1
|
Liu J, Wei X, Zhang Y, Ran Y, Qu B, Wang C, Zhao F, Zhang L. dCas9-guided demethylation of the AKT1 promoter improves milk protein synthesis in a bovine mastitis mammary gland epithelial model induced by using Staphylococcus aureus. Cell Biol Int 2024; 48:300-310. [PMID: 38100153 DOI: 10.1002/cbin.12106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/16/2023] [Accepted: 11/20/2023] [Indexed: 02/15/2024]
Abstract
Mastitis is among the main factors affecting milk quality and yield. Although DNA methylation is associated with mastitis, its role in mastitis remains unclear. In this study, a bovine mastitis mammary epithelial cells (BMMECs) model was established via Staphylococcus aureus infection of bovine mammary gland epithelial cells (BMECs). Bisulfite sequencing PCR was used to determine the methylation status of the AKT1 promoter in BMMECs. We found that the degree of the AKT1 promoter methylation in BMMECs was significantly greater than that in BMECs, and the expression levels of genes related to milk protein synthesis were significantly decreased. We used the pdCas9-C-Tet1-SgRNA 2.0 system to regulate the methylation status of the AKT1 promoter. High-efficiency sgRNAs were screened and dCas9-guided AKT1 promoter demethylation vectors were constructed. Following transfection with the vectors, the degree of methylation of the AKT1 promoter was significantly reduced in BMMECs, while AKT1 protein levels increased. When the methylation level of the AKT1 promoter decreased, the synthesis of milk proteins and the expression levels of genes related to milk protein synthesis increased significantly. The viability of the BMMECs was enhanced. Taken together, these results indicate that demethylation guided by the pdCas9-C-Tet1-SgRNA 2.0 system on the AKT1 promoter can reactivate the expression of AKT1 and AKT1/mTOR signaling pathway-related proteins by reducing the AKT1 promoter methylation level and promoting the recovery milk protein expression in BMMECs, thereby alleviating the symptoms of mastitis.
Collapse
Affiliation(s)
- Jie Liu
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xiangfei Wei
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Yan Zhang
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Yaoxiang Ran
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Bo Qu
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Chunmei Wang
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Feng Zhao
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Li Zhang
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Bai Z, Wu Y, Cai W, Zheng Y, Hui T, Yue C, Sun J, Wang Y, Wang Z. High-throughput analysis of lncRNA in cows with naturally infected Staphylococcus aureus mammary gland. Anim Biotechnol 2023; 34:2166-2174. [PMID: 35649423 DOI: 10.1080/10495398.2022.2077744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
LncRNA (long non-coding RNA) is an RNA molecule with a length between 200 and 100,000 nt. It does not encode proteins and is involved in a variety of intracellular processes, becoming a research hotspot of genetics. To identify key lncRNAs associated with dairy mastitis, we collected mammary epithelial tissue samples of Normal disease-free Holstein cows (HCN) and unhealthy Holstein cows with Staphylococcus aureus (HCU) and performed RNA sequencing (RNA-seq) on the samples. A total of 270 differentially expressed lncRNAs and 500 differentially expressed mRNAs were identified by high-throughput sequencing and bioinformatics analysis. Furthermore, Hydrolase activity is the most enriched in GO, and ErbB signaling pathway is significantly enriched in KEGG. In addition, through qPCR validation of 5 candidate lncRNAs in HCN and HCU, four differentially expressed lncRNAs MSTRG.498, MSTRG57.1, MSTRG.41.1 and MSTRG 124.1 were confirmed to have significant differentially expressed in cow mastitis. Also, lncRNA MSTRG.498 and its target gene, SMC4, might directly or indirectly play a role in cow mastitis. The regulatory network of lncRNA-miRNA-mRNA has been inferred from a bioinformatics perspective, which may assist understand the underlying molecular mechanism of lncRNAs involved in regulating mastitis in cows. Our findings will provide meaningful resources for further research on the regulatory function of lncRNAs in cow mastitis.
