1
|
Yu KM, Park SJ. Tick-borne viruses: Epidemiology, pathogenesis, and animal models. One Health 2024; 19:100903. [PMID: 39391267 PMCID: PMC11465198 DOI: 10.1016/j.onehlt.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
Tick-borne viruses, capable of infecting animals and humans, are expanding geographically and increasing in prevalence, posing significant global public health threats. This review explores the current epidemiology of human pathogenic tick-borne viruses, emphasizing their diversity and the spectrum of symptomatic manifestations in humans, which range from mild to severe. We highlight how the infrequent and unpredictable nature of viral outbreaks complicates the precise identification and understanding of these viruses in human infections. Furthermore, we describe the utility of animal models that accurately mimic human clinical symptoms, facilitating the development of effective control strategies. Our comprehensive analysis provides crucial insights into disease progression and emphasizes the urgent need for continued research. This work aims to provide insight into knowledge gaps to mitigate the health burden of tick-borne infections and open an avenue for further study to enhance our understanding of these emerging infectious diseases.
Collapse
Affiliation(s)
- Kwang-Min Yu
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Su-Jin Park
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Kuyucu AC, Hekimoglu O. Predicting the distribution of Ixodes ricinus in Europe: integrating microclimatic factors into ecological niche models. Parasitology 2024:1-12. [PMID: 39508154 DOI: 10.1017/s003118202400132x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Ixodes ricinus, commonly known as the castor bean tick and sheep tick, is a significant vector of various diseases, such as tick-borne encephalitis and Lyme borreliosis. Owing to climate change, the distribution and activity of I. ricinus are expected to increase, leading to an increase in the number of diseases transmitted by this species. Most distribution models and ecological niche models utilize macroclimate datasets such as WorldClim or CHELSA to map the distribution of disease-transmitting ticks. However, microclimatic factors are crucial for the activity and survival of small arthropods. In this study, an ecological niche modelling approach was used to assess the climatic suitability of I. ricinus using both microclimatic and macroclimatic parameters. A Mixed model was built by combining parameters from the Soiltemp (microclimate) and Wordclim (macroclimate) databases, whereas a Macroclimate model was built with the CHELSA dataset. Additionally, future suitabilities were projected via the macroclimate model under the SSP3-7.0 and SSP5-8.5 scenarios. Macroclimate and Mixed models showed similar distributions, confirming the current distribution of I. ricinus. The most important climatic factors were seasonality, annual temperature range, humidity and precipitation. Future projections suggest significant expansion in northern and eastern Europe, with notable declines in southern Europe.
Collapse
|
3
|
Le Dortz LL, Rouxel C, Polack B, Boulouis HJ, Lagrée AC, Deshuillers PL, Haddad N. Tick-borne diseases in Europe: Current prevention, control tools and the promise of aptamers. Vet Parasitol 2024; 328:110190. [PMID: 38714064 DOI: 10.1016/j.vetpar.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
In Europe, tick-borne diseases (TBDs) cause significant morbidity and mortality, affecting both human and animal health. Ticks can transmit a wide variety of pathogens (bacteria, viruses, and parasites) and feed on many vertebrate hosts. The incidence and public health burden of TBDs are tending to intensify in Europe due to various factors, mainly anthropogenic and often combined. Early detection of tick-borne pathogens (TBPs), preventive measures and treatment are of great importance to control TBDs and their expansion. However, there are various limitations in terms of the sensitivity and/or specificity of detection and prevention methods, and even in terms of feasibility. Aptamers are single-stranded DNA or RNA that could address these issues as they are able to bind with high affinity and specificity to a wide range of targets (e.g., proteins, small compounds, and cells) due to their unique three-dimensional structure. To date, aptamers have been selected against TBPs such as tick-borne encephalitis virus, Francisella tularensis, and Rickettsia typhi. These studies have demonstrated the benefits of aptamer-based assays for pathogen detection and medical diagnosis. In this review, we address the applications of aptamers to TBDs and discuss their potential for improving prevention measures (use of chemical acaricides, vaccination), diagnosis and therapeutic strategies to control TBDs.
Collapse
Affiliation(s)
- Lisa Lucie Le Dortz
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Clotilde Rouxel
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Bruno Polack
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Henri-Jean Boulouis
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Anne-Claire Lagrée
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Pierre Lucien Deshuillers
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Nadia Haddad
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France.
| |
Collapse
|
4
|
Giesen C, Cifo D, Gomez-Barroso D, Estévez-Reboredo RM, Figuerola J, Herrador Z. The Role of Environmental Factors in Lyme Disease Transmission in the European Union: A Systematic Review. Trop Med Infect Dis 2024; 9:113. [PMID: 38787046 PMCID: PMC11125681 DOI: 10.3390/tropicalmed9050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Lyme disease (LD) is an emergent vector-borne disease caused by Borrelia spp. and transmitted through infected ticks, mainly Ixodes spp. Our objective was to determine meteorological and environmental factors associated with LD transmission in Europe and the effect of climate change on LD. MATERIALS AND METHODS A systematic review following the PRISMA guidelines was performed. We selected studies on LD transmission in the European Union (EU) and the European Economic Area (EEA) published between 2000 and 2022. The protocol was registered in the PROSPERO database. RESULTS We included 81 studies. The impact of environmental, meteorological or climate change factors on tick vectors was studied in 65 papers (80%), and the impact on human LD cases was studied in 16 papers (19%), whereas animal hosts were only addressed in one study (1%). A significant positive relationship was observed between temperature and precipitation and the epidemiology of LD, although contrasting results were found among studies. Other positive factors were humidity and the expansion of anthropized habitats. CONCLUSIONS The epidemiology of LD seems to be related to climatic factors that are changing globally due to ongoing climate change. Unfortunately, the complete zoonotic cycle was not systematically analyzed. It is important to adopt a One Health approach to understand LD epidemiology.
Collapse
Affiliation(s)
- Christine Giesen
- Centro de Salud Internacional Madrid Salud, Ayuntamiento de Madrid, 28006 Madrid, Spain;
| | - Daniel Cifo
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Diana Gomez-Barroso
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.-B.); (R.M.E.-R.)
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
| | - Rosa M. Estévez-Reboredo
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.-B.); (R.M.E.-R.)
| | - Jordi Figuerola
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Zaida Herrador
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.-B.); (R.M.E.-R.)
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
| |
Collapse
|
5
|
D'Addiego J, Wand N, Afrough B, Fletcher T, Kurosaki Y, Leblebicioglu H, Hewson R. Recovery of complete genome sequences of Crimean-Congo haemorrhagic fever virus (CCHFV) directly from clinical samples: A comparative study between targeted enrichment and metagenomic approaches. J Virol Methods 2024; 323:114833. [PMID: 37879367 DOI: 10.1016/j.jviromet.2023.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is the most prevalent human tick-borne viral disease, endemic to the Balkans, Africa, Middle East and Asia. There are currently no licensed vaccines or effective antivirals against CCHF. CCHF virus (CCHFV) has a negative sense segmented tripartite RNA genome consisting of the small (S), medium (M) and large (L) segments. Depending on the segment utilised for genetic affiliation, there are up to 7 circulating lineages of CCHFV. The current lack of geographical representation of CCHFV sequences in various repositories highlights a requirement for increased CCHFV sequencing capabilities in endemic regions. We have optimised and established a multiplex PCR tiling methodology for the targeted enrichment of complete genomes of Europe 1 CCHFV lineage directly from clinical samples and compared its performance to a non-targeted enrichment approach on both short-read and long-read sequencing platforms. We have found a statistically significant increase in mapped viral sequencing reads produced with our targeted enrichment approach. This has allowed us to recover near complete S segment sequences and above 90% of the M and L segment sequences for samples with Ct values as high as 31.3. This study demonstrates the superiority of a targeted enrichment approach for recovery of CCHFV genomic sequences from samples with low virus titre. CCHFV is an important vector-borne human pathogen with wide geographical distribution. The validated methodology reported here adds value to front-line public health laboratories employing genomic sequencing for CCHFV Europe 1 lineage surveillance, particularly in the Balkan and Middle Eastern territories currently monitoring the spread of the pathogen. Tracking the genomic evolution of the virus across regions improves risk assessment and directly informs the development of diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Jake D'Addiego
- UK Health Security Agency, Science Group, Porton Down, Salisbury, United Kingdom; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Nadina Wand
- UK Health Security Agency, Science Group, Porton Down, Salisbury, United Kingdom
| | - Babak Afrough
- UK Health Security Agency, Science Group, Porton Down, Salisbury, United Kingdom
| | - Tom Fletcher
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Yohei Kurosaki
- National Research Centre for the Control and Prevention of Infectious Diseases, Nagasaki University, Japan
| | | | - Roger Hewson
- UK Health Security Agency, Science Group, Porton Down, Salisbury, United Kingdom; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; National Research Centre for the Control and Prevention of Infectious Diseases, Nagasaki University, Japan
| |
Collapse
|
6
|
Noll M, Wall R, Makepeace BL, Newbury H, Adaszek L, Bødker R, Estrada-Peña A, Guillot J, da Fonseca IP, Probst J, Overgaauw P, Strube C, Zakham F, Zanet S, Rose Vineer H. Predicting the distribution of Ixodes ricinus and Dermacentor reticulatus in Europe: a comparison of climate niche modelling approaches. Parasit Vectors 2023; 16:384. [PMID: 37880680 PMCID: PMC10601327 DOI: 10.1186/s13071-023-05959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/01/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The ticks Ixodes ricinus and Dermacentor reticulatus are two of the most important vectors in Europe. Climate niche modelling has been used in many studies to attempt to explain their distribution and to predict changes under a range of climate change scenarios. The aim of this study was to assess the ability of different climate niche modelling approaches to explain the known distribution of I. ricinus and D. reticulatus in Europe. METHODS A series of climate niche models, using different combinations of input data, were constructed and assessed. Species occurrence records obtained from systematic literature searches and Global Biodiversity Information Facility data were thinned to different degrees to remove sampling spatial bias. Four sources of climate data were used: bioclimatic variables, WorldClim, TerraClimate and MODIS satellite-derived data. Eight different model training extents were examined and three modelling frameworks were used: maximum entropy, generalised additive models and random forest models. The results were validated through internal cross-validation, comparison with an external independent dataset and expert opinion. RESULTS The performance metrics and predictive ability of the different modelling approaches varied significantly within and between each species. Different combinations were better able to define the distribution of each of the two species. However, no single approach was considered fully able to capture the known distribution of the species. When considering the mean of the performance metrics of internal and external validation, 24 models for I. ricinus and 11 models for D. reticulatus of the 96 constructed were considered adequate according to the following criteria: area under the receiver-operating characteristic curve > 0.7; true skill statistic > 0.4; Miller's calibration slope 0.25 above or below 1; Boyce index > 0.9; omission rate < 0.15. CONCLUSIONS This comprehensive analysis suggests that there is no single 'best practice' climate modelling approach to account for the distribution of these tick species. This has important implications for attempts to predict climate-mediated impacts on future tick distribution. It is suggested here that climate variables alone are not sufficient; habitat type, host availability and anthropogenic impacts, not included in current modelling approaches, could contribute to determining tick presence or absence at the local or regional scale.
