1
|
Föttinger F, Krajnc N, Riedl K, Leutmezer F, Ponleitner M, Rommer P, Kornek B, Macher S, Schmied C, Zebenholzer K, Zulehner G, Zrzavy T, Berger T, Bsteh G. Autoimmune screening panel in patients with multiple sclerosis: A Vienna multiple sclerosis database study. Eur J Neurol 2025; 32:e16558. [PMID: 39601436 PMCID: PMC11625921 DOI: 10.1111/ene.16558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND PURPOSE Autoimmune screening panels (ASPs) are often ordered as a part of the diagnostic workup in people with suspected multiple sclerosis (MS). However, data on the significance of ASP seropositivity in MS are scarce. This study aimed to investigate whether routine implementation of ASPs is viable in MS diagnostic workup. METHODS In this retrospective study, we included patients from the Vienna Multiple Sclerosis Database who were diagnosed with MS according to current McDonald criteria between 2014 and 2021 and had an ASP performed. RESULTS We analyzed 212 patients (mean age at serology = 30.4 [SD = 8.5] years, 67% female). Red flag symptoms for presence of systemic autoimmune disease were reported by 5.6% of patients during initial evaluation (sicca syndrome [n = 5], joint pain [n = 4], dermatitis [n = 4]). Complement levels (C3c and C4) were below the lower reference level in 26 of 134 (19.4%) and three of 134 (2.2%), respectively. Antinuclear antibodies (ANAs) were positive in 24 of 210 (11.4%), with 18 (8.6%), five (2.4%), and one (0.5%) having mildly, moderately, and strongly positive ANA titers. Extractable nuclear antibody subsets were positive in 10 of 211 (4.7%) patients. ASPs led to the diagnosis of mixed connective tissue disease (n = 1), psoriatic arthritis (n = 1), and Sjögren syndrome (n = 2; positive predictive value [PPV] = 4.9%, negative predictive value [NPV] = 99.3%). Among patients presenting with red flag symptoms, ASPs had better overall test performance (PPV = 100%, NPV = 88.9%). CONCLUSIONS The rate of ASP seropositivity in MS is low and within the range of the general population. Performance of ASPs without clinical suspicion of systemic autoimmune disease seems unwarranted.
Collapse
Affiliation(s)
- Fabian Föttinger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Nik Krajnc
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Katharina Riedl
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Fritz Leutmezer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Markus Ponleitner
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Paulus Rommer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Barbara Kornek
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Stefan Macher
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Christiane Schmied
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Karin Zebenholzer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Gudrun Zulehner
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Tobias Zrzavy
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Thomas Berger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Gabriel Bsteh
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| |
Collapse
|
2
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
3
|
Garton T, Gadani SP, Gill AJ, Calabresi PA. Neurodegeneration and demyelination in multiple sclerosis. Neuron 2024; 112:3231-3251. [PMID: 38889714 PMCID: PMC11466705 DOI: 10.1016/j.neuron.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Progressive multiple sclerosis (PMS) is an immune-initiated neurodegenerative condition that lacks effective therapies. Although peripheral immune infiltration is a hallmark of relapsing-remitting MS (RRMS), PMS is associated with chronic, tissue-restricted inflammation and disease-associated reactive glial states. The effector functions of disease-associated microglia, astrocytes, and oligodendrocyte lineage cells are beginning to be defined, and recent studies have made significant progress in uncovering their pathologic implications. In this review, we discuss the immune-glia interactions that underlie demyelination, failed remyelination, and neurodegeneration with a focus on PMS. We highlight the common and divergent immune mechanisms by which glial cells acquire disease-associated phenotypes. Finally, we discuss recent advances that have revealed promising novel therapeutic targets for the treatment of PMS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Garton
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander J Gill
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Kennedy PGE, Fultz M, Phares J, Yu X. Immunoglobulin G and Complement as Major Players in the Neurodegeneration of Multiple Sclerosis. Biomolecules 2024; 14:1210. [PMID: 39456143 PMCID: PMC11506455 DOI: 10.3390/biom14101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS) and is termed as one of the most common causes of neurological disability in young adults. Axonal loss and neuronal cell damage are the primary causes of disease progression and disability. Yet, little is known about the mechanism of neurodegeneration in the disease, a limitation that impairs the development of more effective treatments for progressive MS. MS is characterized by the presence of oligoclonal bands and raised levels of immunoglobulins in the CNS. The role of complement in the demyelinating process has been detected in both experimental animal models of MS and within the CNS of affected MS patients. Furthermore, both IgG antibodies and complement activation can be detected in the demyelinating plaques and cortical gray matter lesions. We propose here that both immunoglobulins and complement play an active role in the neurodegenerative process of MS. We hypothesize that the increased CNS IgG antibodies form IgG aggregates and bind complement C1q with high affinity, activating the classical complement pathway. This results in neuronal cell damage, which leads to neurodegeneration and demyelination in MS.
Collapse
Affiliation(s)
- Peter G. E. Kennedy
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G61 1QH, UK;
| | - Matthew Fultz
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| | - Jeremiah Phares
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| |
Collapse
|
5
|
Tortosa-Carreres J, Cubas-Núñez L, Piqueras M, Castillo-Villalba J, Quintanilla-Bordàs C, Quiroga-Varela A, Villarrubia N, Monreal E, Álvarez G, Gasque-Rubio R, Forés-Toribio L, Carratalà-Boscà S, Lucas C, Sanz MT, Ramió-Torrentà L, Villar LM, Casanova B, Laiz B, Pérez-Miralles FC. Evaluating the complement C1q levels in serum and cerebrospinal fluid in multiple sclerosis patients: Could it serve as a valuable marker in clinical practice? J Neuroimmunol 2024; 394:578428. [PMID: 39121816 DOI: 10.1016/j.jneuroim.2024.578428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Immunohistochemical studies have identified complement component C1q in MS lesions. We aimed to compare serum (sC1q) and CSF (csfC1q) levels in a large cohort of MS patients (pwMS) (n = 222) with those of healthy controls (HC, n = 52), individuals with other immune (IND, n = 14), and non-immune neurological disorders (nIND, n = 15), and to analyze their correlation with other biomarkers. pwMS were divided into three series based on their origin. CSF samples were unavailable for HC. All three pwMS cohorts had lower sC1q levels compared to HC and IND. csfC1q was higher in one pwMS cohort, with a trend in another, and correlated with IgG, Free Kappa Light Chains, GFAP, and Chitinase-3 Like Protein-1 in CSF. Our findings suggest a significant role for C1q in MS pathophysiology, potentially serving as a biomarker for disease identification.
Collapse
Affiliation(s)
- Jordi Tortosa-Carreres
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain; Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain.
| | - Laura Cubas-Núñez
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain.
| | - Mónica Piqueras
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | | | - Carlos Quintanilla-Bordàs
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain; Neurology Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | - Ana Quiroga-Varela
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain.
| | - Noelia Villarrubia
- Departments of Immunology and Neurology, Ramon y Cajal University Hospital, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Madrid, Spain.
| | - Enric Monreal
- Departments of Immunology and Neurology, Ramon y Cajal University Hospital, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Madrid, Spain.
| | - Gary Álvarez
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain.
| | - Raquel Gasque-Rubio
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain
| | | | | | - Celia Lucas
- Computer Systems, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain..
| | - María T Sanz
- Department of Didactic of Mathematics. University of Valencia, Spain.
| | - Lluís Ramió-Torrentà
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain.
| | - Luisa María Villar
- Multiple Sclerosis Unit, Ramon y Cajal University Hospital, Madrid, Spain.
| | - Bonaventura Casanova
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain; Neurology Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | - Begoña Laiz
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain.
| | - Francisco Carlos Pérez-Miralles
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain; Neurology Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| |
Collapse
|
6
|
Chen C, Shu Y, Yan C, Li H, Huang Z, Shen S, Liu C, Jiang Y, Huang S, Wang Z, Mei F, Qin F, Liu X, Qiu W. Astrocyte-derived clusterin disrupts glial physiology to obstruct remyelination in mouse models of demyelinating diseases. Nat Commun 2024; 15:7791. [PMID: 39242637 PMCID: PMC11379856 DOI: 10.1038/s41467-024-52142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Multiple sclerosis (MS) is a debilitating demyelinating disease characterized by remyelination failure attributed to inadequate oligodendrocyte precursor cells (OPCs) differentiation and aberrant astrogliosis. A comprehensive cell atlas reanalysis of clinical specimens brings to light heightened clusterin (CLU) expression in a specific astrocyte subtype links to active lesions in MS patients. Our investigation reveals elevated astrocytic CLU levels in both active lesions of patient tissues and female murine MS models. CLU administration stimulates primary astrocyte proliferation while concurrently impeding astrocyte-mediated clearance of myelin debris. Intriguingly, CLU overload directly impedes OPC differentiation and induces OPCs and OLs apoptosis. Mechanistically, CLU suppresses PI3K-AKT signaling in primary OPCs via very low-density lipoprotein receptor. Pharmacological activation of AKT rescues the damage inflicted by excess CLU on OPCs and ameliorates demyelination in the corpus callosum. Furthermore, conditional knockout of CLU emerges as a promising intervention, showcasing improved remyelination processes and reduced severity in murine MS models.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Neurosurgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chengkai Yan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huilu Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenchao Huang
- Department of Neurosurgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - ShiShi Shen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunxin Liu
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shixiong Huang
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Zhanhang Wang
- Department of Neurology, 999 Brain Hospital, Guangzhou, China
| | - Feng Mei
- Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Feng Qin
- Department of Neurosurgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci 2024; 25:9588. [PMID: 39273535 PMCID: PMC11395575 DOI: 10.3390/ijms25179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair.