Collapse
Affiliation(s)
- Zhixian Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Taiyu Hui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chang Yue
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanru Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
Das Mitra S, Kumar B, Rajegowda S, Bandopadhyay S, Karunakar P, Pais R. Reverse vaccinology & immunoinformatics approach to design a multiepitope vaccine (CV3Ag-antiMRSA) against methicillin resistant Staphylococcus aureus (MRSA) - a pathogen affecting both human and animal health. J Biomol Struct Dyn 2023:1-20. [PMID: 37798927 DOI: 10.1080/07391102.2023.2265471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Infections caused by drug resistant bacteria is a silent detrimental pandemic affecting the global health care profoundly. Methicillin resistant Staphylococcus aureus (MRSA) is a pathogen that causes serious infections in different settings (community, hospital & veterinary) whose treatment remains highly challenging due to its powerful characteristics (antibiotic resistance strategies, virulence factors). In this study, we used reverse vaccinology (RV) approach and designed an immunogenic multi epitope vaccine (CV3Ag-antiMRSA) targeting three potential antigen candidates viz., mecA encoding transpeptidase (PBP2a) protein responsible for conferring methicillin resistance and two virulence determinants - hlgA encoding gamma-hemolysin component A (a pore forming toxin) and isdB encoding iron regulated surface determinant B (heme transport component that allows S. aureus to scavenge iron from host hemoglobin and myoglobin). We employed an array of immunoinformatic tools/server to identify and use immunogenic epitopes (B cell and MHC class) to develop the chimeric subunit vaccine V4 (CV3Ag-antiMRSA) with immune modulating adjuvant and linkers. Based on different parameters, the vaccine construct V4 (CV3Ag-antiMRSA) was determined to be suitable vaccine (antigenic and non-allergen). Molecular docking and simulation of CV3Ag-antiMRSA with Toll Like Receptor (TLR2) predicted its immuno-stimulating potential. Finally, in silico cloning of CV3Ag-antiMRSA construct into pet28a and pet30 vector displayed its feasibility for the heterologous expression in the E. coli expression system. This vaccine candidate (CV3Ag-antiMRSA) designed based on the MRSA genomes obtained from both animal and human hosts can be experimentally validated and thereby contribute to vaccine development to impart protection to both animal and human health.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Susweta Das Mitra
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Bharat Kumar
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Sushmitha Rajegowda
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Satarupa Bandopadhyay
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Bangalore, Karnataka, India
| | - Roshan Pais
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Chen C, Zeng J, Lu J. Critical role of epigenetic modification in the pathogenesis of atopic dermatitis. Indian J Dermatol Venereol Leprol 2023; 89:700-709. [PMID: 37067130 DOI: 10.25259/ijdvl_298_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/24/2022] [Indexed: 03/31/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin disease characterised by recurrent eczema-like lesions and severe pruritus, along with drying and decrustation of skin. Current research relates the pathogenesis of atopic dermatitis mainly to genetic susceptibility, abnormal skin barrier function, immune disorders, Staphylococcus aureus colonisation, microbiological dysfunction and vitamin D insufficiency. Epigenetic modifications are distinct genetic phenotypes resulting from environment-driven changes in chromosome functions in the absence of nuclear DNA sequence variation. Classic epigenetic events include DNA methylation, histone protein modifications and non-coding RNA regulation. Increasing evidence has indicated that epigenetic events are involved in the pathogenesis of atopic dermatitis by their effects on multiple signalling pathways which in turn influence the above factors. This review primarily analyses the function of epigenetic regulation in the pathogenesis of atopic dermatitis. In addition, it tries to make recommendations for personalised epigenetic treatment strategies for atopic dermatitis in the future.
Collapse
Affiliation(s)
- Chunli Chen
- Department of Dermatology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinrong Zeng
- Department of Dermatology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianyun Lu
- Department of Dermatology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Hicks SD, Zhu D, Sullivan R, Kannikeswaran N, Meert K, Chen W, Suresh S, Sethuraman U. Saliva microRNA Profile in Children with and without Severe SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:8175. [PMID: 37175883 PMCID: PMC10179619 DOI: 10.3390/ijms24098175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) may impair immune modulating host microRNAs, causing severe disease. Our objectives were to determine the salivary miRNA profile in children with SARS-CoV-2 infection at presentation and compare the expression in those with and without severe outcomes. Children <18 years with SARS-CoV-2 infection evaluated at two hospitals between March 2021 and February 2022 were prospectively enrolled. Severe outcomes included respiratory failure, shock or death. Saliva microRNAs were quantified with RNA sequencing. Data on 197 infected children (severe = 45) were analyzed. Of the known human miRNAs, 1606 (60%) were measured and compared across saliva samples. There were 43 miRNAs with ≥2-fold difference between severe and non-severe cases (adjusted p-value < 0.05). The majority (31/43) were downregulated in severe cases. The largest between-group differences involved miR-4495, miR-296-5p, miR-548ao-3p and miR-1273c. These microRNAs displayed enrichment for 32 gene ontology pathways including viral processing and transforming growth factor beta and Fc-gamma receptor signaling. In conclusion, salivary miRNA levels are perturbed in children with severe COVID-19, with the majority of miRNAs being down regulated. Further studies are required to validate and determine the utility of salivary miRNAs as biomarkers of severe COVID-19.
Collapse
Affiliation(s)
- Steven D. Hicks
- Department of Pediatrics, Pennsylvania State University Medical Center, Hershey, PA 17033, USA; (S.D.H.)
| | - Dongxiao Zhu
- Department of Computer Science, Wayne State University, Detroit, MI 48201, USA;
| | - Rhea Sullivan
- Department of Pediatrics, Pennsylvania State University Medical Center, Hershey, PA 17033, USA; (S.D.H.)