Collapse
Affiliation(s)
- Madeleine Noll
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - Richard Wall
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - Lukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - René Bødker
- Section of Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Saragossa, Spain
- Instituto Agroalimentario de Aragón (IA2), Saragossa, Spain
| | - Jacques Guillot
- Department of Dermatology-Parasitology-Mycology, École Nationale Vétérinaire, Oniris, Nantes, France
| | - Isabel Pereira da Fonseca
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - Julia Probst
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Overgaauw
- Department Population Health Sciences, Division of Veterinary Public Health, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Fathiah Zakham
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Stefania Zanet
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Hannah Rose Vineer
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Dagostin F, Tagliapietra V, Marini G, Cataldo C, Bellenghi M, Pizzarelli S, Cammarano RR, Wint W, Alexander NS, Neteler M, Haas J, Dub T, Busani L, Rizzoli A. Ecological and environmental factors affecting the risk of tick-borne encephalitis in Europe, 2017 to 2021. Euro Surveill 2023; 28:2300121. [PMID: 37855903 PMCID: PMC10588310 DOI: 10.2807/1560-7917.es.2023.28.42.2300121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/11/2023] [Indexed: 10/20/2023] Open
Abstract
BackgroundTick-borne encephalitis (TBE) is a disease which can lead to severe neurological symptoms, caused by the TBE virus (TBEV). The natural transmission cycle occurs in foci and involves ticks as vectors and several key hosts that act as reservoirs and amplifiers of the infection spread. Recently, the incidence of TBE in Europe has been rising in both endemic and new regions.AimIn this study we want to provide comprehensive understanding of the main ecological and environmental factors that affect TBE spread across Europe.MethodsWe searched available literature on covariates linked with the circulation of TBEV in Europe. We then assessed the best predictors for TBE incidence in 11 European countries by means of statistical regression, using data on human infections provided by the European Surveillance System (TESSy), averaged between 2017 and 2021.ResultsWe retrieved data from 62 full-text articles and identified 31 different covariates associated with TBE occurrence. Finally, we selected eight variables from the best model, including factors linked to vegetation cover, climate, and the presence of tick hosts.DiscussionThe existing literature is heterogeneous, both in study design and covariate types. Here, we summarised and statistically validated the covariates affecting the variability of TBEV across Europe. The analysis of the factors enhancing disease emergence is a fundamental step towards the identification of potential hotspots of viral circulation. Hence, our results can support modelling efforts to estimate the risk of TBEV infections and help decision-makers implement surveillance and prevention campaigns.
Collapse
Affiliation(s)
- Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Valentina Tagliapietra
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Claudia Cataldo
- Centre for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Bellenghi
- Centre for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Scilla Pizzarelli
- Knowledge Unit (Documentation, Library), Istituto Superiore di Sanità, Rome, Italy
| | | | - William Wint
- Environmental Research Group Oxford Ltd, Oxford, United Kingdom
| | | | | | | | - Timothée Dub
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Luca Busani
- Centre for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| |
Collapse
|
8
|
Vanat V, Aeby S, Greub G. Ticks and Chlamydia-Related Bacteria in Swiss Zoological Gardens Compared to in Contiguous and Distant Control Areas. Microorganisms 2023; 11:2468. [PMID: 37894126 PMCID: PMC10609390 DOI: 10.3390/microorganisms11102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Ticks are vectors of numerous agents of medical importance and may be infected by various Chlamydia-related bacteria, such as members of Parachlamydiaceae and Rhabdochlamydiaceae families, which are sharing the same biphasic life cycle with the pathogenic Chlamydia. However, the veterinary importance of ticks and of their internalized pathogens remains poorly studied. Thus, we wondered (i) whether the prevalence of ticks was higher in zoological gardens than in control areas with similar altitude, vegetation, humidity and temperature, and (ii) whether the presence of Chlamydia-related bacteria in ticks may vary according to the environment in which the ticks are collected. A total of 212 Ixodes ricinus ticks were collected, and all were tested for the presence of DNA from any member of the Chlamydiae phylum using a pan-Chlamydiae quantitative PCR (qPCR). We observed a higher prevalence of ticks outside animal enclosures in both zoos, compared to in enclosures. Tick prevalence was also higher outside zoos, compared to in enclosures. With 30% (3/10) of infected ticks, the zoological gardens presented a prevalence of infected ticks that was higher than that in contiguous areas (13.15%, 10/76), and higher than the control distant areas (8.65%, 9/104). In conclusion, zoological gardens in Switzerland appear to contain fewer ticks than areas outside zoological gardens. However, ticks from zoos more often contain Chlamydia-like organisms than ticks from contiguous or distant control areas.
Collapse
Affiliation(s)
- Vincent Vanat
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; (V.V.); (S.A.)
| | - Sébastien Aeby
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; (V.V.); (S.A.)
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; (V.V.); (S.A.)
- Service of Infectious Diseases, University Hospital Center (CHUV), 1005 Lausanne, Switzerland
| |
Collapse
|
9
|
Parizi LF, Githaka NW, Logullo C, Zhou J, Onuma M, Termignoni C, da Silva Vaz I. Universal Tick Vaccines: Candidates and Remaining Challenges. Animals (Basel) 2023; 13:2031. [PMID: 37370541 DOI: 10.3390/ani13122031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advancements in molecular biology, particularly regarding massively parallel sequencing technologies, have enabled scientists to gain more insight into the physiology of ticks. While there has been progress in identifying tick proteins and the pathways they are involved in, the specificities of tick-host interaction at the molecular level are not yet fully understood. Indeed, the development of effective commercial tick vaccines has been slower than expected. While omics studies have pointed to some potential vaccine immunogens, selecting suitable antigens for a multi-antigenic vaccine is very complex due to the participation of redundant molecules in biological pathways. The expansion of ticks and their pathogens into new territories and exposure to new hosts makes it necessary to evaluate vaccine efficacy in unusual and non-domestic host species. This situation makes ticks and tick-borne diseases an increasing threat to animal and human health globally, demanding an urgent availability of vaccines against multiple tick species and their pathogens. This review discusses the challenges and advancements in the search for universal tick vaccines, including promising new antigen candidates, and indicates future directions in this crucial research field.
Collapse
Affiliation(s)
- Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Misao Onuma
- Department of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| |
Collapse
|
10
|
Ma Y, Kalantari Z, Destouni G. Infectious Disease Sensitivity to Climate and Other Driver-Pressure Changes: Research Effort and Gaps for Lyme Disease and Cryptosporidiosis. GEOHEALTH 2023; 7:e2022GH000760. [PMID: 37303696 PMCID: PMC10251199 DOI: 10.1029/2022gh000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
Climate sensitivity of infectious diseases is discussed in many studies. A quantitative basis for distinguishing and predicting the disease impacts of climate and other environmental and anthropogenic driver-pressure changes, however, is often lacking. To assess research effort and identify possible key gaps that can guide further research, we here apply a scoping review approach to two widespread infectious diseases: Lyme disease (LD) as a vector-borne and cryptosporidiosis as a water-borne disease. Based on the emerging publication data, we further structure and quantitatively assess the driver-pressure foci and interlinkages considered in the published research so far. This shows important research gaps for the roles of rarely investigated water-related and socioeconomic factors for LD, and land-related factors for cryptosporidiosis. For both diseases, the interactions of host and parasite communities with climate and other driver-pressure factors are understudied, as are also important world regions relative to the disease geographies; in particular, Asia and Africa emerge as main geographic gaps for LD and cryptosporidiosis research, respectively. The scoping approach developed and gaps identified in this study should be useful for further assessment and guidance of research on infectious disease sensitivity to climate and other environmental and anthropogenic changes around the world.
Collapse
Affiliation(s)
- Y. Ma
- Department of Physical GeographyStockholm UniversityStockholmSweden
| | - Z. Kalantari
- Department of Physical GeographyStockholm UniversityStockholmSweden
- Department of Sustainable DevelopmentEnvironmental Science and Engineering (SEED)KTH Royal Institute of TechnologyStockholmSweden
| | - G. Destouni
- Department of Physical GeographyStockholm UniversityStockholmSweden
| |
Collapse
|
11
|
Kahl O, Gray JS. The biology of Ixodes ricinus with emphasis on its ecology. Ticks Tick Borne Dis 2023; 14:102114. [PMID: 36603231 DOI: 10.1016/j.ttbdis.2022.102114] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Prior to its identification as the vector of Lyme borreliosis spirochaetes in Europe in 1983, interest in Ixodes ricinus (L.) was moderate and mainly concerned the transmission of pathogens to farm animals and of tick-borne encephalitis virus to humans. The situation now is very different, and more papers have been published on I. ricinus than on any other ixodid tick species. However, this large literature is scattered and in recent years has become dominated by the molecular detection and characterization of the many pathogens that I. ricinus transmits. Several decades have now elapsed since a review addressing its basic biology and ecology appeared, and the present publication seeks to present basic aspects of its biology and ecology that are related to its role as a vector of disease agents, including its life cycle, feeding behaviour, host relations, survival off the host, and the impact of weather and climate.
Collapse
Affiliation(s)
- Olaf Kahl
- tick-radar GmbH, 10555 Berlin, Germany.
| | | |
Collapse
|
12
|
Gandy SL, Hansford KM, Medlock JM. Possible expansion of Ixodes ricinus in the United Kingdom identified through the Tick Surveillance Scheme between 2013 and 2020. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:96-104. [PMID: 36239468 PMCID: PMC10092138 DOI: 10.1111/mve.12612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The tick Ixodes ricinus (Ixodida: Ixodidae, Linnaeus) is the main vector of several pathogens including Borrelia burgdorferi s.l. (agent of Lyme borreliosis) and tick-borne encephalitis virus. Its distribution depends on many factors including suitable habitat, climate and presence of hosts. In this study, we present records of I. ricinus bites on humans, dogs (Canis lupus familiaris; Carnivora: Canidae, L.) and cats (Felis catus; Carnivora: Felidiae, L.) in the United Kingdom (UK) obtained through the Tick Surveillance Scheme between 2013 and 2020. We divided the UK into 20 km x 20 km grids and 9.2% (range 1.2%-30%) of grids had at least one record every year since 2013. Most regions reported a yearly increase in the percentage of grids reporting I. ricinus since 2013 and the highest changes occurred in the South and East England with 5%-6.7% of new grids reporting I. ricinus bites each year in areas that never reported ticks before. Spatiotemporal analyses suggested that, while all regions recorded I. ricinus in new areas every year, there was a yearly decline in the percentage of new areas covered, except for Scotland. We discuss potential drivers of tick expansion, including reforestation and increase in deer populations.
