Felix JF, Duijts L, van Meurs JB, Hazes JMW, Dolhain RJEM. Altered DNA methylation in children born to mothers with rheumatoid arthritis during pregnancy. Ann Rheum Dis 2019; 78:1198-1204. [PMID: 31142478 PMCID: PMC6788924 DOI: 10.1136/annrheumdis-2018-214930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The main objective of this study was to determine whether the DNA methylation profile of children born to mothers with rheumatoid arthritis (RA) is different from that of children born to mothers from the general population. In addition, we aimed to determine whether any differences in methylation are associated with maternal RA disease activity or medication use during pregnancy. METHODS For this study, genome-wide DNA methylation was measured at cytosine-phosphate-guanine (CpG) sites, using the Infinium Illumina HumanMethylation 450K BeadChip, in 80 blood samples from children (mean age=6.8 years) born to mothers with RA. As controls, blood samples from 354 children (mean age=6.0 years) from the population-based Generation R Study were used. Linear mixed models were performed to investigate differential methylation between the groups, corrected for relevant confounders. RESULTS A total of 147 CpGs were differentially methylated between blood samples of children born to mothers with RA and the control blood samples. The five most significantly associated CpGs were cg06642177, cg08867893, cg06778273, cg07786668 and cg20116574. The differences in methylation were not associated with maternal RA disease activity or medication use during pregnancy. CONCLUSIONS DNA methylation at 147 CpGs differed between children born to mothers with RA and children born to mothers from the general population. It remains unknown whether the identified associations are causal, and if so whether they are caused by the disease or treatment. More research, including replication of these results, is necessary in order to strengthen the relevance of our findings for the later-life health of children born to mothers with RA.
Collapse
Affiliation(s)
- Hilal Ince-Askan
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Pooja R Mandaviya
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joyce B van Meurs
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johanna M W Hazes
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Radboud J E M Dolhain
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Yang M, Tao J, Wu H, Guan S, Liu L, Zhang L, Deng S, He C, Ji P, Liu J, Liu G. Aanat Knockdown and Melatonin Supplementation in Embryo Development: Involvement of Mitochondrial Function and DNA Methylation. Antioxid Redox Signal 2019; 30:2050-2065. [PMID: 30343588 DOI: 10.1089/ars.2018.7555] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aims: In addition to pineal gland, many cells, tissues, and organs also synthesize melatonin (N-acetyl-5-methoxytryptamine). Embryos are a group of special cells and whether they can synthesize melatonin is still an open question. However, melatonin application promoted embryo development in many species in in vitro condition. The purpose of this study was to investigate whether embryos can synthesize melatonin; if it is so, what are the impacts of the endogenously produced melatonin on embryo development and the associated molecular mechanisms. These have never been reported previously. Results: Melatonin synthesis was observed at different stages of embryonic development. Aanat (aralkylamine N-acetyltransferase), a rate-limiting enzyme for melatonin production, was found to mostly localize in the mitochondria. Aanat knockdown significantly impeded embryonic development, and melatonin supplementation rescued it. The potential mechanisms might be that melatonin preserved mitochondrial intact and its function, thus providing sufficient adenosine 5'-triphosphate for the embryo development. In addition, melatonin scavenged intracellular reactive oxygen species (ROS) and reduced the DNA mutation induced by oxidative stress. In the molecular level, Aanat knockdown reduced tet methylcytosine dioxygenase 2 (Tet2) expression and DNA demethylation in blastocyst and melatonin supplementation rescued these processes. Innovation: This is the first report to show that embryos synthesize melatonin, and its synthetic enzyme Aanat was located in the mitochondria of embryos. An effect of melatonin is to maintain Tet2 expression and normal methylation status, and thereby promote embryonic development. Conclusion: Embryos can produce melatonin that reduces ROS production, preserves mitochondrial function, and maintains Tet2 expression and the normal DNA methylation.
Collapse
Affiliation(s)
- Minghui Yang
- 1 National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingli Tao
- 1 National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- 1 National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengyu Guan
- 1 National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lixi Liu
- 1 National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- 1 National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- 2 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Changjiu He
- 1 National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,3 College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengyun Ji
- 1 National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinghao Liu
- 4 Laboratory Animal Centre, Peking University, Beijing, China
| | - Guoshi Liu
- 1 National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Pisarska MD, Chan JL, Lawrenson K, Gonzalez TL, Wang ET. Genetics and Epigenetics of Infertility and Treatments on Outcomes. J Clin Endocrinol Metab 2019; 104:1871-1886. [PMID: 30561694 PMCID: PMC6463256 DOI: 10.1210/jc.2018-01869] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/12/2018] [Indexed: 02/08/2023]
Abstract
CONTEXT Infertility affects 10% of the reproductive-age population. Even the most successful treatments such as assisted reproductive technologies still result in failed implantation. In addition, adverse pregnancy outcomes associated with infertility have been attributed to these fertility treatments owing to the presumed epigenetic modifications of in vitro fertilization and in vitro embryo development. However, the diagnosis of infertility has been associated with adverse outcomes, and the etiologies leading to infertility have been associated with adverse pregnancy and long-term outcomes. EVIDENCE ACQUISITION We have comprehensively summarized the data available through observational, experimental, cohort, and randomized studies to better define the effect of the underlying infertility diagnosis vs the epigenetics of infertility treatments on treatment success and overall outcomes. EVIDENCE SYNTHESIS Most female infertility results from polycystic ovary syndrome, endometriosis, and unexplained infertility, with some cases resulting from a polycystic ovary syndrome phenotype or underlying endometriosis. In addition to failed implantation, defective implantation can lead to problems with placentation that leads to adverse pregnancy outcomes, affecting both mother and fetus. CONCLUSION Current research, although limited, has suggested that genetics and epigenetics of infertility diagnosis affects disease and overall outcomes. In addition, other fertility treatments, which also lead to adverse outcomes, are aiding in the identification of factors, including the supraphysiologic hormonal environment, that might affect the overall success and healthy outcomes for mother and child. Further studies, including genome-wide association studies, epigenomics studies, and experimental studies, are needed to better identify the factors leading to these outcomes.
Collapse
Affiliation(s)
- Margareta D Pisarska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jessica L Chan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kate Lawrenson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tania L Gonzalez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erica T Wang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
- David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
24
|
Yan J, Su R, Zhang W, Wei Y, Wang C, Lin L, Feng H, Yang H. Epigenetic alteration of Rho guanine nucleotide exchange Factor 11 (ARHGEF11) in cord blood samples in macrosomia exposed to intrauterine hyperglycemia. J Matern Fetal Neonatal Med 2019; 34:422-431. [PMID: 30999786 DOI: 10.1080/14767058.2019.1609929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Macrosomia at birth is associated with maternal hyperglycemia and leads to subsequent susceptibility to obesity, abnormal glucose metabolism, hypertension, and dyslipidemia in offspring. Epigenetic reprogramming has been reported to be involved in the development of human diseases caused by suboptimal environmental or nutritional factors. The study was aiming to explore epigenetic mechanism influences on macrosomic infants exposed to intrauterine hyperglycemia. We performed a genome-wide analysis of DNA methylation in cord blood from macrosomic infants born to women with gestational diabetes in order to identify genes related to fetal growth or early adipose tissue development.Methods: To analyze the epigenetic patterns in umbilical cord blood in gestational diabetes mellitus (GDM), we collected umbilical cord blood from women with GDM (mean pregestational BMI of 24.4 kg/m2 and mean neonatal birth weight of 4366 g) and normal glucose-tolerant women (mean pregestational BMI of 19.8 kg/m2 and mean neonatal birth weight of 3166 g). Differentially methylated genes in the GDM group were identified using the Infinium HumanMethylation450 BeadChip array.Results: A total of 1251 genes were differentially methylated compared to the controls (p < .01). The methylation microarray data showed that two specific CpG sites (cg12604331 and cg08480098) in the gene body of ARHGEF11 were significantly hypomethylated in the cord blood in macrosomic infants. Altered DNA methylation levels of ARHGEF11 were negatively correlated with glucose levels and neonatal birth weight.Conclusions: Exposure to adverse intrauterine environments can alter fetal development, such as by affecting the nutritional status of the fetus. Such exposure can also result in significant epigenetic modifications, including DNA methylation, which could serve as a potential marker for nutrition and metabolic conditions at the neonatal stage or even in the adult.
