1
|
Reed JM, Wolfe BE, Romero LM. Is resilience a unifying concept for the biological sciences? iScience 2024; 27:109478. [PMID: 38660410 PMCID: PMC11039332 DOI: 10.1016/j.isci.2024.109478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
There is increasing interest in applying resilience concepts at different scales of biological organization to address major interdisciplinary challenges from cancer to climate change. It is unclear, however, whether resilience can be a unifying concept consistently applied across the breadth of the biological sciences, or whether there is limited capacity for integration. In this review, we draw on literature from molecular biology to community ecology to ascertain commonalities and shortcomings in how resilience is measured and interpreted. Resilience is studied at all levels of biological organization, although the term is often not used. There is a suite of resilience mechanisms conserved across biological scales, and there are tradeoffs that affect resilience. Resilience is conceptually useful to help diverse researchers think about how biological systems respond to perturbations, but we need a richer lexicon to describe the diversity of perturbations, and we lack widely applicable metrics of resilience.
Collapse
Affiliation(s)
- J. Michael Reed
- Department of Biology, Tufts University, Medford 02155, MA, USA
| | | | | |
Collapse
|
2
|
Li L, Yan S, Bakker BM, Hoefsloot H, Chawes B, Horner D, Rasmussen MA, Smilde AK, Acar E. Analyzing postprandial metabolomics data using multiway models: a simulation study. BMC Bioinformatics 2024; 25:94. [PMID: 38438850 PMCID: PMC10913623 DOI: 10.1186/s12859-024-05686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data. RESULTS We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups. CONCLUSIONS Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.
Collapse
Affiliation(s)
- Lu Li
- Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering, Oslo, Norway.
| | - Shi Yan
- Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering, Oslo, Norway
| | - Barbara M Bakker
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Huub Hoefsloot
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David Horner
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Morten A Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Age K Smilde
- Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering, Oslo, Norway
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Evrim Acar
- Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering, Oslo, Norway.
| |
Collapse
|
3
|
Buckner T, Johnson RK, Vanderlinden LA, Carry PM, Romero A, Onengut-Gumuscu S, Chen WM, Fiehn O, Frohnert BI, Crume T, Perng W, Kechris K, Rewers M, Norris JM. An Oxylipin-Related Nutrient Pattern and Risk of Type 1 Diabetes in the Diabetes Autoimmunity Study in the Young (DAISY). Nutrients 2023; 15:945. [PMID: 36839302 PMCID: PMC9962656 DOI: 10.3390/nu15040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Oxylipins, pro-inflammatory and pro-resolving lipid mediators, are associated with the risk of type 1 diabetes (T1D) and may be influenced by diet. This study aimed to develop a nutrient pattern related to oxylipin profiles and test their associations with the risk of T1D among youth. The nutrient patterns were developed with a reduced rank regression in a nested case-control study (n = 335) within the Diabetes Autoimmunity Study in the Young (DAISY), a longitudinal cohort of children at risk of T1D. The oxylipin profiles (adjusted for genetic predictors) were the response variables. The nutrient patterns were tested in the case-control study (n = 69 T1D cases, 69 controls), then validated in the DAISY cohort using a joint Cox proportional hazards model (n = 1933, including 81 T1D cases). The first nutrient pattern (NP1) was characterized by low beta cryptoxanthin, flavanone, vitamin C, total sugars and iron, and high lycopene, anthocyanidins, linoleic acid and sodium. After adjusting for T1D family history, the HLA genotype, sex and race/ethnicity, NP1 was associated with a lower risk of T1D in the nested case-control study (OR: 0.44, p = 0.0126). NP1 was not associated with the risk of T1D (HR: 0.54, p-value = 0.1829) in the full DAISY cohort. Future studies are needed to confirm the nested case-control findings and investigate the modifiable factors for oxylipins.
Collapse
Affiliation(s)
- Teresa Buckner
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Kinesiology, Nutrition, and Dietetics, University of Northern Colorado, Greeley, CO 80639, USA
| | - Randi K. Johnson
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biomedical Informatics, CU School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lauren A. Vanderlinden
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrick M. Carry
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, CU School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alex Romero
- Department of Biomedical Informatics, CU School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Suna Onengut-Gumuscu
- Health Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Wei-Min Chen
- Health Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Oliver Fiehn
- NIH-West Coast Metabolomics Center, University of California-Davis, Davis, CA 95616, USA
| | - Brigitte I. Frohnert
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tessa Crume
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katerina Kechris
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marian Rewers
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Loh X, Sun L, Allen JC, Goh HJ, Kong SC, Huang W, Ding C, Bosco N, Egli L, Actis-Goretta L, Magkos F, Arigoni F, Yeo KK, Leow MKS. Gender differences in fasting and postprandial metabolic traits predictive of subclinical atherosclerosis in an asymptomatic Chinese population. Sci Rep 2022; 12:16890. [PMID: 36207366 PMCID: PMC9546939 DOI: 10.1038/s41598-022-20714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
The prediction utility of Framingham Risk Score in populations with low conventional cardiovascular risk burden is limited, particularly among women. Gender-specific markers to predict cardiovascular risk in overtly healthy people are lacking. In this study we hypothesize that postprandial responses triggered by a high-calorie meal test differ by gender in their ability to triage asymptomatic subjects into those with and without subclinical atherosclerosis. A total of 101 healthy Chinese subjects (46 females, 55 males) at low risk of coronary heart disease completed the study. Subjects underwent cardiovascular imaging and postprandial blood phenotyping after consuming a standardized macronutrient meal. Prediction models were developed using logistic regression and subsequently subjected to cross-validation to obtain a de-optimized receiver operating characteristic (ROC) curve. Distinctive gender differences in postprandial trajectories of glucose, lipids and inflammatory markers were observed. We used gender-specific association with different combinations of postprandial predictors to develop 2 models for predicting risk of subclinical atherosclerosis in males (ROC AUC = 0.7867, 95% CI 0.6567, 0.9166) and females (ROC AUC = 0.9161, 95% CI 0.8340, 0.9982) respectively. We report novel postprandial models for predicting subclinical atherosclerosis in apparently healthy Asian subjects using a gender-specific approach, complementing the conventional Framingham Risk Score.Clinical Trial Registration: The trial was registered at clinicaltrials.gov as NCT03531879.
Collapse
Affiliation(s)
- Xinpeng Loh
- Duke-NUS Medical School, 30 Medical Drive, Singapore, 117609, Singapore
| | - Lijuan Sun
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - John Carson Allen
- Duke-NUS Medical School, 30 Medical Drive, Singapore, 117609, Singapore
| | - Hui Jen Goh
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| | | | - Weiting Huang
- National Heart Center Singapore, Singapore, Singapore
| | - Cherlyn Ding
- Nestlé Research Singapore Hub, Singapore, Singapore
| | - Nabil Bosco
- Nestlé Research Singapore Hub, Singapore, Singapore
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Leonie Egli
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | | | | | - Khung Keong Yeo
- Duke-NUS Medical School, 30 Medical Drive, Singapore, 117609, Singapore
- National Heart Center Singapore, Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Duke-NUS Medical School, 30 Medical Drive, Singapore, 117609, Singapore.
- Singapore Institute for Clinical Sciences, Singapore, Singapore.
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Weinisch P, Fiamoncini J, Schranner D, Raffler J, Skurk T, Rist MJ, Römisch-Margl W, Prehn C, Adamski J, Hauner H, Daniel H, Suhre K, Kastenmüller G. Dynamic patterns of postprandial metabolic responses to three dietary challenges. Front Nutr 2022; 9:933526. [PMID: 36211489 PMCID: PMC9540193 DOI: 10.3389/fnut.2022.933526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Food intake triggers extensive changes in the blood metabolome. The kinetics of these changes depend on meal composition and on intrinsic, health-related characteristics of each individual, making the assessment of changes in the postprandial metabolome an opportunity to assess someone's metabolic status. To enable the usage of dietary challenges as diagnostic tools, profound knowledge about changes that occur in the postprandial period in healthy individuals is needed. In this study, we characterize the time-resolved changes in plasma levels of 634 metabolites in response to an oral glucose tolerance test (OGTT), an oral lipid tolerance test (OLTT), and a mixed meal (SLD) in healthy young males (n = 15). Metabolite levels for samples taken at different time points (20 per individual) during the challenges were available from targeted (132 metabolites) and non-targeted (502 metabolites) metabolomics. Almost half of the profiled metabolites (n = 308) showed a significant change in at least one challenge, thereof 111 metabolites responded exclusively to one particular challenge. Examples include azelate, which is linked to ω-oxidation and increased only in OLTT, and a fibrinogen cleavage peptide that has been linked to a higher risk of cardiovascular events in diabetes patients and increased only in OGTT, making its postprandial dynamics a potential target for risk management. A pool of 89 metabolites changed their plasma levels during all three challenges and represents the core postprandial response to food intake regardless of macronutrient composition. We used fuzzy c-means clustering to group these metabolites into eight clusters based on commonalities of their dynamic response patterns, with each cluster following one of four primary response patterns: (i) “decrease-increase” (valley-like) with fatty acids and acylcarnitines indicating the suppression of lipolysis, (ii) “increase-decrease” (mountain-like) including a cluster of conjugated bile acids and the glucose/insulin cluster, (iii) “steady decrease” with metabolites reflecting a carryover from meals prior to the study, and (iv) “mixed” decreasing after the glucose challenge and increasing otherwise. Despite the small number of subjects, the diversity of the challenges and the wealth of metabolomic data make this study an important step toward the characterization of postprandial responses and the identification of markers of metabolic processes regulated by food intake.