Collapse
Affiliation(s)
- Sara L. Gandy
- Medical Entomology & Zoonoses EcologyUK Health Security AgencySalisburyUK
| | - Kayleigh M. Hansford
- Medical Entomology & Zoonoses EcologyUK Health Security AgencySalisburyUK
- NIHR Health Protection Research Unit in Environmental Change and HealthLondonUK
| | - Jolyon M. Medlock
- Medical Entomology & Zoonoses EcologyUK Health Security AgencySalisburyUK
- NIHR Health Protection Research Unit in Environmental Change and HealthLondonUK
| |
Collapse
|
13
|
Wu B, Li X, Liu J, Bao R. Predicting the potential habitat for Ornithodoros tick species in China. Vet Parasitol 2022; 311:109793. [DOI: 10.1016/j.vetpar.2022.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
|
14
|
El Damaty HM, Yousef SG, El-Balkemy FA, Nekouei O, Mahmmod YS, Elsohaby I. Seroprevalence and risk factors of tropical theileriosis in smallholder asymptomatic large ruminants in Egypt. Front Vet Sci 2022; 9:1004378. [PMID: 36304407 PMCID: PMC9595338 DOI: 10.3389/fvets.2022.1004378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
Knowledge of the prevalence and epidemiological determinants of tropical theileriosis in large ruminants, particularly in the asymptomatic carrier, is crucial for designing and implementing effective host-specific control measures. This study aimed to estimate the seroprevalence of tropical theileriosis in asymptomatic cattle and water buffaloes and identify the potential risk factors of theileriosis in large ruminants raised under smallholder-production system in Egypt. A cross-sectional study was conducted in five districts of the Sharkia governorate from March 2019 to February 2020. In total, 350 serum samples were collected from cattle and water buffaloes under smallholder-production system and tested for Theileria annulata antibodies using the indirect antibody fluorescence test (IFAT). Data on species, host characteristics, presence of ticks, season, and districts were collected at sampling using a questionnaire. A multivariable mixed-effects logistic regression model was built to determine the potential risk factors associated with T. annulate seropositivity of the animals. The overall apparent seroprevalence of T. annulata in 350 tested animals was 70%. In the univariable analyses, cattle compared to buffaloes, younger animals compared to older ones, animals with ticks on their bodies, and warmer seasons were all associated with a higher likelihood of seropositive results in the study population while sex of the animals was not associated with seropositivity. The final multivariable model showed that animals with ticks on their bodies had 3.5× higher odds of seropositivity than those with no ticks (P < 0.001), and warmer seasons were associated with the higher odds of infection compared to winter (P = 0.003). The high seroprevalence of tropical theileriosis in the study region indicates that the disease is endemic among smallholders of large ruminants. The identified risk factors of T. annulata-seropositivity in asymptomatic carrier animals provides evidence-based guidance for adopting effective intervention measures.
Collapse
Affiliation(s)
- Hend M. El Damaty
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt,Hend M. El Damaty
| | - Sarah G. Yousef
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Farouk A. El-Balkemy
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Omid Nekouei
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China,The Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong, Hong Kong SAR, China,*Correspondence: Omid Nekouei
| | - Yasser S. Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Ibrahim Elsohaby
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China,The Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Varma A, Szlaszynska M, Ben-Haim A, Ilia N, Tarricone S, Lewandowska-Bejm J, Visentin F, Gadler A. Bearing the Burden of Tick-Borne Encephalitis in Europe, 2012-2020: Rising Cases, Future Predictions and Climate Change. INTERNATIONAL JOURNAL OF MEDICAL STUDENTS 2022. [DOI: 10.5195/ijms.2022.1464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Tick-borne encephalitis (TBE) is a central nervous system disease that is posing a growing public health challenge in Europe. Its disease burden, despite carrying a significant global impact, is still relatively unexplored. This study aims to outline a regression model of how the increasing cases will influence the burden of TBE in the upcoming years, using YLDs (years lived with disability) and DALYs (Disability-adjusted life years), and address climate change as a determinant.
Methods: Information regarding the number of cases, YLDs and DALYs of TBE was collected from European countries using available surveillance data from 2012 to 2020. Number of TBE cases and burden projections were created until 2025, using a linear regression model. The total reported cases of TBE cases in this timeframe, age-group and gender distribution were inserted and modeled in ECDC BCoDE Toolkit, a software application that calculates the burden of communicable diseases, YLDs and DALYs of each year. A non-systematic bibliographic search was conducted exploring the impact of climate change on TBE.
Results: Our findings showed a linear growth in number of TBE cases (74.3% increase), DALYs (71.3%), YLDs (71.75%) in European countries from 2012 to 2020. By 2025, these factors are likely to increase by 141% (95% CI: [108%,175%]), 134% (95% CI: [91%,177%]) and 134% (95% CI: [98%,172%]) compared to 2012, respectively (p<0.0001).
Conclusions: The likelihood of morbidity and mortality increase of TBE, as well as climate-related changes in tick activity, highlight that prompt action is necessary by introducing preventive measures in European populations.
Collapse
|
16
|
Predicting the current and future risk of ticks on livestock farms in Britain using random forest models. Vet Parasitol 2022; 311:109806. [PMID: 36116333 DOI: 10.1016/j.vetpar.2022.109806] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
The most abundant tick species in northern Europe, Ixodes ricinus, transmits a range of pathogens that cause disease in livestock. As I. ricinus distribution is influenced by climate, tick-borne disease risk is expected to change in the future. The aims of this work were to build a spatial model to predict current and future risk of ticks on livestock farms across Britain. Variables relating both to tick hazard and livestock exposure were included, to capture a niche which may be missed by broader scale models. A random forest machine learning model was used due to its ability to cope with correlated variables and interactions. Data on tick presence and absence on sheep and cattle farms was obtained from a retrospective questionnaire survey of 926 farmers. The ROC of the final model was 0.80. The model outputs matched observed patterns of tick distribution, with areas of highest tick risk in southwest and northwest England, Wales, and west Scotland. Overall, the probability of tick presence on livestock farms was predicted to increase by 5-7 % across Britain under future climate scenarios. The predicted increase is greater at higher altitudes and latitudes, further increasing the risk of tick-borne disease on farms in these areas.
Collapse
|
17
|
Molina-Guzmán LP, Gutiérrez-Builes LA, Ríos-Osorio LA. Models of spatial analysis for vector-borne diseases studies: A systematic review. Vet World 2022; 15:1975-1989. [PMID: 36313837 PMCID: PMC9615510 DOI: 10.14202/vetworld.2022.1975-1989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Vector-borne diseases (VBDs) constitute a global problem for humans and animals. Knowledge related to the spatial distribution of various species of vectors and their relationship with the environment where they develop is essential to understand the current risk of VBDs and for planning surveillance and control strategies in the face of future threats. This study aimed to identify models, variables, and factors that may influence the emergence and resurgence of VBDs and how these factors can affect spatial local and global distribution patterns.
Materials and Methods: A systematic review was designed based on identification, screening, selection, and inclusion described in the research protocols according to the preferred reporting items for systematic reviews and meta-analyses guide. A literature search was performed in PubMed, ScienceDirect, Scopus, and SciELO using the following search strategy: Article type: Original research, Language: English, Publishing period: 2010–2020, Search terms: Spatial analysis, spatial models, VBDs, climate, ecologic, life cycle, climate variability, vector-borne, vector, zoonoses, species distribution model, and niche model used in different combinations with "AND" and "OR."
Results: The complexity of the interactions between climate, biotic/abiotic variables, and non-climate factors vary considerably depending on the type of disease and the particular location. VBDs are among the most studied types of illnesses related to climate and environmental aspects due to their high disease burden, extended presence in tropical and subtropical areas, and high susceptibility to climate and environment variations.
Conclusion: It is difficult to generalize our knowledge of VBDs from a geospatial point of view, mainly because every case is inherently independent in variable selection, geographic coverage, and temporal extension. It can be inferred from predictions that as global temperatures increase, so will the potential trend toward extreme events. Consequently, it will become a public health priority to determine the role of climate and environmental variations in the incidence of infectious diseases. Our analysis of the information, as conducted in this work, extends the review beyond individual cases to generate a series of relevant observations applicable to different models.
Collapse
Affiliation(s)
- Licet Paola Molina-Guzmán
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia; Grupo de Investigación Salud y Sostenibilidad, Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin - Colombia
| | - Lina A. Gutiérrez-Builes
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Leonardo A. Ríos-Osorio
- Grupo de Investigación Salud y Sostenibilidad, Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin - Colombia
| |
Collapse
|
18
|
Georgiades P, Ezhova E, Räty M, Orlov D, Kulmala M, Lelieveld J, Malkhazova S, Erguler K, Petäjä T. The impact of climatic factors on tick-related hospital visits and borreliosis incidence rates in European Russia. PLoS One 2022; 17:e0269846. [PMID: 35857740 PMCID: PMC9299338 DOI: 10.1371/journal.pone.0269846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Tick-borne diseases are among the challenges associated with warming climate. Many studies predict, and already note, expansion of ticks’ habitats to the north, bringing previously non-endemic diseases, such as borreliosis and encephalitis, to the new areas. In addition, higher temperatures accelerate phases of ticks’ development in areas where ticks have established populations. Earlier works have shown that meteorological parameters, such as temperature and humidity influence ticks’ survival and define their areas of habitat. Here, we study the link between climatic parameters and tick-related hospital visits as well as borreliosis incidence rates focusing on European Russia. We have used yearly incidence rates of borreliosis spanning a period of 20 years (1997-2016) and weekly tick-related hospital visits spanning two years (2018-2019). We identify regions in Russia characterized by similar dynamics of incidence rates and dominating tick species. For each cluster, we find a set of climatic parameters that are significantly correlated with the incidence rates, though a linear regression approach using exclusively climatic parameters to incidence prediction was less than 50% effective. On a weekly timescale, we find correlations of different climatic parameters with hospital visits. Finally, we trained two long short-term memory neural network models to project the tick-related hospital visits until the end of the century, under the RCP8.5 climate scenario, and present our findings in the evolution of the tick season length for different regions in Russia. Our results show that the regions with an expected increase in both tick season length and borreliosis incidence rates are located in the southern forested areas of European Russia. Oppositely, our projections suggest no prolongation of the tick season length in the northern areas with already established tick population.
Collapse
Affiliation(s)
- Pantelis Georgiades
- Environmental Predictions Department, Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Ekaterina Ezhova
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Meri Räty
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Dmitry Orlov
- Department of Biogeography, Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Jos Lelieveld
- Environmental Predictions Department, Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
- Max Planck Institute for Chemistry, Mainz, Germany
| | - Svetlana Malkhazova
- Department of Biogeography, Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Kamil Erguler
- Environmental Predictions Department, Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
19
|
Kopsco HL, Smith RL, Halsey SJ. A Scoping Review of Species Distribution Modeling Methods for Tick Vectors. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlobally, tick-borne disease is a pervasive and worsening problem that impacts human and domestic animal health, livelihoods, and numerous economies. Species distribution models are useful tools to help address these issues, but many different modeling approaches and environmental data sources exist.ObjectiveWe conducted a scoping review that examined all available research employing species distribution models to predict occurrence and map tick species to understand the diversity of model strategies, environmental predictors, tick data sources, frequency of climate projects of tick ranges, and types of model validation methods.DesignFollowing the PRISMA-ScR checklist, we searched scientific databases for eligible articles, their references, and explored related publications through a graphical tool (www.connectedpapers.com). Two independent reviewers performed article selection and characterization using a priori criteria.ResultsWe describe data collected from 107 peer-reviewed articles that met our inclusion criteria. The literature reflects that tick species distributions have been modeled predominantly in North America and Europe and have mostly modeled the habitat suitability for Ixodes ricinus (n = 23; 21.5%). A wide range of bioclimatic databases and other environmental correlates were utilized among models, but the WorldClim database and its bioclimatic variables 1–19 appeared in 60 (56%) papers. The most frequently chosen modeling approach was MaxEnt, which also appeared in 60 (56%) of papers. Despite the importance of ensemble modeling to reduce bias, only 23 papers (21.5%) employed more than one algorithm, and just six (5.6%) used an ensemble approach that incorporated at least five different modeling methods for comparison. Area under the curve/receiver operating characteristic was the most frequently reported model validation method, utilized in nearly all (98.9%) included studies. Only 21% of papers used future climate scenarios to predict tick range expansion or contraction. Regardless of the representative concentration pathway, six of seven genera were expected to both expand and retract depending on location, while Ornithodoros was predicted to only expand beyond its current range.ConclusionSpecies distribution modeling techniques are useful and widely employed tools for predicting tick habitat suitability and range movement. However, the vast array of methods, data sources, and validation strategies within the SDM literature support the need for standardized protocols for species distribution and ecological niche modeling for tick vectors.