Collapse
Affiliation(s)
- Jie Yan
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Rina Su
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Wanyi Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Yumei Wei
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Chen Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Hui Feng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| |
Collapse
|
25
|
Ma B, Allard C, Bouchard L, Perron P, Mittleman MA, Hivert MF, Liang L. Locus-specific DNA methylation prediction in cord blood and placenta. Epigenetics 2019; 14:405-420. [PMID: 30885044 DOI: 10.1080/15592294.2019.1588685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA methylation is known to be responsive to prenatal exposures, which may be a part of the mechanism linking early developmental exposures to future chronic diseases. Many studies use blood to measure DNA methylation, yet we know that DNA methylation is tissue specific. Placenta is central to fetal growth and development, but it is rarely feasible to collect this tissue in large epidemiological studies; on the other hand, cord blood samples are more accessible. In this study, based on paired samples of both placenta and cord blood tissues from 169 individuals, we investigated the methylation concordance between placenta and cord blood. We then employed a machine-learning-based model to predict locus-specific DNA methylation levels in placenta using DNA methylation levels in cord blood. We found that methylation correlation between placenta and cord blood is lower than other tissue pairs, consistent with existing observations that placenta methylation has a distinct pattern. Nonetheless, there are still a number of CpG sites showing robust association between the two tissues. We built prediction models for placenta methylation based on cord blood data and documented a subset of 1,012 CpG sites with high correlation between measured and predicted placenta methylation levels. The resulting list of CpG sites and prediction models could help to reveal the loci where internal or external influences may affect DNA methylation in both placenta and cord blood, and provide a reference data to predict the effects on placenta in future study even when the tissue is not available in an epidemiological study.
Collapse
Affiliation(s)
- Baoshan Ma
- a College of Information Science and Technology , Dalian Maritime University , Dalian , Liaoning Province , China
| | - Catherine Allard
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada
| | - Luigi Bouchard
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.,c Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Quebec , Canada.,d ECOGENE-21 Biocluster , CSSS de Chicoutimi , Chicoutimi , Quebec , Canada
| | - Patrice Perron
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.,e Department of Medicine, Faculty of Medicine and Life Sciences , Université de Sherbrooke , Sherbrooke , Quebec , Canada
| | - Murray A Mittleman
- f Department of Epidemiology , Harvard T.H. Chan School of Public Health , Boston , MA , USA.,g Cardiovascular Epidemiology Research Unit , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Marie-France Hivert
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.,e Department of Medicine, Faculty of Medicine and Life Sciences , Université de Sherbrooke , Sherbrooke , Quebec , Canada.,h Department of Population Medicine , Harvard Pilgrim Health Care Institute, Harvard Medical School , Boston , MA , USA.,i Diabetes Unit , Massachusetts General Hospital , Boston , MA , USA
| | - Liming Liang
- f Department of Epidemiology , Harvard T.H. Chan School of Public Health , Boston , MA , USA.,j Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
26
|
Wu Y, Peterson KE, Sánchez BN, Dolinoy DC, Mercado-Garcia A, Téllez-Rojo MM, Goodrich JM. Association of blood leukocyte DNA methylation at LINE-1 and growth-related candidate genes with pubertal onset and progression. Epigenetics 2018; 13:1222-1233. [PMID: 30582410 PMCID: PMC6986794 DOI: 10.1080/15592294.2018.1556198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/01/2018] [Accepted: 11/21/2018] [Indexed: 01/15/2023] Open
Abstract
Puberty is a developmentally plastic phase. Variations in pubertal tempo have implications for the risk of later adult diseases. Influences on pubertal tempo have been widely discussed, but the underlying biological mechanisms remain unclear. Epigenetic modifications are known to regulate development processes; they could play an important role in affecting pubertal outcomes. We conducted a population-based analysis to investigate the association of peripubertal blood DNA methylation at LINE-1 and growth-related candidate genes with pubertal onset and progression in healthy adolescents. The analytic sample included 114 males and 129 females aged 10 to 18 years. DNA methylation at growth-related candidate loci IGF2, H19, HSD11B2, as well as LINE-1 repetitive elements were quantified. Cox survival and ordinal regression models were used to examine sex- and locus-specific associations of epigenetic markers with pubertal development using physician-assessed Tanner stages and self-reported menarche, adjusted for covariates. Among boys, DNA methylation at H19 was associated with later pubarche. HSD11B2 methylation was associated with earlier onset of pubic hair and genitalia development and slower pubertal progression. IGF2 was associated with later onset of genital development. Among girls, LINE-1 methylation was associated with later onset of breast development. For each percent increase of methylation at H19, there was 5% increased odds in the earlier onset of breast development. DNA methylation of IGF2 was associated with earlier onset of pubic hair. DNA methylation at genes known to influence early-life growth may also influence pubertal outcomes.
Collapse
Affiliation(s)
- Yue Wu
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| | - Brisa N. Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C. Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Adriana Mercado-Garcia
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Martha M. Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Effects of superovulation, in vitro fertilization, and oocyte in vitro maturation on imprinted gene Grb10 in mouse blastocysts. Arch Gynecol Obstet 2018; 298:1219-1227. [DOI: 10.1007/s00404-018-4905-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
|
28
|
Maddock J, Wulaningsih W, Fernandez JC, Ploubidis GB, Goodman A, Bell J, Kuh D, Hardy R. Associations between body size, nutrition and socioeconomic position in early life and the epigenome: A systematic review. PLoS One 2018; 13:e0201672. [PMID: 30096154 PMCID: PMC6086410 DOI: 10.1371/journal.pone.0201672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background Body size, nutrition and socioeconomic position (SEP) in early life have been associated with a wide range of long-term health effects. Epigenetics is one possible mechanism through which these early life exposures can impact later life health. We conducted a systematic review examining the observational evidence for the impact of body size, nutrition and SEP in early life on the epigenome in humans. Methods This systematic review is registered with the PROSPERO database (registration number: CRD42016050193). Three datasets were simultaneously searched using Ovid and the resulting studies were evaluated by at least two independent reviewers. Studies measuring epigenetic markers either at the same time as, or after, the early life exposure and have a measure of body size, nutrition or SEP in early life (up to 12 years), written in English and from a community-dwelling participants were included. Results We identified 90 eligible studies. Seventeen of these papers examined more than one early life exposure of interest. Fifty six papers examined body size, 37 nutrition and 17 SEP. All of the included papers examined DNA methylation (DNAm) as the epigenetic marker. Overall there was no strong evidence for a consistent association between these early life variables in DNAm which may be due to the heterogeneous study designs, data collection methods and statistical analyses. Conclusions Despite these inconclusive results, the hypothesis that the early life environment can impact DNAm, potentially persisting into adult life, was supported by some studies and warrants further investigation. We provide recommendations for future studies.