Collapse
Affiliation(s)
- Patrick Weinisch
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jarlei Fiamoncini
- Food Research Center – FoRC, Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Schranner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Raffler
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Digital Medicine, University Hospital of Augsburg, Augsburg, Germany
| | - Thomas Skurk
- Core Facility Human Studies, ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Manuela J. Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Werner Römisch-Margl
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hans Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hannelore Daniel
- Department of Food and Nutrition, Technical University of Munich, Freising, Germany
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- *Correspondence: Gabi Kastenmüller
| |
Collapse
|
6
|
Kariya Y, Honma M, Tokuda K, Konagaya A, Suzuki H. Utility of constraints reflecting system stability on analyses for biological models. PLoS Comput Biol 2022; 18:e1010441. [PMID: 36084151 PMCID: PMC9491612 DOI: 10.1371/journal.pcbi.1010441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 09/21/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Simulating complex biological models consisting of multiple ordinary differential equations can aid in the prediction of the pharmacological/biological responses; however, they are often hampered by the availability of reliable kinetic parameters. In the present study, we aimed to discover the properties of behaviors without determining an optimal combination of kinetic parameter values (parameter set). The key idea was to collect as many parameter sets as possible. Given that many systems are biologically stable and resilient (BSR), we focused on the dynamics around the steady state and formulated objective functions for BSR by partial linear approximation of the focused region. Using the objective functions and modified global cluster Newton method, we developed an algorithm for a thorough exploration of the allowable parameter space for biological systems (TEAPS). We first applied TEAPS to the NF-κB signaling model. This system shows a damped oscillation after stimulation and seems to fit the BSR constraint. By applying TEAPS, we found several directions in parameter space which stringently determines the BSR property. In such directions, the experimentally fitted parameter values were included in the range of the obtained parameter sets. The arachidonic acid metabolic pathway model was used as a model related to pharmacological responses. The pharmacological effects of nonsteroidal anti-inflammatory drugs were simulated using the parameter sets obtained by TEAPS. The structural properties of the system were partly extracted by analyzing the distribution of the obtained parameter sets. In addition, the simulations showed inter-drug differences in prostacyclin to thromboxane A2 ratio such that aspirin treatment tends to increase the ratio, while rofecoxib treatment tends to decrease it. These trends are comparable to the clinical observations. These results on real biological models suggest that the parameter sets satisfying the BSR condition can help in finding biologically plausible parameter sets and understanding the properties of biological systems. We propose a new method to analyze the properties of biological dynamic models, which we named TEAPS (Thorough Exploration of Allowable Parameter Space). TEAPS can thoroughly determine combinations of parameter values for ordinary differential equations with which an initial state in a certain range converges to a particular fixed point. This stable and resilient behavior is a characteristic shared with many biological systems, including metabolic systems and intracellular signaling systems. Therefore, this thorough search outlined the possible parameter space as biological systems for target models, which helps to understand the system constraints when the target systems behave dynamically. The obtained parameter space can be used as an initial space for parameter tuning. For models that include a large number of parameters, the parameter space to be searched in the parameter tuning process is too large; therefore, narrowing down the space by TEAPS potentially contributes to the analysis of the dynamics of complicated biological models. Thus, our approach can partly overcome the current problem in parameter tuning and can advance the computational dynamic analyses of biological systems.
Collapse
Affiliation(s)
- Yoshiaki Kariya
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Keita Tokuda
- Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akihiko Konagaya
- Molecular Robotics Research Institute, Limited, Kyowa Create Dai-ichi, Minato-ku, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Lara-Guzmán ÓJ, Rivera DA, Corrales-Agudelo V, Salazar-Jaramillo L, Gil-Izquierdo Á, Medina S, Oger C, Durand T, Galano JM, Escobar JS, Muñoz-Durango K, Sierra JA. Dietary antioxidant intake is inversely associated with 2,3-dinor oxylipin metabolites, the major excreted oxylipins in overweight and obese subjects. Free Radic Biol Med 2022; 190:42-54. [PMID: 35933054 DOI: 10.1016/j.freeradbiomed.2022.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 10/16/2022]
Abstract
Cardiometabolic disease risk factors, including obesity, insulin resistance, high blood pressure, and dyslipidemia, are associated with elevated oxidative stress biomarkers like oxylipins. Increased adiposity by itself induces various isomers of this oxidized lipid family, while dietary polyphenols show benefits in its regulation. Previously, we showed that specific co-abundant microorganisms characterized the gut microbiota of Colombians and associated differentially with diet, lifestyle, obesity, and cardiometabolic health status, which led us to hypothesize that urinary oxylipins would reflect the intensity of oxidative metabolism linked to gut microbiota dysbiosis. Thus, we selected a convenience sample of 105 participants (age: 40.2 ± 11.9 years, 47.6% women), grouped according to microbiota, cardiometabolic health status, and body mass index (BMI); and evaluated 33 urinary oxylipins by HPLC-QqQ-MS/MS (e.g., isoprostanes, prostaglandins, and metabolites), paired with anthropometry and blood chemistry information and dietary antioxidants estimated from a 24-h food recall. In general, oxylipins did not show differences among individuals who differed in gut microbiota. While the unmetabolized oxylipin levels were not associated with BMI, the total content of oxylipin metabolites was highest in obese and cardiometabolically abnormal subjects (e.g., insulin resistant), mainly by prostaglandin-D (2,3-dinor-11β-PGF2α) and 15-F2t-IsoPs (2,3-dinor-15-F2t-IsoP and 2,3-dinor-15-epi-15-F2t-IsoP) metabolites. The total polyphenol intake in this cohort was 1070 ± 627 mg/day. After adjusting for body weight, the polyphenol intake was significantly higher in lean than overweight and showed an inverse association with dinor-oxylipin levels in principal component analysis. These results suggest that the 2,3-dinor-oxylipins could be more specific biomarkers associated with BMI than their parent oxylipins and that are sensitive to be regulated by dietary antioxidants.
Collapse
Affiliation(s)
- Óscar J Lara-Guzmán
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia
| | - Diego A Rivera
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia
| | - Vanessa Corrales-Agudelo
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia
| | - Laura Salazar-Jaramillo
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100, Campus University Espinardo, Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100, Campus University Espinardo, Murcia, Spain
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimi Balard recherché, UMR 5247, CNRS, University of Montpellier, ENSCM, 1919 route de Mende, 34093, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimi Balard recherché, UMR 5247, CNRS, University of Montpellier, ENSCM, 1919 route de Mende, 34093, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimi Balard recherché, UMR 5247, CNRS, University of Montpellier, ENSCM, 1919 route de Mende, 34093, Montpellier, France
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia
| | - Katalina Muñoz-Durango
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia.
| | - Jelver A Sierra
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur No. 50-67, Medellin, Colombia.
| |
Collapse
|
8
|
Newman JW, Krishnan S, Borkowski K, Adams SH, Stephensen CB, Keim NL. Assessing Insulin Sensitivity and Postprandial Triglyceridemic Response Phenotypes With a Mixed Macronutrient Tolerance Test. Front Nutr 2022; 9:877696. [PMID: 35634390 PMCID: PMC9131925 DOI: 10.3389/fnut.2022.877696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
The use of meal challenge tests to assess postprandial responses in carbohydrate and fat metabolism is well established in clinical nutrition research. However, challenge meal compositions and protocols remain a variable. Here, we validated a mixed macronutrient tolerance test (MMTT), containing 56-g palm oil, 59-g sucrose, and 26-g egg white protein for the parallel determination of insulin sensitivity and postprandial triglyceridemia in clinically healthy subjects. The MMTT was administered in two study populations. In one, women with overweight/obese BMIs (n = 43) involved in an 8-week dietary intervention were administered oral glucose tolerance tests (OGTTs) and MMTTs within 2 days of each other after 0, 2, and 8 weeks of the dietary intervention. In the other, 340 men and women between 18 and 64 years of age, with BMI from 18–40 kg/m2, completed the MMTT as part of a broad nutritional phenotyping effort. Postprandial blood collected at 0, 0.5, 3, and 6 h was used to measure glucose, insulin, and clinical lipid panels. The MMTT postprandial insulin-dependent glucose disposal was evaluated by using the Matsuda Index algorithm and the 0- and 3 h blood insulin and glucose measures. The resulting MMTT insulin sensitivity index (ISIMMTT) was strongly correlated (r = 0.77, p < 0.001) with the OGTT-dependent 2 h composite Matsuda index (ISIComposite), being related by the following equation: Log (ISIComposite) = [0.8751 x Log(ISIMMTT)] –0.2115. An area under the triglyceride excursion curve >11.15 mg/mL h–1 calculated from the 0, 3, and 6 h blood draws established mild-to-moderate triglyceridemia in agreement with ∼20% greater prevalence of hypertriglyceridemia than fasting indications. We also demonstrated that the product of the 0 to 3 h and 3 to 6 h triglyceride rate of change as a function of the triglyceride incremental area under the curve optimally stratified subjects by postprandial response patterns. Notably, ∼2% of the population showed minimal triglyceride appearance by 6 h, while ∼25% had increasing triglycerides through 6 h. Ultimately, using three blood draws, the MMTT allowed for the simultaneous determination of insulin sensitivity and postprandial triglyceridemia in individuals without clinically diagnosed disease.Clinical Trial Registration[https://clinicaltrials.gov/], identifier [NCT02298725; NCT02367287].