| | - Nirupama Kannikeswaran
- Division of Emergency Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Kathleen Meert
- Division of Critical Care, Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Wei Chen
- Population Science, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Srinivasan Suresh
- Department of Pediatrics, University of Pittsburgh, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Usha Sethuraman
- Division of Emergency Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| |
Collapse
|
6
|
Barajas-Mendiola MA, Salgado-Lora MG, López-Meza JE, Ochoa-Zarzosa A. Prolactin regulates H3K9ac and H3K9me2 epigenetic marks and miRNAs expression in bovine mammary epithelial cells challenged with Staphylococcus aureus. Front Microbiol 2022; 13:990478. [PMID: 36212825 PMCID: PMC9539446 DOI: 10.3389/fmicb.2022.990478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic mechanisms are essential in the regulation of immune response during infections. Changes in the levels of reproductive hormones, such as prolactin, compromise the mammary gland’s innate immune response (IIR); however, its effect on epigenetic marks is poorly known. This work explored the epigenetic regulation induced by bovine prolactin (bPRL) on bovine mammary epithelial cells (bMECs) challenged with Staphylococcus aureus. In this work, bMECs were treated as follows: (1) control cells without any treatment, (2) bMECs treated with bPRL (5 ng/ml) at different times (12 or 24 h), (3) bMECs challenged with S. aureus for 2 h, and (4) bMECs treated with bPRL at different times (12 or 24 h), and then challenged with S. aureus 2 h. By western blot analyses of histones, we determined that the H3K9ac mark decreased (20%) in bMECs treated with bPRL (12 h) and challenged with S. aureus, while the H3K9me2 mark was increased (50%) in the same conditions. Also, this result coincided with an increase (2.3-fold) in HDAC activity analyzed using the cellular histone deacetylase fluorescent kit FLUOR DE LYS®. ChIP-qPCRs were performed to determine if the epigenetic marks detected in the histones correlate with enriched marks in the promoter regions of inflammatory genes associated with the S. aureus challenge. The H3K9ac mark was enriched in the promoter region of IL-1β, IL-10, and BNBD10 genes (1.5, 2.5, 7.5-fold, respectively) in bMECs treated with bPRL, but in bMECs challenged with S. aureus it was reduced. Besides, the H3K9me2 mark was enriched in the promoter region of IL-1β and IL-10 genes (3.5 and 2.5-fold, respectively) in bMECs challenged with S. aureus but was inhibited by bPRL. Additionally, the expression of several miRNAs was analyzed by qPCR. Let-7a-5p, miR-21a, miR-30b, miR-155, and miR-7863 miRNAs were up-regulated (2, 1.5, 10, 1.5, 3.9-fold, respectively) in bMECs challenged with S. aureus; however, bPRL induced a down-regulation in the expression of these miRNAs. In conclusion, bPRL induces epigenetic regulation on specific IIR elements, allowing S. aureus to persist and evade the host immune response.
Collapse
|
7
|
Wang JJ, Wang X, Xian YE, Chen ZQ, Sun YP, Fu YW, Wu ZK, Li PX, Zhou ES, Yang ZT. The JMJD3 histone demethylase inhibitor GSK-J1 ameliorates lipopolysaccharide-induced inflammation in a mastitis model. J Biol Chem 2022; 298:102017. [PMID: 35526564 PMCID: PMC9168612 DOI: 10.1016/j.jbc.2022.102017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
|
8
|
Wang N, Zhou C, Basang W, Zhu Y, Wang X, Li C, Chen L, Zhou X. Mechanisms by which mastitis affects reproduction in dairy cow: A review. Reprod Domest Anim 2021; 56:1165-1175. [PMID: 34008236 DOI: 10.1111/rda.13953] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022]
Abstract
Reproductive performance is a key factor in determining the profitability of dairy farm, which is affected by many factors such as environment and diseases. Mastitis is a common and important disease, which has caused huge economic losses to the dairy industries worldwide. Mammary gland infection causes immune responses, resulting in the abnormal secretion of cytokines and hormones and abnormal function of the reproductive system such as the ovary, corpus luteum, uterus and embryo. Cows with mastitis have delayed oestrus, decreased pregnancy rate and increased risk of abortion. The adverse effects of mastitis on reproductive performance are affected by many factors, such as occurrence time, pathogen and cow factors. This paper primarily reviews the progress in the effects and mechanisms of mastitis on reproductive performance, with emphasis on maternal transcriptome, genomic analysis, epigenetic modification, microbiota, inflammatory regulation and immune evasion mechanism of mastitis, aiming to provide directions for the prevention and control of mastitis in the future.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Changhai Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Wangdui Basang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa Tibet, China
| | - Yanbin Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa Tibet, China
| | - Xin Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res 2021; 70:29-49. [PMID: 33231704 PMCID: PMC7684853 DOI: 10.1007/s00011-020-01425-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