Collapse
Affiliation(s)
- Jane Maddock
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
- * E-mail:
| | - Wahyu Wulaningsih
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Juan Castillo Fernandez
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - George B. Ploubidis
- Centre for Longitudinal Studies, UCL Institute of Education, University College London, London, United Kingdom
| | - Alissa Goodman
- Centre for Longitudinal Studies, UCL Institute of Education, University College London, London, United Kingdom
| | - Jordana Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Rebecca Hardy
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
29
|
Gentilini D, Somigliana E, Pagliardini L, Rabellotti E, Garagnani P, Bernardinelli L, Papaleo E, Candiani M, Di Blasio AM, Viganò P. Multifactorial analysis of the stochastic epigenetic variability in cord blood confirmed an impact of common behavioral and environmental factors but not of in vitro conception. Clin Epigenetics 2018; 10:77. [PMID: 29930742 PMCID: PMC5994106 DOI: 10.1186/s13148-018-0510-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Background An increased incidence of imprint-associated disorders has been reported in babies born from assisted reproductive technology (ART). However, previous studies supporting an association between ART and an altered DNA methylation status of the conceived babies have been often conducted on a limited number of methylation sites and without correction for critical potential confounders. Moreover, all the previous studies focused on the identification of methylation changes shared among subjects while an evaluation of stochastic differences has never been conducted. This study aims to evaluate the effect of ART and other common behavioral or environmental factors associated with pregnancy on stochastic epigenetic variability using a multivariate approach. Results DNA methylation levels of cord blood from 23 in vitro and 41 naturally conceived children were analyzed using the Infinium HumanMethylation450 BeadChips. After multiple testing correction, no statistically significant difference emerged in the number of cord blood stochastic epigenetic variations or in the methylation levels between in vitro- and in vivo-conceived babies. Conversely, four multiple factor analysis dimensions summarizing common phenotypic, behavioral, or environmental factors (cord blood cell composition, pre or post conception supplementation of folates, birth percentiles, gestational age, cesarean section, pre-gestational mother’s weight, parents’ BMI and obesity status, presence of adverse pregnancy outcomes, mother’s smoking status, and season of birth) were significantly associated with stochastic epigenetic variability. The stochastic epigenetic variation analysis allowed the identification of a rare imprinting defect in the locus GNAS in one of the babies belonging to the control population, which would not have emerged using a classical case-control association analysis. Conclusions We confirmed the effect of several common behavioral or environmental factors on the epigenome of newborns and described for the first time an epigenetic effect related to season of birth. Children born after ART did not appear to have an increased risk of genome-wide changes in DNA methylation either at specific loci or randomly scattered throughout the genome. The inability to identify differences between cases and controls suggests that the number of stochastic epigenetic variations potentially induced by ART was not greater than that naturally produced in response to maternal behavior or other common environmental factors. Electronic supplementary material The online version of this article (10.1186/s13148-018-0510-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D Gentilini
- 1Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy.,5Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - E Somigliana
- 2Infertility Unit, Fondazione Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - L Pagliardini
- 3Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - E Rabellotti
- 3Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - P Garagnani
- 4Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - L Bernardinelli
- 5Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - E Papaleo
- 3Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - M Candiani
- 6Obstetrics and Gynaecology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - A M Di Blasio
- 1Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy
| | - P Viganò
- 3Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
30
|
Le Stunff C, Castell AL, Todd N, Mille C, Belot MP, Frament N, Brailly-Tabard S, Benachi A, Fradin D, Bougnères P. Fetal growth is associated with CpG methylation in the P2 promoter of the IGF1 gene. Clin Epigenetics 2018; 10:57. [PMID: 29713392 PMCID: PMC5909239 DOI: 10.1186/s13148-018-0489-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background There are many reasons to think that epigenetics is a key determinant of fetal growth variability across the normal population. Since IGF1 and INS genes are major determinants of intrauterine growth, we examined the methylation of selected CpGs located in the regulatory region of these two genes. Methods Cord blood was sampled in 159 newborns born to mothers prospectively followed during their pregnancy. A 142-item questionnaire was filled by mothers at inclusion, during the last trimester of the pregnancy and at the delivery. The methylation of selected CpGs located in the promoters of the IGF1 and INS genes was measured in cord blood mononuclear cells collected at birth using bisulfite-PCR-pyrosequencing. Results Methylation at IGF1 CpG-137 correlated negatively with birth length (r = 0.27, P = 3.5 × 10−4). The same effect size was found after adjustment for maternal age, parity, and smoking: a 10% increase in CpG-137 methylation was associated with a decrease of length by 0.23 SDS. Conclusion The current results suggest that the methylation of IGF1 CpG-137 contributes to the individual variation of fetal growth by regulating IGF1 expression in fetal tissues. Electronic supplementary material The online version of this article (10.1186/s13148-018-0489-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catherine Le Stunff
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Anne-Laure Castell
- 2Service de Médecine des Adolescents, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Nicolas Todd
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Clémence Mille
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Marie-Pierre Belot
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Nathalie Frament
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Sylvie Brailly-Tabard
- 3Service de BiologieMoléculaire et Hormonologie, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Alexandra Benachi
- 4Service de Gynécologie-Obstétrique, Antoine Béclère Hospital, Paris Sud University, Clamart, France
| | | | - Pierre Bougnères
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| |
Collapse
|
31
|
Tian FY, Wang XM, Xie C, Zhao B, Niu Z, Fan L, Hivert MF, Chen WQ. Placental surface area mediates the association between FGFR2 methylation in placenta and full-term low birth weight in girls. Clin Epigenetics 2018; 10:39. [PMID: 29588807 PMCID: PMC5863829 DOI: 10.1186/s13148-018-0472-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Background Fibroblast growth factor receptor 2 (FGFR2) gene encodes a protein of the fibroblast growth factor receptor family. FGFR2 gene expression is associated with the regulation of implantation process of placenta which plays a vital role in fetal growth. DNA methylation is widely known as a mechanism of fetal growth. However, it is unclear whether and how DNA methylation of FGFR2 gene in the placenta is associated with full-term low birth weight. This case-control study aims to explore the links between FGFR2 methylation in placenta and full-term low birth weight and to further examine the mediation effect of placental surface area on this association. Results We conducted analyses for each of the five valid CpG sites at FGFR2 in 165 mother-baby pairs (86 FT-LBW vs. 79 FT-NBW) and found that per one standard deviation increase in the DNA methylation of CpG 11 at FGFR2 was associated with 1.64-fold higher risk of full-term low birth weight (OR = 1.64, 95% CI = [1.07, 2.52]) and 0.18 standard deviation decrease in placental surface area (β = - 0.18; standard error = 0.08, p = 0.02). The mediation effect of placental surface area on the association between DNA methylation and full-term low birth weight was significant in girls (OR = 1.38, 95% CI = [1.05, 1.80]) but not in boys. The estimated mediation proportion was 48.38%. Conclusion Our findings suggested that placental surface area mediated the association between DNA methylation of FGFR2 in placenta and full-term low birth weight in a sex-specific manner. Our study supported the importance of placental epigenetic changes in placental development and fetal growth.