Collapse
Affiliation(s)
- John W. Newman
- Western Human Nutrition Research Center, Agricultural Research Service, USDA, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- *Correspondence: John W. Newman,
| | - Sridevi Krishnan
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
| | - Sean H. Adams
- Department of Surgery, Davis School of Medicine, University of California, Davis, Sacramento, CA, United States
- Center for Alimentary and Metabolic Science, Davis School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Charles B. Stephensen
- Western Human Nutrition Research Center, Agricultural Research Service, USDA, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Nancy L. Keim
- Western Human Nutrition Research Center, Agricultural Research Service, USDA, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
Du Y, Li DX, Lu DY, Zhang R, Zhao YL, Zhong QQ, Ji S, Wang L, Tang DQ. Lipid metabolism disorders and lipid mediator changes of mice in response to long-term exposure to high-fat and high sucrose diets and ameliorative effects of mulberry leaves. Food Funct 2022; 13:4576-4591. [PMID: 35355025 DOI: 10.1039/d1fo04146k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mulberry leaves exhibit anti-lipogenic and lipid-lowering effects. However, the lipid biomarkers and underlying mechanisms for the improvement of the action of mulberry leaves on obesity and lipid metabolism disorders have not been sufficiently investigated yet. Herein, biochemical analysis combined with metabolomics targeting serum lipid mediators (oxylipins) were used to explore the efficacy and underlying mechanisms of mulberry leaf water extract (MLWE) in high-fat and high-sucrose diet (HFHSD)-fed mice. Our results showed that MLWE supplementation not only decreased body weight gain, serum total triglycerides, low-density lipoprotein cholesterol, alanine transaminase and aspartate transaminase levels, but also increased the serum level of high-density lipoprotein cholesterol. In addition, MLWE supplementation also ameliorated hepatic steatosis and lipid accumulation. These beneficial effects were associated with down-regulating genes involved in oxidative stress, inflammation, and lipogenesis such as acetyl-CoA carboxylase and fatty acid synthase, and up-regulating genes related to lipolysis that encoded peroxisome proliferator-activated receptor α, adiponectin (ADPN), adiponectin receptor (AdipoR) 1, AdipoR2, adenosine monophosphate-activated protein kinase (AMPK) and hormone-sensitive lipase. Moreover, a total of 54 serum lipid mediators were differentially changed in HFHSD-fed mice, among which 11 lipid mediators from n-3 polyunsaturated fatty acids (PUFAs) were apparently reversed by MLWE. These findings indicated that the ADPN/AMPK pathway, anti-inflammation, anti-oxidation, and n-3 PUFA metabolism played important roles in anti-obesity and improvement of lipid metabolism disorders modulated by MLWE supplementation.
Collapse
Affiliation(s)
- Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Dong-Yu Lu
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yan-Lin Zhao
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China
| | - Qiao-Qiao Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. .,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221204, China
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. .,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou 221204, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. .,Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221204, China
| |
Collapse
|
10
|
Lépine G, Tremblay-Franco M, Bouder S, Dimina L, Fouillet H, Mariotti F, Polakof S. Investigating the Postprandial Metabolome after Challenge Tests to Assess Metabolic Flexibility and Dysregulations Associated with Cardiometabolic Diseases. Nutrients 2022; 14:nu14030472. [PMID: 35276829 PMCID: PMC8840206 DOI: 10.3390/nu14030472] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the added value provided by a research strategy applying metabolomics analyses to assess phenotypic flexibility in response to different nutritional challenge tests in the framework of metabolic clinical studies. We discuss findings related to the Oral Glucose Tolerance Test (OGTT) and to mixed meals with varying fat contents and food matrix complexities. Overall, the use of challenge tests combined with metabolomics revealed subtle metabolic dysregulations exacerbated during the postprandial period when comparing healthy and at cardiometabolic risk subjects. In healthy subjects, consistent postprandial metabolic shifts driven by insulin action were reported (e.g., a switch from lipid to glucose oxidation for energy fueling) with similarities between OGTT and mixed meals, especially during the first hours following meal ingestion while differences appeared in a wider timeframe. In populations with expected reduced phenotypic flexibility, often associated with increased cardiometabolic risk, a blunted response on most key postprandial pathways was reported. We also discuss the most suitable statistical tools to analyze the dynamic alterations of the postprandial metabolome while accounting for complexity in study designs and data structure. Overall, the in-depth characterization of the postprandial metabolism and associated phenotypic flexibility appears highly promising for a better understanding of the onset of cardiometabolic diseases.
Collapse
Affiliation(s)
- Gaïa Lépine
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, 63000 Clermont-Ferrand, France; (G.L.); (S.B.); (L.D.)
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (H.F.); (F.M.)
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France;
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31300 Toulouse, France
| | - Sabrine Bouder
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, 63000 Clermont-Ferrand, France; (G.L.); (S.B.); (L.D.)
| | - Laurianne Dimina
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, 63000 Clermont-Ferrand, France; (G.L.); (S.B.); (L.D.)
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (H.F.); (F.M.)
| | - Hélène Fouillet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (H.F.); (F.M.)
| | - François Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (H.F.); (F.M.)
| | - Sergio Polakof
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, 63000 Clermont-Ferrand, France; (G.L.); (S.B.); (L.D.)
- Correspondence:
| |
Collapse
|
11
|
Park SY, Kwon O, Kim JY. Effect of Mori ramulus on the postprandial blood glucose levels and inflammatory responses of healthy subjects subjected to an oral high-fat/sucrose challenge: A double-blind, randomized, crossover clinical trial. Biomed Pharmacother 2021; 146:112552. [PMID: 34923339 DOI: 10.1016/j.biopha.2021.112552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Blood glucose is inadequately controlled in diabetes mellitus, causing various inflammation-related complications. This study aimed to investigate responses to an oral sucrose/lipid challenge in the context of glucose metabolism after consumption of Mori ramulus (MR) extract. In this study on healthy subjects, the optimal dose and safety of MR were confirmed in a preliminary pilot trial (n = 24), meanwhile, blood glucose, insulin, and inflammatory marker levels were detected via an oral sucrose/lipid tolerance test in the main trial (n = 36). In the main study, the blood glucose response was significantly decreased after 240 min in the MR group. Compared to the placebo group, the treatment group exhibited plasma insulin levels that were significantly increased at 120 min and decreased at 240 min. In conclusion, a single MR extract dose protects against inflammation induced by high-fat/sugar to maintain normal insulin secretion and thus helps to maintain postprandial blood glucose levels via an inflammatory mechanism.
Collapse
Affiliation(s)
- Soo-Yeon Park
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea; Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
12
|
Kartaram SW, van Norren K, Schoen E, Teunis M, Mensink M, Verschuren M, M'Rabet L, Besseling-van der Vaart I, Mohrmann K, Wittink H, Garssen J, Witkamp R, Pieters R. Kinetics of Physiological Responses as a Measure of Intensity and Hydration Status During Experimental Physical Stress in Human Volunteers. Front Physiol 2020; 11:1006. [PMID: 33013439 PMCID: PMC7498705 DOI: 10.3389/fphys.2020.01006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Strenuous physical stress induces a range of physiological responses, the extent depending, among others, on the nature and severity of the exercise, a person's training level and overall physical resilience. This principle can also be used in an experimental set-up by measuring time-dependent changes in biomarkers for physiological processes. In a previous report, we described the effects of workload delivered on a bicycle ergometer on intestinal functionality. As a follow-up, we here describe an analysis of the kinetics of various other biomarkers. Aim To analyse the time-dependent changes of 34 markers for different metabolic and immunological processes, comparing four different exercise protocols and a rest protocol. Methods After determining individual maximum workloads, 15 healthy male participants (20-35 years) started with a rest protocol and subsequently performed (in a cross-over design with 1-week wash-out) four exercise protocols of 1-h duration at different intensities: 70% W max in a hydrated and a mildly dehydrated state, 50% W max and intermittent 85/55% W max in blocks of 2 min. Perceived exertion was monitored using the Borg' Rating of Perceived Exertion scale. Blood samples were collected both before and during exercise, and at various timepoints up to 24 h afterward. Data was analyzed using a multilevel mixed linear model with multiple test correction. Results Kinetic changes of various biomarkers were exercise-intensity-dependent. Biomarkers included parameters indicative of metabolic activity (e.g., creatinine, bicarbonate), immunological and hematological functionality (e.g., leukocytes, hemoglobin) and intestinal physiology (citrulline, intestinal fatty acid-binding protein, and zonulin). In general, responses to high intensity exercise of 70% W max and intermittent exercise i.e., 55/85% W max were more pronounced compared to exercise at 50% W max . Conclusion High (70 and 55/85% W max ) and moderate (50% W max ) intensity exercise in a bicycle ergometer test produce different time-dependent changes in a broad range of parameters indicative of metabolic activity, immunological and hematological functionality and intestinal physiology. These parameters may be considered biomarkers of homeostatic resilience. Mild dehydration intensifies these time-related changes. Moderate intensity exercise of 50% W max shows sufficient physiological and immunological responses and can be employed to test the health condition of less fit individuals.