AIM AND OBJECTIVE Emerging translational evidence suggests that epigenetic alterations (DNA methylation, miRNA expression, and histone modifications) occur after external stimuli and may contribute to exacerbated inflammation and the risk of suffering several diseases including diabetes, cardiovascular diseases, cancer, and neurological disorders. This review summarizes the current knowledge about the harmful effects of high-fat/high-sugar diets, micronutrient deficiencies (folate, manganese, and carotenoids), obesity and associated complications, bacterial/viral infections, smoking, excessive alcohol consumption, sleep deprivation, chronic stress, air pollution, and chemical exposure on inflammation through epigenetic mechanisms. Additionally, the epigenetic phenomena underlying the anti-inflammatory potential of caloric restriction, n-3 PUFA, Mediterranean diet, vitamin D, zinc, polyphenols (i.e., resveratrol, gallic acid, epicatechin, luteolin, curcumin), and the role of systematic exercise are discussed. METHODS Original and review articles encompassing epigenetics and inflammation were screened from major databases (including PubMed, Medline, Science Direct, Scopus, etc.) and analyzed for the writing of the review paper. CONCLUSION Although caution should be exercised, research on epigenetic mechanisms is contributing to understand pathological processes involving inflammatory responses, the prediction of disease risk based on the epigenotype, as well as the putative design of therapeutic interventions targeting the epigenome.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Madrid, Spain
| |
Collapse
|
10
|
Prolactin and Estradiol are Epigenetic Modulators in Bovine Mammary Epithelial Cells during Staphylococcus aureus Infection. Pathogens 2020; 9:pathogens9070520. [PMID: 32605209 PMCID: PMC7399903 DOI: 10.3390/pathogens9070520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Changes in the levels of reproductive hormones compromise the bovine innate immune response (IIR). Changes in 17β-estradiol (E2) and prolactin (bPRL) levels affect the IIR of bovine mammary epithelial cells (bMECs), the target tissue of these hormones. In this work, we explored the effect of the combined hormones on bMEC IIR during Staphylococcus aureus infection, and if they can modulate epigenetic marks. By gentamicin protection assays, we determined that combined hormones (bPRL (5 ng/mL) and E2 (50 pg/mL)] decrease S. aureus internalization into bMECs (~50%), which was associated with a reduction in integrin α5β1 membrane abundance (MA) (~80%) determined by flow cytometry. Additionally, combined hormones increased Toll-like receptor 2 (TLR2) MA (~25%). By RT-qPCR, we showed that combined hormones induce the expression of pro- and anti-inflammatory cytokine genes, as well as up-regulate antimicrobial peptide gene expression. The combined hormones induced H3K9Ac at 12 h of treatment, which coincides with the reduction in histone deacetylase (HDAC, ~15%) activity. In addition, hormones increased the H3K9me2 mark at 12 h, which correlates with a reduction in the expression of KDM4A. In conclusion, bPRL and E2 modulate the IIR of bMECs, an effect that can be related to the regulation of histone H3 modifications such as H3K9Ac and H3K9me2.
Collapse
|
11
|
Mitra SD, Ganaie F, Bankar K, Velu D, Mani B, Vasudevan M, Shome R, Rahman H, Kumar Ghosh S, Shome BR. Genome-wide analysis of mammary gland shows modulation of transcriptome landscape with alternative splice variants in Staphylococcus aureus mastitis in mice. Gene 2019; 735:144278. [PMID: 31821873 DOI: 10.1016/j.gene.2019.144278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 01/25/2023]
Abstract
Epidemiological mapping shows Staphylococcus aureus to be the leading mastitis causing pathogen in India with diverse genetic lineages circulating in the dairy cattle population. We previously reported that endemic clonal strains of S. aureus isolated from subclinical mastitis lead to specific alteration of epigenetic modulators resulting in deviating immune response in intramammary infection mouse model. However, the extent of transcriptome modulation and associated alternative splicing in S. aureus mastitis is poorly understood. Hence, to gain a deeper insight of the extent of modulation of transcriptome landscape, we expanded the study here using high throughput, paired-end RNA sequencing analysis of the mouse mammary gland inoculated with three strains of S. aureus (SA1, SA2, and SA3) possessing specific genotype, virulence and enterotoxin traits. Overall, we detected 35,878 transcripts in S. aureus inoculated mammary gland, 23% more than those annotated in the reference genome. Expression of 20,756 transcripts was > 1 fragment per kilobase of transcript per million mapped fragments and 25.95% of multi-exonic genes were alternatively spliced. We noted Alternative Splicing (AS) events for > 100 immune-related genes. S. aureus infection quantitatively altered AS events in mice mammary gland. Collectively, the majority of differentially expressed significant genes clustered into immune-associated, cell adhesion and metabolic process categories. We observed AS events for 379 transcripts of genes putatively encoding several splicing associated proteins and transcription factors besides inflammatory mediators. The present analysis provides new insights into global transcriptome landscape and AS events in host-defense related genes in response to S. aureus intramammary infection, suggesting the need for studies focusing on multi-target and/or network therapeutics approach to combat mastitis.
Collapse
Affiliation(s)
- Susweta Das Mitra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India; Department of Biotechnology, Assam University, Silchar, AS, India; School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, KA, India
| | - Feroze Ganaie
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India; Department of Medicine, Division of Pulmonary/Allergy/Critical care, University of Alabama at Birmingham, AL, USA
| | - Kiran Bankar
- Bionivid Technology Pvt. Ltd., Bangalore, KA, India
| | - Dhanikachalam Velu
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India
| | - Bhuvana Mani
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India
| | | | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India
| | - Habibur Rahman
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India; International Livestock Research Institute, Pusa, DL, India
| | | | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India.