Collapse
Affiliation(s)
- Fu-Ying Tian
- 1Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Room 715, 74 Zhongshan Road 2, Guangzhou, 510080 Guangdong China
| | - Xi-Meng Wang
- 1Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Room 715, 74 Zhongshan Road 2, Guangzhou, 510080 Guangdong China
| | - Chuanbo Xie
- Department of Cancer Prevention Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bo Zhao
- 3Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Zhongzheng Niu
- 4Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, 265 Farber Hall, Buffalo, NY 14214 USA
| | - Lijun Fan
- 1Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Room 715, 74 Zhongshan Road 2, Guangzhou, 510080 Guangdong China
| | - Marie-France Hivert
- 5Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, 401 Park Drive, Suite 401, Boston, MA USA.,6Diabetes Center, Massachusetts General Hospital, 50 Staniford Street, Boston, MA USA.,7Department of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec Canada.,8Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, 3001 12th Avenue North, wing 9, door 6, Sherbrooke, Québec Canada
| | - Wei-Qing Chen
- 1Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Room 715, 74 Zhongshan Road 2, Guangzhou, 510080 Guangdong China.,9Department of Information Management, Xinhua College, Sun Yat-sen University, Guangzhou, Guangdong China
| |
Collapse
|
32
|
Litzky JF, Deyssenroth MA, Everson TM, Armstrong DA, Lambertini L, Chen J, Marsit CJ. Placental imprinting variation associated with assisted reproductive technologies and subfertility. Epigenetics 2017; 12:653-661. [PMID: 28621618 PMCID: PMC5687325 DOI: 10.1080/15592294.2017.1336589] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022] Open
Abstract
Infertility affects one in 6 couples in developed nations, resulting in an increasing use of assisted reproductive technologies (ART). Both ART and subfertility appear to be linked to lower birth weight outcomes, setting infants up for poor long-term health. Prenatal growth is, in part, regulated via epigenetically-controlled imprinted genes in the placenta. Although differences in DNA methylation between ART and control infants have been found, it remains unclear whether these differences are due to the ART procedures or to the underlying parental subfertility and how these methylation differences affect imprinted gene expression. In this study, we examined the expression of 108 imprinted genes in placental tissues from infants born to subfertile parents (n = 79), matched naturally-conceived controls (n = 158), and infants conceived using in vitro fertilization (IVF, n = 18). Forty-five genes were identified as having significantly different expression between the subfertile infants and controls, whereas no significant differences were identified between the IVF and control groups. The expression of 4 genes-IGF2, NAPIL5, PAX8-AS1, and TUBGCP5-was significantly downregulated in the IVF compared with the subfertile group. Three of the 45 genes significantly dysregulated between subfertile and control placentae-GRB10, NDN, and CD44 -were found to have a significant positive correlation between expression and birth weight. Methylation levels for these 3 genes and 4 others-MKRN3, WRB, DHCR24, and CYR61-were significantly correlated with expression. Our findings indicate that epigenetic differences in placentas resulting from IVF pregnancies may be related to the underlying subfertility in parents using IVF rather than the IVF procedure itself.
Collapse
Affiliation(s)
- Julia F. Litzky
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Todd M. Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - David A. Armstrong
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Obstetrics; Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| |
Collapse
|
33
|
|
34
|
Sundheimer LW, Pisarska MD. Abnormal Placentation Associated with Infertility as a Marker of Overall Health. Semin Reprod Med 2017; 35:205-216. [PMID: 28658703 DOI: 10.1055/s-0037-1603570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractInfertility and fertility treatments utilized are associated with abnormal placentation leading to adverse pregnancy outcomes related to placentation, including preterm birth, low birth weight, placenta accrete, and placenta previa. This may be due to the underlying genetics predisposing to infertility or the epigenetic changes associated with the fertility treatments utilized, as specific disease states leading to infertility are at increased risk of adverse outcomes, including placental abruption, fetal loss, gestational diabetes mellitus, and outcomes related to placentation, as well as the treatments utilized including in vitro fertilization (IVF) and non-IVF fertility treatment. Placentation defects, leading to adverse maternal and fetal outcomes, which are more pronounced in the infertile population, occur due to changes in trophoblast invasion, vascular defects, changes in the environmental milieu, chronic inflammation, and oxidative stress. These similar processes are recognized as major contributors to lifelong risk of cardiovascular and metabolic disease for both the mother and her offspring. Thus, abnormal placentation, found to be more prevalent in the infertile population, may be the key to better understand how infertility affects overall and long-term health.
Collapse
Affiliation(s)
- Lauren W Sundheimer
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California.,Division of Reproductive Endocrinology and Infertility, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California.,Division of Reproductive Endocrinology and Infertility, UCLA David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
35
|
Wu D, Gong C, Su C. Genome-wide analysis of differential DNA methylation in Silver-Russell syndrome. SCIENCE CHINA-LIFE SCIENCES 2017. [PMID: 28624953 DOI: 10.1007/s11427-017-9079-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Silver-Russell Syndrome (SRS) is clinically heterogeneous disorder characterized by low birth weight, postnatal growth restriction, and variable dysmorphic features. Current evidence strongly implicates imprinted genes as an important etiology of SRS. Although almost half of the patients showed DNA hypomethylation at the H19/IGF2 imprinted domain, and approximately 7%-10% of SRS patients have maternal uniparental disomy of chromosome 7 (UPD (7) mat); the rest of the SRS patients shows unknown etiology. In this study, we investigate whether there are further DNA methylation defects in SRS patients. We measured DNA methylation in seven SRS patients and five controls at more than 485,000 CpG sites using DNA methylation microarrays. We analyzed methylation changes genome-wide and identified the differentially methylated regions (DMRs) using bisulfite sequencing and digital PCR. Our analysis identifies epimutations at the previously characterized domains of H19/IGF2, providing proof of principle that our methodology can detect the changes in DNA methylation at imprinted loci. In addition, our results showed a novel SRS associated imprinted gene OSBPL5 located on chromosome 11p14 with the probe cg25963939, which is hypomethylated in 4/7 patients (P=0.023, β=-0.243). We also report DMRs in other genes including TGFβ3, HSF1, GAP43, NOTCH4 and MYH14. These DMRs were found to be associated with SRS using GO pathway analysis. In this study, we identified the probe cg25963939, located at the 5'UTR of imprinted gene OSBPL5, as a novel DMR that is associated with SRS. This finding provides new insights into the mechanism of SRS etiology and aid the further stratification of SRS patients by molecular phenotypes.
Collapse
Affiliation(s)
- Di Wu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing, 100045, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing, 100045, China.
| | - Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing, 100045, China
| |
Collapse
|
36
|
The health outcomes of human offspring conceived by assisted reproductive technologies (ART). J Dev Orig Health Dis 2017; 8:388-402. [DOI: 10.1017/s2040174417000228] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Concerns have been raised about the health and development of children conceived by assisted reproductive technologies (ART) since 1978. Controversially, ART has been linked with adverse obstetric and perinatal outcomes, an increased risk of birth defects, cancers, and growth and development disorders. Emerging evidence suggests that ART treatment may also predispose individuals to an increased risk of chronic ageing related diseases such as obesity, type 2 diabetes and cardiovascular disease. This review will summarize the available evidence on the short-term and long-term health outcomes of ART singletons, as multiple pregnancies after multiple embryos transfer, are associated with low birth weight and preterm delivery, which can separately increase risk of adverse postnatal outcomes, and impact long-term health. We will also examine the potential factors that may contribute to these health risks, and discuss underlying mechanisms, including epigenetic changes that may occur during the preimplantation period and reprogram development in utero, and adult health, later in life. Lastly, this review will consider the future directions with the view to optimize the long-term health of ART children.