Collapse
Affiliation(s)
- Shirley W Kartaram
- Research Group Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, Netherlands
| | - Klaske van Norren
- Department of Nutritional Biology, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Eric Schoen
- Netherlands Organization for Applied Scientific Research, Zeist, Netherlands
| | - Marc Teunis
- Research Group Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, Netherlands
| | - Marco Mensink
- Department of Nutritional Biology, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Martie Verschuren
- Research Group Analysis Techniques in Life Sciences, Avans University of Applied Sciences, Breda, Netherlands
| | - Laura M'Rabet
- Research Group Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, Netherlands
| | | | | | - Harriet Wittink
- Research Group Lifestyle and Health, University of Applied Sciences Utrecht, Utrecht, Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| | - Renger Witkamp
- Department of Nutritional Biology, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Raymond Pieters
- Research Group Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
Mallu ACT, Vasudevan M, Allanki S, Nathan AA, Ravi MM, Ramanathan GS, Pradeepa R, Mohan V, Dixit M. Prediabetes uncovers differential gene expression at fasting and in response to oral glucose load in immune cells. Clin Nutr 2020; 40:1247-1259. [PMID: 32863060 DOI: 10.1016/j.clnu.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Metabolic disorders including diabetes are associated with immune cell dysfunction. However, the effect of normal glucose metabolism or impairment thereof on immune cell gene expression is not well known. Hence, in this cross-sectional pilot study, we sought to determine the differences in gene expression in the peripheral blood mono-nuclear cells (PBMCs) of normal glucose tolerant (NGT) and prediabetic (PD) Asian Indian men, at fasting and in response to 75 g oral glucose load. METHODS Illumina HT12 bead chip-based microarray was performed on PBMCs at fasting and 2-h post load conditions for NGT (N = 6) and PD (N = 9) subjects. Following normalization and due quality control of the raw data, differentially expressed genes (DEGs) under different conditions within and across the two groups were identified using GeneSpring GX V12.0 software. Paired and unpaired Student's t-tests were applied along with fold change cut-offs for appropriate comparisons. Validation of the microarray data was carried out through real-time qPCR analysis. Significantly regulated biological pathways were analyzed by employing DEGs and DAVID resource. Deconvolution of the DEGs between NGT and PD subjects at fasting was performed using CIBERSORT and genes involved in regulatory T-cell (Treg) function were further analyzed for biological significance. RESULTS Glucose load specifically altered the expression of 112 genes in NGT and 356 genes in PD subjects. Biological significance analysis revealed transient up-regulation of innate and adaptive immune response related genes following oral glucose load in NGT individuals, which was not observed in PD subjects. Instead, in the PD group, glucose load led to an increase in the expression of pro-atherogenic and anti-angiogenic genes. Comparison of gene expression at fasting state in PD versus NGT revealed 21,707 differentially expressed genes. Biological significance analysis of the immune function related genes between these two groups (at fasting) revealed higher gene expression of members of the TLR signaling, MHC class II molecules, and T-cell receptor, chemotaxis and adhesion pathways in PD subjects. Expression of interferon-γ (IFN-γ) and TNFα was higher and that of type-1 interferons and TGF-β was lower at fasting state in PD subjects compared to NGT. Additionally, expression of multiple proteasome subunits and protein arginine methyl transferase genes (PRMTs) were higher and that of Treg specific genes was significantly distinct at fasting in PD subjects compared to NGT. CONCLUSION Prediabetes uncovers constitutive TLR activation, enhanced IFN-γ signaling, and Treg dysfunction at fasting along with altered gene expression response to oral glucose load.
Collapse
Affiliation(s)
- Abhiram Charan Tej Mallu
- Laboratory of Vascular Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | | | - Srinivas Allanki
- Laboratory of Vascular Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Abel Arul Nathan
- Laboratory of Vascular Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Mahalakshmi M Ravi
- Institute Hospital, Indian Institute of Technology Madras, Chennai, India
| | | | - Rajendra Pradeepa
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Chennai, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Chennai, India
| | - Madhulika Dixit
- Laboratory of Vascular Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
14
|
Gladine C, Ostermann AI, Newman JW, Schebb NH. MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities. Free Radic Biol Med 2019; 144:72-89. [PMID: 31085232 DOI: 10.1016/j.freeradbiomed.2019.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Oxylipins, including the well-known eicosanoids, are potent lipid mediators involved in numerous physiological and pathological processes. Therefore, their quantitative profiling has gained a lot of attention during the last years notably in the active field of health biomarker discovery. Oxylipins include hundreds of structurally and stereochemically distinct lipid species which today are most commonly analyzed by (ultra) high performance liquid chromatography-mass spectrometry based ((U)HPLC-MS) methods. To maximize the utility of oxylipin profiling in clinical research, it is crucial to understand and assess the factors contributing to the analytical and biological variability of oxylipin profiles in humans. In this review, these factors and their impacts are summarized and discussed, providing a framework for recommendations expected to enhance the interlaboratory comparability and biological interpretation of oxylipin profiling in clinical research.
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; University of California Davis, Department of Nutrition, Davis, CA, USA
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
15
|
Oh HA, Lee H, Park SY, Lim Y, Kwon O, Kim JY, Kim D, Jung BH. Analysis of plasma metabolic profiling and evaluation of the effect of the intake of Angelica keiskei using metabolomics and lipidomics. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112058. [PMID: 31283957 DOI: 10.1016/j.jep.2019.112058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica keiskei contains many bioactive components with anti-oxidative and anti-inflammatory effects. It is also effective for the treatment of diabetes mellitus, hypertension, and arteriosclerosis, but the relationships between these effects and the active components in the herb have not been studied. AIM OF THE STUDY We aimed to confirm the effects of Angelica keiskei on humans. MATERIALS AND METHODS A metabolomics and lipidomics study was performed using human plasma samples from 20 subjects after the intake of Angelica keiskei, and the components of Angelica keiskei in the plasma were profiled. UPLC-Orbitrap-MS was used to analyze the plasma and plant extracts, and multivariate analysis and correlation studies between the exogenous components from plant and endogenous metabolite in plasma were performed. RESULTS The levels of the 14 metabolites including kynurenic acid, prostaglandin E1, chenodeoxycholic acid, lysoPC (18:1), lysoPC (18:2), lysoPC (20:3), lysoPC (20:4), lysoPC (22:6), PC (34:1), PC (34:2), PC (38:3), PC (38:4), PC (38:6) and PC (40:7) in the plasma were changed. By monitoring the components originating from Angelica keiskei in plasma, five components including 5-methoxypsoralen, 8-methoxypsoralen, 4-hydroxyderricin, xanthoangelol B and xanthoangelol F were detected and they reduced the levels of bile acids and fatty acids. CONCLUSIONS The levels of the metabolites, including bile acids, amino acids, glycerophospholipids and fatty acids, in the plasma were changed, and 14 significantly changed metabolites were closely related to the preventive effect against liver diseases, type 2 diabetes, anemia, obesity, atherosclerosis, depression and anti-inflammatory effects. The five components of Angelica keiskei were related the modulatory activity of reducing the levels of bile acids and fatty acids.
Collapse
Affiliation(s)
- Hyun-A Oh
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyunbeom Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Soo-Yeon Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
16
|
van den Brink W, van Bilsen J, Salic K, Hoevenaars FPM, Verschuren L, Kleemann R, Bouwman J, Ronnett GV, van Ommen B, Wopereis S. Current and Future Nutritional Strategies to Modulate Inflammatory Dynamics in Metabolic Disorders. Front Nutr 2019; 6:129. [PMID: 31508422 PMCID: PMC6718105 DOI: 10.3389/fnut.2019.00129] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity, type 2 diabetes, and other metabolic disorders have a large impact on global health, especially in Western countries. An important hallmark of metabolic disorders is chronic low-grade inflammation. A key player in chronic low-grade inflammation is dysmetabolism, which is defined as the inability to keep homeostasis resulting in loss of lipid control, oxidative stress, inflammation, and insulin resistance. Although often not yet detectable in the circulation, chronic low-grade inflammation can be present in one or multiple organs. The response to a metabolic challenge containing lipids may magnify dysfunctionalities at the tissue level, causing an overflow of inflammatory markers into the circulation and hence allow detection of early low-grade inflammation. Here, we summarize the evidence of successful application of metabolic challenge tests in type 2 diabetes, metabolic syndrome, obesity, and unhealthy aging. We also review how metabolic challenge tests have been successfully applied to evaluate nutritional intervention effects, including an "anti-inflammatory" mixture, dark chocolate, whole grain wheat and overfeeding. Additionally, we elaborate on future strategies to (re)gain inflammatory flexibility. Through epigenetic and metabolic regulation, the inflammatory response may be trained by regular mild and metabolic triggers, which can be understood from the perspective of trained immunity, hormesis and pro-resolution. New strategies to optimize dynamics of inflammation may become available.