Collapse
Affiliation(s)
- Styliani Theophanous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
8
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
9
|
Lunemann JD, Hegen H, Villar LM, Rejdak K, Sao-Aviles A, Carbonell-Mirabent P, Sastre-Garriga J, Mongay-Ochoa N, Berek K, Martínez-Yélamos S, Pérez-Miralles F, Abdelhak A, Bachhuber F, Tumani H, Lycke JN, Rosenstein I, Alvarez-Lafuente R, Castillo-Trivino T, Otaegui D, Llufriu S, Blanco Y, Sánchez López AJ, Garcia Merino JA, Fissolo N, Gutierrez L, Villacieros-Álvarez J, Monreal E, Valls-Carbó A, Wiendl H, Montalban X, Comabella M. Association of Complement Factors With Disability Progression in Primary Progressive Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200270. [PMID: 38912898 PMCID: PMC11226316 DOI: 10.1212/nxi.0000000000200270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/26/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND OBJECTIVES The complement system is known to play a role in multiple sclerosis (MS) pathogenesis. However, its contribution to disease progression remains elusive. The study investigated the role of the complement system in disability progression of patients with primary progressive MS (PPMS). METHODS Sixty-eight patients with PPMS from 12 European MS centers were included in the study. Serum and CSF levels of a panel of complement components (CCs) were measured by multiplex enzyme-linked immunosorbent assay at a baseline time point (i.e., sampling). Mean (SD) follow-up time from baseline was 9.6 (4.8) years. Only one patient (1.5%) was treated during follow-up. Univariable and multivariable logistic regressions adjusted for age, sex, and albumin quotient were performed to assess the association between baseline CC levels and disability progression in short term (2 years), medium term (6 years), and long term (at the time of the last follow-up). RESULTS In short term, CC played little or no role in disability progression. In medium term, an elevated serum C3a/C3 ratio was associated with a higher risk of disability progression (adjusted OR 2.30; 95% CI 1.17-6.03; p = 0.040). By contrast, increased CSF C1q levels were associated with a trend toward reduced risk of disability progression (adjusted OR 0.43; 95% CI 0.17-0.98; p = 0.054). Similarly, in long term, an elevated serum C3a/C3 ratio was associated with higher risk of disability progression (adjusted OR 1.81; 95% CI 1.09-3.40; p = 0.037), and increased CSF C1q levels predicted lower disability progression (adjusted OR 0.41; 95% CI 0.17-0.86; p = 0.025). DISCUSSION Proteins involved in the activation of early complement cascades play a role in disability progression as risk (elevated serum C3a/C3 ratio) or protective (elevated CSF C1q) factors after 6 or more years of follow-up in patients with PPMS. The protective effects associated with C1q levels in CSF may be related to its neuroprotective and anti-inflammatory properties.
Collapse
Affiliation(s)
- Jan D Lunemann
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Harald Hegen
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Luisa María Villar
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Konrad Rejdak
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Augusto Sao-Aviles
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Pere Carbonell-Mirabent
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Jaume Sastre-Garriga
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Neus Mongay-Ochoa
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Klaus Berek
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Sergio Martínez-Yélamos
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Francisco Pérez-Miralles
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Ahmed Abdelhak
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Franziska Bachhuber
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Hayrettin Tumani
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Jan N Lycke
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Igal Rosenstein
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Roberto Alvarez-Lafuente
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Tamara Castillo-Trivino
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - David Otaegui
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Sara Llufriu
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Yolanda Blanco
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Antonio J Sánchez López
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Juan Antonio Garcia Merino
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Nicolas Fissolo
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Lucia Gutierrez
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Javier Villacieros-Álvarez
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Enric Monreal
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Adrián Valls-Carbó
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Heinz Wiendl
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Xavier Montalban
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Manuel Comabella
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| |
Collapse
|
10
|
Nimmo J, Byrne R, Daskoulidou N, Watkins L, Carpanini S, Zelek W, Morgan B. The complement system in neurodegenerative diseases. Clin Sci (Lond) 2024; 138:387-412. [PMID: 38505993 PMCID: PMC10958133 DOI: 10.1042/cs20230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacqui Nimmo
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Robert A.J. Byrne
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lewis M. Watkins
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| |
Collapse
|
11
|
Junior MSO, Reiche L, Daniele E, Kortebi I, Faiz M, Küry P. Star power: harnessing the reactive astrocyte response to promote remyelination in multiple sclerosis. Neural Regen Res 2024; 19:578-582. [PMID: 37721287 PMCID: PMC10581572 DOI: 10.4103/1673-5374.380879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 09/19/2023] Open
Abstract
Astrocytes are indispensable for central nervous system development and homeostasis. In response to injury and disease, astrocytes are integral to the immunological- and the, albeit limited, repair response. In this review, we will examine some of the functions reactive astrocytes play in the context of multiple sclerosis and related animal models. We will consider the heterogeneity or plasticity of astrocytes and the mechanisms by which they promote or mitigate demyelination. Finally, we will discuss a set of biomedical strategies that can stimulate astrocytes in their promyelinating response.
Collapse
Affiliation(s)
- Markley Silva Oliveira Junior
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Emerson Daniele
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Ines Kortebi
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Maryam Faiz
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Patrick Küry
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
12
|
Oechtering J, Stein K, Schaedelin SA, Maceski AM, Orleth A, Meier S, Willemse E, Qureshi F, Heijnen I, Regeniter A, Derfuss T, Benkert P, D'Souza M, Limberg M, Fischer-Barnicol B, Achtnichts L, Mueller S, Salmen A, Lalive PH, Bridel C, Pot C, Du Pasquier RA, Gobbi C, Wiendl H, Granziera C, Kappos L, Trendelenburg M, Leppert D, Lunemann JD, Kuhle J. Complement Activation Is Associated With Disease Severity in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200212. [PMID: 38354323 PMCID: PMC10913171 DOI: 10.1212/nxi.0000000000200212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Histopathologic studies have identified immunoglobulin (Ig) deposition and complement activation as contributors of CNS tissue damage in multiple sclerosis (MS). Intrathecal IgM synthesis is associated with higher MS disease activity and severity, and IgM is the strongest complement-activating immunoglobulin. In this study, we investigated whether complement components (CCs) and complement activation products (CAPs) are increased in persons with MS, especially in those with an intrathecal IgM synthesis, and whether they are associated with disease severity and progression. METHODS CC and CAP levels were quantified in plasma and CSF of 112 patients with clinically isolated syndrome (CIS), 127 patients with MS (90 relapsing-remitting, 14 primary progressive, and 23 secondary progressive), 31 inflammatory neurologic disease, and 44 symptomatic controls from the Basel CSF databank study. Patients with CIS/MS were followed in the Swiss MS cohort study (median 6.3 years). Levels of CC/CAP between diagnosis groups were compared; in CIS/MS, associations of CC/CAP levels with intrathecal Ig synthesis, baseline Expanded Disability Status Scale (EDSS) scores, MS Severity Score (MSSS), and neurofilament light chain (NfL) levels were investigated by linear regression, adjusted for age, sex, and albumin quotient. RESULTS CSF (but not plasma) levels of C3a, C4a, Ba, and Bb were increased in patients with CIS/MS, being most pronounced in those with an additional intrathecal IgM production. In CIS, doubling of C3a and C4a in CSF was associated with 0.31 (CI 0.06-0.56; p = 0.016) and 0.32 (0.02-0.62; p = 0.041) increased EDSS scores at lumbar puncture. Similarly, doubling of C3a and Ba in CIS/MS was associated with 0.61 (0.19-1.03; p < 0.01) and 0.74 (0.18-1.31; p = 0.016) increased future MSSS. In CIS/MS, CSF levels of C3a, C4a, Ba, and Bb were associated with increased CSF NfL levels, e.g., doubling of C3a was associated with an increase of 58% (Est. 1.58; CI 1.37-1.81; p < 0.0001). DISCUSSION CNS-compartmentalized activation of the classical and alternative pathways of complement is increased in CIS/MS and associated with the presence of an intrathecal IgM production. Increased complement activation within the CSF correlates with EDSS, future MSSS, and NfL levels, supporting the concept that complement activation contributes to MS pathology and disease progression. Complement inhibition should be explored as therapeutic target to attenuate disease severity and progression in MS.
Collapse
Affiliation(s)
- Johanna Oechtering
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kerstin Stein
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sabine A Schaedelin
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Aleksandra M Maceski
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Annette Orleth
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stephanie Meier
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eline Willemse
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ferhan Qureshi
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ingmar Heijnen
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Axel Regeniter
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Tobias Derfuss
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Pascal Benkert
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marcus D'Souza
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marguerite Limberg
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bettina Fischer-Barnicol
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lutz Achtnichts
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stefanie Mueller
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Anke Salmen
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Patrice H Lalive
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claire Bridel
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Caroline Pot
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Renaud A Du Pasquier
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claudio Gobbi
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Heinz Wiendl
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Cristina Granziera
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marten Trendelenburg
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - David Leppert
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jan D Lunemann
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Olivero G, Taddeucci A, Vallarino G, Trebesova H, Roggeri A, Gagliani MC, Cortese K, Grilli M, Pittaluga A. Complement tunes glutamate release and supports synaptic impairments in an animal model of multiple sclerosis. Br J Pharmacol 2024. [PMID: 38369641 DOI: 10.1111/bph.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND PURPOSE To deepen our knowledge of the role of complement in synaptic impairment in experimental autoimmune encephalomyelitis (EAE) mice, we investigated the distribution of C1q and C3 proteins and the role of complement as a promoter of glutamate release in purified nerve endings (synaptosomes) and astrocytic processes (gliosomes) isolated from the cortex of EAE mice at the acute stage of the disease (21 ± 1 day post-immunization). EXPERIMENTAL APPROACH EAE cortical synaptosomes and gliosomes were analysed for glutamate release efficiency (measured as release of preloaded [3 H]D-aspartate ([3 H]D-ASP)), C1q and C3 protein density, and for viability and ongoing apoptosis. KEY RESULTS In healthy mice, complement releases [3 H]D-ASP from gliosomes more efficiently than from synaptosomes. The releasing activity occurs in a dilution-dependent manner and involves the reversal of the excitatory amino acid transporters (EAATs). In EAE mice, the complement-induced releasing activity is significantly reduced in cortical synaptosomes but amplified in cortical gliosomes. These adaptations are paralleled by decreased density of the EAAT2 protein in synaptosomes and increased EAAT1 staining in gliosomes. Concomitantly, PSD95, GFAP, and CD11b, but not SNAP25, proteins are overexpressed in the cortex of the EAE mice. Similarly, C1q and C3 protein immunostaining is increased in EAE cortical synaptosomes and gliosomes, although signs of ongoing apoptosis or altered viability are not detectable. CONCLUSION AND IMPLICATIONS Our results unveil a new noncanonical role of complement in the CNS of EAE mice relevant to disease progression and central synaptopathy that suggests new therapeutic targets for the management of MS.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Alice Taddeucci
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Giulia Vallarino
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Hanna Trebesova
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Alessandra Roggeri
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, Università di Genova, Genoa, Italy
| | - Katia Cortese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, Università di Genova, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, Centre of Excellence for Biomedical Research, 3Rs Center, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
14
|
Kodosaki E, Watkins WJ, Loveless S, Kreft KL, Richards A, Anderson V, Hurler L, Robertson NP, Zelek WM, Tallantyre EC. Combination protein biomarkers predict multiple sclerosis diagnosis and outcomes. J Neuroinflammation 2024; 21:52. [PMID: 38368354 PMCID: PMC10874571 DOI: 10.1186/s12974-024-03036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Establishing biomarkers to predict multiple sclerosis diagnosis and prognosis has been challenging using a single biomarker approach. We hypothesised that a combination of biomarkers would increase the accuracy of prediction models to differentiate multiple sclerosis from other neurological disorders and enhance prognostication for people with multiple sclerosis. We measured 24 fluid biomarkers in the blood and cerebrospinal fluid of 77 people with multiple sclerosis and 80 people with other neurological disorders, using ELISA or Single Molecule Array assays. Primary outcomes were multiple sclerosis versus any other diagnosis, time to first relapse, and time to disability milestone (Expanded Disability Status Scale 6), adjusted for age and sex. Multivariate prediction models were calculated using the area under the curve value for diagnostic prediction, and concordance statistics (the percentage of each pair of events that are correctly ordered in time for each of the Cox regression models) for prognostic predictions. Predictions using combinations of biomarkers were considerably better than single biomarker predictions. The combination of cerebrospinal fluid [chitinase-3-like-1 + TNF-receptor-1 + CD27] and serum [osteopontin + MCP-1] had an area under the curve of 0.97 for diagnosis of multiple sclerosis, compared to the best discriminative single marker in blood (osteopontin: area under the curve 0.84) and in cerebrospinal fluid (chitinase-3-like-1 area under the curve 0.84). Prediction for time to next relapse was optimal with a combination of cerebrospinal fluid[vitamin D binding protein + Factor I + C1inhibitor] + serum[Factor B + Interleukin-4 + C1inhibitor] (concordance 0.80), and time to Expanded Disability Status Scale 6 with cerebrospinal fluid [C9 + Neurofilament-light] + serum[chitinase-3-like-1 + CCL27 + vitamin D binding protein + C1inhibitor] (concordance 0.98). A combination of fluid biomarkers has a higher accuracy to differentiate multiple sclerosis from other neurological disorders and significantly improved the prediction of the development of sustained disability in multiple sclerosis. Serum models rivalled those of cerebrospinal fluid, holding promise for a non-invasive approach. The utility of our biomarker models can only be established by robust validation in different and varied cohorts.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- UK Dementia Research Institute at University College London, London, WC1E6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N3BG, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - W John Watkins
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Sam Loveless
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Karim L Kreft
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Aidan Richards
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Valerie Anderson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, 1085, Hungary
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Wioleta M Zelek
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Emma C Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK.