Collapse
|
37
|
Tian FY, Hivert MF, Wen X, Xie C, Niu Z, Fan L, Gillman MW, Chen WQ. Tissue differences in DNA methylation changes at AHRR in full term low birth weight in maternal blood, placenta and cord blood in Chinese. Placenta 2017; 52:49-57. [PMID: 28454697 DOI: 10.1016/j.placenta.2017.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Very few study addressed the relationship between Aryl-hydrocarbon receptor repressor (AHRR) DNA methylation and low birth weight, especially in multiple tissues of mother-infant pairs. In this study, we aimed to investigate AHRR DNA methylation modification in cord blood, placenta and maternal blood between full term low birth weight (FT-LBW) and full term normal birth weight (FT-NBW) newborns. METHODS We enrolled 90 FT-LBW and 90 FT-NBW mother-infant pairs, of which all placenta and cord blood samples were collected while 45 maternal blood samples of each group were collected. We measured AHRR DNA methylation (Chr5: 373013-373606) using Sequenom MassARRAY, and assessed associations between AHRR DNA methylation and FT-LBW using logistic regression adjusting for maternal age, education, family income, delivery mode, and passive smoking. RESULTS FT-LBW babies had 3% lower methylation at Chr5: 373378 (CpG 13) in cord blood, and 4-9% higher methylation levels at Chr5: 373315, 373378, 373423, 373476 and 373490/373494 (CpG 10; 13; 15; 16; 17/18 respectively) in maternal blood, comparing with FT-NBW. The methylation of Chr5: 373378 (CpG 13) remained significant association with FT-LBW both in cord blood (OR = 0.90; 95% CI: 0.82, 0.98) and maternal blood (OR = 1.14; 95% CI: 1.04, 1.25) further adjusting for each other in the same model. We observed no significant difference at any CpG sites in placenta. DISCUSSION AHRR DNA methylation of cord and maternal blood might be independently associated with FT-LBW in different ways.
Collapse
Affiliation(s)
- Fu-Ying Tian
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, 401 Park Drive, Suite 401, Boston, MA, USA; Diabetes Center, Massachusetts General Hospital, 50 Staniford Street, Boston, MA, USA; Department of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, 3001 12th Avenue North, Wing 9, Door 6, Sherbrooke, Québec, Canada.
| | - Xiaozhong Wen
- Division of Behavioral Medicine, Department of Pediatrics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| | - Chuanbo Xie
- Department of Cancer Prevention Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Zhongzheng Niu
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Lijun Fan
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Matthew W Gillman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, 401 Park Drive, Suite 401, Boston, MA, USA.
| | - Wei-Qing Chen
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
38
|
Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Global DNA methylation levels are altered by modifiable clinical manipulations in assisted reproductive technologies. Clin Epigenetics 2017; 9:14. [PMID: 28191261 PMCID: PMC5295214 DOI: 10.1186/s13148-017-0318-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/25/2017] [Indexed: 01/16/2023] Open
Abstract
Background We analyzed placental DNA methylation levels at repeated sequences (LINE1 elements) and all CCGG sites (the LUMA assay) to study the effect of modifiable clinical or laboratory procedures involved in in vitro fertilization. We included four potential modifiable factors: oxygen tension during embryo culture, fresh embryo transfer vs frozen embryo transfer, intracytoplasmic sperm injection (ICSI) vs conventional insemination or day 3 embryo transfer vs day 5 embryo transfer. Results Global methylation levels differed between placentas from natural conceptions compared to placentas conceived by IVF. Placentas from embryos cultured at 20% oxygen showed significant differences in LINE1 methylation compared to in vivo conceptions, while those from embryos cultured at 5% oxygen, did not have significant differences. In addition, placentas from fresh embryo transfer had significantly different LINE1 methylation compared to placentas from in vivo conceptions, while embryos resulting from frozen embryos were not significantly different from controls. On sex-stratified analysis, only males had significant methylation differences at LINE1 elements stratified for the modifiable factors. As expected, LINE1 methylation was significantly different between males and females in the control population. However, we did not observe sex-specific differences in the IVF group. We validated this sex-specific observation in an additional cohort and in opposite sex IVF twins. Conclusion We show that two clinically modifiable factors (embryo culture in 5 vs 20% oxygen tension and fresh vs frozen embryo transfer) are associated with global placental methylation differences. Interestingly, males appear more vulnerable to such treatment-related global changes in DNA methylation than do females. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0318-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jayashri Ghosh
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Christos Coutifaris
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA.,Department of Obstetrics & Gynecology, University of Pennsylvania School of Medicine, 3701 Market Street, 8th Floor, Philadelphia, PA 19104 USA
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140 USA.,Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140 USA
| | - Monica Mainigi
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA.,Department of Obstetrics & Gynecology, University of Pennsylvania School of Medicine, 3701 Market Street, 8th Floor, Philadelphia, PA 19104 USA
| |
Collapse
|
39
|
Wilson LE, Harlid S, Xu Z, Sandler DP, Taylor JA. An epigenome-wide study of body mass index and DNA methylation in blood using participants from the Sister Study cohort. Int J Obes (Lond) 2017; 41:194-199. [PMID: 27773939 PMCID: PMC5209267 DOI: 10.1038/ijo.2016.184] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES The relationship between obesity and chronic disease risk is well-established; the underlying biological mechanisms driving this risk increase may include obesity-related epigenetic modifications. To explore this hypothesis, we conducted a genome-wide analysis of DNA methylation and body mass index (BMI) using data from a subset of women in the Sister Study. SUBJECTS/METHODS The Sister Study is a cohort of 50 884 US women who had a sister with breast cancer but were free of breast cancer themselves at enrollment. Study participants completed examinations which included measurements of height and weight, and provided blood samples. Blood DNA methylation data generated with the Illumina Infinium HumanMethylation27 BeadChip array covering 27,589 CpG sites was available for 871 women from a prior study of breast cancer and DNA methylation. To identify differentially methylated CpG sites associated with BMI, we analyzed this methylation data using robust linear regression with adjustment for age and case status. For those CpGs passing the false discovery rate significance level, we examined the association in a replication set comprised of a non-overlapping group of 187 women from the Sister Study who had DNA methylation data generated using the Infinium HumanMethylation450 BeadChip array. Analysis of this expanded 450 K array identified additional BMI-associated sites which were investigated with targeted pyrosequencing. RESULTS Four CpG sites reached genome-wide significance (false discovery rate (FDR) q<0.05) in the discovery set and associations for all four were significant at strict Bonferroni correction in the replication set. An additional 23 sites passed FDR in the replication set and five were replicated by pyrosequencing in the discovery set. Several of the genes identified including ANGPT4, RORC, SOCS3, FSD2, XYLT1, ABCG1, STK39, ASB2 and CRHR2 have been linked to obesity and obesity-related chronic diseases. CONCLUSIONS Our findings support the hypothesis that obesity-related epigenetic differences are detectable in blood and may be related to risk of chronic disease.