Collapse
Affiliation(s)
- Willem van den Brink
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Jolanda van Bilsen
- Department of Risk Analysis for Products in Development, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Kanita Salic
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Femke P. M. Hoevenaars
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Jildau Bouwman
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | | | - Ben van Ommen
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
17
|
Eelderink C, Rietsema S, van Vliet IMY, Loef LC, Boer T, Koehorst M, Nolte IM, Westerhuis R, Singh-Povel CM, Geurts JMW, Corpeleijn E, Bakker SJL. The effect of high compared with low dairy consumption on glucose metabolism, insulin sensitivity, and metabolic flexibility in overweight adults: a randomized crossover trial. Am J Clin Nutr 2019; 109:1555-1568. [PMID: 30997492 PMCID: PMC6537937 DOI: 10.1093/ajcn/nqz017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Dairy products contain many nutritious components that may benefit metabolic health. There are indications that glucose metabolism and insulin sensitivity, which are generally disturbed in overweight and obese individuals, may improve by increased dairy intake. This may also affect one's metabolic flexibility. OBJECTIVE The aim of this study was to investigate the effects of high compared with low dairy intake on glucose metabolism, insulin sensitivity, and metabolic flexibility in overweight adults (aged 45-65 y). METHODS In this randomized intervention study, subjects consumed a high- and a low-dairy diet [HDD (5-6 dairy portions) and LDD (≤1 dairy portion), respectively] for 6 wk in a crossover design, with a washout period of 4 wk. Dairy portions were 200 g semi-skimmed yoghurt, 30 g reduced-fat (30+) cheese, and 250 mL semiskimmed milk and buttermilk. After 6 wk, a 75-g oral-glucose-tolerance test (13C-labeled) and a subsequent fasting challenge were performed. Metabolic flexibility was studied by determining the respiratory quotient (RQ) using indirect calorimetry. Fasting and postprandial plasma concentrations of glucose and insulin were analyzed. The dual isotope technique enabled calculation of glucose kinetics. RESULTS The study was completed by 45 overweight men and postmenopausal women [age 58.9 ± 4.3 y, BMI 27.9 ± 1.9 kg/m2 (mean ± SD)]. Fasting RQ and ΔRQ, reflecting metabolic flexibility, did not differ after both diets. Fasting glucose concentrations were similar, whereas fasting insulin concentrations were lower after the LDD (LDD: 8.1 ± 2.8 mU/L; HDD: 8.9 ± 3.3 mU/L; P = 0.024). This resulted in a higher HOMA-IR after the HDD (P = 0.027). Postprandial glucose and insulin responses as well as glucose kinetics were similar after both diets. CONCLUSIONS The amount of dairy intake during a 6-wk period had a neutral effect on metabolic flexibility or postprandial glucose metabolism in middle-aged overweight subjects. More trials are needed to study the effects of specific dairy types and to differentiate between metabolic subgroups. This trial was registered at trialregister.nl as NTR4899.
Collapse
Affiliation(s)
- Coby Eelderink
- Department of Internal Medicinecal,Address correspondence to CE (e-mail: )
| | | | | | | | | | | | - Ilja M Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Cécile M Singh-Povel
- Department of Nutritional Sciences, FrieslandCampina, Amersfoort, The Netherlands
| | - Jan M W Geurts
- Department of Nutritional Sciences, FrieslandCampina, Amersfoort, The Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
18
|
Kim Y, Kim KJ, Park SY, Lim Y, Kwon O, Lee JH, Kim JY. Differential responses of endothelial integrity upon the intake of microencapsulated garlic, tomato extract or a mixture: a single-intake, randomized, double-blind, placebo-controlled crossover trial. Food Funct 2018; 9:5426-5435. [PMID: 30280751 DOI: 10.1039/c8fo01431k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study investigated the effect of microencapsulated garlic and/or tomato on endothelial dysfunction induced by the PhenFlex test (PFT) in healthy male smokers. In a randomized, double-blind, placebo-controlled crossover trial, 41 healthy male smokers were randomly assigned to one of four groups to receive the test groups (in microencapsulated garlic powder, tomato extract and a mixture thereof) or the placebo group. Proteomic biomarkers related to endothelial integrity were measured in plasma. Microencapsulated garlic, tomato extract and the mixture affected endothelial integrity biomarkers differently. Garlic consumption increased prothrombin time and decreased SAA and IL-12. Tomato extract intake increased activated partial thrombin time and decreased d-dimer, SAA, sVCAM-1, IL-13 and MCP-3 levels. Consumption of the mixture increased sE-selectin and lowered D-dimer, SAA, IL-13 and IL-10 responses after PFT challenge for 6 h. The different responses became clearer under high compliance in the dietary restriction groups. This single-intake clinical trial addressed the different responses of biomarkers related to endothelial integrity.
Collapse
Affiliation(s)
- Yunyoung Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
19
|
Witkamp RF, van Norren K. Let thy food be thy medicine….when possible. Eur J Pharmacol 2018; 836:102-114. [DOI: 10.1016/j.ejphar.2018.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 02/09/2023]
|
20
|
Alayón AN, Rivadeneira AP, Herrera C, Guzmán H, Arellano D, Echeverri I. Metabolic and inflammatory postprandial effect of a highly saturated fat meal and its relationship to abdominal obesity. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2018; 38:93-100. [PMID: 29874712 DOI: 10.7705/biomedica.v38i0.3911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022]
Abstract
Introduction: The postprandial stage is associated with the increase of markers related to cardiovascular risk, and its intensity depends on the metabolic state. Objective: To determine the impact of a high-fat meal intake on the metabolic and inflammatory profile, and its relationship to abdominal obesity. Materials and methods: This clinical trial included 42 individuals (21 with abdominal obesity). We measured glucose, insulin, lipid profile, reactive C protein, lipopolysaccharides, and interleukin 6 in fasting blood, and four hours after eating. Results: Besides obesity, we found insulin resistance and higher levels of fasting triacylglycerides and C-reactive protein. There were higher postprandial responses to glucose, insulin, and triacylglycerides. Interleukin 6 decreased in the non-obese group, and lipopolysaccharides increased in both groups. Conclusions: A saturated high-fat food intake produced a greater impact on the glycemic variables in the group with obesity, while it affected the lipids in both groups. However, the increase of triacylglycerides was higher in the presence of a high basal concentration, and it promoted the increase of lipopolysaccharides. The basal and postprandial inflammatory state affected the group with obesity more. The postprandial moment reflected the most frequent state of the individuals on a normal day and evidenced the capacity of the metabolic response to food intake, as well as early metabolic risk states.
Collapse
Affiliation(s)
- Alicia Norma Alayón
- Grupo de Nutrición, Doctorado en Ciencias Biomédicas, Universidad del Valle, Cali, Colombia Grupo de Investigaciones Biomédicas, Universidad de San Buenaventura, Cartagena, Colombia.
| | | | | | | | | | | |
Collapse
|
21
|
Lim Y, Kwon O, Kim JY. The Model for Evaluation on Blood Flow of Functional Food in Human Intervention Study. J Lipid Atheroscler 2018. [DOI: 10.12997/jla.2018.7.2.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, Korea
| |
Collapse
|
22
|
Fazelzadeh P, Hangelbroek RWJ, Joris PJ, Schalkwijk CG, Esser D, Afman L, Hankemeier T, Jacobs DM, Mihaleva VV, Kersten S, van Duynhoven J, Boekschoten MV. Weight loss moderately affects the mixed meal challenge response of the plasma metabolome and transcriptome of peripheral blood mononuclear cells in abdominally obese subjects. Metabolomics 2018; 14:46. [PMID: 29527144 PMCID: PMC5838115 DOI: 10.1007/s11306-018-1328-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The response to dietary challenges has been proposed as a more accurate measure of metabolic health than static measurements performed in the fasted state. This has prompted many groups to explore the potential of dietary challenge tests for assessment of diet and lifestyle induced shifts in metabolic phenotype. OBJECTIVES We examined whether the response to a mixed-meal challenge could provide a readout for a weight loss (WL)-induced phenotype shift in abdominally obese male subjects. The underlying assumption of a mixed meal challenge is that it triggers all aspects of phenotypic flexibility and provokes a more prolonged insulin response, possibly allowing for better differentiation between individuals. METHODS Abdominally obese men (n = 29, BMI = 30.3 ± 2.4 kg/m2) received a mixed-meal challenge prior to and after an 8-week WL or no-WL control intervention. Lean subjects (n = 15, BMI = 23.0 ± 2.0 kg/m2) only received the mixed meal challenge at baseline to have a benchmark for WL-induced phenotype shifts. RESULTS Levels of several plasma metabolites were significantly different between lean and abdominally obese at baseline as well as during postprandial metabolic responses. Genes related to oxidative phosphorylation in peripheral blood mononuclear cells (PBMCs) were expressed at higher levels in abdominally obese subjects as compared to lean subjects at fasting, which was partially reverted after WL. The impact of WL on the postprandial response was modest, both at the metabolic and gene expression level in PBMCs. CONCLUSION We conclude that mixed-meal challenges are not necessarily superior to measurements in the fasted state to assess metabolic health. Furthermore, the mechanisms accounting for the observed differences between lean and abdominally obese in the fasted state are different from those underlying the dissimilarity observed during the postprandial response.
Collapse
Affiliation(s)
- Parastoo Fazelzadeh
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Roland W J Hangelbroek
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Peter J Joris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Diederik Esser
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Lydia Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | | | - Doris M Jacobs
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- Unilever R&D, Vlaardingen, The Netherlands
| | - Velitchka V Mihaleva
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- Unilever R&D, Vlaardingen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.
- Top Institute Food and Nutrition, Wageningen, The Netherlands.
- Netherlands Metabolomics Centre, Leiden, The Netherlands.
- Unilever R&D, Vlaardingen, The Netherlands.