- Department of Neurology, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
15
|
Giloteaux L, Glass KA, Germain A, Franconi CJ, Zhang S, Hanson MR. Dysregulation of extracellular vesicle protein cargo in female myalgic encephalomyelitis/chronic fatigue syndrome cases and sedentary controls in response to maximal exercise. J Extracell Vesicles 2024; 13:e12403. [PMID: 38173127 PMCID: PMC10764978 DOI: 10.1002/jev2.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
In healthy individuals, physical exercise improves cardiovascular health and muscle strength, alleviates fatigue and reduces the risk of chronic diseases. Although exercise is suggested as a lifestyle intervention to manage various chronic illnesses, it negatively affects people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), who suffer from exercise intolerance. We hypothesized that altered extracellular vesicle (EV) signalling in ME/CFS patients after an exercise challenge may contribute to their prolonged and exacerbated negative response to exertion (post-exertional malaise). EVs were isolated by size exclusion chromatography from the plasma of 18 female ME/CFS patients and 17 age- and BMI-matched female sedentary controls at three time points: before, 15 min, and 24 h after a maximal cardiopulmonary exercise test. EVs were characterized using nanoparticle tracking analysis and their protein cargo was quantified using Tandem Mass Tag-based (TMT) proteomics. The results show that exercise affects the EV proteome in ME/CFS patients differently than in healthy individuals and that changes in EV proteins after exercise are strongly correlated with symptom severity in ME/CFS. Differentially abundant proteins in ME/CFS patients versus controls were involved in many pathways and systems, including coagulation processes, muscle contraction (both smooth and skeletal muscle), cytoskeletal proteins, the immune system and brain signalling.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Katherine A. Glass
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Arnaud Germain
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Carl J. Franconi
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of BiotechnologyCornell UniversityIthacaNew YorkUSA
| | - Maureen R. Hanson
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
16
|
Hong S, Weerasinghe-Mudiyanselage PDE, Kang S, Moon C, Shin T. Retinal transcriptome profiling identifies novel candidate genes associated with visual impairment in a mouse model of multiple sclerosis. Anim Cells Syst (Seoul) 2023; 27:219-233. [PMID: 37808551 PMCID: PMC10552570 DOI: 10.1080/19768354.2023.2264354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Visual impairment is occasionally observed in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although uveitis and optic neuritis have been reported in MS and EAE, the precise mechanisms underlying the pathogenesis of these visual impairments remain poorly understood. This study aims to identify differentially expressed genes (DEGs) in the retinas of mice with EAE to identify genes that may be implicated in EAE-induced visual impairment. Fourteen adult mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE model. Transcriptomes of retinas with EAE were analyzed by RNA-sequencing. Gene expression analysis revealed 347 DEGs in the retinas of mice with EAE: 345 were upregulated, and 2 were downregulated (adjusted p-value < 0.05 and absolute log2 fold change > 1). Gene ontology (GO) analysis showed that the upregulated genes in the retinas of mice with EAE were primarily related to immune responses, responses to external biotic stimuli, defense responses, and leukocyte-mediated immunity in the GO biological process. The expression of six upregulated hub genes (c1qb, ctss, itgam, itgb2, syk, and tyrobp) from the STRING analysis and the two significantly downregulated DEGs (hapln1 and ndst4) were validated by reverse transcription-quantitative polymerase chain reaction. In addition, gene set enrichment analysis showed that the negatively enriched gene sets in EAE-affected retinas were associated with the neuronal system and phototransduction cascade. This study provides novel molecular evidence for visual impairments in EAE and indicates directions for further research to elucidate the mechanisms of these visual impairments in MS.
Collapse
Affiliation(s)
- Sungmoo Hong
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
17
|
Xing Y, Zhang D, Fang L, Wang J, Liu C, Wu D, Liu X, Wang X, Min W. Complement in Human Brain Health: Potential of Dietary Food in Relation to Neurodegenerative Diseases. Foods 2023; 12:3580. [PMID: 37835232 PMCID: PMC10572247 DOI: 10.3390/foods12193580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The complement pathway is a major component of the innate immune system, which is critical for recognizing and clearing pathogens that rapidly react to defend the body against external pathogens. Many components of this pathway are expressed throughout the brain and play a beneficial role in synaptic pruning in the developing central nervous system (CNS). However, excessive complement-mediated synaptic pruning in the aging or injured brain may play a contributing role in a wide range of neurodegenerative diseases. Complement Component 1q (C1q), an initiating recognition molecule of the classical complement pathway, can interact with a variety of ligands and perform a range of functions in physiological and pathophysiological conditions of the CNS. This review considers the function and immunomodulatory mechanisms of C1q; the emerging role of C1q on synaptic pruning in developing, aging, or pathological CNS; the relevance of C1q; the complement pathway to neurodegenerative diseases; and, finally, it summarizes the foods with beneficial effects in neurodegenerative diseases via C1q and complement pathway and highlights the need for further research to clarify these roles. This paper aims to provide references for the subsequent study of food functions related to C1q, complement, neurodegenerative diseases, and human health.
Collapse
Affiliation(s)
- Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
18
|
Brown LN, Barth JL, Jafri S, Rumschlag JA, Jenkins TR, Atkinson C, Lang H. Complement factor B is essential for the proper function of the peripheral auditory system. Front Neurol 2023; 14:1214408. [PMID: 37560455 PMCID: PMC10408708 DOI: 10.3389/fneur.2023.1214408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity. Additionally, activation of the complement cascade can lead to the cellular opsonization of cells and pathogens, resulting in their engulfment and elimination by phagocytes. Complement factor B (fB) is an essential activator protein in the alternative complement pathway, and variations in the fB gene are associated with age-related macular degeneration. Here we show that mice of both sexes deficient in fB functional alleles (fB-/-) demonstrate progressive hearing impairment. Transcriptomic analysis of auditory nerves from adult mice detected 706 genes that were significantly differentially expressed between fB-/- and wild-type control animals, including genes related to the extracellular matrix and neural development processes. Additionally, a subset of differentially expressed genes was related to myelin function and neural crest development. Histological and immunohistochemical investigations revealed pathological alterations in auditory nerve myelin sheathes of fB-/- mice. Pathological alterations were also seen in the stria vascularis of the cochlear lateral wall in these mice. Our results implicate fB as an integral regulator of myelin maintenance and stria vascularis integrity, underscoring the importance of understanding the involvement of immune signaling pathways in sensorineural hearing loss.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Shabih Jafri
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Tyreek R. Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
19
|
Akyuz E, Doğanyiğit Z, Okan A, Yılmaz S, Uçar S, Akın AT. Immunoreactivity of Kir3.1, muscarinic receptors 2 and 3 on the brainstem, vagus nerve and heart tissue under experimental demyelination. Brain Res Bull 2023; 197:13-30. [PMID: 36967090 DOI: 10.1016/j.brainresbull.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
AIMS Demyelination affects the propogation of neuronal action potential by slowing down the progression. This process results in a neuro-impairment like Multiple Sclerosis (MS). Evidence show that MS also contributes to involvement of the autonomic system. In the molecular approach to this involvement, we aimed to observe muscarinic ACh receptor 2-3 (mAChR2-3), and inwardly rectifying potassium channel 3.1 (Kir3.1) immunoreactivities on the brainstem, vagus nerve, and heart under cuprizone model. MAIN METHODS Wistar albino rats were randomly divided into 8 groups; duplicating 4 groups as male and female: control groups (n = 3 +3), Cuprizone groups (n = 12 +12), sham groups (n = 4 +4), and carboxy-methyl-cellulose groups (n = 3 +3). Cuprizone-fed rats underwent demyelination via Luxol fast blue (LFB) staining of the hippocampus (Gyrus dentatus and Cornu Ammonis) and cortex. Immunohistochemistry analysis followed to the pathologic measurement of the brainstem, vagus nerve, and heart for mAChR2, mAChR3 and Kir3.1 proteins KEY FINDINGS: A significant demyelination was observed in the hippocampus and cortex tissues of rats in the female and male cuprizone groups. Myelin basic protein immunoreactivity demonstrated that cuprizone groups, in both males and females, had down-regulation in the hippocampus and cortex areas. The weights of the cuprizone-fed rats significantly decreased over six weeks. Dilated blood vessels and neuronal degeneration were severe in the hippocampus and cortex of the cuprizone groups. In the female cuprizone group, expression of mAChR2 and mAChR2 was significantly increased in the brainstem, atrium/ventricle of heart, and left/right sections of vagus nerve. Kir3.1 channels were also up-regulated in the left vagus nerve and heart sections of the female cuprizone group SIGNIFICANCE: Especially in our data where female-based significant results were obtained reveal that demyelination may lead to significant mAChR2, mAChR3 and Kir3.1 changes in brainstem, vagus nerve, and heart. A high immunoreactive response to demyelination at cholinergic centers may be a new target.