Collapse
Affiliation(s)
- Lauren E. Wilson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Sophia Harlid
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
40
|
Agha G, Hajj H, Rifas-Shiman SL, Just AC, Hivert MF, Burris HH, Lin X, Litonjua AA, Oken E, DeMeo DL, Gillman MW, Baccarelli AA. Birth weight-for-gestational age is associated with DNA methylation at birth and in childhood. Clin Epigenetics 2016; 8:118. [PMID: 27891191 PMCID: PMC5112715 DOI: 10.1186/s13148-016-0285-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Both higher and lower fetal growth are associated with cardio-metabolic health later in life, suggesting that prenatal developmental programming determines long-term cardiovascular disease risk. Epigenetic mechanisms, which orchestrate fetal growth and development, may offer insight on the early programming of health and disease. We investigated whether birth weight-for-gestational is associated with DNA methylation at birth and mid-childhood, measured via the Infinium 450K array. METHODS/RESULTS Participants were from Project Viva, a pre-birth cohort of pregnant women and their children in Eastern Massachusetts. After exclusion of participants with maternal type 1 or 2 diabetes and gestational age <34 weeks, we used DNA methylation assays from 476 venous umbilical cord blood samples and a subset of 235 who additionally had peripheral blood samples available in mid-childhood (age 7-10 years). Among 392,918 CpG sites analyzed, birth weight-for-gestational age z-score was associated with cord blood DNA methylation at 34 CpGs (false discovery rate P < 0.05), after adjusting for maternal age, race/ethnicity, education, smoking, parity, delivery mode, pre-pregnancy BMI, gestational diabetes status, child sex, and estimated cord blood cell proportions based on a cord blood reference panel. Two of these CpGs were previously reported in epigenome-wide analyses of birth weight, and several other CpGs map to genes relevant to fetal growth and development. Namely, higher birth weight-for-gestational age was associated with higher methylation at four CpGs at the PBX1 locus (e.g., β (95% CI) for lead signal at cg06750897 = 1.9 (1.2, 2.6)), which encodes a transcription factor that regulates embryonic development. Birth weight-for-gestational age was also associated with mid-childhood blood DNA methylation at four of the 34 CpGs identified in cord blood analyses, including sites at the PBX1 locus described. CONCLUSIONS We identified CpG sites where birth weight-for-gestational age was associated with DNA methylation at birth, and for a subset of these sites, birth weight-for-gestational age was also associated with DNA methylation at mid-childhood.
Collapse
Affiliation(s)
- Golareh Agha
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032 USA
| | - Hanine Hajj
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA USA
| | - Sheryl L. Rifas-Shiman
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Allan C. Just
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Marie-France Hivert
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA USA
| | - Heather H. Burris
- Department of Neonatology, Beth Israel Deaconess Medical Center, Department of Pediatrics, Harvard Medical School, Boston, MA USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | | | - Emily Oken
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Matthew W. Gillman
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032 USA
| |
Collapse
|
41
|
Lee B, Kroener LL, Xu N, Wang ET, Banks A, Williams J, Goodarzi MO, Chen YDI, Tang J, Wang Y, Gangalapudi V, Pisarska MD. Function and Hormonal Regulation of GATA3 in Human First Trimester Placentation. Biol Reprod 2016; 95:113. [PMID: 27733378 PMCID: PMC5178150 DOI: 10.1095/biolreprod.116.141861] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/01/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022] Open
Abstract
Pregnancies resulting from fresh in vitro fertilization (IVF) cycles exposed to supraphysiologic estrogen levels have been associated with higher rates of low birth weight and small for gestational age babies. We identified GATA3, a transcription factor selectively expressed in the trophectoderm during the blastocyst stage of embryo development, in an upstream analysis of genes that were differentially methylated in chorionic villus samples between IVF and non-IVF infertility treatment pregnancies. In this study, we investigate the hypothesis that GATA3 is hormonally regulated and plays an important functional role in trophoblast migration, invasion, and placentation. We found that GATA3 expression was hormonally regulated by estradiol in HTR8/SVneo first trimester trophoblast cells; however, no change in expression was seen with progesterone treatment. Furthermore, GATA3 knockdown resulted in decreased HTR8/SVneo cell migration and invasion compared with controls. RNA sequencing of GATA3 knockdown cells demonstrated 96 differentially regulated genes compared with controls. Genes known to play an important role in cell-cell and cell-extracellular matrix interactions, cell invasion, and placentation were identified, including CTGF, CYR61, ADAMTS12, and TIMP3. Our results demonstrate estradiol down-regulates GATA3, and decreased GATA3 expression leads to impaired trophoblast cell migration and invasion, likely through regulation of downstream genes important in placentation. These results are consistent with clinical data suggesting that supraphysiologic estrogen levels seen in IVF pregnancies may play an important role in attenuated trophoblast migration, invasion, and impaired placentation. GATA3 appears to be an important regulator of placentation and may play a role in impaired outcomes associated with fresh IVF cycles.
Collapse
Affiliation(s)
- Bora Lee
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lindsay L Kroener
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California.,UCLA School of Medicine, Los Angeles, California
| | - Ning Xu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erica T Wang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California.,UCLA School of Medicine, Los Angeles, California
| | - Alexandra Banks
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - John Williams
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Cedars-Sinai-Medical Center, Los Angeles, California
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yii-der I Chen
- Institute for Translational Genomics and Population Sciences, LABiomed/Harbor-UCLA Medical Center, Torrance, California
| | - Jie Tang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Margareta D Pisarska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California .,UCLA School of Medicine, Los Angeles, California
| |
Collapse
|
42
|
Huang JY, Gavin AR, Richardson TS, Rowhani-Rahbar A, Siscovick DS, Hochner H, Friedlander Y, Enquobahrie DA. Accounting for Life-Course Exposures in Epigenetic Biomarker Association Studies: Early Life Socioeconomic Position, Candidate Gene DNA Methylation, and Adult Cardiometabolic Risk. Am J Epidemiol 2016; 184:520-531. [PMID: 27651384 DOI: 10.1093/aje/kww014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggest that epigenetic programming may mediate the relationship between early life environment, including parental socioeconomic position, and adult cardiometabolic health. However, interpreting associations between early environment and adult DNA methylation may be difficult because of time-dependent confounding by life-course exposures. Among 613 adult women (mean age = 32 years) of the Jerusalem Perinatal Study Family Follow-up (2007-2009), we investigated associations between early life socioeconomic position (paternal occupation and parental education) and mean adult DNA methylation at 5 frequently studied cardiometabolic and stress-response genes (ABCA1, INS-IGF2, LEP, HSD11B2, and NR3C1). We used multivariable linear regression and marginal structural models to estimate associations under 2 causal structures for life-course exposures and timing of methylation measurement. We also examined whether methylation was associated with adult cardiometabolic phenotype. Higher maternal education was consistently associated with higher HSD11B2 methylation (e.g., 0.5%-point higher in 9-12 years vs. ≤8 years, 95% confidence interval: 0.1, 0.8). Higher HSD11B2 methylation was also associated with lower adult weight and total and low-density lipoprotein cholesterol. We found that associations with early life socioeconomic position measures were insensitive to different causal assumption; however, exploratory analysis did not find evidence for a mediating role of methylation in socioeconomic position-cardiometabolic risk associations.