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| |
Collapse
|
23
|
Baldiviez LM, Keim NL, Laugero KD, Hwang DH, Huang L, Woodhouse LR, Burnett DJ, Zerofsky MS, Bonnel EL, Allen LH, Newman JW, Stephensen CB. Design and implementation of a cross-sectional nutritional phenotyping study in healthy US adults. BMC Nutr 2017; 3:79. [PMID: 32153856 PMCID: PMC7050916 DOI: 10.1186/s40795-017-0197-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022] Open
Abstract
Background Metabolic imbalance is a key determinant of risk of chronic diseases. Metabolic health cannot be assessed solely by body mass calculations or by static, fasted state biochemical readouts. Although previous studies have described temporal responses to dietary challenges, these studies fail to assess the environmental factors associated with certain metabolic phenotypes and therefore, provide little scientific rationale for potentially effective intervention strategies. Methods/design In this phenotyping study of healthy US adults, we are evaluating lifestyle, biological and environmental factors in addition to metabolic parameters to determine the factors associated with variations in metabolic health. A series of practical fitness, dietary, and emotional challenges are introduced and temporal responses in various areas of specialization, including immunology, metabolomics, and endocrinology, are monitored. We expect that this study will identify key factors related to healthy or unhealthy metabolic phenotypes (metabotypes) that may be modifiable targets for the prevention of chronic diseases in an individual. Discussion This study will provide novel insights into metabolic variability among healthy adults in balanced strata defined by sex, age and body mass index. Usual dietary intake and physical activity will be evaluated across these strata to determine how diet is associated with health status defined using many indicators including immune function, metabolism, body composition, physiology, response to exercise andmeal challenges and neuroendocrine assessment. A principal study goal is to identify dietary and other personal factors that will differentiate different levels of "health" among study participants. Trial registration ClinicalTrials.gov NCT02367287.
Collapse
Affiliation(s)
- Lacey M Baldiviez
- 1United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA USA.,2Department of Nutrition, University of California Davis, Davis, CA USA
| | - Nancy L Keim
- 1United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA USA.,2Department of Nutrition, University of California Davis, Davis, CA USA
| | - Kevin D Laugero
- 1United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA USA.,2Department of Nutrition, University of California Davis, Davis, CA USA
| | - Daniel H Hwang
- 1United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA USA.,2Department of Nutrition, University of California Davis, Davis, CA USA
| | - Liping Huang
- 1United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA USA.,2Department of Nutrition, University of California Davis, Davis, CA USA
| | - Leslie R Woodhouse
- 1United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA USA.,2Department of Nutrition, University of California Davis, Davis, CA USA
| | - Dustin J Burnett
- 1United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA USA.,2Department of Nutrition, University of California Davis, Davis, CA USA
| | - Melissa S Zerofsky
- 1United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA USA
| | - Ellen L Bonnel
- 1United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA USA.,2Department of Nutrition, University of California Davis, Davis, CA USA
| | - Lindsay H Allen
- 1United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA USA.,2Department of Nutrition, University of California Davis, Davis, CA USA
| | - John W Newman
- 1United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA USA.,2Department of Nutrition, University of California Davis, Davis, CA USA.,NIH West Coast Metabolomics Center, Davis, CA USA
| | - Charles B Stephensen
- 1United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA USA.,2Department of Nutrition, University of California Davis, Davis, CA USA
| |
Collapse
|
24
|
Wopereis S, Stroeve JHM, Stafleu A, Bakker GCM, Burggraaf J, van Erk MJ, Pellis L, Boessen R, Kardinaal AAF, van Ommen B. Multi-parameter comparison of a standardized mixed meal tolerance test in healthy and type 2 diabetic subjects: the PhenFlex challenge. GENES & NUTRITION 2017; 12:21. [PMID: 28861127 PMCID: PMC5576306 DOI: 10.1186/s12263-017-0570-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/08/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND A key feature of metabolic health is the ability to adapt upon dietary perturbations. Recently, it was shown that metabolic challenge tests in combination with the new generation biomarkers allow the simultaneous quantification of major metabolic health processes. Currently, applied challenge tests are largely non-standardized. A systematic review defined an optimal nutritional challenge test, the "PhenFlex test" (PFT). This study aimed to prove that PFT modulates all relevant processes governing metabolic health thereby allowing to distinguish subjects with different metabolic health status. Therefore, 20 healthy and 20 type 2 diabetic (T2D) male subjects were challenged both by PFT and oral glucose tolerance test (OGTT). During the 8-h response time course, 132 parameters were quantified that report on 26 metabolic processes distributed over 7 organs (gut, liver, adipose, pancreas, vasculature, muscle, kidney) and systemic stress. RESULTS In healthy subjects, 110 of the 132 parameters showed a time course response. Patients with T2D showed 18 parameters to be significantly different after overnight fasting compared to healthy subjects, while 58 parameters were different in the post-challenge time course after the PFT. This demonstrates the added value of PFT in distinguishing subjects with different health status. The OGTT and PFT response was highly comparable for glucose metabolism as identical amounts of glucose were present in both challenge tests. Yet the PFT reports on additional processes, including vasculature, systemic stress, and metabolic flexibility. CONCLUSION The PFT enables the quantification of all relevant metabolic processes involved in maintaining or regaining homeostasis of metabolic health. Studying both healthy subjects and subjects with impaired metabolic health showed that the PFT revealed new processes laying underneath health. This study provides the first evidence towards adopting the PFT as gold standard in nutrition research.
Collapse
Affiliation(s)
- Suzan Wopereis
- TNO, Netherlands Institute for Applied Scientific Research, Zeist, The Netherlands
| | | | - Annette Stafleu
- TNO, Netherlands Institute for Applied Scientific Research, Zeist, The Netherlands
| | | | | | - Marjan J. van Erk
- TNO, Netherlands Institute for Applied Scientific Research, Zeist, The Netherlands
| | - Linette Pellis
- TNO, Netherlands Institute for Applied Scientific Research, Zeist, The Netherlands
| | - Ruud Boessen
- TNO, Netherlands Institute for Applied Scientific Research, Zeist, The Netherlands
| | | | - Ben van Ommen
- TNO, Netherlands Institute for Applied Scientific Research, Zeist, The Netherlands
| |
Collapse
|
25
|
Shao A, Drewnowski A, Willcox DC, Krämer L, Lausted C, Eggersdorfer M, Mathers J, Bell JD, Randolph RK, Witkamp R, Griffiths JC. Optimal nutrition and the ever-changing dietary landscape: a conference report. Eur J Nutr 2017; 56:1-21. [PMID: 28474121 PMCID: PMC5442251 DOI: 10.1007/s00394-017-1460-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The field of nutrition has evolved rapidly over the past century. Nutrition scientists and policy makers in the developed world have shifted the focus of their efforts from dealing with diseases of overt nutrient deficiency to a new paradigm aimed at coping with conditions of excess-calories, sedentary lifestyles and stress. Advances in nutrition science, technology and manufacturing have largely eradicated nutrient deficiency diseases, while simultaneously facing the growing challenges of obesity, non-communicable diseases and aging. Nutrition research has gone through a necessary evolution, starting with a reductionist approach, driven by an ambition to understand the mechanisms responsible for the effects of individual nutrients at the cellular and molecular levels. This approach has appropriately expanded in recent years to become more holistic with the aim of understanding the role of nutrition in the broader context of dietary patterns. Ultimately, this approach will culminate in a full understanding of the dietary landscape-a web of interactions between nutritional, dietary, social, behavioral and environmental factors-and how it impacts health maintenance and promotion.
Collapse
Affiliation(s)
- A Shao
- Herbalife Nutrition, Los Angeles, CA, USA
| | | | - D C Willcox
- Okinawa International University, Ginowan, Japan
| | - L Krämer
- Technische Universität Braunschweig, Brunswick, Germany
| | - C Lausted
- Institute for Systems Biology, Seattle, WA, USA
| | | | - J Mathers
- Newcastle University, Newcastle upon Tyne, UK
| | - J D Bell
- University of Westminster, London, UK
| | | | - R Witkamp
- Wageningen University, Wageningen, The Netherlands
| | - J C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
26
|
Lacroix S, Des Rosiers C, Gayda M, Nozza A, Thorin É, Tardif JC, Nigam A. A single Mediterranean meal does not impair postprandial flow-mediated dilatation in healthy men with subclinical metabolic dysregulations. Appl Physiol Nutr Metab 2016; 41:888-94. [PMID: 27454855 DOI: 10.1139/apnm-2015-0490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular risk factors are known to exacerbate high-saturated fatty acid meal (HSFAM)-induced endothelial dysfunction, but the influence of subclinical metabolic dysregulations and the acute impact of a single mixed Mediterranean-type meal (MMM) remains unknown. Thus, this study has the objective to evaluate the metabolic and vascular effect of such meals in healthy subjects with or without subclinical fasting metabolic dysregulations. Twenty-eight healthy males without overt cardiovascular risk factors randomly ingested 1 of 2 isocaloric meals on separate days. Plasma metabolic markers, fatty acid (FA) profile, and endothelial function (flow-mediated dilatation; FMD) were assessed at baseline and 2 and 4 h after meal ingestion. Unsupervised hierarchical clustering identified 2 subgroups of participants (n = 11 and 17) differing by their baseline metabolic profiles. The MMM did not significantly alter postprandial endothelial function in all subjects, irrespective of baseline metabolic parameters. In contrast, the HSFAM induced postprandial endothelial dysfunction (Δ%FMDabsolute = -5.28 ± 2.54, p < 0.01 vs. MMM) in a subgroup of individuals with significantly greater body mass index, fasting insulinemia, and lipid parameters (n = 11). Finally, the postprandial plasma FA profiles were differentially enriched by the HSFAM and MMM, notably with saturated FAs and omega-3 polyunsaturated FAs, respectively. Collectively, our results highlight the detrimental impact of a single HSFAM on endothelial function in healthy individuals displaying subclinical fasting metabolic dysregulations. Such individuals could benefit from MMM, demonstrated herein to be without any acute detriment to endothelial function.