Collapse
|
20
|
Zhou W, Graner M, Paucek P, Beseler C, Boisen M, Bubak A, Asturias F, George W, Graner A, Ormond D, Vollmer T, Alvarez E, Yu X. Multiple sclerosis plasma IgG aggregates induce complement-dependent neuronal apoptosis. Cell Death Dis 2023; 14:254. [PMID: 37031195 PMCID: PMC10082781 DOI: 10.1038/s41419-023-05783-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/10/2023]
Abstract
Grey matter pathology is central to the progression of multiple sclerosis (MS). We discovered that MS plasma immunoglobulin G (IgG) antibodies, mainly IgG1, form large aggregates (>100 nm) which are retained in the flow-through after binding to Protein A. Utilizing an annexin V live-cell apoptosis detection assay, we demonstrated six times higher levels of neuronal apoptosis induced by MS plasma IgG aggregates (n = 190, from two cohorts) compared to other neurological disorders (n = 116) and healthy donors (n = 44). MS IgG aggregate-mediated, complement-dependent neuronal apoptosis was evaluated in multiple model systems including primary human neurons, primary human astrocytes, neuroblastoma SH-SY5Y cells, and newborn mouse brain slices. Immunocytochemistry revealed the co-deposition of IgG, early and late complement activation products (C1q, C3b, and membrane attack complex C5b9), as well as active caspase 3 in treated neuronal cells. Furthermore, we found that MS plasma cytotoxic antibodies are not present in Protein G flow-through, nor in the paired plasma. The neuronal apoptosis can be inhibited by IgG depletion, disruption of IgG aggregates, pan-caspase inhibitor, and is completely abolished by digestion with IgG-cleaving enzyme IdeS. Transmission electron microscopy and nanoparticle tracking analysis revealed the sizes of MS IgG aggregates are greater than 100 nm. Our data support the pathological role of MS IgG antibodies and corroborate their connection to complement activation and axonal damage, suggesting that apoptosis may be a mechanism of neurodegeneration in MS.
Collapse
Affiliation(s)
- Wenbo Zhou
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Michael Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Petr Paucek
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Cheryl Beseler
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Matthew Boisen
- Zalgen Labs, LLC, 12635 E. Montview Blvd., Suite 131, Aurora, Colorado, 80045, USA
| | - Andrew Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Francisco Asturias
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Woro George
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Arin Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - David Ormond
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Timothy Vollmer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Enrique Alvarez
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA.
| |
Collapse
|
21
|
Plafker SM, Titcomb T, Zyla-Jackson K, Kolakowska A, Wahls T. Overview of diet and autoimmune demyelinating optic neuritis: a narrative review. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00022. [PMID: 37128292 PMCID: PMC10144304 DOI: 10.1097/in9.0000000000000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
This review summarizes the cellular and molecular underpinnings of autoimmune demyelinating optic neuritis (ADON), a common sequela of multiple sclerosis and other demyelinating diseases. We further present nutritional interventions tested for people with multiple sclerosis focusing on strategies that have shown efficacy or associations with disease course and clinical outcomes. We then close by discuss the potential dietary guidance for preventing and/or ameliorating ADON.
Collapse
Affiliation(s)
- Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tyler Titcomb
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katarzyna Zyla-Jackson
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aneta Kolakowska
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Terry Wahls
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
22
|
Burgelman M, Dujardin P, Vandendriessche C, Vandenbroucke RE. Free complement and complement containing extracellular vesicles as potential biomarkers for neuroinflammatory and neurodegenerative disorders. Front Immunol 2023; 13:1055050. [PMID: 36741417 PMCID: PMC9896008 DOI: 10.3389/fimmu.2022.1055050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/07/2022] [Indexed: 01/21/2023] Open
Abstract
The complement system is implicated in a broad range of neuroinflammatory disorders such as Alzheimer's disease (AD) and multiple sclerosis (MS). Consequently, measuring complement levels in biofluids could serve as a potential biomarker for these diseases. Indeed, complement levels are shown to be altered in patients compared to controls, and some studies reported a correlation between the level of free complement in biofluids and disease progression, severity or the response to therapeutics. Overall, they are not (yet) suitable as a diagnostic tool due to heterogeneity of reported results. Moreover, measurement of free complement proteins has the disadvantage that information on their origin is lost, which might be of value in a multi-parameter approach for disease prediction and stratification. In light of this, extracellular vesicles (EVs) could provide a platform to improve the diagnostic power of complement proteins. EVs are nanosized double membrane particles that are secreted by essentially every cell type and resemble the (status of the) cell of origin. Interestingly, EVs can contain complement proteins, while the cellular origin can still be determined by the presence of EV surface markers. In this review, we summarize the current knowledge and future opportunities on the use of free and EV-associated complement proteins as biomarkers for neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Marlies Burgelman
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Dujardin
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium,*Correspondence: Roosmarijn E. Vandenbroucke,
| |
Collapse
|
23
|
Milinkeviciute G, Green KN. Clusterin/apolipoprotein J, its isoforms and Alzheimer's disease. Front Aging Neurosci 2023; 15:1167886. [PMID: 37122381 PMCID: PMC10133478 DOI: 10.3389/fnagi.2023.1167886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Giedre Milinkeviciute
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Giedre Milinkeviciute
| | - Kim N. Green
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
24
|
Evans R, Watkins LM, Hawkins K, Santiago G, Demetriou C, Naughton M, Dittmer M, Rees MI, Fitzgerald D, Morgan BP, Neal JW, Howell OW. Complement activation and increased anaphylatoxin receptor expression are associated with cortical grey matter lesions and the compartmentalised inflammatory response of multiple sclerosis. Front Cell Neurosci 2023; 17:1094106. [PMID: 37032838 PMCID: PMC10073739 DOI: 10.3389/fncel.2023.1094106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 04/11/2023] Open
Abstract
Background The extent of cortical pathology is an important determinant of multiple sclerosis (MS) severity. Cortical demyelination and neurodegeneration are related to inflammation of the overlying leptomeninges, a more inflammatory CSF milieu and with parenchymal microglia and astroglia activation. These are all components of the compartmentalised inflammatory response. Compartmentalised inflammation is a feature of progressive MS, which is not targeted by disease modifying therapies. Complement is differentially expressed in the MS CSF and complement, and complement receptors, are associated with demyelination and neurodegeneration. Methods To better understand if complement activation in the leptomeninges is associated with underlying cortical demyelination, inflammation, and microglial activation, we performed a neuropathological study of progressive MS (n = 22, 14 females), neuroinflammatory (n = 8), and non-neurological disease controls (n = 10). We then quantified the relative extent of demyelination, connective tissue inflammation, complement, and complement receptor positive microglia/macrophages. Results Complement was elevated at the leptomeninges, subpial, and within and around vessels of the cortical grey matter. The extent of complement C1q immunoreactivity correlated with connective tissue infiltrates, whilst activation products C4d, Bb, and C3b associated with grey matter demyelination, and C3a receptor 1+ and C5a receptor 1+ microglia/macrophages closely apposed C3b labelled cells. The density of C3a receptor 1+ and C5a receptor 1+ cells was increased at the expanding edge of subpial and leukocortical lesions. C5a receptor 1+ cells expressed TNFα, iNOS and contained puncta immunoreactive for proteolipid protein, neurofilament and synaptophysin, suggesting their involvement in grey matter lesion expansion. Interpretation The presence of products of complement activation at the brain surfaces, their association with the extent of underlying pathology and increased complement anaphylatoxin receptor positive microglia/macrophages at expanding cortical grey matter lesions, could represent a target to modify compartmentalised inflammation and cortical demyelination.
Collapse
Affiliation(s)
- Rhian Evans
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Lewis M. Watkins
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Kristen Hawkins
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Gabriella Santiago
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Constantinos Demetriou
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Michelle Naughton
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Marie Dittmer
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Mark I. Rees
- Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Denise Fitzgerald
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - B. Paul Morgan
- School of Medicine, UK Dementia Research Institute Cardiff and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - James W. Neal
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Owain W. Howell
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
- *Correspondence: Owain W. Howell,
| |
Collapse
|
25
|
Zhang W, Chen Y, Pei H. C1q and central nervous system disorders. Front Immunol 2023; 14:1145649. [PMID: 37033981 PMCID: PMC10076750 DOI: 10.3389/fimmu.2023.1145649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
C1q is a crucial component of the complement system, which is activated through the classical pathway to perform non-specific immune functions, serving as the first line of defense against pathogens. C1q can also bind to specific receptors to carry out immune and other functions, playing a vital role in maintaining immune homeostasis and normal physiological functions. In the developing central nervous system (CNS), C1q functions in synapse formation and pruning, serving as a key player in the development and homeostasis of neuronal networks in the CNS. C1q has a close relationship with microglia and astrocytes, and under their influence, C1q may contribute to the development of CNS disorders. Furthermore, C1q can also have independent effects on neurological disorders, producing either beneficial or detrimental outcomes. Most of the evidence for these functions comes from animal models, with some also from human specimen studies. C1q is now emerging as a promising target for the treatment of a variety of diseases, and clinical trials are already underway for CNS disorders. This article highlights the role of C1q in CNS diseases, offering new directions for the diagnosis and treatment of these conditions.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of General Practice, Xingyang Sishui Central Health Center, Zhengzhou, China
| | - Yuan Chen
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Pei
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hui Pei,
| |
Collapse
|
26
|
The Emerging Roles of Extracellular Chaperones in Complement Regulation. Cells 2022; 11:cells11233907. [PMID: 36497163 PMCID: PMC9738919 DOI: 10.3390/cells11233907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The immune system is essential to protect organisms from internal and external threats. The rapidly acting, non-specific innate immune system includes complement, which initiates an inflammatory cascade and can form pores in the membranes of target cells to induce cell lysis. Regulation of protein homeostasis (proteostasis) is essential for normal cellular and organismal function, and has been implicated in processes controlling immunity and infection. Chaperones are key players in maintaining proteostasis in both the intra- and extracellular environments. Whilst intracellular proteostasis is well-characterised, the role of constitutively secreted extracellular chaperones (ECs) is less well understood. ECs may interact with invading pathogens, and elements of the subsequent immune response, including the complement pathway. Both ECs and complement can influence the progression of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis, as well as other diseases including kidney diseases and diabetes. This review will examine known and recently discovered ECs, and their roles in immunity, with a specific focus on the complement pathway.