| |
Collapse
|
12
|
Persistent peripheral presence of Staphylococcus aureus promotes histone H3 hypoacetylation and decreases tyrosine hydroxylase protein level in rat brain tissues. Neuroreport 2019; 30:1087-1094. [PMID: 31503205 DOI: 10.1097/wnr.0000000000001322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Growing evidences suggest systemic pathogen-induced neuroimmune interaction is a major risk factor for several neurological disorders. Our goal was to investigate whether asymptomatic peripheral carriage of Staphylococcus aureus, a widespread opportunistic pathogen, could modulate selective molecular features in brain tissues. METHODS To address this, a peripheral infection model was developed by challenging Wistar rats repeatedly with a clinical strain of S. aureus. Animals infected with S. aureus (10 CFU for three times in 10 days) showed significant changes in acetylation profile of selective lysine (K) residues K9 (H3K9), K14 (H3K14) and K27 (H3K27) of histone H3 in the hippocampus and prefrontal cortex (PFC). RESULTS Although S. aureus was restricted peripherally, the infection induced hypoacetylation of H3K9, H3K14 and H3K27 in the hippocampus and H3K27 in the PFC. Histone H3 hypoacetylation in the hippocampus and PFC was also detected when rats were challenged with an engineered invasive strain of E. coli K12, SK3842. This confirmed that modulation of epigenetic landscape in distal brain tissues may not be specific to S. aureus. Moreover, the tyrosine hydroxylase protein, the rate limiting enzyme in dopamine synthesis pathway whose gene-expression is regulated by H3 acetylation at the promoter, was remarkably reduced in the brain tissues of the infected hosts. CONCLUSION The results indicate that commensals like S. aureus, in spite of being largely restricted to the peripheral tissues, could modulate the homeostasis of molecular features in brain tissues whose maintenance is critical for preserving normal neurological functions.
Collapse
|
13
|
Sajjanar B, Trakooljul N, Wimmers K, Ponsuksili S. DNA methylation analysis of porcine mammary epithelial cells reveals differentially methylated loci associated with immune response against Escherichia coli challenge. BMC Genomics 2019; 20:623. [PMID: 31366318 PMCID: PMC6670134 DOI: 10.1186/s12864-019-5976-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background Epigenetic changes such as cytosine (CpG) DNA methylations regulate gene expression patterns in response to environmental cues including infections. Microbial infections induce DNA methylations that play a potential role in modulating host-immune response. In the present study, we sought to determine DNA methylation changes induced by the mastitis causing Escherichia coli (E. coli) in porcine mammary epithelial cells (PMEC). Two time points (3 h and 24 h) were selected based on specific transcriptomic changes during the early and late immune responses, respectively. Results DNA methylation analysis revealed 561 and 898 significant (P < 0.01) differentially methylated CpG sites at 3 h and 24 h after E. coli challenge in PMEC respectively. These CpG sites mapped to genes that have functional roles in innate and adaptive immune responses. Significantly, hypomethylated CpG sites were found in the promoter regions of immune response genes such as SDF4, SRXN1, CSF1 and CXCL14. The quantitative transcript estimation indicated higher expression associated with the DNA CpG methylation observed in these immune response genes. Further, E. coli challenge significantly reduced the expression levels of DNMT3a, a subtype of de novo DNA methylation enzyme, in PMEC indicating the probable reason for the hypomethylation observed in the immune response genes. Conclusions Our study revealed E. coli infection induced DNA methylation loci in the porcine genome. The differentially methylated CpGs were identified in the regulatory regions of genes that play important role in immune response. These results will help to understand epigenetic mechanisms for immune regulation during coliform mastitis in pigs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5976-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Basavaraj Sajjanar
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| |
Collapse
|
14
|
Ma X, Guo S, Jiang K, Wang X, Yin N, Yang Y, Zahoor A, Deng G. MiR-128 mediates negative regulation in Staphylococcus aureus induced inflammation by targeting MyD88. Int Immunopharmacol 2019; 70:135-146. [DOI: 10.1016/j.intimp.2018.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
|
15
|
Sakr A, Brégeon F, Mège JL, Rolain JM, Blin O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front Microbiol 2018; 9:2419. [PMID: 30349525 PMCID: PMC6186810 DOI: 10.3389/fmicb.2018.02419] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/21/2018] [Indexed: 02/02/2023] Open
Abstract
Up to 30% of the human population are asymptomatically and permanently colonized with nasal Staphylococcus aureus. To successfully colonize human nares, S. aureus needs to establish solid interactions with human nasal epithelial cells and overcome host defense mechanisms. However, some factors like bacterial interactions in the human nose can influence S. aureus colonization and sometimes prevent colonization. On the other hand, certain host characteristics and environmental factors can predispose to colonization. Nasal colonization can cause opportunistic and sometimes life-threatening infections such as surgical site infections or other infections in non-surgical patients that increase morbidity, mortality as well as healthcare costs.
Collapse
Affiliation(s)
- Adèle Sakr
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France.,Service de Pharmacologie Clinique et Pharmacovigilance, AP-HM, Pharmacologie Intégrée et Interface Clinique et Industriel, Institut des Neurosciences Timone - UMR AMU-INSERM 1106, Aix-Marseille Université, Marseille, France
| | - Fabienne Brégeon
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Jean-Louis Mège
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Olivier Blin
- Service de Pharmacologie Clinique et Pharmacovigilance, AP-HM, Pharmacologie Intégrée et Interface Clinique et Industriel, Institut des Neurosciences Timone - UMR AMU-INSERM 1106, Aix-Marseille Université, Marseille, France
| |
Collapse
|
16
|
Bhattarai D, Worku T, Dad R, Rehman ZU, Gong X, Zhang S. Mechanism of pattern recognition receptors (PRRs) and host pathogen interplay in bovine mastitis. Microb Pathog 2018; 120:64-70. [PMID: 29635052 DOI: 10.1016/j.micpath.2018.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 04/01/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
Abstract
Bacterial infection in the mammary gland parenchyma induces local and subsequently systemic inflammation that results in a complex disease. Mastitis in bovine is the result of various factors which function together. This review is aimed to analyze the factors involved in the pathogenesis of common bacterial species for bovine mastitis. The bacterial growth patterns, signaling pathway and the pathogen-associated molecular patterns (PAMPs) which activate immune responses is discussed. Clear differences in bacterial infection pattern are shown between bacterial species and illustrated TLRs, NLRs and RLGs molecular mechanism for the initiation of intramammary infection. The underlying reasons for the differences and the resulting host response are analyzed. Understandings of the mechanisms that activate and regulate these responses are central to the development of efficient anticipatory and treatment management. The knowledge of bovine mammary gland to common mastitis causing pathogens with possible immune mechanism could be a new conceptual understanding for the prospect of mastitis control program.