Collapse
Affiliation(s)
- Sébastien Lacroix
- a Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, 5055 St-Zotique Street East, Montreal, QC H1T 1N6, Canada.,b Montreal Heart Institute Research Center, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada.,c Department of Nutrition, Faculty of Medicine, Université de Montréal, 2405, Côte-Sainte-Catherine Road, Montréal, QC H3T 1A8, Canada
| | - Christine Des Rosiers
- a Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, 5055 St-Zotique Street East, Montreal, QC H1T 1N6, Canada.,b Montreal Heart Institute Research Center, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada.,c Department of Nutrition, Faculty of Medicine, Université de Montréal, 2405, Côte-Sainte-Catherine Road, Montréal, QC H3T 1A8, Canada
| | - Mathieu Gayda
- a Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, 5055 St-Zotique Street East, Montreal, QC H1T 1N6, Canada.,b Montreal Heart Institute Research Center, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada.,d Department of Medicine, Université de Montréal, 2900, Édouard-Montpetit Blvd., Montréal, QC H3T 1J4, Canada
| | - Anna Nozza
- e Montreal Heart Institute Coordinating Center, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada
| | - Éric Thorin
- b Montreal Heart Institute Research Center, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada.,f Department of Surgery, Université de Montréal, 2900, Édouard-Montpetit Blvd., Montréal, QC H3T 1J4, Canada
| | - Jean-Claude Tardif
- b Montreal Heart Institute Research Center, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada.,d Department of Medicine, Université de Montréal, 2900, Édouard-Montpetit Blvd., Montréal, QC H3T 1J4, Canada
| | - Anil Nigam
- a Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, 5055 St-Zotique Street East, Montreal, QC H1T 1N6, Canada.,b Montreal Heart Institute Research Center, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada.,c Department of Nutrition, Faculty of Medicine, Université de Montréal, 2405, Côte-Sainte-Catherine Road, Montréal, QC H3T 1A8, Canada.,d Department of Medicine, Université de Montréal, 2900, Édouard-Montpetit Blvd., Montréal, QC H3T 1J4, Canada
| |
Collapse
|
27
|
Matone A, O'Grada CM, Dillon ET, Morris C, Ryan MF, Walsh M, Gibney ER, Brennan L, Gibney MJ, Morine MJ, Roche HM. Body mass index mediates inflammatory response to acute dietary challenges. Mol Nutr Food Res 2015; 59:2279-92. [DOI: 10.1002/mnfr.201500184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Alice Matone
- The Microsoft Research; University of Trento Centre for Computational Systems Biology (COSBI); Rovereto Italy
| | - Colm M. O'Grada
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health and Population Science; University College Dublin; Belfield Dublin Ireland
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Eugene T. Dillon
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health and Population Science; University College Dublin; Belfield Dublin Ireland
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Ciara Morris
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Miriam F. Ryan
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Marianne Walsh
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Eileen R. Gibney
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Lorraine Brennan
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin; Belfield Dublin Ireland
| | - Michael J. Gibney
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Melissa J. Morine
- The Microsoft Research; University of Trento Centre for Computational Systems Biology (COSBI); Rovereto Italy
- Department of Mathematics; University of Trento; Trento Italy
| | - Helen M. Roche
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health and Population Science; University College Dublin; Belfield Dublin Ireland
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin; Belfield Dublin Ireland
| |
Collapse
|
28
|
|
29
|
Abstract
The importance of chronic low-grade inflammation in the pathology of numerous age-related chronic conditions is now clear. An unresolved inflammatory response is likely to be involved from the early stages of disease development. The present position paper is the most recent in a series produced by the International Life Sciences Institute's European Branch (ILSI Europe). It is co-authored by the speakers from a 2013 workshop led by the Obesity and Diabetes Task Force entitled ‘Low-grade inflammation, a high-grade challenge: biomarkers and modulation by dietary strategies’. The latest research in the areas of acute and chronic inflammation and cardiometabolic, gut and cognitive health is presented along with the cellular and molecular mechanisms underlying inflammation–health/disease associations. The evidence relating diet composition and early-life nutrition to inflammatory status is reviewed. Human epidemiological and intervention data are thus far heavily reliant on the measurement of inflammatory markers in the circulation, and in particular cytokines in the fasting state, which are recognised as an insensitive and highly variable index of tissue inflammation. Potential novel kinetic and integrated approaches to capture inflammatory status in humans are discussed. Such approaches are likely to provide a more discriminating means of quantifying inflammation–health/disease associations, and the ability of diet to positively modulate inflammation and provide the much needed evidence to develop research portfolios that will inform new product development and associated health claims.
Collapse
|
30
|
Kardinaal AFM, Erk MJ, Dutman AE, Stroeve JHM, Steeg E, Bijlsma S, Kooistra T, Ommen B, Wopereis S. Quantifying phenotypic flexibility as the response to a high‐fat challenge test in different states of metabolic health. FASEB J 2015. [DOI: 10.1096/fj.14-269852] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alwine F. M. Kardinaal
- Microbiology Systems and Biology GroupNetherlands Organisation for Applied Scientific Research (TNO)ZeistThe Netherlands
| | - Marjan J. Erk
- Microbiology Systems and Biology GroupNetherlands Organisation for Applied Scientific Research (TNO)ZeistThe Netherlands
| | - Alice E. Dutman
- Microbiology Systems and Biology GroupNetherlands Organisation for Applied Scientific Research (TNO)ZeistThe Netherlands
| | - Johanna H. M. Stroeve
- Microbiology Systems and Biology GroupNetherlands Organisation for Applied Scientific Research (TNO)ZeistThe Netherlands
| | - Evita Steeg
- Microbiology Systems and Biology GroupNetherlands Organisation for Applied Scientific Research (TNO)ZeistThe Netherlands
| | - Sabina Bijlsma
- Microbiology Systems and Biology GroupNetherlands Organisation for Applied Scientific Research (TNO)ZeistThe Netherlands
| | - Teake Kooistra
- Microbiology Systems and Biology GroupNetherlands Organisation for Applied Scientific Research (TNO)ZeistThe Netherlands
| | - Ben Ommen
- Microbiology Systems and Biology GroupNetherlands Organisation for Applied Scientific Research (TNO)ZeistThe Netherlands
| | - Suzan Wopereis
- Microbiology Systems and Biology GroupNetherlands Organisation for Applied Scientific Research (TNO)ZeistThe Netherlands
| |
Collapse
|
31
|
Morris C, O'Grada CM, Ryan MF, Gibney MJ, Roche HM, Gibney ER, Brennan L. Modulation of the lipidomic profile due to a lipid challenge and fitness level: a postprandial study. Lipids Health Dis 2015; 14:65. [PMID: 26123789 PMCID: PMC4489019 DOI: 10.1186/s12944-015-0062-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022] Open
Abstract
Background The lipid composition of plasma is known to vary due to both phenotypic factors such as age, gender and BMI as well as with various diseases including cancer and neurological disorders. However, there is little investigation into the variation in the lipidome due to exercise and/ or metabolic challenges. The objectives of this present study were (i) To identify the glycerophospholipid, sphingolipids and ceramide changes in response to an oral lipid tolerance test (OLTT) in healthy adults and (ii) To identify the effect of aerobic fitness level on lipidomic profiles. Methods 214 healthy adults aged 18–60 years were recruited as part of a metabolic challenge study. A sub-group of 40 volunteers were selected for lipidomic analysis based on their aerobic fitness level. Ceramides, glycerophospholipids and sphingomyelins were quantified in baseline fasting plasma samples as well as at 60, 120, 180, 240 and 300 min following a lipid challenge using high-throughput flow injection ESI-MS/MS. Results Mixed model repeated measures analysis identified lipids which were significantly changing over the time course of the lipid challenge. Included in these lipids were lysophosphoethanolamines (LPE), phosphoethanolamines (PE), phosphoglycerides (PG) and ceramides (Cer). Five lipids (LPE a C18:2, LPE a C18:1, PE aa C36:2, PE aa C36:3 and N-C16:1-Cer) had a fold change > 1.5 at 120 min following the challenge and these lipids remained elevated. Furthermore, three of these lipids (LPE a C18:2, PE aa C36:2 and PE aa C36:3) were predictive of fasting and peak plasma TAG concentrations following the OLTT. Further analysis revealed that fitness level has a significant impact on the response to the OLTT: in particular significant differences between fitness groups were observed for phosphatidylcholines (PC), sphingomyelins (SM) and ceramides. Conclusion This study identified specific lipids which were modulated by an acute lipid challenge. Furthermore, it identified a series of lipids which were modulated by fitness level. Future lipidomic studies should take into account environmental factors such as diet and fitness level during biomarker discovery work. Trial registration Data, clinicaltrials.gov, NCT01172951 Electronic supplementary material The online version of this article (doi:10.1186/s12944-015-0062-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ciara Morris
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Colm M O'Grada
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Miriam F Ryan
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael J Gibney
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Roche
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eileen R Gibney
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine Brennan
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
32
|
Ghini V, Saccenti E, Tenori L, Assfalg M, Luchinat C. Allostasis and Resilience of the Human Individual Metabolic Phenotype. J Proteome Res 2015; 14:2951-62. [PMID: 26055080 DOI: 10.1021/acs.jproteome.5b00275] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The urine metabotype of 12 individuals was followed over a period of 8-10 years, which provided the longest longitudinal study of metabolic phenotypes to date. More than 2000 NMR metabolic profiles were analyzed. The majority of subjects have a stable metabotype. Subjects who were exposed to important pathophysiological stressful conditions had a significant metabotype drift. When the stress conditions ceased, the original metabotypes were regained, while an irreversible stressful condition resulted in a permanent metabotype change. These results suggest that each individual occupies a well-defined region in the broad metabolic space, within which a limited degree of allostasis is permitted. The insurgence of significant stressful conditions causes a shift of the metabotype to another distinct region. The spontaneous return to the original metabolic region when the stressful conditions are removed suggests that the original metabotype has some degree of resilience. In this picture, precision medicine should aim at reinforcing the patient's metabolic resilience, that is, his or her ability to revert to his or her specific metabotype rather than to a generic healthy one.