Collapse
|
27
|
Pasqualetti G, Thayanandan T, Edison P. Influence of genetic and cardiometabolic risk factors in Alzheimer's disease. Ageing Res Rev 2022; 81:101723. [PMID: 36038112 DOI: 10.1016/j.arr.2022.101723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 01/31/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder. Cardiometabolic and genetic risk factors play an important role in the trajectory of AD. Cardiometabolic risk factors including diabetes, mid-life obesity, mid-life hypertension and elevated cholesterol have been linked with cognitive decline in AD subjects. These potential risk factors associated with cerebral metabolic changes which fuel AD pathogenesis have been suggested to be the reason for the disappointing clinical trial results. In appreciation of the risks involved, using search engines such as PubMed, Scopus, MEDLINE and Google Scholar, a relevant literature search on cardiometabolic and genetic risk factors in AD was conducted. We discuss the role of genetic as well as established cardiovascular risk factors in the neuropathology of AD. Moreover, we show new evidence of genetic interaction between several genes potentially involved in different pathways related to both neurodegenerative process and cardiovascular damage.
Collapse
Affiliation(s)
| | - Tony Thayanandan
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, UK
| | - Paul Edison
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, UK; School of Medicine, Cardiff University, UK.
| |
Collapse
|
28
|
Saez-Calveras N, Brewster AL, Stuve O. The validity of animal models to explore the pathogenic role of the complement system in multiple sclerosis: A review. Front Mol Neurosci 2022; 15:1017484. [PMID: 36311030 PMCID: PMC9606595 DOI: 10.3389/fnmol.2022.1017484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Animal models of multiple sclerosis (MS) have been extensively used to characterize the disease mechanisms in MS, as well as to identify potential pharmacologic targets for this condition. In recent years, the immune complement system has gained increased attention as an important effector in the pathogenesis of MS. Evidence from histological, serum, and CSF studies of patients supports an involvement of complement in both relapsing-remitting and progressive MS. In this review, we discuss the history and advances made on the use of MS animal models to profile the effects of the complement system in this condition. The first studies that explored the complement system in the context of MS used cobra venom factor (CVF) as a complement depleting agent in experimental autoimmune encephalomyelitis (EAE) Lewis rats. Since then, multiple mice and rat models of MS have revealed a role of C3 and the alternative complement cascade in the opsonization and phagocytosis of myelin by microglia and myeloid cells. Studies using viral vectors, genetic knockouts and pharmacologic complement inhibitors have also shown an effect of complement in synaptic loss. Antibody-mediated EAE models have revealed an involvement of the C1 complex and the classical complement as an effector of the humoral response in this disease. C1q itself may also be involved in modulating microglia activation and oligodendrocyte differentiation in these animals. In addition, animal and in vitro models have revealed that multiple complement factors may act as modulators of both the innate and adaptive immune responses. Finally, evidence gathered from mice models suggests that the membrane attack complex (MAC) may even exert protective roles in the chronic stages of EAE. Overall, this review summarizes the importance of MS animal models to better characterize the role of the complement system and guide future therapeutic approaches in this condition.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Parkland Hospital, Dallas, TX, United States
| | - Amy L. Brewster
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, VA North Texas Health Care System, Dallas, TX, United States
- Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
29
|
Pike SC, Welsh N, Linzey M, Gilli F. Theiler’s virus-induced demyelinating disease as an infectious model of progressive multiple sclerosis. Front Mol Neurosci 2022; 15:1019799. [PMID: 36311024 PMCID: PMC9606571 DOI: 10.3389/fnmol.2022.1019799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease of unknown etiology. However, several studies suggest that infectious agents, e.g., Human Herpes Viruses (HHV), may be involved in triggering the disease. Molecular mimicry, bystander effect, and epitope spreading are three mechanisms that can initiate immunoreactivity leading to CNS autoimmunity in MS. Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) is a pre-clinical model of MS in which intracerebral inoculation of TMEV results in a CNS autoimmune disease that causes demyelination, neuroaxonal damage, and progressive clinical disability. Given the spectra of different murine models used to study MS, this review highlights why TMEV-IDD represents a valuable tool for testing the viral hypotheses of MS. We initially describe how the main mechanisms of CNS autoimmunity have been identified across both MS and TMEV-IDD etiology. Next, we discuss how adaptive, innate, and CNS resident immune cells contribute to TMEV-IDD immunopathology and how this relates to MS. Lastly, we highlight the sexual dimorphism observed in TMEV-IDD and MS and how this may be tied to sexually dimorphic responses to viral infections. In summary, TMEV-IDD is an underutilized murine model that recapitulates many unique aspects of MS; as we learn more about the nature of viral infections in MS, TMEV-IDD will be critical in testing the future therapeutics that aim to intervene with disease onset and progression.
Collapse
Affiliation(s)
- Steven C. Pike
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Nora Welsh
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Michael Linzey
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
- *Correspondence: Francesca Gilli,
| |
Collapse
|
30
|
Saez-Calveras N, Stuve O. The role of the complement system in Multiple Sclerosis: A review. Front Immunol 2022; 13:970486. [PMID: 36032156 PMCID: PMC9399629 DOI: 10.3389/fimmu.2022.970486] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system has been involved in the pathogenesis of multiple neuroinflammatory and neurodegenerative conditions. In this review, we evaluated the possible role of complement activation in multiple sclerosis (MS) with a focus in progressive MS, where the disease pathogenesis remains to be fully elucidated and treatment options are limited. The evidence for the involvement of the complement system in the white matter plaques and gray matter lesions of MS stems from immunohistochemical analysis of post-mortem MS brains, in vivo serum and cerebrospinal fluid biomarker studies, and animal models of Experimental Autoimmune Encephalomyelitis (EAE). Complement knock-out studies in these animal models have revealed that this system may have a “double-edge sword” effect in MS. On the one hand, complement proteins may aid in promoting the clearance of myelin degradation products and other debris through myeloid cell-mediated phagocytosis. On the other, its aberrant activation may lead to demyelination at the rim of progressive MS white matter lesions as well as synapse loss in the gray matter. The complement system may also interact with known risk factors of MS, including as Epstein Barr Virus (EBV) infection, and perpetuate the activation of CNS self-reactive B cell populations. With the mounting evidence for the involvement of complement in MS, the development of complement modulating therapies for this condition is appealing. Herein, we also reviewed the pharmacological complement inhibitors that have been tested in MS animal models as well as in clinical trials for other neurologic diseases. The potential use of these agents, such as the C5-binding antibody eculizumab in MS will require a detailed understanding of the role of the different complement effectors in this disease and the development of better CNS delivery strategies for these compounds.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Veterans Affairs (VA) North Texas Health Care System, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
31
|
Linzey M, DiSano K, Welsh N, Pachner A, Gilli F. Divergent complement system activation in two clinically distinct murine models of multiple sclerosis. Front Immunol 2022; 13:924734. [PMID: 35958570 PMCID: PMC9360327 DOI: 10.3389/fimmu.2022.924734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/01/2022] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a neurological disease featuring neuroinflammation and neurodegeneration in young adults. So far, most research has focused on the peripheral immune system, which appears to be the driver of acute relapses. Concurrently, the mechanisms underlying neurodegeneration in the progressive forms of the disease remain unclear. The complement system, a molecular component of the innate immunity, has been recently implicated in several neurological disorders, including MS. However, it is still unknown if the complement proteins detected in the central nervous system (CNS) are actively involved in perpetuating chronic inflammation and neurodegeneration. To address this knowledge gap, we compared two clinically distinct mouse models of MS: 1) proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (rEAE) resembling a relapsing-remitting disease course, and 2) Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) resembling a progressive disease. Real-time PCR was performed in the spinal cord of rEAE mice, TMEV-IDD mice and age-matched sham controls to quantify gene expression for a broad range of complement components. In both experimental models, we found significantly increased expression of complement factors, such as C1q, C3, CfB, and C3aR. We showed that the complement system, specifically the classical complement pathway, was associated with TMEV-IDD pathogenesis, as the expression of C1q, C3 and C3aR1 were all significantly correlated to a worse disease outcome (all P≤0.0168). In line with this finding, C1q and C3 deposition was observed in the spinal cord of TMEV-IDD mice. Furthermore, C1q deposition was detected in spinal cord regions characterized by inflammation, demyelination, and axonal damage. Conversely, activation of the classical complement cascade seemed to result in protection from rEAE (C1q: P=0.0307). Interestingly, the alternative pathway related to a worse disease outcome in rEAE (CFb: P=0.0006). Overall, these results indicate potential divergent roles for the complement system in MS. The chronic-progressive disease form is more reliant on the activation of the classic complement pathway, while protecting from acute relapses. Conversely, relapsing MS appears more likely affected by the alternative pathway. Understanding the functions of the complement system in MS is critical and can lead to better, more targeted therapies in the future.