Collapse
Affiliation(s)
- Dinesh Bhattarai
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China.
| | - Tesfaye Worku
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China
| | - Rahim Dad
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China
| | - Zia Ur Rehman
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China
| | - Xiaoling Gong
- The Agricultural Broadcasting and Television School in Hubei Province, Wuhan, 430064, China
| | - Shujun Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China.
| |
Collapse
|
17
|
Epigenetic Mechanisms Regulate Innate Immunity against Uropathogenic and Commensal-Like Escherichia coli in the Surrogate Insect Model Galleria mellonella. Infect Immun 2017; 85:IAI.00336-17. [PMID: 28739824 DOI: 10.1128/iai.00336-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022] Open
Abstract
Innate-immunity-related genes in humans are activated during urinary tract infections (UTIs) caused by pathogenic strains of Escherichia coli but are suppressed by commensals. Epigenetic mechanisms play a pivotal role in the regulation of gene expression in response to environmental stimuli. To determine whether epigenetic mechanisms can explain the different behaviors of pathogenic and commensal bacteria, we infected larvae of the greater wax moth, Galleria mellonella, a widely used model insect host, with a uropathogenic E. coli (UPEC) strain that causes symptomatic UTIs in humans or a commensal-like strain that causes asymptomatic bacteriuria (ABU). Infection with the UPEC strain (CFT073) was more lethal to larvae than infection with the attenuated ABU strain (83972) due to the recognition of each strain by different Toll-like receptors, ultimately leading to differential DNA/RNA methylation and histone acetylation. We used next-generation sequencing and reverse transcription (RT)-PCR to correlate epigenetic changes with the induction of innate-immunity-related genes. Transcriptomic analysis of G. mellonella larvae infected with E. coli strains CFT073 and 83972 revealed strain-specific variations in the class and expression levels of genes encoding antimicrobial peptides, cytokines, and enzymes controlling DNA methylation and histone acetylation. Our results provide evidence for the differential epigenetic regulation of transcriptional reprogramming by UPEC and ABU strains of E. coli in G. mellonella larvae, which may be relevant to understanding the different behaviors of these bacterial strains in the human urinary tract.
Collapse
|
18
|
Chen YC, Chao TY, Leung SY, Chen CJ, Wu CC, Fang WF, Wang YH, Chang HC, Wang TY, Lin YY, Zheng YX, Lin MC, Hsiao CC. Histone H3K14 hypoacetylation and H3K27 hypermethylation along with HDAC1 up-regulation and KDM6B down-regulation are associated with active pulmonary tuberculosis disease. Am J Transl Res 2017; 9:1943-1955. [PMID: 28469799 PMCID: PMC5411942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/26/2016] [Indexed: 06/07/2023]
Abstract
The aim of this study is to determine the roles of global histone acetylation (Ac)/methylation (me), their modifying enzymes, and gene-specific histone enrichment in active pulmonary tuberculosis (TB) disease. Global histone H3K27me3, H3K27me2, H3K9me3, H3K9Ac, and H3K14Ac expressions, and their modifying enzyme expressions, including KDM1A, KDM6B, EZH2, HDAC1, and HDAC2, were assessed in blood leukocytes from 81 patients with active pulmonary TB disease and 44 matched healthy subjects (HS). TLR2, TNF-α, IFN-γ, and IL12B-specific histone enrichment of peripheral blood mononuclear cells was measured by chromatin immunoprecipitation method. We found that Global H3K14Ac was decreased and H3K27me2 was increased in TB patients as compared with that in HS. TB patients with low H3K14Ac had lower one-year survival. Global H3K27me3 was increased in TB patients with high bacterial burden, or systemic symptoms as compared with that in those without the attribute or HS. HDAC1 gene/protein expressions were increased in TB patients as compared with that in HS, whereas KDM6B gene/protein expressions were decreased. Global H3K27me2, HDAC1 and KDM6B protein expressions were all reversed to normal after 6-month anti-TB treatment. TNF-α/IL12B promoter-specific H3K14Ac and TNF-α/IL12B/IFN-γ promoter-specific H3K27me2 enrichment were all decreased in 10 TB patients as compared with that in 10 HS. Among them, IL12B-specific H3K27me2 enrichment was reversed to normal after treatment, while the other 4 remained depressed. In conclusions, H3K14 hypoacetylation and H3K27 hypermethylation play a role in the development of active pulmonary TB disease or its clinical phenotypes, probably through up-regulation of HDAC1 and down-regulation of KDM6B, respectively.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalTaiwan
| | - Tung-Ying Chao
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Chung-Jen Chen
- Division of Rheumatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Wen-Feng Fang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Yi-Hsi Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Huang-Chih Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Yong-Yong Lin
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Yi-Xin Zheng
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalTaiwan
| |
Collapse
|
19
|
Cole J, Morris P, Dickman MJ, Dockrell DH. The therapeutic potential of epigenetic manipulation during infectious diseases. Pharmacol Ther 2016; 167:85-99. [PMID: 27519803 PMCID: PMC5109899 DOI: 10.1016/j.pharmthera.2016.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/20/2016] [Indexed: 12/16/2022]