Collapse
|
20
|
Cunze S, Glock G, Kochmann J, Klimpel S. Ticks on the move-climate change-induced range shifts of three tick species in Europe: current and future habitat suitability for Ixodes ricinus in comparison with Dermacentor reticulatus and Dermacentor marginatus. Parasitol Res 2022; 121:2241-2252. [PMID: 35641833 PMCID: PMC9279273 DOI: 10.1007/s00436-022-07556-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/17/2022] [Indexed: 12/30/2022]
Abstract
Tick-borne diseases are a major health problem worldwide and could become even more important in Europe in the future. Due to changing climatic conditions, ticks are assumed to be able to expand their ranges in Europe towards higher latitudes and altitudes, which could result in an increased occurrence of tick-borne diseases. There is a great interest to identify potential (new) areas of distribution of vector species in order to assess the future infection risk with vector-borne diseases, improve surveillance, to develop more targeted monitoring program, and, if required, control measures. Based on an ecological niche modelling approach we project the climatic suitability for the three tick species Ixodes ricinus, Dermacentor reticulatus and Dermacentor marginatus under current and future climatic conditions in Europe. These common tick species also feed on humans and livestock and are vector competent for a number of pathogens. For niche modelling, we used a comprehensive occurrence data set based on several databases and publications and six bioclimatic variables in a maximum entropy approach. For projections, we used the most recent IPCC data on current and future climatic conditions including four different scenarios of socio-economic developments. Our models clearly support the assumption that the three tick species will benefit from climate change with projected range expansions towards north-eastern Europe and wide areas in central Europe with projected potential co-occurrence. A higher tick biodiversity and locally higher abundances might increase the risk of tick-borne diseases, although other factors such as pathogen prevalence and host abundances are also important.
Collapse
Affiliation(s)
- Sarah Cunze
- Institute of Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.
| | - Gustav Glock
- Institute of Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Judith Kochmann
- Senckenberg Gesellschaft Für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt/Main, Germany
| | - Sven Klimpel
- Institute of Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.,Senckenberg Gesellschaft Für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt/Main, Germany
| |
Collapse
|
21
|
Voyiatzaki C, Papailia SI, Venetikou MS, Pouris J, Tsoumani ME, Papageorgiou EG. Climate Changes Exacerbate the Spread of Ixodes ricinus and the Occurrence of Lyme Borreliosis and Tick-Borne Encephalitis in Europe-How Climate Models Are Used as a Risk Assessment Approach for Tick-Borne Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116516. [PMID: 35682098 PMCID: PMC9180659 DOI: 10.3390/ijerph19116516] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/16/2022]
Abstract
Climate change has influenced the transmission of a wide range of vector-borne diseases in Europe, which is a pressing public health challenge for the coming decades. Numerous theories have been developed in order to explain how tick-borne diseases are associated with climate change. These theories include higher proliferation rates, extended transmission season, changes in ecological balances, and climate-related migration of vectors, reservoir hosts, or human populations. Changes of the epidemiological pattern have potentially catastrophic consequences, resulting in increasing prevalence of tick-borne diseases. Thus, investigation of the relationship between climate change and tick-borne diseases is critical. In this regard, climate models that predict the ticks’ geographical distribution changes can be used as a predicting tool. The aim of this review is to provide the current evidence regarding the contribution of the climatic changes to Lyme borreliosis (LB) disease and tick-borne encephalitis (TBE) and to present how computational models will advance our understanding of the relationship between climate change and tick-borne diseases in Europe.
Collapse
Affiliation(s)
- Chrysa Voyiatzaki
- Laboratory of Molecular Microbiology & Immunology, Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (S.I.P.); (J.P.); (M.E.T.)
- Correspondence:
| | - Sevastiani I. Papailia
- Laboratory of Molecular Microbiology & Immunology, Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (S.I.P.); (J.P.); (M.E.T.)
| | - Maria S. Venetikou
- Laboratory of Anatomy-Pathological Anatomy & Physiology Nutrition, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece;
| | - John Pouris
- Laboratory of Molecular Microbiology & Immunology, Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (S.I.P.); (J.P.); (M.E.T.)
| | - Maria E. Tsoumani
- Laboratory of Molecular Microbiology & Immunology, Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (S.I.P.); (J.P.); (M.E.T.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece;
| |
Collapse
|
22
|
The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitol Res 2022; 121:781-803. [PMID: 35122516 PMCID: PMC8816687 DOI: 10.1007/s00436-022-07445-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Beside mosquitoes, ticks are well-known vectors of different human pathogens. In the Northern Hemisphere, Lyme borreliosis (Eurasia, LB) or Lyme disease (North America, LD) is the most commonly occurring vector-borne infectious disease caused by bacteria of the genus Borrelia which are transmitted by hard ticks of the genus Ixodes. The reported incidence of LB in Europe is about 22.6 cases per 100,000 inhabitants annually with a broad range depending on the geographical area analyzed. However, the epidemiological data are largely incomplete, because LB is not notifiable in all European countries. Furthermore, not only differ reporting procedures between countries, there is also variation in case definitions and diagnostic procedures. Lyme borreliosis is caused by several species of the Borrelia (B.) burgdorferi sensu lato (s.l.) complex which are maintained in complex networks including ixodid ticks and different reservoir hosts. Vector and host influence each other and are affected by multiple factors including climate that have a major impact on their habitats and ecology. To classify factors that influence the risk of transmission of B. burgdorferi s.l. to their different vertebrate hosts as well as to humans, we briefly summarize the current knowledge about the pathogens including their astonishing ability to overcome various host immune responses, regarding the main vector in Europe Ixodes ricinus, and the disease caused by borreliae. The research shows, that a higher standardization of case definition, diagnostic procedures, and standardized, long-term surveillance systems across Europe is necessary to improve clinical and epidemiological data.
Collapse
|
23
|
Doi K, Kato T, Tabata I, Hayama SI. Mapping the Potential Distribution of Ticks in the Western Kanto Region, Japan: Predictions Based on Land-Use, Climate, and Wildlife. INSECTS 2021; 12:insects12121095. [PMID: 34940183 PMCID: PMC8704464 DOI: 10.3390/insects12121095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Recently, the risk of tick-borne diseases (TBD) has drawn increasing attention from a public health perspective. Information about where ticks are distributed is important for the prevention of TBDs. In this study, we used the MaxEnt model to predict the potential distribution of six major tick species out of 16 tick species collected in the Kanto region, the central part of Japan, based on land-use, climate, and wildlife distribution, and to investigate the factors that contribute to each distribution of ticks. The distribution of raccoons contributed to the distribution of five tick species, and forest connectivity was a strong contributor to the distribution of all species. Abstract Background: Tick distributions have changed rapidly with changes in human activity, land-use patterns, climate, and wildlife distributions over the last few decades. Methods: To estimate potential distributions of ticks, we conducted a tick survey at 134 locations in western Kanto, Japan. We estimated the potential distributions of six tick species (Amblyomma testudinarium Koch, 1844; Haemaphysalis flava Neumann, 1897; Haemaphysalis kitaokai Hoogstraal, 1969; Haemaphysalis longicornis Neumann, 1901; Haemaphysalis megaspinosa Saito, 1969; and Ixodes ovatus Neumann, 1899) using MaxEnt modeling based on climate patterns, land-use patterns, and the distributions of five common wildlife species: sika deer (Cervus nippon Temminck, 1838), wild boar (Sus scrofa Linnaeus, 1758), raccoon (Procyon lotor Linnaeus, 1758), Japanese raccoon dog (Nyctereutes procyonoides Gray, 1834), and masked palm civet (Paguma larvata C.E.H. Smith, 1827)). Results: We collected 24,546 individuals of four genera and 16 tick species. Our models indicated that forest connectivity contributed to the distributions of six tick species and that raccoon distribution contributed to five tick species. Other than that, sika deer distribution contributed to H. kitaokai, and wild boar distribution, bamboo forest, and warm winter climate contributed specifically to A. testudinarium. Conclusions: Based on these results, the dispersal of some tick species toward residential areas and expanded distributions can be explained by the distribution of raccoons and by forest connectivity.
Collapse
Affiliation(s)
- Kandai Doi
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan; (T.K.); (S.-i.H.)
- Correspondence:
| | - Takuya Kato
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan; (T.K.); (S.-i.H.)
| | - Iori Tabata
- Center for Environmental Studies, Co., Tachikawa, Tokyo 190-0022, Japan;
| | - Shin-ichi Hayama
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan; (T.K.); (S.-i.H.)
| |
Collapse
|
24
|
Ticks, Human Babesiosis and Climate Change. Pathogens 2021; 10:pathogens10111430. [PMID: 34832586 PMCID: PMC8625897 DOI: 10.3390/pathogens10111430] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of current and future global warming on the distribution and activity of the primary ixodid vectors of human babesiosis (caused by Babesia divergens, B. venatorum and B. microti) are discussed. There is clear evidence that the distributions of both Ixodes ricinus, the vector in Europe, and I. scapularis in North America have been impacted by the changing climate, with increasing temperatures resulting in the northwards expansion of tick populations and the occurrence of I. ricinus at higher altitudes. Ixodes persulcatus, which replaces I. ricinus in Eurasia and temperate Asia, is presumed to be the babesiosis vector in China and Japan, but this tick species has not yet been confirmed as the vector of either human or animal babesiosis. There is no definite evidence, as yet, of global warming having an effect on the occurrence of human babesiosis, but models suggest that it is only a matter of time before cases occur further north than they do at present.
Collapse
|
25
|
Tick infestation of birds across a gradient of urbanization intensity in the United States Great Plains. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Models for Studying the Distribution of Ticks and Tick-Borne Diseases in Animals: A Systematic Review and a Meta-Analysis with a Focus on Africa. Pathogens 2021; 10:pathogens10070893. [PMID: 34358043 PMCID: PMC8308717 DOI: 10.3390/pathogens10070893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Ticks and tick-borne diseases (TTBD) are constraints to the development of livestock and induce potential human health problems. The worldwide distribution of ticks is not homogenous. Some places are ecologically suitable for ticks but they are not introduced in these areas yet. The absence or low density of hosts is a factor affecting the dissemination of the parasite. To understand the process of introduction and spread of TTBD in different areas, and forecast their presence, scientists developed different models (e.g., predictive models and explicative models). This study aimed to identify models developed by researchers to analyze the TTBD distribution and to assess the performance of these various models with a meta-analysis. A literature search was implemented with PRISMA protocol in two online databases (Scopus and PubMed). The selected articles were classified according to country, type of models and the objective of the modeling. Sensitivity, specificity and accuracy available data of these models were used to evaluate their performance using a meta-analysis. One hundred studies were identified in which seven tick genera were modeled, with Ixodes the most frequently modeled. Additionally, 13 genera of tick-borne pathogens were also modeled, with Borrelia the most frequently modeled. Twenty-three different models were identified and the most frequently used are the generalized linear model representing 26.67% and the maximum entropy model representing 24.17%. A focus on TTBD modeling in Africa showed that, respectively, genus Rhipicephalus and Theileria parva were the most modeled. A meta-analysis on the quality of 20 models revealed that maximum entropy, linear discriminant analysis, and the ecological niche factor analysis models had, respectively, the highest sensitivity, specificity, and area under the curve effect size among all the selected models. Modeling TTBD is highly relevant for predicting their distribution and preventing their adverse effect on animal and human health and the economy. Related results of such analyses are useful to build prevention and/or control programs by veterinary and public health authorities.