Collapse
Affiliation(s)
- Michael Linzey
- Department of Neurology at Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
- *Correspondence: Michael Linzey,
| | - Krista DiSano
- Department of Neurology at Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
- Department of Veteran Affairs Medical Center, White River Junction, VT, United States
| | - Nora Welsh
- Department of Neurology at Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Andrew Pachner
- Department of Neurology at Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | - Francesca Gilli
- Department of Neurology at Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
32
|
Berdowska I, Matusiewicz M, Krzystek-Korpacka M. HDL Accessory Proteins in Parkinson’s Disease—Focusing on Clusterin (Apolipoprotein J) in Regard to Its Involvement in Pathology and Diagnostics—A Review. Antioxidants (Basel) 2022; 11:antiox11030524. [PMID: 35326174 PMCID: PMC8944556 DOI: 10.3390/antiox11030524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD)—a neurodegenerative disorder (NDD) characterized by progressive destruction of dopaminergic neurons within the substantia nigra of the brain—is associated with the formation of Lewy bodies containing mainly α-synuclein. HDL-related proteins such as paraoxonase 1 and apolipoproteins A1, E, D, and J are implicated in NDDs, including PD. Apolipoprotein J (ApoJ, clusterin) is a ubiquitous, multifunctional protein; besides its engagement in lipid transport, it modulates a variety of other processes such as immune system functionality and cellular death signaling. Furthermore, being an extracellular chaperone, ApoJ interacts with proteins associated with NDD pathogenesis (amyloid β, tau, and α-synuclein), thus modulating their properties. In this review, the association of clusterin with PD is delineated, with respect to its putative involvement in the pathological mechanism and its application in PD prognosis/diagnosis.
Collapse
Affiliation(s)
- Izabela Berdowska
- Correspondence: (I.B.); (M.M.); Tel.: +48-71-784-13-92 (I.B.); +48-71-784-13-70 (M.M.)
| | | | | |
Collapse
|
33
|
Zelek WM, Morgan BP. Targeting complement in neurodegeneration: challenges, risks, and strategies. Trends Pharmacol Sci 2022; 43:615-628. [DOI: 10.1016/j.tips.2022.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
|
34
|
The Complement System in the Central Nervous System: From Neurodevelopment to Neurodegeneration. Biomolecules 2022; 12:biom12020337. [PMID: 35204837 PMCID: PMC8869249 DOI: 10.3390/biom12020337] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
The functions of the complement system to both innate and adaptive immunity through opsonization, cell lysis, and inflammatory activities are well known. In contrast, the role of complement in the central nervous system (CNS) which extends beyond immunity, is only beginning to be recognized as important to neurodevelopment and neurodegeneration. In addition to protecting the brain against invasive pathogens, appropriate activation of the complement system is pivotal to the maintenance of normal brain function. Moreover, overactivation or dysregulation may cause synaptic dysfunction and promote excessive pro-inflammatory responses. Recent studies have provided insights into the various responses of complement components in different neurological diseases and the regulatory mechanisms involved in their pathophysiology, as well as a glimpse into targeting complement factors as a potential therapeutic modality. However, there remain significant knowledge gaps in the relationship between the complement system and different brain disorders. This review summarizes recent key findings regarding the role of different components of the complement system in health and pathology of the CNS and discusses the therapeutic potential of anti-complement strategies for the treatment of neurodegenerative conditions.
Collapse
|
35
|
Cooze BJ, Dickerson M, Loganathan R, Watkins LM, Grounds E, Pearson BR, Bevan RJ, Morgan BP, Magliozzi R, Reynolds R, Neal JW, Howell OW. The association between neurodegeneration and local complement activation in the thalamus to progressive multiple sclerosis outcome. Brain Pathol 2022; 32:e13054. [PMID: 35132719 PMCID: PMC9425007 DOI: 10.1111/bpa.13054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 01/22/2023] Open
Abstract
The extent of grey matter demyelination and neurodegeneration in the progressive multiple sclerosis (PMS) brains at post‐mortem associates with more severe disease. Regional tissue atrophy, especially affecting the cortical and deep grey matter, including the thalamus, is prognostic for poor outcomes. Microglial and complement activation are important in the pathogenesis and contribute to damaging processes that underlie tissue atrophy in PMS. We investigated the extent of pathology and innate immune activation in the thalamus in comparison to cortical grey and white matter in blocks from 21 cases of PMS and 10 matched controls. Using a digital pathology workflow, we show that the thalamus is invariably affected by demyelination and had a far higher proportion of active inflammatory lesions than forebrain cortical tissue blocks from the same cases. Lesions were larger and more frequent in the medial nuclei near the ventricular margin, whilst neuronal loss was greatest in the lateral thalamic nuclei. The extent of thalamic neuron loss was not associated with thalamic demyelination but correlated with the burden of white matter pathology in other forebrain areas (Spearman r = 0.79, p < 0.0001). Only thalamic neuronal loss, and not that seen in other forebrain cortical areas, correlated with disease duration (Spearman r = −0.58, p = 0.009) and age of death (Spearman r = −0.47, p = 0.045). Immunoreactivity for the complement pattern recognition molecule C1q, and products of complement activation (C4d, Bb and C3b) were elevated in thalamic lesions with an active inflammatory pathology. Complement regulatory protein, C1 inhibitor, was unchanged in expression. We conclude that active inflammatory demyelination, neuronal loss and local complement synthesis and activation in the thalamus, are important to the pathological and clinical disease outcomes of PMS.
Collapse
Affiliation(s)
- Benjamin J Cooze
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Matthew Dickerson
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | | | - Lewis M Watkins
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Ethan Grounds
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Ben R Pearson
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Ryan Jack Bevan
- UK Dementia Research Institute at Cardiff University, Cardiff, UK
| | - B Paul Morgan
- UK Dementia Research Institute at Cardiff University, Cardiff, UK
| | - Roberta Magliozzi
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | | | - James W Neal
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Owain W Howell
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| |
Collapse
|
36
|
Gao Z, Zhang C, Feng Z, Liu Z, Yang Y, Yang K, Chen L, Yao R. C1q inhibits differentiation of oligodendrocyte progenitor cells via Wnt/β-catenin signaling activation in a cuprizone-induced mouse model of multiple sclerosis. Exp Neurol 2021; 348:113947. [PMID: 34902359 DOI: 10.1016/j.expneurol.2021.113947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system demyelinating disease of autoimmune originate. Complement C1q, a complex glycoprotein, mediates a variety of immunoregulatory functions considered important in the prevention of autoimmunity. Although we found that the increased serum C1q level was highly associated with the Fazekas scores and T2 lesion volume of MS patients, the effect and mechanism of C1q on demyelination remains unclear. Cluster analysis and protein array results showed that serum Wnt receptors Frizzled-6 and LRP-6 levels in MS patients were both increased, we proposed that C1q may be involved in demyelination via Wnt signaling. The increased C1q protein levels in the serum and brain tissue were confirmed in a cuprizone (CPZ)-induced demyelination mice model. Moreover, CPZ treatment induced significant increase of LRP-6 and Frizzled-6 protein in mice corpus callosum. LRP-6 extra-cellular domain (LRP-6-ECD) level in the serum and cerebrospinal fluid (CSF) of CPZ mice also significantly increased. Knockdown of the subunit C1s of C1 not only substantially attenuated demyelination, promoted M2 microglia polarization and improved neurological function, but inhibited β-catenin expression and its nuclear translocation in oligodendrocyte progenitor cells (OPCs). In vitro, C1s silence reversed the increased level of LRP-6-ECD in the medium and β-catenin expression in OPCs induced by C1q treatment. Meanwhile, inhibition of C1s also markedly lowered the number of EDU positive OPCs, but enhanced the number of CNPase positive oligodendrocyte and the protein of MBP. The present study indicated that C1q was involved in demyelination in response to CPZ in mice by preventing OPC from differentiating into mature oligodendrocyte via Wnt/β-catenin signaling activation.
Collapse
Affiliation(s)
- Zixuan Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Chu Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Zhaowei Feng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Ziqi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Yaru Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Kexin Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Lei Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China.
| |
Collapse
|
37
|
Bourel J, Planche V, Dubourdieu N, Oliveira A, Séré A, Ducourneau EG, Tible M, Maitre M, Lesté-Lasserre T, Nadjar A, Desmedt A, Ciofi P, Oliet SH, Panatier A, Tourdias T. Complement C3 mediates early hippocampal neurodegeneration and memory impairment in experimental multiple sclerosis. Neurobiol Dis 2021; 160:105533. [PMID: 34673149 DOI: 10.1016/j.nbd.2021.105533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/09/2021] [Accepted: 10/17/2021] [Indexed: 12/26/2022] Open
Abstract
Memory impairment is one of the disabling manifestations of multiple sclerosis (MS) possibly present from the early stages of the disease and for which there is no specific treatment. Hippocampal synaptic dysfunction and dendritic loss, associated with microglial activation, can underlie memory deficits, yet the molecular mechanisms driving such hippocampal neurodegeneration need to be elucidated. In early-stage experimental autoimmune encephalomyelitis (EAE) female mice, we assessed the expression level of molecules involved in microglia-neuron interactions within the dentate gyrus and found overexpression of genes of the complement pathway. Compared to sham immunized mice, the central element of the complement cascade, C3, showed the strongest and 10-fold upregulation, while there was no increase of downstream factors such as the terminal component C5. The combination of in situ hybridization with immunofluorescence showed that C3 transcripts were essentially produced by activated microglia. Pharmacological inhibition of C3 activity, by daily administration of rosmarinic acid, was sufficient to prevent early dendritic loss, microglia-mediated phagocytosis of synapses in the dentate gyrus, and memory impairment in EAE mice, while morphological markers of microglial activation were still observed. In line, when EAE was induced in C3 deficient mice (C3KO), dendrites and spines of the dentate gyrus as well as memory abilities were preserved. Altogether, these data highlight the central role of microglial C3 in early hippocampal neurodegeneration and memory impairment in EAE and, therefore, pave the way toward new neuroprotective strategies in MS to prevent cognitive deficit using complement inhibitors.
Collapse
Affiliation(s)
- Julien Bourel
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Vincent Planche
- Univ. Bordeaux, CNRS, UMR 5293, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Nadège Dubourdieu
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Aymeric Oliveira
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Alexandra Séré
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | | | - Marion Tible
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Marlène Maitre
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | | | - Agnes Nadjar
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France; Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Aline Desmedt
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Philippe Ciofi
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Stéphane H Oliet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Thomas Tourdias
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France; CHU de Bordeaux, Neuroimagerie diagnostique et thérapeutique, F-33000 Bordeaux, France.
| |
Collapse
|
38
|
Joseph K, Kirsch M, Johnston M, Münkel C, Stieglitz T, Haas CA, Hofmann UG. Transcriptional characterization of the glial response due to chronic neural implantation of flexible microprobes. Biomaterials 2021; 279:121230. [PMID: 34736153 DOI: 10.1016/j.biomaterials.2021.121230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 01/13/2023]
Abstract
Long term implantation of (micro-)probes into neural tissue causes unique and disruptive responses. In this study, we investigate the transcriptional trajectory of glial cells responding to chronic implantation of 380 μm flexible micro-probes for up to 18 weeks. Transcriptomic analysis shows a rapid activation of microglial cells and a strong reactive astrocytic polarization, both of which are lost over the chronic of the implant duration. Animals that were implanted for 18 weeks show a transcriptional profile similar to non-implanted controls, with increased expression of genes associated with wound healing and angiogenesis, which raises hope of a normalization of the neuropil to the pre-injury state when using flexible probes. Nevertheless, our data shows that a subset of genes upregulated after 18 weeks belong to the family of immediate early genes, which indicates that structural and functional remodeling is not complete at this time point. Our results confirm and extend previous work on the molecular changes resulting from the presence of neural probes and provide a rational basis for developing interventional strategies to control them.