Abstract
Epigenetic modifications are increasingly recognized as playing an important role in the pathogenesis of infectious diseases. They represent a critical mechanism regulating transcriptional profiles in the immune system that contributes to the cell-type and stimulus specificity of the transcriptional response. Recent data highlight how epigenetic changes impact macrophage functional responses and polarization, influencing the innate immune system through macrophage tolerance and training. In this review we will explore how post-translational modifications of histone tails influence immune function to specific infectious diseases. We will describe how these may influence outcome, highlighting examples derived from responses to acute bacterial pathogens, models of sepsis, maintenance of viral latency and HIV infection. We will discuss how emerging classes of pharmacological agents, developed for use in oncology and other settings, have been applied to models of infectious diseases and their potential to modulate key aspects of the immune response to bacterial infection and HIV therapy.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection and Immunity, University of Sheffield Medical School, UK; Sheffield Teaching Hospitals, UK; Chemical and Biologic Engineering, University of Sheffield, UK
| | - Paul Morris
- Department of Infection and Immunity, University of Sheffield Medical School, UK; Sheffield Teaching Hospitals, UK
| | - Mark J Dickman
- Chemical and Biologic Engineering, University of Sheffield, UK
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield Medical School, UK; Sheffield Teaching Hospitals, UK.
| |
Collapse
|
20
|
Baig N, Singh RP, Jha PN, Sah AK. Synthesis of Glucose-Derived Glycoconjugates and Studies on Their Antimicrobial Activities: Mechanistic Insight. ChemistrySelect 2016. [DOI: 10.1002/slct.201600786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noorullah Baig
- Department of Chemistry; Birla Institute of Technology and Science, Pilani, Pilani Campus; Rajasthan 333031 India
| | - Rajnish Prakash Singh
- Department of Biological Science; Birla Institute of Technology and Science, Pilani, Pilani Campus; Rajasthan 333031 India
| | - Prabhat Nath Jha
- Department of Biological Science; Birla Institute of Technology and Science, Pilani, Pilani Campus; Rajasthan 333031 India
| | - Ajay K. Sah
- Department of Chemistry; Birla Institute of Technology and Science, Pilani, Pilani Campus; Rajasthan 333031 India
| |
Collapse
|
21
|
Cureau N, AlJahdali N, Vo N, Carbonero F. Epigenetic mechanisms in microbial members of the human microbiota: current knowledge and perspectives. Epigenomics 2016; 8:1259-73. [DOI: 10.2217/epi-2016-0057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human microbiota and epigenetic processes have both been shown to play a crucial role in health and disease. However, there is extremely scarce information on epigenetic modulation of microbiota members except for a few pathogens. Mainly DNA adenine methylation has been described extensively in modulating the virulence of pathogenic bacteria in particular. It would thus appear likely that such mechanisms are widespread for most bacterial members of the microbiota. This review will present briefly the current knowledge on epigenetic processes in bacteria, give examples of known methylation processes in microbial members of the human microbiota and summarize the knowledge on regulation of host epigenetic processes by the human microbiota.
Collapse
Affiliation(s)
- Natacha Cureau
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
| | - Nesreen AlJahdali
- Cellular and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72704, USA
| | - Nguyen Vo
- Cellular and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72704, USA
| | - Franck Carbonero
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
- Cellular and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72704, USA
| |
Collapse
|
22
|
Morandini AC, Santos CF, Yilmaz Ö. Role of epigenetics in modulation of immune response at the junction of host-pathogen interaction and danger molecule signaling. Pathog Dis 2016; 74:ftw082. [PMID: 27542389 DOI: 10.1093/femspd/ftw082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms have rapidly and controversially emerged as silent modulators of host defenses that can lead to a more prominent immune response and shape the course of inflammation in the host. Thus, the epigenetics can both drive the production of specific inflammatory mediators and control the magnitude of the host response. The epigenetic actions that are predominantly shown to modulate the host defense against microbial pathogens are DNA methylation, histone modification and the activity of non-coding RNAs. There is also growing evidence that opportunistic chronic pathogens, such as Porphyromonas gingivalis, as a microbial host subversion strategy, can epigenetically interfere with the host DNA machinery for successful colonization. Similarly, the novel involvement of small molecule 'danger signals', which are released by stressed or infected cells, at the center of host-pathogen interplay and epigenetics is developing. In this review, we systematically examine the latest knowledge within the field of epigenetics in the context of host-derived danger molecule and purinergic signaling, with a particular focus on host microbial defenses and infection-driven chronic inflammation.