Collapse
|
27
|
Sonnberger BW, Graf B, Straubinger RK, Rackl D, Obwaller AG, Peschke R, Shahi Barogh B, Joachim A, Fuehrer HP. Vector-borne pathogens in clinically healthy military working dogs in eastern Austria. Parasitol Int 2021; 84:102410. [PMID: 34166784 DOI: 10.1016/j.parint.2021.102410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022]
Abstract
Military working dogs have an increased risk of acquiring an infection with vector-borne pathogens due to kennel housing and regular exposure to wildlife and vectors. To evaluate the level of infections in clinically healthy dogs of the Austrian Armed Forces, 94 individuals of the Military Working Dog Training Centre (MWDTC) Kaisersteinbruch/eastern Austria were examined in August 2016, February 2019 and August 2019. A modified Knott test was used to determine the presence of microfilariae, PCR for DNA detection of filarioid nematodes (incl. Dirofilaria), Leishmania spp., piroplasms, Borrelia spp., Bartonella spp. and Anaplasmataceae, and serological examination for antibodies against Borrelia burgdoferi s. l. and Leishmania infantum in all dogs. Two dogs were positive for Dirofilaria repens in the Knott test, and one of them also by PCR. Six clinically healthy dogs (4.2%) were positive for Babesia canis (PCR). In serology, 10 (10.6%) of the dogs were positive for specific antibodies against Borrelia burgdoferi s. l. The results suggest that the current measures against arthropod vector exposure and the pathogens they can transmit are not fully sufficient for these dogs. Further investigations of the tick and mosquito fauna in this area will shed more light on the risk of exposure for both the dogs and the staff of the MWDTC.
Collapse
Affiliation(s)
- Bernhard W Sonnberger
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Graf
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard K Straubinger
- Chair for Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Faculty of Veterinary Medicine, LMU Munich, Germany.
| | - Dietmar Rackl
- Federal Ministry of Defense, Joint Support Command, Veterinary Service, Vienna, Austria.
| | - Adelheid G Obwaller
- Federal Ministry of Defense, Division of Science, Research and Development, Vienna, Austria.
| | - Roman Peschke
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Bita Shahi Barogh
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
28
|
Seropositivity to canine tick-borne pathogens in a population of sick dogs in Italy. Parasit Vectors 2021; 14:292. [PMID: 34078417 PMCID: PMC8171035 DOI: 10.1186/s13071-021-04772-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canine vector-borne diseases (CVBDs) associated to ticks are among the most important health issues affecting dogs. In Italy, Ehrlichia canis, Anaplasma spp., Rickettsia conorii and Borrelia burgdorferi (s.l.) have been studied in both healthy canine populations and those clinically ill with suspected CVBDs. However, little information is currently available on the overall prevalence and distribution of these pathogens in the country. The aim of this study was to assess the prevalence and distribution of tick-borne pathogens (TBPs) in clinically suspect dogs from three Italian macro areas during a 15-year period (2006-2020). METHODS A large dataset (n = 21,992) of serological test results for selected TBPs in three macro areas in Italy was analysed using a Chi-square test to evaluate the associations between the categorical factors (i.e. macro area, region, year, sex and age) and a standard logistic regression model (significance set at P = 0.05). Serological data were presented as annual and cumulative prevalence, and distribution maps of cumulative positive cases for TBPs were generated. RESULTS Of the tested serum samples, 86.9% originated from northern (43.9%) and central (43%) Italy. The majority of the tests was requested for the diagnosis of E. canis (47%; n = 10,334), followed by Rickettsia spp. (35.1%; n = 7725), B. burgdorferi (s.l.) (11.6%; n = 2560) and Anaplasma spp. (6.2%; n = 1373). The highest serological exposure was recorded for B. burgdorferi (s.l.) (83.5%), followed by Rickettsia spp. (64.9%), Anaplasma spp. (39.8%) and E. canis (28.7%). The highest number of cumulative cases of Borrelia burgdorferi (s.l.) was recorded in samples from Tuscany, central Italy. Rickettsia spp. was more prevalent in the south and on the islands, particularly in dogs on Sicily older than 6 years, whereas Anaplasma spp. was more prevalent in the north and E. canis more prevalent in the south and on the islands. CONCLUSIONS The results of this study highlight the high seroprevalence and wide distribution of the four TBPs in dogs with clinically suspected CVBDs from the studied regions of Italy. The very high seroprevalence of B. burgdorferi (s.l.) exemplifies a limitation of this study, given the use of clinically suspect dogs and the possibility of cross-reactions when using serological tests. The present research provides updated and illustrative information on the seroprevalence and distribution of four key TBPs, and advocates for integrative control strategies for their prevention.
Collapse
|
29
|
Yang X, Gao Z, Wang L, Xiao L, Dong N, Wu H, Li S. Projecting the potential distribution of ticks in China under climate and land use change. Int J Parasitol 2021; 51:749-759. [PMID: 33798559 DOI: 10.1016/j.ijpara.2021.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Ticks are known as vectors of several pathogens causing various human and animal diseases including Lyme borreliosis, tick-borne encephalitis, and Crimean-Congo hemorrhagic fever. While China is known to have more than 100 tick species well distributed over the country, our knowledge on the likely distribution of ticks in the future remains very limited, which hinders the prevention and control of the risk of tick-borne diseases. In this study, we selected four representative tick species which have different regional distribution foci in mainland China. i.e., Dermacentor marginatus, Dermacentor silvarum, Haemaphysalis longicornis and Ixodes granulatus. We used the MaxEnt model to identify the key environmental factors of tick occurrence and map their potential distributions in 2050 under four combined climate and socioeconomic scenarios (i.e., SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0 and SSP5-RCP8.5). We found that the extent of the urban fabric, cropland and forest, temperature annual range and precipitation of the driest month were the main determinants of the potential distributions of the four tick species. Under the combined scenarios, with climate warming, the potential distributions of ticks shifted to further north in China. Due to a decrease in the extent of forest, the distribution probability of ticks declined in central and southern China. In contrast with previous findings on an estimated amplification of tick distribution probability under the extreme emission scenario (RCP8.5), our studies projected an overall reduction in the distribution probability under RCP8.5, owing to an expected effect of land use. Our results could provide new data to help identify the emerging risk areas, with amplifying suitability for tick occurrence, for the prevention and control of tick-borne zoonoses in mainland China. Future directions are suggested towards improved quantity and quality of the tick occurrence database, comprehensiveness of factors and integration of different modelling approaches, and capability to model pathogen spillover at the human-tick interface.
Collapse
Affiliation(s)
- Xin Yang
- College of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Zheng Gao
- College of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Luqi Wang
- College of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Lingjun Xiao
- College of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Na Dong
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Hongjuan Wu
- College of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Sen Li
- College of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China; UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK; Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK.
| |
Collapse
|
30
|
Gray J, Kahl O, Zintl A. What do we still need to know about Ixodes ricinus? Ticks Tick Borne Dis 2021; 12:101682. [PMID: 33571753 DOI: 10.1016/j.ttbdis.2021.101682] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
In spite of many decades of intensive research on Ixodes ricinus, the castor bean tick of Europe, several important aspects of its basic biology remain elusive, such as the factors determining seasonal development, tick abundance and host specificity, and the importance of water management. Additionally, there are more recent questions about the geographical diversity of tick genotypes and phenotypes, the role of migratory birds in the ecoepidemiology of I. ricinus, the importance of protective immune responses against I. ricinus, particularly in the context of vaccination, and the role of the microbiome in pathogen transmission. Without more detailed knowledge of these issues, it is difficult to assess the likely effects of changes in climate and biodiversity on tick distribution and activity, to predict potential risks arising from new and established tick populations and I. ricinus-borne pathogens, and to improve prevention and control measures. This review aims to discuss the most important outstanding questions against the backdrop of the current state of knowledge of this important tick species.
Collapse
Affiliation(s)
- Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
31
|
Couper LI, MacDonald AJ, Mordecai EA. Impact of prior and projected climate change on US Lyme disease incidence. GLOBAL CHANGE BIOLOGY 2021; 27:738-754. [PMID: 33150704 PMCID: PMC7855786 DOI: 10.1111/gcb.15435] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/28/2020] [Indexed: 05/21/2023]
Abstract
Lyme disease is the most common vector-borne disease in temperate zones and a growing public health threat in the United States (US). The life cycles of the tick vectors and spirochete pathogen are highly sensitive to climate, but determining the impact of climate change on Lyme disease burden has been challenging due to the complex ecology of the disease and the presence of multiple, interacting drivers of transmission. Here we incorporated 18 years of annual, county-level Lyme disease case data in a panel data statistical model to investigate prior effects of climate variation on disease incidence while controlling for other putative drivers. We then used these climate-disease relationships to project Lyme disease cases using CMIP5 global climate models and two potential climate scenarios (RCP4.5 and RCP8.5). We find that interannual variation in Lyme disease incidence is associated with climate variation in all US regions encompassing the range of the primary vector species. In all regions, the climate predictors explained less of the variation in Lyme disease incidence than unobserved county-level heterogeneity, but the strongest climate-disease association detected was between warming annual temperatures and increasing incidence in the Northeast. Lyme disease projections indicate that cases in the Northeast will increase significantly by 2050 (23,619 ± 21,607 additional cases), but only under RCP8.5, and with large uncertainty around this projected increase. Significant case changes are not projected for any other region under either climate scenario. The results demonstrate a regionally variable and nuanced relationship between climate change and Lyme disease, indicating possible nonlinear responses of vector ticks and transmission dynamics to projected climate change. Moreover, our results highlight the need for improved preparedness and public health interventions in endemic regions to minimize the impact of further climate change-induced increases in Lyme disease burden.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Andrew J MacDonald
- Earth Research Institute, University of California, Santa Barbara, CA, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
32
|
Namyatova AA. Climatic niche comparison between closely related trans-Palearctic species of the genus Orthocephalus (Insecta: Heteroptera: Miridae: Orthotylinae). PeerJ 2020; 8:e10517. [PMID: 33362973 PMCID: PMC7747689 DOI: 10.7717/peerj.10517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
Previously climatic niche modelling had been studied for only a few trans-Palearctic species. It is unclear whether and to what extent those niches are different, and which climatic variables influence such a wide distribution. Here, environmental niche modelling is performed based on the Worldclim variables using Maxent for eight species of the genus Orthocephalus (Insecta: Heteroptera: Miridae: Orthotylinae). This group belongs to one of the largest insect families and it is distributed across Palearctic. Orthocephalus bivittatus, O. brevis, O. saltator and O. vittipennis are distributed across Europe and Asia; O. coriaceus, O. fulvipes, O. funestus, O. proserpinae have more limited distribution. Niche comparison using ENMTools was also undertaken to compare the niches of these species, and to test whether the niches of closely related species with trans-Palearctic distributions are more similar to each other, than to other congeners. It has been found that climatic niche models of all trans-Palearctic species under study are similar but are not identical to each other. This has been supported by niche geographic projections, climatic variables contributing to the models and variable ranges. Climatic niche models of all the trans-Palearctic Orthocephalus species are also very similar to two species having more restricted distribution (O. coriaceus, O. funestus). Results of this study suggest that trans-Palearctic distributions can have different geographic ranges and be shaped by different climatic factors.