Collapse
Affiliation(s)
- Veronica Ghini
- †Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Edoardo Saccenti
- ‡Laboratory of Systems and Synthetic Biology, Wageningen University and Research Center, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Leonardo Tenori
- §FiorGen Foundation, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Michael Assfalg
- ⊥Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Claudio Luchinat
- †Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,¶Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
33
|
Stroeve JHM, van Wietmarschen H, Kremer BHA, van Ommen B, Wopereis S. Phenotypic flexibility as a measure of health: the optimal nutritional stress response test. GENES AND NUTRITION 2015; 10:13. [PMID: 25896408 PMCID: PMC4404421 DOI: 10.1007/s12263-015-0459-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/21/2015] [Indexed: 11/28/2022]
Abstract
Nutrition research is struggling to demonstrate beneficial health effects, since nutritional effects are often subtle and long term. Health has been redefined as the ability of our body to cope with daily-life challenges. Physiology acts as a well-orchestrated machinery to adapt to the continuously changing environment. We term this adaptive capacity “phenotypic flexibility.” The phenotypic flexibility concept implies that health can be measured by the ability to adapt to conditions of temporary stress, such as physical exercise, infections or mental stress, in a healthy manner. This may offer a more sensitive way to assess changes in health status of healthy subjects. Here, we performed a systematic review of 61 studies applying different nutritional stress tests to quantify health and nutritional health effects, with the objective to define an optimal nutritional stress test that has the potential to be adopted as the golden standard in nutrition research. To acknowledge the multi-target role of nutrition, a relevant subset of 50 processes that govern optimal health, with high relevance to diet, was used to define phenotypic flexibility. Subsequently, we assessed the response of biomarkers related to this subset of processes to the different challenge tests. Based on the obtained insights, we propose a nutritional stress test composed of a high-fat, high-caloric drink, containing 60 g palm olein, 75 g glucose and 20 g dairy protein in a total volume of 400 ml. The use of such a standardized nutritional challenge test in intervention studies is expected to demonstrate subtle improvements of phenotypic flexibility, thereby enabling substantiation of nutritional health effects.
Collapse
|
34
|
Saccenti E, van Duynhoven J, Jacobs DM, Smilde AK, Hoefsloot HCJ. Strategies for individual phenotyping of linoleic and arachidonic acid metabolism using an oral glucose tolerance test. PLoS One 2015; 10:e0119856. [PMID: 25786212 PMCID: PMC4364740 DOI: 10.1371/journal.pone.0119856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/16/2015] [Indexed: 12/04/2022] Open
Abstract
The ability to restore homeostasis upon environmental challenges has been proposed as a measure for health. Metabolic profiling of plasma samples during the challenge response phase should offer a profound view on the flexibility of a phenotype to cope with daily stressors. Current data modeling approaches, however, struggle to extract biological descriptors from time-resolved metabolite profiles that are able to discriminate between different phenotypes. Thus, for the case of oxylipin responses in plasma upon an oral glucose tolerance test we developed a modeling approach that incorporates a priori biological pathway knowledge. The degradation pathways of arachidonic and linoleic acids were modeled using a regression model based on a pseudo-steady-state approximated model, resulting in a parameter A that summarizes the relative enzymatic activity in these pathways. Analysis of the phenotypic parameters As suggests that different phenotypes can be discriminated according to preferred relative activity of the arachidonic and linoleic pathway. Correlation analysis shows that there is little or no competition between the arachidonic and linoleic acid pathways, although they share the same enzymes.
Collapse
Affiliation(s)
- Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, University of Wageningen and Research Center, Wageningen, The Netherlands
- Biosystem Data Analysis Group, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - John van Duynhoven
- Unilever Research & Development, Vlaardingen, The Netherlands
- Laboratory of Biophysics, University of Wageningen and Research Center, Wageningen, The Netherlands
- Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Doris M. Jacobs
- Unilever Research & Development, Vlaardingen, The Netherlands
- Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Age K. Smilde
- Biosystem Data Analysis Group, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Huub C. J. Hoefsloot
- Biosystem Data Analysis Group, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Metabolomics Centre, Leiden, The Netherlands
| |
Collapse
|
35
|
van Ommen B, van der Greef J, Ordovas JM, Daniel H. Phenotypic flexibility as key factor in the human nutrition and health relationship. GENES & NUTRITION 2014; 9:423. [PMID: 25106484 PMCID: PMC4172643 DOI: 10.1007/s12263-014-0423-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/25/2014] [Indexed: 01/05/2023]
Abstract
Metabolic adaptation to a disturbance of homeostasis is determined by a series of interconnected physiological processes and molecular mechanisms that can be followed in space (i.e., different organs or organelles) and in time. The amplitudes of these responses of this "systems flexibility network" determine to what extent the individual can adequately react to external challenges of varying nature and thus determine the individual's health status and disease predisposition. Connected pathways and regulatory networks act as "adaptive response systems" with metabolic and inflammatory processes as a core-but embedded into psycho-neuro-endocrine control mechanisms that in their totality define the phenotypic flexibility in an individual. Optimal metabolic health is thus the orchestration of all mechanisms and processes that maintain this flexibility in an organism as a phenotype. Consequently, onset of many chronic metabolic diseases results from impairment or even loss of flexibility in parts of the system. This also means that metabolic diseases need to be diagnosed and treated from a systems perspective referring to a "systems medicine" approach. This requires a far better understanding of the mechanisms involved in maintaining, optimizing and restoring phenotypic flexibility. Although a loss of flexibility in a specific part of the network may promote pathologies, this not necessarily takes place in the same part because the system compensates. Diagnosis at systems level therefore needs the quantification of the response reactions of all relevant parts of the phenotypic flexibility system. This can be achieved by disturbing the homeostatic system by any challenge from extended fasting, to intensive exercise or a caloric overload.
Collapse
|
36
|
Gibney MJ, McNulty BA, Ryan MF, Walsh MC. Nutritional phenotype databases and integrated nutrition: from molecules to populations. Adv Nutr 2014; 5:352S-7S. [PMID: 24829488 PMCID: PMC4013193 DOI: 10.3945/an.113.005496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, there has been a great expansion in the nature of new technologies for the study of all biologic subjects at the molecular and genomic level and these have been applied to the field of human nutrition. The latter has traditionally relied on a mix of epidemiologic studies to generate hypotheses, dietary intervention studies to test these hypotheses, and a variety of experimental approaches to understand the underlying explanatory mechanisms. Both the novel and traditional approaches have begun to carve out separate identities vís-a-vís their own journals, their own international societies, and their own national and international symposia. The present review draws on the advent of large national nutritional phenotype databases and related technological developments to argue the case that there needs to be far more integration of molecular and public health nutrition. This is required to address new joint approaches to such areas as the measurement of food intake, biomarker discovery, and the genetic determinants of nutrient-sensitive genotypes and other areas such as personalized nutrition and the use of new technologies with mass application, such as in dried blood spots to replace venipuncture or portable electronic devices to monitor food intake and phenotype. Future development requires the full integration of these 2 disciplines, which will provide a challenge to both funding agencies and to university training of nutritionists.
Collapse
Affiliation(s)
- Michael J. Gibney
- Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; and,School of Biomedical Sciences, University of Ulster, Ulster, Northern Ireland,To whom correspondence should be addressed. E-mail:
| | - Breige A. McNulty
- Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; and
| | - Miriam F. Ryan
- Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; and
| | - Marianne C. Walsh
- Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; and
| |
Collapse
|
37
|
The acute effects of low-dose TNF-α on glucose metabolism and β-cell function in humans. Mediators Inflamm 2014; 2014:295478. [PMID: 24692847 PMCID: PMC3945645 DOI: 10.1155/2014/295478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/06/2013] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes is characterized by increased insulin resistance and impaired insulin secretion. Type 2 diabetes is also associated with low-grade inflammation and increased levels of proinflammatory cytokines such as TNF-α. TNF-α has been shown to impair peripheral insulin signaling in vitro and in vivo. However, it is unclear whether TNF-α may also affect endogenous glucose production (EGP) during fasting and glucose-stimulated insulin secretion (GSIS) in vivo. We hypothesized that low-dose TNF-α would increase EGP and attenuate GSIS. Recombinant human TNF-α or placebo was infused in healthy, nondiabetic young men (n = 10) during a 4-hour basal period followed by an intravenous glucose tolerance test (IVGTT). TNF-α lowered insulin levels by 12% during the basal period (P < 0.05). In response to the IVGTT, insulin levels increased markedly in both trials, but there was no difference between trials. Compared to placebo, TNF-α did not affect EGP during the basal period. Our results indicate that TNF-α acutely lowers basal plasma insulin levels but does not impair GSIS. The mechanisms behind this are unknown but we suggest that it may be due to TNF-α increasing clearance of insulin from plasma without impairing beta-cell function or hepatic insulin sensitivity.
Collapse
|