Collapse
Affiliation(s)
- Ana Carolina Morandini
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94103, USA Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carlos F Santos
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - Özlem Yilmaz
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
23
|
Mitra SD, Shome BR, Mani B, Velu D, Banerjee A, Bankar K, Ghosh SK, Santra S, Suresh K, Rahman H. Streptococcus uberis ST439 and ST475 induce differential inflammatory responses in a mouse intramammary infection model. Gene 2016; 585:247-55. [DOI: 10.1016/j.gene.2016.03.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/04/2016] [Accepted: 03/28/2016] [Indexed: 02/08/2023]
|
24
|
Holla S, Balaji KN. Epigenetics and miRNA during bacteria-induced host immune responses. Epigenomics 2015; 7:1197-212. [PMID: 26585338 DOI: 10.2217/epi.15.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Various cellular processes including the pathogen-specific immune responses, host-pathogen interactions and the related evasion mechanisms rely on the ability of the immune cells to be reprogrammed accurately and in many cases instantaneously. In this context, the exact functions of epigenetic and miRNA-mediated regulation of genes, coupled with recent advent in techniques that aid such studies, make it an attractive field for research. Here, we review examples that involve the epigenetic and miRNA control of the host immune system during infection with bacteria. Interestingly, many pathogens utilize the epigenetic and miRNA machinery to modify and evade the host immune responses. Thus, we believe that global epigenetic and miRNA mapping of such host-pathogen interactions would provide key insights into their cellular functions and help to identify various determinants for therapeutic value.
Collapse
Affiliation(s)
- Sahana Holla
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | |
Collapse
|
25
|
Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat Commun 2015; 6:8922. [DOI: 10.1038/ncomms9922] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
|
26
|
Genome-Wide Association Study of Staphylococcus aureus Carriage in a Community-Based Sample of Mexican-Americans in Starr County, Texas. PLoS One 2015; 10:e0142130. [PMID: 26569114 PMCID: PMC4646511 DOI: 10.1371/journal.pone.0142130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/16/2015] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is the number one cause of hospital-acquired infections. Understanding host pathogen interactions is paramount to the development of more effective treatment and prevention strategies. Therefore, whole exome sequence and chip-based genotype data were used to conduct rare variant and genome-wide association analyses in a Mexican-American cohort from Starr County, Texas to identify genes and variants associated with S. aureus nasal carriage. Unlike most studies of S. aureus that are based on hospitalized populations, this study used a representative community sample. Two nasal swabs were collected from participants (n = 858) 11–17 days apart between October 2009 and December 2013, screened for the presence of S. aureus, and then classified as either persistent, intermittent, or non-carriers. The chip-based and exome sequence-based single variant association analyses identified 1 genome-wide significant region (KAT2B) for intermittent and 11 regions suggestively associated with persistent or intermittent S. aureus carriage. We also report top findings from gene-based burden analyses of rare functional variation. Notably, we observed marked differences between signals associated with persistent and intermittent carriage. In single variant analyses of persistent carriage, 7 of 9 genes in suggestively associated regions and all 5 top gene-based findings are associated with cell growth or tight junction integrity or are structural constituents of the cytoskeleton, suggesting that variation in genes associated with persistent carriage impact cellular integrity and morphology.
Collapse
|
27
|
DNA methylation, bacteria and airway inflammation: latest insights. Curr Opin Allergy Clin Immunol 2015; 15:27-32. [PMID: 25479316 DOI: 10.1097/aci.0000000000000130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW DNA methylation is an epigenetic mechanism that has been implicated in the pathogenesis of chronic inflammatory diseases by regulating differentiation, proliferation, apoptosis, and activation of immune cells. Changes in the methylation status of relevant genes have been linked to the origin, perpetuation, and severity of airway diseases. The DNA methylation profile can be also modified by the action of viral and bacterial colonization. Bacteria and specially Staphylococcus aureus toxins are recognized inflammatory amplifying factors in both lower and upper airway chronic diseases. This review summarizes the existent knowledge about the role of DNA methylation changes in chronic airway diseases and the contribution of bacterial infection on this event. RECENT FINDINGS It has been demonstrated that changes in DNA methylation, either intrinsic or induced by allergen or infection, may be linked to the pathogenesis of asthma and allergy. These changes in methylation may suppress the production of anti-inflammatory mediators and increase the survival and activation of pro-inflammatory cells, as well as modify the immune response in response to bacterial infection, increasing their survival and pathogenicity within the infected organism. SUMMARY Understanding the intrinsic epigenetic mechanisms, as well as the effect of environment -for example, bacterial infection in the pathogenesis of airways diseases - will greatly improve the management and the diagnosis of these diseases.
Collapse
|
28
|
Investigation of antibacterial activity and related mechanism of a ruthenium(II) polypyridyl complex. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Sun D, Zhang W, Lv M, Yang E, Zhao Q, Wang W. Antibacterial activity of ruthenium(II) polypyridyl complex manipulated by membrane permeability and cell morphology. Bioorg Med Chem Lett 2015; 25:2068-73. [DOI: 10.1016/j.bmcl.2015.03.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 11/30/2022]
|