Collapse
Affiliation(s)
- Anna A Namyatova
- Laboratory of Phytosanitary Diagnostics and Forecasts, All-Russian Institute of Plant Protection, St Petersburg, Russia.,Laboratory of Insect Taxonomy, Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| |
Collapse
|
33
|
Rochat E, Vuilleumier S, Aeby S, Greub G, Joost S. Nested Species Distribution Models of Chlamydiales in Ixodes ricinus (Tick) Hosts in Switzerland. Appl Environ Microbiol 2020; 87:e01237-20. [PMID: 33067199 PMCID: PMC7755253 DOI: 10.1128/aem.01237-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
The tick Ixodes ricinus is the vector of various pathogens, including Chlamydiales bacteria, which potentially cause respiratory infections. In this study, we modeled the spatial distribution of I. ricinus and associated Chlamydiales over Switzerland from 2009 to 2019. We used a total of 2,293 ticks and 186 Chlamydiales occurrences provided by a Swiss Army field campaign, a collaborative smartphone application, and a prospective campaign. For each tick location, we retrieved from Swiss federal data sets the environmental factors reflecting the topography, climate, and land cover. We then used the Maxent modeling technique to estimate the suitability of particular areas for I. ricinus and to subsequently build the nested niche of Chlamydiales bacteria. Results indicate that I. ricinus habitat suitability is determined by higher temperature and normalized difference vegetation index (NDVI) values, lower temperature during the driest months, and a higher percentage of artificial and forest areas. The performance of the model was improved when extracting the environmental variables for a 100-m radius buffer around the sampling points and when considering the climatic conditions of the 2 years previous to the sampling date. Chlamydiales bacteria were favored by a lower percentage of artificial surfaces, drier conditions, high precipitation during the coldest months, and short distances to wetlands. From 2009 to 2018, we observed an extension of areas suitable to ticks and Chlamydiales, associated with a shift toward higher altitude. The importance of considering spatiotemporal variations in the environmental conditions for obtaining better prediction was also demonstrated.IMPORTANCEIxodes ricinus is the vector of pathogens including the agent of Lyme disease, the tick-borne encephalitis virus, and the less well-known Chlamydiales bacteria, which are responsible for certain respiratory infections. In this study, we identified the environmental factors influencing the presence of I. ricinus and Chlamydiales in Switzerland and generated maps of their distribution from 2009 to 2018. We found an important expansion of suitable areas for both the tick and the bacteria during the last decade. Results also provided the environmental factors that determine the presence of Chlamydiales within ticks. Distribution maps as generated here are expected to bring valuable information for decision makers in controlling tick-borne diseases in Switzerland and establishing prevention campaigns. The methodological framework presented could be used to predict the distribution and spread of other host-pathogen pairs to identify environmental factors driving their distribution and to develop control or prevention strategies accordingly.
Collapse
Affiliation(s)
- Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Séverine Vuilleumier
- La Source School of Nursing, University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| | - Sébastien Aeby
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- La Source School of Nursing, University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
- Unit of Population Epidemiology, Division of Primary Care, Geneva University Hospitals, Geneva, Switzerland
- Group of Geographic Information Research and Analysis in Population Health (GIRAPH), Switzerland
| |
Collapse
|
34
|
Tronin A, Tokarevich N, Blinova O, Gnativ B, Buzinov R, Sokolova O, Evengard B, Pahomova T, Bubnova L, Safonova O. Study of the Relationship between the Average Annual Temperature of Atmospheric Air and the Number of Tick-Bitten Humans in the North of European Russia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218006. [PMID: 33143201 PMCID: PMC7663206 DOI: 10.3390/ijerph17218006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/01/2022]
Abstract
In recent decades, a considerable increase in the number of tick-bitten humans has been recorded in the north of European Russia. At the same time, significant climatic changes, such as an increase in air temperature, were noticed in this region. The northern border of the ixodidae distribution area lies in the north of European Russia, therefore the analysis of the population dynamics is of particular interest regarding the possible impact of the climate changes. Unfortunately, in such a large territory field, studies on tick abundance are very difficult. In our study, the official statistics for the number of tick-bitten humans were used. This kind of statistical analysis has been conducted in the Russian Federation for many years, and can be used for the estimation of climate change impact on tick abundance. Statistical data on tick-bitten humans have been collected in three large regions for several decades. For the same regions, the average annual air temperature was calculated and modeled. An S-shaped distribution of the number of victims depending on the average annual air temperature was established, which can be described as “Verhulst’s law”, or logistic function. However, the development of the population does not depend on time, but on the temperature of the ambient air.
Collapse
Affiliation(s)
- Andrei Tronin
- Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg Federal Research Center of the Russian Academy of Sciences, 18, Korpusnaya str., 197110 St.-Petersburg, Russia
- Correspondence:
| | - Nikolay Tokarevich
- Saint-Petersburg Pasteur Institute, 14, str. Mira, 197101 St.-Petersburg, Russia; (N.T.); (O.B.)
| | - Olga Blinova
- Saint-Petersburg Pasteur Institute, 14, str. Mira, 197101 St.-Petersburg, Russia; (N.T.); (O.B.)
| | - Bogdan Gnativ
- Komi Republic Office of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 71, Ordjonikidze str., 167016 Syktyvkar, Republic of Komi, Russia;
| | - Roman Buzinov
- Department of hygiene and medical ecology, The Northern State Medical University, 51, Troitskiy Ave., 163000 Arkhangelsk, Arkhangelskaya oblast, Russia; (R.B.); (O.S.)
- Arkhangelsk Regional Office of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 24, Gaydar str., 163000 Arkhangelsk, Arkhangelskaya oblast, Russia
| | - Olga Sokolova
- Department of hygiene and medical ecology, The Northern State Medical University, 51, Troitskiy Ave., 163000 Arkhangelsk, Arkhangelskaya oblast, Russia; (R.B.); (O.S.)
- Arkhangelsk Regional Office of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 24, Gaydar str., 163000 Arkhangelsk, Arkhangelskaya oblast, Russia
| | | | - Tatyana Pahomova
- Karelia Republic Regional Office of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 12, Pirogov str., 185002 Petrozavodsk, Republic of Karelia, Russia; (T.P.); (L.B.); (O.S.)
| | - Liliya Bubnova
- Karelia Republic Regional Office of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 12, Pirogov str., 185002 Petrozavodsk, Republic of Karelia, Russia; (T.P.); (L.B.); (O.S.)
| | - Olga Safonova
- Karelia Republic Regional Office of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 12, Pirogov str., 185002 Petrozavodsk, Republic of Karelia, Russia; (T.P.); (L.B.); (O.S.)
| |
Collapse
|
35
|
Song R, Ma Y, Hu Z, Li Y, Li M, Wu L, Li C, Dao E, Fan X, Hao Y, Bayin C. MaxEnt Modeling of Dermacentor marginatus (Acari: Ixodidae) Distribution in Xinjiang, China. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1659-1667. [PMID: 32359141 DOI: 10.1093/jme/tjaa063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Indexed: 06/11/2023]
Abstract
Dermacentor marginatus Sulkzer is a common tick species found in the Xinjiang Uygur Autonomous Region (XUAR) of China, and is a vector for a variety of pathogens. To determine the potential distribution of this tick species in Xinjiang, a metadata containing 84 D. marginatus presence records combined with four localities from field collection were used for MaxEnt modeling to predict potential distribution of this tick species. Identification of tick samples showed 756 of 988 (76%) were D. marginatus. MaxEnt modeling results indicated that the potential distribution of this tick species was mainly confined to northern XUAR. Highly suitable areas included west side of Altay mountain, west rim of Junggar basin, and Yili River valley in the study area. The model showed an AUC value of 0.838 ± 0.063 (SD), based on 10-fold cross-validation. Although tick presence records used for modeling were limited, this is the first regional tick distribution model for D. marginatus in Xinjiang. The model will be helpful in assessing the risk of tick-borne diseases to human and animals in the region.
Collapse
Affiliation(s)
- Ruiqi Song
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
- College of Veterinary, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Ying Ma
- College of Veterinary, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhengxiang Hu
- Bayingol Vocational and Technical College, Korla, Xinjiang, China
| | - Yingke Li
- College of Mathematics and Physics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Min Li
- College of Veterinary, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Lijiang Wu
- College of Veterinary, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Caishan Li
- College of Veterinary, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Erjiala Dao
- College of Science and Technology, Khovd State University, Khovd, Mongolia
| | - Xinli Fan
- College of Veterinary, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yunwei Hao
- College of Veterinary, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chahan Bayin
- College of Veterinary, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
36
|
Yang X, Gao Z, Zhou T, Zhang J, Wang L, Xiao L, Wu H, Li S. Mapping the Potential Distribution of Major Tick Species in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5145. [PMID: 32708816 PMCID: PMC7399889 DOI: 10.3390/ijerph17145145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/29/2022]
Abstract
Ticks are known as the vectors of various zoonotic diseases such as Lyme borreliosis and tick-borne encephalitis. Though their occurrences are increasingly reported in some parts of China, our understanding of the pattern and determinants of ticks' potential distribution over the country remain limited. In this study, we took advantage of the recently compiled spatial dataset of distribution and diversity of ticks in China, analyzed the environmental determinants of ten frequently reported tick species and mapped the spatial distribution of these species over the country using the MaxEnt model. We found that presence of urban fabric, cropland, and forest in a place are key determents of tick occurrence, suggesting ticks were likely inhabited close to where people live. Besides, precipitation in the driest month was found to have a relatively high contribution in mapping tick distribution. The model projected that theses ticks could be widely distributed in the Northwest, Central North, Northeast, and South China. Our results added new evidence on the potential distribution of a variety of major tick species in China and pinpointed areas with a high potential risk of tick bites and tick-borne diseases for raising public health awareness and prevention responses.
Collapse
Affiliation(s)
- Xin Yang
- College of Environment Science and engineering, Huazhong University of Science and Technology, Wuhan 430070, China; (X.Y.); (Z.G.); (L.W.); (L.X.); (H.W.)
| | - Zheng Gao
- College of Environment Science and engineering, Huazhong University of Science and Technology, Wuhan 430070, China; (X.Y.); (Z.G.); (L.W.); (L.X.); (H.W.)
| | - Tianli Zhou
- School of Automation, Wuhan University of Technology, Wuhan 430070, China; (T.Z.); (J.Z.)
| | - Jian Zhang
- School of Automation, Wuhan University of Technology, Wuhan 430070, China; (T.Z.); (J.Z.)
| | - Luqi Wang
- College of Environment Science and engineering, Huazhong University of Science and Technology, Wuhan 430070, China; (X.Y.); (Z.G.); (L.W.); (L.X.); (H.W.)
| | - Lingjun Xiao
- College of Environment Science and engineering, Huazhong University of Science and Technology, Wuhan 430070, China; (X.Y.); (Z.G.); (L.W.); (L.X.); (H.W.)
| | - Hongjuan Wu
- College of Environment Science and engineering, Huazhong University of Science and Technology, Wuhan 430070, China; (X.Y.); (Z.G.); (L.W.); (L.X.); (H.W.)
| | - Sen Li
- College of Environment Science and engineering, Huazhong University of Science and Technology, Wuhan 430070, China; (X.Y.); (Z.G.); (L.W.); (L.X.); (H.W.)