Collapse
Affiliation(s)
- Kevin Joseph
- Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Germany; Department of Neurosurgery, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Germany.
| | - Matthias Kirsch
- BrainLinks-BrainTools, University of Freiburg, Germany; Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Midori Johnston
- Faculty of Medicine, University of Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Germany; Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center- University of Freiburg, Germany
| | - Christian Münkel
- Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Germany; Department of Neurosurgery, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Stieglitz
- BrainLinks-BrainTools, University of Freiburg, Germany; Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Faculty of Engineering, University of Freiburg, Germany
| | - Carola A Haas
- Faculty of Medicine, University of Freiburg, Germany; Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center- University of Freiburg, Germany
| | - Ulrich G Hofmann
- Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Germany; Department of Neurosurgery, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Germany
| |
Collapse
|
39
|
Complement component 3 from astrocytes mediates retinal ganglion cell loss during neuroinflammation. Acta Neuropathol 2021; 142:899-915. [PMID: 34487221 DOI: 10.1007/s00401-021-02366-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) characterized by varying degrees of secondary neurodegeneration. Retinal ganglion cells (RGC) are lost in MS in association with optic neuritis but the mechanisms of neuronal injury remain unclear. Complement component C3 has been implicated in retinal and cerebral synaptic pathology that may precede neurodegeneration. Herein, we examined post-mortem MS retinas, and then used a mouse model, experimental autoimmune encephalomyelitis (EAE), to examine the role of C3 in the pathogenesis of RGC loss associated with optic neuritis. First, we show extensive C3 expression in astrocytes (C3+/GFAP+ cells) and significant RGC loss (RBPMS+ cells) in post-mortem retinas from people with MS compared to retinas from non-MS individuals. A patient with progressive MS with a remote history of optic neuritis showed marked reactive astrogliosis with C3 expression in the inner retina extending into deeper layers in the affected eye more than the unaffected eye. To study whether C3 mediates retinal degeneration, we utilized global C3-/- EAE mice and found that they had less RGC loss and partially preserved neurites in the retina compared with C3+/+ EAE mice. C3-/- EAE mice had fewer axonal swellings in the optic nerve, reflecting reduced axonal injury, but had no changes in demyelination or T cell infiltration into the CNS. Using a C3-tdTomato reporter mouse line, we show definitive evidence of C3 expression in astrocytes in the retina and optic nerves of EAE mice. Conditional deletion of C3 in astrocytes showed RGC protection replicating the effects seen in the global knockouts. These data implicate astrocyte C3 expression as a critical mediator of retinal neuronal pathology in EAE and MS, and are consistent with recent studies showing C3 gene variants are associated with faster rates of retinal neurodegeneration in human disease.
Collapse
|
40
|
Khaledi E, Noori T, Mohammadi-Farani A, Sureda A, Dehpour AR, Yousefi-Manesh H, Sobarzo-Sanchez E, Shirooie S. Trifluoperazine reduces cuprizone-induced demyelination via targeting Nrf2 and IKB in mice. Eur J Pharmacol 2021; 909:174432. [PMID: 34416238 DOI: 10.1016/j.ejphar.2021.174432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is one of the most common neurodegenerative diseases. In this disease, the immune system attacks oligodendrocyte cells and the myelin sheath of myelinated neurons in the central nervous system, causing their destruction. These conditions lead to impaired conduction of nerve impulses and are manifested by symptoms such as weakness, fatigue, visual and motor disorders. This study aimed to evaluate the ability of trifluoperazine (TF) to improve cuprizone-induced behavioral and histopathological changes in the prefrontal cortex of C57BL/6 male mice. Demyelination was induced by adding 0.2% cuprizone (CPZ) to the standard animal diet for 6 weeks. Three doses of TF (0.5, 1 and 2 mg/kg/day; i.p.) were given once daily for the last 2 weeks of treatment. Treatment with CPZ induced a weight loss during 6 weeks of treatment compared to the control group, which was reversed by the administration of TF. Behavioral tests (pole test and rotarod performance test) showed a decrease in motor coordination and balance in the group treated with CPZ (P < 0.01). Treatment with TF during the last two weeks was able to improve these motor deficiencies. Histopathological examination also evidenced an increase in demyelination in the CPZ group, which was improved by TF administration. In addition, CPZ intake significantly decreased the cerebral cortex levels of p-Nrf2 (P < 0.001) and increased the levels of p-IKB (P < 0.001) and, these changes were normalized in the TF groups. TF administration also reversed the increased levels of nitrite and the reduced activity of the antioxidant enzyme superoxide dismutase associated with CPZ exposure. TF can to reduce the harmful effects of CPZ by reducing the demyelination and modulating the Nrf2 and NF-kB signaling pathways.
Collapse
Affiliation(s)
- Ehsan Khaledi
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de Mallorca E-07122, Balearic Islands, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
41
|
Yu X, Zizzo Z, Kennedy PG. An appraisal of antigen identification and IgG effector functions driving host immune responses in multiple sclerosis. Mult Scler Relat Disord 2021; 56:103328. [PMID: 34666240 DOI: 10.1016/j.msard.2021.103328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022]
Abstract
Increased immunoglobulin G (IgG) antibodies and oligoclonal bands (OCB) are the most characteristic features of multiple sclerosis (MS), a neuroinflammatory demyelinating disease with neurodegeneration at chronic stages. OCB are shown to be associated with disease activity and brain atrophy. Despite intensive research over the last several decades, the antigen specificities of the IgG in MS have remained elusive. We present evidence which supports that intrathecal IgG is not driven by antigen-stimulation, therefore provide reasoning for failed MS antigen identification. Further, the presence of co-deposition of IgG and activated complement products in MS lesions suggest that the IgG effector functions may play a critical role in disease pathogenesis.
Collapse
Affiliation(s)
- Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| | - Zoe Zizzo
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Peter Ge Kennedy
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
42
|
Rostagno A, Calero M, Holton JL, Revesz T, Lashley T, Ghiso J. Association of clusterin with the BRI2-derived amyloid molecules ABri and ADan. Neurobiol Dis 2021; 158:105452. [PMID: 34298087 PMCID: PMC8440498 DOI: 10.1016/j.nbd.2021.105452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022] Open
Abstract
Familial British and Danish dementias (FBD and FDD) share striking neuropathological similarities with Alzheimer's disease (AD), including intraneuronal neurofibrillary tangles as well as parenchymal and vascular amyloid deposits. Multiple amyloid associated proteins with still controversial role in amyloidogenesis colocalize with the structurally different amyloid peptides ABri in FBD, ADan in FDD, and Aβ in AD. Genetic variants and plasma levels of one of these associated proteins, clusterin, have been identified as risk factors for AD. Clusterin is known to bind soluble Aβ in biological fluids, facilitate its brain clearance, and prevent its aggregation. The current work identifies clusterin as the major ABri- and ADan-binding protein and provides insight into the biochemical mechanisms leading to the association of clusterin with ABri and ADan deposits. Mirroring findings in AD, the studies corroborate clusterin co-localization with cerebral parenchymal and vascular amyloid deposits in both disorders. Ligand affinity chromatography with downstream Western blot and amino acid sequence analyses unequivocally identified clusterin as the major ABri- and ADan-binding plasma protein. ELISA highlighted a specific saturable binding of clusterin to ABri and ADan with low nanomolar Kd values within the same range as those previously demonstrated for the clusterin-Aβ interaction. Consistent with its chaperone activity, thioflavin T binding assays clearly showed a modulatory effect of clusterin on ABri and ADan aggregation/fibrillization properties. Our findings, together with the known multifunctional activity of clusterin and its modulatory activity on the complex cellular pathways leading to oxidative stress, mitochondrial dysfunction, and the induction of cell death mechanisms - all known pathogenic features of these protein folding disorders - suggests the likelihood of a more complex role and a translational potential for the apolipoprotein in the amelioration/prevention of these pathogenic mechanisms.
Collapse
Affiliation(s)
- Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Miguel Calero
- Instituto de Salud Carlos III, 28029 Madrid, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; Alzheimer's Center Reina Sofia Foundation - CIEN Foundation, 28031 Madrid, Spain
| | - Janice L Holton
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tamas Revesz
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
43
|
Gomez-Arboledas A, Acharya MM, Tenner AJ. The Role of Complement in Synaptic Pruning and Neurodegeneration. Immunotargets Ther 2021; 10:373-386. [PMID: 34595138 PMCID: PMC8478425 DOI: 10.2147/itt.s305420] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
The complement system, an essential part of the innate immune system, is composed of a group of secreted and membrane proteins that collectively participate in maintaining the function of the healthy and diseased brain. However, an inappropriate activation of the complement system has been related to an inflammatory response in multiple diseases, such as stroke, traumatic brain injury, multiple sclerosis, and Alzheimer's disease, as well as Zika infection and radiotherapy. In addition, C1q and C3 (initial activation components of the complement cascade) have been shown to play a key beneficial role in the refinement of synaptic circuits during developmental stages and adult plasticity. Nevertheless, excessive synaptic pruning in the adult brain can be detrimental and has been associated with synaptic loss in several pathological conditions. In this brief review, we will discuss the role of the complement system in synaptic pruning as well as its contribution to neurodegeneration and cognitive deficits. We also mention potential therapeutic approaches to target the complement system to treat several neuroinflammatory diseases and unintended consequences of radiotherapy.