Collapse
|
43
|
Morales E, Vilahur N, Salas LA, Motta V, Fernandez MF, Murcia M, Llop S, Tardon A, Fernandez-Tardon G, Santa-Marina L, Gallastegui M, Bollati V, Estivill X, Olea N, Sunyer J, Bustamante M. Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy. Int J Epidemiol 2016; 45:1644-1655. [PMID: 27591263 DOI: 10.1093/ije/dyw196] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We conducted an epigenome-wide association study (EWAS) of DNA methylation in placenta in relation to maternal tobacco smoking during pregnancy and examined whether smoking-induced changes lead to low birthweight. METHODS DNA methylation in placenta was measured using the Illumina HumanMethylation450 BeadChip in 179 participants from the INfancia y Medio Ambiente (INMA) birth cohort. Methylation levels across 431 311 CpGs were tested for differential methylation between smokers and non-smokers in pregnancy. We took forward three top-ranking loci for further validation and replication by bisulfite pyrosequencing using data of 248 additional participants of the INMA cohort. We examined the association of methylation at smoking-associated loci with birthweight by applying a mediation analysis and a two-sample Mendelian randomization approach. RESULTS Fifty CpGs were differentially methylated in placenta between smokers and non-smokers during pregnancy [false discovery rate (FDR) < 0.05]. We validated and replicated differential methylation at three top-ranking loci: cg27402634 located between LINC00086 and LEKR1, a gene previously related to birthweight in genome-wide association studies; cg20340720 (WBP1L); and cg25585967 and cg12294026 (TRIO). Dose-response relationships with maternal urine cotinine concentration during pregnancy were confirmed. Differential methylation at cg27402634 explained up to 36% of the lower birthweight in the offspring of smokers (Sobel P-value < 0.05). A two-sample Mendelian randomization analysis provided evidence that decreases in methylation levels at cg27402634 lead to decreases in birthweight. CONCLUSIONS We identified novel loci differentially methylated in placenta in relation to maternal smoking during pregnancy. Adverse effects of maternal smoking on birthweight of the offspring may be mediated by alterations in the placental methylome.
Collapse
Affiliation(s)
- Eva Morales
- IMIB-Arrixaca Biomedical Research Institute, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain, .,CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Nadia Vilahur
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Catalonia, Spain.,Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| | - Lucas A Salas
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain.,Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756, USA
| | - Valeria Motta
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab-Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Mariana F Fernandez
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Instituto de Investigación Biosanitaria (ibs.GRANADA), University of Granada, San Cecilio University Hospital, 18012 Granada, Spain
| | - Mario Murcia
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,FISABIO-Universitat de València-Universitat Jaume I Joint Research Unit of Epidemiology and Environmental Health, 46020 Valencia, Spain
| | - Sabrina Llop
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,FISABIO-Universitat de València-Universitat Jaume I Joint Research Unit of Epidemiology and Environmental Health, 46020 Valencia, Spain
| | - Adonina Tardon
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Molecular Epidemiology of Cancer Unit, University Institute of Oncology, University of Oviedo, 33003 Oviedo, Spain
| | - Guillermo Fernandez-Tardon
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Molecular Epidemiology of Cancer Unit, University Institute of Oncology, University of Oviedo, 33003 Oviedo, Spain
| | - Loreto Santa-Marina
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Subdirección de Salud Pública y Adicciones de Gipuzkoa, 20010 Donostia/San Sebastián, Spain.,Instituto de Investigación Sanitaria BIODONOSTIA, 20014 Donostia/San Sebastián, Spain and
| | - Mara Gallastegui
- Instituto de Investigación Sanitaria BIODONOSTIA, 20014 Donostia/San Sebastián, Spain and.,Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Valentina Bollati
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab-Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Xavier Estivill
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| | - Nicolas Olea
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Instituto de Investigación Biosanitaria (ibs.GRANADA), University of Granada, San Cecilio University Hospital, 18012 Granada, Spain
| | - Jordi Sunyer
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| | - Mariona Bustamante
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Catalonia, Spain.,Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
44
|
Huang YT, Cai T, Kim E. Integrative genomic testing of cancer survival using semiparametric linear transformation models. Stat Med 2016; 35:2831-44. [PMID: 26887583 PMCID: PMC10392002 DOI: 10.1002/sim.6900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 01/12/2023]
Abstract
The wide availability of multi-dimensional genomic data has spurred increasing interests in integrating multi-platform genomic data. Integrative analysis of cancer genome landscape can potentially lead to deeper understanding of the biological process of cancer. We integrate epigenetics (DNA methylation and microRNA expression) and gene expression data in tumor genome to delineate the association between different aspects of the biological processes and brain tumor survival. To model the association, we employ a flexible semiparametric linear transformation model that incorporates both the main effects of these genomic measures as well as the possible interactions among them. We develop variance component tests to examine different coordinated effects by testing various subsets of model coefficients for the genomic markers. A Monte Carlo perturbation procedure is constructed to approximate the null distribution of the proposed test statistics. We further propose omnibus testing procedures to synthesize information from fitting various parsimonious sub-models to improve power. Simulation results suggest that our proposed testing procedures maintain proper size under the null and outperform standard score tests. We further illustrate the utility of our procedure in two genomic analyses for survival of glioblastoma multiforme patients. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yen-Tsung Huang
- Departments of Epidemiology and Biostatistics, Brown University, 121 South Main St.Box G-S121-2 Providence, 02912, RI, U.S.A
| | - Tianxi Cai
- Department of Biostatistics, School of Public Health, Harvard University, 655 Huntington Ave., Boston, 02115, MA, U.S.A
| | - Eunhee Kim
- Office of Biostatistics National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/Rm 5N230, Bethesda, 20892, MD
| |
Collapse
|
45
|
Tripathi R, Sharma P, Chakraborty P, Varadwaj PK. Next-generation sequencing revolution through big data analytics. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1178180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Unternaehrer E, Bolten M, Nast I, Staehli S, Meyer AH, Dempster E, Hellhammer DH, Lieb R, Meinlschmidt G. Maternal adversities during pregnancy and cord blood oxytocin receptor (OXTR) DNA methylation. Soc Cogn Affect Neurosci 2016; 11:1460-70. [PMID: 27107296 DOI: 10.1093/scan/nsw051] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 04/10/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to investigate whether maternal adversities and cortisol levels during pregnancy predict cord blood DNA methylation of the oxytocin receptor (OXTR). We collected cord blood of 39 babies born to mothers participating in a cross-sectional study (N = 100) conducted in Basel, Switzerland (2007-10). Mothers completed the Inventory of Life Events (second trimester: T2), the Edinburgh Postnatal Depression Scale (EPDS, third trimester: T3), the Trier Inventory of Chronic Stress (TICS-K, 1-3 weeks postpartum) and provided saliva samples (T2, T3) for maternal cortisol profiles, as computed by the area under the curve with respect to ground (AUCg) or increase (AUCi) for the cortisol awakening response (CAR) and for diurnal cortisol profiles (DAY). OXTR DNA methylation was quantified using Sequenom EpiTYPER. The number of stressful life events (P = 0.032), EPDS score (P = 0.007) and cortisol AUCgs at T2 (CAR: P = 0.020; DAY: P = 0.024) were negatively associated with OXTR DNA methylation. Our findings suggest that distinct prenatal adversities predict decreased DNA methylation in a gene that is relevant for childbirth, maternal behavior and wellbeing of mother and offspring. If a reduced OXTR methylation increases OXTR expression, our findings could suggest an epigenetic adaptation to an adverse early environment.