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK
- Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK
| |
Collapse
|
37
|
El-Sayed A, Kamel M. Climatic changes and their role in emergence and re-emergence of diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22336-22352. [PMID: 32347486 PMCID: PMC7187803 DOI: 10.1007/s11356-020-08896-w] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/14/2020] [Indexed: 05/11/2023]
Abstract
Global warming and the associated climate changes are predictable. They are enhanced by burning of fossil fuels and the emission of huge amounts of CO2 gas which resulted in greenhouse effect. It is expected that the average global temperature will increase with 2-5 °C in the next decades. As a result, the earth will exhibit marked climatic changes characterized by extremer weather events in the coming decades, such as the increase in temperature, rainfall, summertime, droughts, more frequent and stronger tornadoes and hurricanes. Epidemiological disease cycle includes host, pathogen and in certain cases intermediate host/vector. A complex mixture of various environmental conditions (e.g. temperature and humidity) determines the suitable habitat/ecological niche for every vector host. The availability of suitable vectors is a precondition for the emergence of vector-borne pathogens. Climate changes and global warming will have catastrophic effects on human, animal and environmental ecosystems. Pathogens, especially neglected tropical disease agents, are expected to emerge and re-emerge in several countries including Europe and North America. The lives of millions of people especially in developing countries will be at risk in direct and indirect ways. In the present review, the role of climate changes in the spread of infectious agents and their vectors is discussed. Examples of the major emerging viral, bacterial and parasitic diseases are also summarized.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
38
|
Roselli MA, Cady SM, Lao S, Noden BH, Loss SR. Variation in Tick Load Among Bird Body Parts: Implications for Studying the Role of Birds in the Ecology and Epidemiology of Tick-Borne Diseases. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:845-851. [PMID: 31883003 DOI: 10.1093/jme/tjz228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Wild birds play important roles in the maintenance and dispersal of tick populations and tick-borne pathogens, yet in field studies of tick-borne disease ecology and epidemiology there is limited standardization of how birds are searched for ticks. We conducted a qualitative literature review of 100 field studies where birds were searched for ticks to characterize which parts of a bird's anatomy are typically sampled. To increase understanding of potential biases associated with different sampling approaches, we described variation in tick loads among bird body parts using field-collected data from 459 wild-caught birds that were searched across the entire body. The literature review illustrated a lack of clarity and consistency in tick-searching protocols: 57% of studies did not explicitly report whether entire birds or only particular body parts were searched, 34% reported concentrating searches on certain body parts (most frequently the head only), and only 9% explicitly reported searching the entire bird. Based on field-collected data, only 22% of ticks were found on the head, indicating that studies focusing on the head likely miss a large proportion of ticks. We provide tentative evidence that feeding locations may vary among tick species; 89% of Amblyomma americanum, 73% of Ambloyomma maculatum, and 56% of Haemaphysalis leporispalustris were on body parts other than the head. Our findings indicate a need for clear reporting and increased standardization of tick searching methodologies, including sampling the entire bird body, to provide an unbiased understanding of the role of birds in the maintenance and emergence of tick-borne pathogens.
Collapse
Affiliation(s)
- Megan A Roselli
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK
| | - Samantha M Cady
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK
| | - Sirena Lao
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK
| | - Bruce H Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK
| | - Scott R Loss
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK
| |
Collapse
|
39
|
Alkishe A, Cobos ME, Peterson AT, Samy AM. Recognizing sources of uncertainty in disease vector ecological niche models: An example with the tick Rhipicephalus sanguineus sensu lato. Perspect Ecol Conserv 2020. [DOI: 10.1016/j.pecon.2020.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
40
|
Yang A, Mullins JC, Van Ert M, Bowen RA, Hadfield TL, Blackburn JK. Predicting the Geographic Distribution of the Bacillus anthracis A1.a/Western North American Sub-Lineage for the Continental United States: New Outbreaks, New Genotypes, and New Climate Data. Am J Trop Med Hyg 2020; 102:392-402. [PMID: 31802730 PMCID: PMC7008322 DOI: 10.4269/ajtmh.19-0191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/23/2019] [Indexed: 11/07/2022] Open
Abstract
Bacillus anthracis, the causative pathogen of anthrax, is a spore-forming, environmentally maintained bacterium that continues to be a veterinary health problem with outbreaks occurring primarily in wildlife and livestock. Globally, the genetic populations of B. anthracis include multiple lineages, and each may have different ecological requirements and geographical distributions. It is, therefore, essential to identify environmental associations within lineages to predict geographical distributions and risk areas with improved accuracy. Here, we model the ecological niche and predict the geography of the most widespread sublineage of B. anthracis in the continental United States using updated MERRA-derived (Modern Era Retrospective analysis for Research and Applications; the NASA atmospheric data reanalysis of satellite information with multiple data products) bioclimate variables (i.e., MERRAclim data) and updated soil variables. We filter the occurrence data associated with the A1.a/Western North American sub-lineage of B. anthracis from historical anthrax outbreaks using the multiple-locus variable-number tandem repeat system. In addition, we also incorporate recent cases associated with B. anthracis A1.a sub-lineage from 2008 to 2012 in Montana, Colorado, and Texas. Our results provide the predicted distribution of the A1.a sub-lineage of B. anthracis for the United States with better predictive accuracy and higher spatial resolution than previous estimates. Our prediction serves as an improved disease risk map to better inform anthrax surveillance and control in the United States, particularly the Dakotas and Montana where this sub-lineage is persistent.
Collapse
Affiliation(s)
- Anni Yang
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | | | - Matthew Van Ert
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Richard A. Bowen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Ted L. Hadfield
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Jason K. Blackburn
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
41
|
Jung Kjær L, Soleng A, Edgar KS, Lindstedt HEH, Paulsen KM, Andreassen ÅK, Korslund L, Kjelland V, Slettan A, Stuen S, Kjellander P, Christensson M, Teräväinen M, Baum A, Klitgaard K, Bødker R. Predicting the spatial abundance of Ixodes ricinus ticks in southern Scandinavia using environmental and climatic data. Sci Rep 2019; 9:18144. [PMID: 31792296 PMCID: PMC6889419 DOI: 10.1038/s41598-019-54496-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/15/2019] [Indexed: 01/24/2023] Open
Abstract
Recently, focus on tick-borne diseases has increased as ticks and their pathogens have become widespread and represent a health problem in Europe. Understanding the epidemiology of tick-borne infections requires the ability to predict and map tick abundance. We measured Ixodes ricinus abundance at 159 sites in southern Scandinavia from August-September, 2016. We used field data and environmental variables to develop predictive abundance models using machine learning algorithms, and also tested these models on 2017 data. Larva and nymph abundance models had relatively high predictive power (normalized RMSE from 0.65–0.69, R2 from 0.52–0.58) whereas adult tick models performed poorly (normalized RMSE from 0.94–0.96, R2 from 0.04–0.10). Testing the models on 2017 data produced good results with normalized RMSE values from 0.59–1.13 and R2 from 0.18–0.69. The resulting 2016 maps corresponded well with known tick abundance and distribution in Scandinavia. The models were highly influenced by temperature and vegetation, indicating that climate may be an important driver of I. ricinus distribution and abundance in Scandinavia. Despite varying results, the models predicted abundance in 2017 with high accuracy. The models are a first step towards environmentally driven tick abundance models that can assist in determining risk areas and interpreting human incidence data.
Collapse
Affiliation(s)
- Lene Jung Kjær
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark. .,Department for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark.
| | - Arnulf Soleng
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Katrine Mørk Paulsen
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway.,Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Lars Korslund
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Vivian Kjelland
- Department of Natural Sciences, University of Agder, Kristiansand, Norway.,Sørlandet Hospital Health Enterprise, Research Unit, Kristiansand, Norway
| | - Audun Slettan
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, Norwegian University of Life Sciences, Sandnes, Norway
| | - Petter Kjellander
- Department of Ecology, Wildlife Ecology Unit, Swedish University of Agricultural Sciences, Grimsö, Sweden
| | - Madeleine Christensson
- Department of Ecology, Wildlife Ecology Unit, Swedish University of Agricultural Sciences, Grimsö, Sweden
| | - Malin Teräväinen
- Department of Ecology, Wildlife Ecology Unit, Swedish University of Agricultural Sciences, Grimsö, Sweden
| | - Andreas Baum
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Kirstine Klitgaard
- Department for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - René Bødker
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
42
|
Wilke ABB, Beier JC, Benelli G. Complexity of the relationship between global warming and urbanization - an obscure future for predicting increases in vector-borne infectious diseases. CURRENT OPINION IN INSECT SCIENCE 2019; 35:1-9. [PMID: 31279898 DOI: 10.1016/j.cois.2019.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 05/25/2023]
Abstract
Arthropod vectors are responsible for the transmission of many infectious diseases. Currently, more than three billion people living in endemic areas are exposed to vector-borne pathogens. Substantial differences in the biology of arthropod vectors make it extremely challenging to predict the incidence of vector-borne diseases in the future. However, global warming and urbanization both profoundly affect the ecology and distribution of arthropod vectors. Such processes often result in a biotic homogenization of species in a non-random process of biodiversity loss. The data presently available indicate a trend towards progressive increases in the presence and abundance of vectors capable of thriving in urban environments amongst humans, thus, increasing the contact between vectors and human hosts. As a consequence, we expect the incidence of vector-borne diseases to increase. In our opinion, resources should be made available and directed to strategies within the Integrated Vector Management framework, focusing on proven vector control tools. Besides, a substantial reduction of IVM costs would be achieved by observing environmental guidelines and providing basic sanitary infrastructure at early stages of its development. This could help to increase IVM effectiveness in attenuating social determinants of health and social inequities due to exposure to vectors.
Collapse
Affiliation(s)
- André B B Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
43
|
Semenza JC, Suk JE. Vector-borne diseases and climate change: a European perspective. FEMS Microbiol Lett 2019; 365:4631076. [PMID: 29149298 PMCID: PMC5812531 DOI: 10.1093/femsle/fnx244] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Climate change has already impacted the transmission of a wide range of vector-borne diseases in Europe, and it will continue to do so in the coming decades. Climate change has been implicated in the observed shift of ticks to elevated altitudes and latitudes, notably including the Ixodes ricinus tick species that is a vector for Lyme borreliosis and tick-borne encephalitis. Climate change is also thought to have been a factor in the expansion of other important disease vectors in Europe: Aedes albopictus (the Asian tiger mosquito), which transmits diseases such as Zika, dengue and chikungunya, and Phlebotomus sandfly species, which transmits diseases including Leishmaniasis. In addition, highly elevated temperatures in the summer of 2010 have been associated with an epidemic of West Nile Fever in Southeast Europe and subsequent outbreaks have been linked to summer temperature anomalies. Future climate-sensitive health impacts are challenging to project quantitatively, in part due to the intricate interplay between non-climatic and climatic drivers, weather-sensitive pathogens and climate-change adaptation. Moreover, globalisation and international air travel contribute to pathogen and vector dispersion internationally. Nevertheless, monitoring forecasts of meteorological conditions can help detect epidemic precursors of vector-borne disease outbreaks and serve as early warning systems for risk reduction.
Collapse
Affiliation(s)
- Jan C Semenza
- European Centre for Disease Prevention and Control, Tomtebodavägen 11A, Stockholm, S-171 83, Sweden
| | - Jonathan E Suk
- European Centre for Disease Prevention and Control, Tomtebodavägen 11A, Stockholm, S-171 83, Sweden
| |
Collapse
|
44
|
Esser HJ, Mögling R, Cleton NB, van der Jeugd H, Sprong H, Stroo A, Koopmans MPG, de Boer WF, Reusken CBEM. Risk factors associated with sustained circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in non-endemic areas. Parasit Vectors 2019; 12:265. [PMID: 31133059 PMCID: PMC6537422 DOI: 10.1186/s13071-019-3515-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/19/2019] [Indexed: 12/30/2022] Open
Abstract
Arboviruses represent a significant burden to public health and local economies due to their ability to cause unpredictable and widespread epidemics. To maximize early detection of arbovirus emergence in non-endemic areas, surveillance efforts should target areas where circulation is most likely. However, identifying such hotspots of potential emergence is a major challenge. The ecological conditions leading to arbovirus outbreaks are shaped by complex interactions between the virus, its vertebrate hosts, arthropod vector, and abiotic environment that are often poorly understood. Here, we systematically review the ecological risk factors associated with the circulation of six arboviruses that are of considerable concern to northwestern Europe. These include three mosquito-borne viruses (Japanese encephalitis virus, West Nile virus, Rift Valley fever virus) and three tick-borne viruses (Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus, and louping-ill virus). We consider both intrinsic (e.g. vector and reservoir host competence) and extrinsic (e.g. temperature, precipitation, host densities, land use) risk factors, identify current knowledge gaps, and discuss future directions. Our systematic review provides baseline information for the identification of regions and habitats that have suitable ecological conditions for endemic circulation, and therefore may be used to target early warning surveillance programs aimed at detecting multi-virus and/or arbovirus emergence.
Collapse
Affiliation(s)
- Helen J Esser
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Ramona Mögling
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Natalie B Cleton
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Economic Affairs, Wageningen, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem F de Boer
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
45
|
Bugmyrin SV, Bespyatova LA, Korotkov YS. Long-term dynamics of Ixodes persulcatus (Acari: Ixodidae) abundance in the north-west of its range (Karelia, Russia). EXPERIMENTAL & APPLIED ACAROLOGY 2019; 77:229-240. [PMID: 30758799 DOI: 10.1007/s10493-019-00342-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
The article presents the results of long-term observations of variations in the abundance of Ixodes persulcatus, carried out since 1982, in the middle taiga subzone of Karelia. Adult questing ticks were collected from vegetation following standard flagging procedures. The time series was evaluated by singular spectrum analysis. Correlation coefficients were calculated for the observed tick abundances and meteorological data (mean daily air temperature and precipitation) for the current year and preceding years. Analysis of the time series revealed the trend and harmonic components with periods of 8, 2.5 and 4 years. Around 83% of the total variance is explained by the first principal component, which governs the general vector of change-a gradual reduction in I. persulcatus abundance from 2003 to 2017. Correlations between tick abundance and climatic indices were observed in all years and were associated with both temperature and precipitation. The greatest number of significant coefficients was obtained for correlations between tick abundance and weather conditions in the preceding season. An equation was suggested where tick abundance is described by a linear function with four variables: mean air temperature in April and July, total precipitation in February, and annual number of days with temperatures above 5 °С. Thus, the observed long-term dynamics are characterized by the following key patterns: a sharp population rise early in the 2000s, some recent decline (stabilization) of the abundance, the presence of quasi-periodic cycles, and a close correlation between tick abundance and climatic variables.
Collapse
Affiliation(s)
- S V Bugmyrin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya St, Petrozavodsk, 185910, Russia.
| | - L A Bespyatova
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 11 Pushkinskaya St, Petrozavodsk, 185910, Russia
| | - Yu S Korotkov
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products, Russian Academy of Sciences, bldg. 1, 8, Institute for Poliomyelitis, Moscow, 108819, Russia
| |
Collapse
|
46
|
Extensive Diversity of RNA Viruses in Australian Ticks. J Virol 2019; 93:JVI.01358-18. [PMID: 30404810 PMCID: PMC6340049 DOI: 10.1128/jvi.01358-18] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/13/2018] [Indexed: 12/25/2022] Open
Abstract
Each year a growing number of individuals along the east coast of Australia experience debilitating disease following tick bites. As there is no evidence for the presence of the causative agent of Lyme disease, Borrelia burgdorferisensu lato, in Australian ticks, the etiological basis of this disease syndrome remains controversial. To characterize the viruses associated with Australian ticks, particularly those that might be associated with mammalian infection, we performed unbiased RNA sequencing on 146 ticks collected across two locations along the coast of New South Wales, Australia. This revealed 19 novel RNA viruses from a diverse set of families. Notably, three of these viruses clustered with known mammalian viruses, including a novel coltivirus that was related to the human pathogen Colorado tick fever virus. Understanding the microbiome of ticks in Australia is of considerable interest given the ongoing debate over whether Lyme disease and its causative agent, the bacterium Borrelia burgdorferisensu lato, are present in Australia. The diversity of bacteria infecting Australian ticks has been studied using both culture- and metagenomics-based techniques. However, little is known about the virome of Australian ticks, including whether this includes viruses with the potential to infect mammals. We used a meta-transcriptomics approach to reveal the diversity and evolution of viruses from Australian ticks collected from two locations on the central east coast of Australia, including metropolitan Sydney. From this we identified 19 novel RNA viruses belonging to 12 families, as well as 1 previously described RNA virus. The majority of these viruses were related to arthropod-associated viruses, suggesting that they do not utilize mammalian hosts. However, two novel viruses discovered in ticks feeding on bandicoot marsupials clustered closely within the mammal-associated hepacivirus and pestivirus groups (family Flaviviridae). Another bandicoot tick yielded a novel coltivirus (family Reoviridae), a group of largely tick-associated viruses containing the known human pathogen Colorado tick fever virus and its relative, Eyach virus. Importantly, our transcriptomic data provided no evidence for the presence of B. burgdorferisensu lato in any tick sample, providing further evidence against the presence of Lyme disease in Australia. In sum, this study reveals that Australian ticks harbor a diverse virome, including some viruses that merit additional screening in the context of emerging infectious disease. IMPORTANCE Each year a growing number of individuals along the east coast of Australia experience debilitating disease following tick bites. As there is no evidence for the presence of the causative agent of Lyme disease, Borrelia burgdorferisensu lato, in Australian ticks, the etiological basis of this disease syndrome remains controversial. To characterize the viruses associated with Australian ticks, particularly those that might be associated with mammalian infection, we performed unbiased RNA sequencing on 146 ticks collected across two locations along the coast of New South Wales, Australia. This revealed 19 novel RNA viruses from a diverse set of families. Notably, three of these viruses clustered with known mammalian viruses, including a novel coltivirus that was related to the human pathogen Colorado tick fever virus.
Collapse
|
47
|
Jaakkola JJK, Juntunen S, Näkkäläjärvi K. The Holistic Effects of Climate Change on the Culture, Well-Being, and Health of the Saami, the Only Indigenous People in the European Union. Curr Environ Health Rep 2018; 5:401-417. [PMID: 30350264 PMCID: PMC6306421 DOI: 10.1007/s40572-018-0211-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE OF REVIEW (1) To develop a framework for understanding the holistic effects of climate change on the Saami people; (2) to summarize the scientific evidence about the primary, secondary, and tertiary effects of climate change on Saami culture and Sápmi region; and (3) to identify gaps in the knowledge of the effects of climate change on health and well-being of the Saami. RECENT FINDINGS The Saami health is on average similar, or slightly better compared to the health of other populations in the same area. Warming climate has already influenced Saami reindeer culture. Mental health and suicide risk partly linked to changing physical and social environments are major concerns. The lifestyle, diet, and morbidity of the Saami are changing to resemble the majority populations posing threats for the health of the Saami and making them more vulnerable to the adverse effects of climate change. Climate change is a threat for the cultural way of life of Saami. Possibilities for Saami to adapt to climate change are limited.
Collapse
Affiliation(s)
- Jouni J K Jaakkola
- Center for Environmental and Respiratory Health Research, University of Oulu, P. O. Box 5000, FI-90014, Oulu, Finland.
| | - Suvi Juntunen
- Center for Environmental and Respiratory Health Research, University of Oulu, P. O. Box 5000, FI-90014, Oulu, Finland
| | | |
Collapse
|
48
|
Mahmoudi Shamsabad M, Assadi M, Parducci L. Impact of climate change implies the northward shift in distribution of the Irano-Turanian subalpine species complex Acanthophyllum squarrosum. JOURNAL OF ASIA-PACIFIC BIODIVERSITY 2018. [DOI: 10.1016/j.japb.2018.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
49
|
Wang Y, Casajus N, Buddle C, Berteaux D, Larrivée M. Predicting the distribution of poorly-documented species, Northern black widow (Latrodectus variolus) and Black purse-web spider (Sphodros niger), using museum specimens and citizen science data. PLoS One 2018; 13:e0201094. [PMID: 30089136 PMCID: PMC6082516 DOI: 10.1371/journal.pone.0201094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/09/2018] [Indexed: 11/20/2022] Open
Abstract
Predicting species distributions requires substantial numbers of georeferenced occurrences and access to remotely sensed climate and land cover data. Reliable estimates of the distribution of most species are unavailable, either because digitized georeferenced distributional data are rare or not digitized. The emergence of online biodiversity information databases and citizen science platforms dramatically improves the amount of information available to establish current and historical distribution of lesser-documented species. We demonstrate how the combination of museum and online citizen science databases can be used to build reliable distribution maps for poorly documented species. To do so, we investigated the distribution and the potential range expansions of two north-eastern North American spider species (Arachnida: Araneae), the Northern black widow (Latrodectus variolus) and the Black purse-web spider (Sphodros niger). Our results provide the first predictions of distribution for these two species. We also found that the Northern black widow has expanded north of its previously known range providing valuable information for public health education. For the Black purse-web spider, we identify potential habitats outside of its currently known range, thus providing a better understanding of the ecology of this poorly-documented species. We demonstrate that increasingly available online biodiversity databases are rapidly expanding biogeography research for conservation, ecology, and in specific cases, epidemiology, of lesser known taxa.
Collapse
Affiliation(s)
- Yifu Wang
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Nicolas Casajus
- Canada Research Chair on Northern Biodiversity, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Christopher Buddle
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Dominique Berteaux
- Canada Research Chair on Northern Biodiversity, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | | |
Collapse
|
50
|
Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions. Vet Sci 2018; 5:vetsci5020060. [PMID: 29925800 PMCID: PMC6024845 DOI: 10.3390/vetsci5020060] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Ticks transmit the most diverse array of infectious agents of any arthropod vector. Both ticks and the microbes they transmit are recognized as significant threats to human and veterinary public health. This article examines the potential impacts of climate change on the distribution of ticks and the infections they transmit; the emergence of novel tick-borne pathogens, increasing geographic range and incidence of tick-borne infections; and advances in the characterization of tick saliva mediated modulation of host defenses and the implications of those interactions for transmission, establishment, and control of tick infestation and tick-borne infectious agents.
Collapse
|