Collapse
Affiliation(s)
- Eva Unternaehrer
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, 4055 Basel, Switzerland University of Basel, National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam), 4055 Basel, Switzerland Douglas Mental Health University Institute, McGill University, 6875 La Salle Boulevard, Montreal, QC H4H 1R3, Canada
| | - Margarete Bolten
- University of Basel, Child and Adolescent Psychiatric Hospital, 4058 Basel, Switzerland Ludwig-Maximilians-University Munich, Department of Psychology, 80802 Munich, Germany
| | - Irina Nast
- University of Basel, National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam), 4055 Basel, Switzerland Zurich University of Applied Sciences, School of Health Professions, 8401 Winterthur, Switzerland
| | - Simon Staehli
- University of Trier, Institute of Psychobiology, 54296 Trier, Germany
| | - Andrea H Meyer
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, 4055 Basel, Switzerland
| | - Emma Dempster
- University of Exeter Medical School, Exeter EX1 2LU, UK
| | | | - Roselind Lieb
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, 4055 Basel, Switzerland University of Basel, National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam), 4055 Basel, Switzerland
| | - Gunther Meinlschmidt
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, 4055 Basel, Switzerland University of Basel, National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam), 4055 Basel, Switzerland Ruhr-University Bochum, Faculty of Medicine, Universitaetsstrasse 150, 44801 Bochum, Germany
| |
Collapse
|
47
|
Bianco-Miotto T, Mayne BT, Buckberry S, Breen J, Rodriguez Lopez CM, Roberts CT. Recent progress towards understanding the role of DNA methylation in human placental development. Reproduction 2016; 152:R23-30. [PMID: 27026712 PMCID: PMC5064761 DOI: 10.1530/rep-16-0014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022]
Abstract
Epigenetic modifications, and particularly DNA methylation, have been studied in many tissues, both healthy and diseased, and across numerous developmental stages. The placenta is the only organ that has a transient life of 9 months and undergoes rapid growth and dynamic structural and functional changes across gestation. Additionally, the placenta is unique because although developing within the mother, its genome is identical to that of the foetus. Given these distinctive characteristics, it is not surprising that the epigenetic landscape affecting placental gene expression may be different to that in other healthy tissues. However, the role of epigenetic modifications, and particularly DNA methylation, in placental development remains largely unknown. Of particular interest is the fact that the placenta is the most hypomethylated human tissue and is characterized by the presence of large partially methylated domains (PMDs) containing silenced genes. Moreover, how and why the placenta is hypomethylated and what role DNA methylation plays in regulating placental gene expression across gestation are poorly understood. We review genome-wide DNA methylation studies in the human placenta and highlight that the different cell types that make up the placenta have very different DNA methylation profiles. Summarizing studies on DNA methylation in the placenta and its relationship with pregnancy complications are difficult due to the limited number of studies available for comparison. To understand the key steps in placental development and hence what may be perturbed in pregnancy complications requires large-scale genome-wide DNA methylation studies coupled with transcriptome analyses.
Collapse
Affiliation(s)
- Tina Bianco-Miotto
- School of Agriculture, Food and WineUniversity of Adelaide, Adelaide, South Australia, Australia Robinson Research InstituteUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Benjamin T Mayne
- Robinson Research InstituteUniversity of Adelaide, Adelaide, South Australia, Australia School of MedicineUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Sam Buckberry
- Harry Perkins Institute of Medical ResearchThe University of Western Australia, Crawley, Western Australia, Australia Plant Energy BiologyARC Centre of Excellence, The University of Western Australia, Crawley, Western Australia, Australia
| | - James Breen
- Robinson Research InstituteUniversity of Adelaide, Adelaide, South Australia, Australia Bioinformatics HubUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Carlos M Rodriguez Lopez
- School of Agriculture, Food and WineUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Claire T Roberts
- Robinson Research InstituteUniversity of Adelaide, Adelaide, South Australia, Australia School of MedicineUniversity of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
48
|
Abstract
The search for a connection between diet and human cancer has a long history in cancer research, as has interest in the mechanisms by which dietary factors might increase or decrease cancer risk. The realization that altering diet can alter the epigenetic state of genes and that these epigenetic alterations might increase or decrease cancer risk is a more modern notion, driven largely by studies in animal models. The connections between diet and epigenetic alterations, on the one hand, and between epigenetic alterations and cancer, on the other, are supported by both observational studies in humans as well as animal models. However, the conclusion that diet is linked directly to epigenetic alterations and that these epigenetic alterations directly increase or decrease the risk of human cancer is much less certain. We suggest that true and measurable effects of diet or dietary supplements on epigenotype and cancer risk are most likely to be observed in longitudinal studies and at the extremes of the intersection of dietary risk factors and human population variability. Careful analysis of such outlier populations is most likely to shed light on the molecular mechanisms by which suspected environmental risk factors drive the process of carcinogenesis.
Collapse
Affiliation(s)
- Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology and Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140;
| | - Jean-Pierre Issa
- Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140;
| |
Collapse
|
49
|
Zhou R, Man Y. Integrated analysis of DNA methylation profiles and gene expression profiles to identify genes associated with pilocytic astrocytomas. Mol Med Rep 2016; 13:3491-7. [PMID: 26934913 PMCID: PMC4805069 DOI: 10.3892/mmr.2016.4943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 01/22/2016] [Indexed: 01/23/2023] Open
Abstract
The present study performed an integral analysis of the gene expression and DNA methylation profile of pilocytic astrocytomas (PAs). Weighted gene co-expression network analysis (WGCNA) was also performed to examine and identify the genes correlated to PAs, to identify candidate therapeutic targets for the treatment of PAs. The DNA methylation profile and gene expression profile were downloaded from the Gene Expression Omnibus database. Following screening of the differentially expressed genes (DEGs) and differentially methylated regions (DMRs), respectively, integrated analysis of the DEGs and DMRs was performed to detect their correlation. Subsequently, the WGCNA algorithm was applied to identify the significant modules and construct the co-expression network associated with PAs. Furthermore, Gene Ontology enrichment analysis of the associated genes was performed using the Database for Annotation, Visualization and Integrated Discovery. A total number of 2,259 DEGs and 235 DMRs were screened out. Integrated analysis revealed that 30 DEGs were DMRs with prominent negative correlation (cor=−0.82; P=0.02). Based on the DEGs, the gene co-expression network was constructed, and nine network modules associated with PAs were identified. The functional analysis results showed that genes relevant to PAs were closely associated with cell differentiation modulation. The screened PA-associated genes were significantly different at the expression and methylation levels. These genes may be used as reliable candidate target genes for the treatment of PAs.
Collapse
Affiliation(s)
- Ruigang Zhou
- Department of Pediatric Neurology and Rehabilitation, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yigang Man
- Department of Pediatric Neurology and Rehabilitation, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
50
|
Sherwood B, Wang L. Partially linear additive quantile regression in ultra-high dimension. Ann Stat 2016. [DOI: 10.1214/15-aos1367] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|