Collapse
Affiliation(s)
- Angela Gomez-Arboledas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, USA
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA
| |
Collapse
|
44
|
Reid JK, Kuipers HF. She Doesn't Even Go Here: The Role of Inflammatory Astrocytes in CNS Disorders. Front Cell Neurosci 2021; 15:704884. [PMID: 34539348 PMCID: PMC8446364 DOI: 10.3389/fncel.2021.704884] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022] Open
Abstract
Astrocyte heterogeneity is a rapidly evolving field driven by innovative techniques. Inflammatory astrocytes, one of the first described subtypes of reactive astrocytes, are present in a variety of neurodegenerative diseases and may play a role in their pathogenesis. Moreover, genetic and therapeutic targeting of these astrocytes ameliorates disease in several models, providing support for advancing the development of astrocyte-specific disease modifying therapies. This review aims to explore the methods and challenges of identifying inflammatory astrocytes, the role these astrocytes play in neurological disorders, and future directions in the field of astrocyte heterogeneity.
Collapse
Affiliation(s)
- Jacqueline Kelsey Reid
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Hedwich Fardau Kuipers
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
45
|
Kiris I, Basar MK, Sahin B, Gurel B, Coskun J, Mroczek T, Baykal AT. Evaluation of the Therapeutic Effect of Lycoramine on Alzheimer's Disease in Mouse Model. Curr Med Chem 2021; 28:3449-3473. [PMID: 33200692 DOI: 10.2174/0929867327999201116193126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease is one of the leading health problems characterized by the accumulation of Aβ and hyperphosphorylated tau that account for the senile plaque formations causing extensive cognitive decline. Many of the clinical diagnoses of Alzheimer's disease are made in the late stages, when the pathological changes have already progressed. OBJECTIVE The objective of this study is to evaluate the promising therapeutic effects of a natural compound, lycoramine, which has been shown to have therapeutic potential in several studies and to understand its mechanism of action on the molecular level via differential protein expression analyses. METHODS Lycoramine and galantamine, an FDA approved drug used in the treatment of mild to moderate AD, were administered to 12 month-old 5xFAD mice. Effects of the compounds were investigated by Morris water maze, immunohistochemistry and label- free differential protein expression analyses. RESULTS Here we demonstrated the reversal of cognitive decline via behavioral testing and the clearance of Aβ plaques. Proteomics analysis provided in-depth information on the statistically significant protein perturbations in the cortex, hippocampus and cerebellum sections to hypothesize the possible clearance mechanisms of the plaque formation and the molecular mechanism of the reversal of cognitive decline in a transgenic mouse model. Bioinformatics analyses showed altered molecular pathways that can be linked with the reversal of cognitive decline observed after lycoramine administration but not with galantamine. CONCLUSION Lycoramine shows therapeutic potential to halt and reverse cognitive decline at the late stages of disease progression, and holds great promise for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Karayel Basar
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Busra Gurel
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Julide Coskun
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Tomasz Mroczek
- Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
46
|
Ip PP, Li Q, Lin WH, Chang CC, Fann CSJ, Chen HY, Liu FT, Lebrilla CB, Yang CC, Liao F. Analysis of site-specific glycan profiles of serum proteins in patients with multiple sclerosis or neuromyelitis optica spectrum disorder - a pilot study. Glycobiology 2021; 31:1230-1238. [PMID: 34132764 DOI: 10.1093/glycob/cwab053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/14/2022] Open
Abstract
Glycosylation is important for biological functions of proteins and greatly affected by diseases. Exploring the glycosylation profile of the protein-specific glycosylation and/or the site-specific glycosylation may help understand disease etiology, differentiate diseases, and ultimately develop therapeutics. Patients with multiple sclerosis (MS) and patients with neuromyelitis optica spectrum disorder (NMOSD) are sometimes difficult to differentiate due to the similarity in their clinical symptoms. The disease-related glycosylation profiles of MS and NMOSD have not yet been well studied. Here, we analyzed site-specific glycan profiles of serum proteins of these patients by using a recently developed mass spectrometry technique. A total of 286 glycopeptides from 49 serum glycoproteins were quantified and compared between healthy controls (n = 6), remitting MS (n = 45) and remitting NMOSD (n = 23) patients. Significant differences in the levels of site-specific N-glycans on inflammation-associated components [IgM, IgG1, IgG2, complement components 8b (CO8B), attractin], central nerve system-damage-related serum proteins [apolipoprotein D (APOD), alpha-1-antitrypsin, plasma kallikrein and ADAMTS-like protein 3] were observed among three study groups. We furthered demonstrated that site-specific N-glycans on APOD on site 98, CO8B on sites 243 and 553 are potential markers to differentiate MS from NMOSD with an area under receiver operating curve value greater than 0.75. All these observations indicate that remitting MS or NMOSD patients possess a unique disease-associated glyco-signature in their serum proteins. We conclude that monitoring one's serum protein glycan profile using this high-throughput analysis may provide an additional diagnostic criterion for differentiating diseases, monitoring disease status and estimating response-to-treatment effect.
Collapse
Affiliation(s)
- Peng Peng Ip
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taipei 115, Taiwan
| | - Qiongyu Li
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taipei 115, Taiwan
| | - Chien-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taipei 115, Taiwan
| | | | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taipei 115, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taipei 115, Taiwan
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Chih-Chao Yang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Fang Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taipei 115, Taiwan
| |
Collapse
|
47
|
Ziabska K, Ziemka-Nalecz M, Pawelec P, Sypecka J, Zalewska T. Aberrant Complement System Activation in Neurological Disorders. Int J Mol Sci 2021; 22:4675. [PMID: 33925147 PMCID: PMC8125564 DOI: 10.3390/ijms22094675] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The complement system is an assembly of proteins that collectively participate in the functions of the healthy and diseased brain. The complement system plays an important role in the maintenance of uninjured (healthy) brain homeostasis, contributing to the clearance of invading pathogens and apoptotic cells, and limiting the inflammatory immune response. However, overactivation or underregulation of the entire complement cascade within the brain may lead to neuronal damage and disturbances in brain function. During the last decade, there has been a growing interest in the role that this cascading pathway plays in the neuropathology of a diverse array of brain disorders (e.g., acute neurotraumatic insult, chronic neurodegenerative diseases, and psychiatric disturbances) in which interruption of neuronal homeostasis triggers complement activation. Dysfunction of the complement promotes a disease-specific response that may have either beneficial or detrimental effects. Despite recent advances, the explicit link between complement component regulation and brain disorders remains unclear. Therefore, a comprehensible understanding of such relationships at different stages of diseases could provide new insight into potential therapeutic targets to ameliorate or slow progression of currently intractable disorders in the nervous system. Hence, the aim of this review is to provide a summary of the literature on the emerging role of the complement system in certain brain disorders.
Collapse
Affiliation(s)
| | | | | | | | - Teresa Zalewska
- Mossakowski Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (K.Z.); (M.Z.-N.); (P.P.); (J.S.)
| |
Collapse
|
48
|
Oveland E, Ahmad I, Lereim RR, Kroksveen AC, Barsnes H, Guldbrandsen A, Myhr KM, Bø L, Berven FS, Wergeland S. Cuprizone and EAE mouse frontal cortex proteomics revealed proteins altered in multiple sclerosis. Sci Rep 2021; 11:7174. [PMID: 33785790 PMCID: PMC8010076 DOI: 10.1038/s41598-021-86191-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Two pathophysiological different experimental models for multiple sclerosis were analyzed in parallel using quantitative proteomics in attempts to discover protein alterations applicable as diagnostic-, prognostic-, or treatment targets in human disease. The cuprizone model reflects de- and remyelination in multiple sclerosis, and the experimental autoimmune encephalomyelitis (EAE, MOG1-125) immune-mediated events. The frontal cortex, peripheral to severely inflicted areas in the CNS, was dissected and analyzed. The frontal cortex had previously not been characterized by proteomics at different disease stages, and novel protein alterations involved in protecting healthy tissue and assisting repair of inflicted areas might be discovered. Using TMT-labelling and mass spectrometry, 1871 of the proteins quantified overlapped between the two experimental models, and the fold change compared to controls was verified using label-free proteomics. Few similarities in frontal cortex between the two disease models were observed when regulated proteins and signaling pathways were compared. Legumain and C1Q complement proteins were among the most upregulated proteins in cuprizone and hemopexin in the EAE model. Immunohistochemistry showed that legumain expression in post-mortem multiple sclerosis brain tissue (n = 19) was significantly higher in the center and at the edge of white matter active and chronic active lesions. Legumain was associated with increased lesion activity and might be valuable as a drug target using specific inhibitors as already suggested for Parkinson's and Alzheimer's disease. Cerebrospinal fluid levels of legumain, C1q and hemopexin were not significantly different between multiple sclerosis patients, other neurological diseases, or healthy controls.
Collapse
Affiliation(s)
- Eystein Oveland
- Proteomics Unit, Department of Biomedicine, University of Bergen (PROBE), Bergen, Norway
| | - Intakhar Ahmad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
| | - Ragnhild Reehorst Lereim
- Proteomics Unit, Department of Biomedicine, University of Bergen (PROBE), Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ann Cathrine Kroksveen
- Proteomics Unit, Department of Biomedicine, University of Bergen (PROBE), Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Harald Barsnes
- Proteomics Unit, Department of Biomedicine, University of Bergen (PROBE), Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Astrid Guldbrandsen
- Proteomics Unit, Department of Biomedicine, University of Bergen (PROBE), Bergen, Norway
- Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Lars Bø
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Frode S Berven
- Proteomics Unit, Department of Biomedicine, University of Bergen (PROBE), Bergen, Norway
- Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
| | - Stig Wergeland
- Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway.
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
49
|
Microglial Pruning: Relevance for Synaptic Dysfunction in Multiple Sclerosis and Related Experimental Models. Cells 2021; 10:cells10030686. [PMID: 33804596 PMCID: PMC8003660 DOI: 10.3390/cells10030686] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia, besides being able to react rapidly to a wide range of environmental changes, are also involved in shaping neuronal wiring. Indeed, they actively participate in the modulation of neuronal function by regulating the elimination (or “pruning”) of weaker synapses in both physiologic and pathologic processes. Mounting evidence supports their crucial role in early synaptic loss, which is emerging as a hallmark of several neurodegenerative diseases, including multiple sclerosis (MS) and its preclinical models. MS is an inflammatory, immune-mediated pathology of the white matter in which demyelinating lesions may cause secondary neuronal death. Nevertheless, primitive grey matter (GM) damage is emerging as an important contributor to patients’ long-term disability, since it has been associated with early and progressive cognitive decline (CD), which seriously worsens the quality of life of MS patients. Widespread synapse loss even in the absence of demyelination, axon degeneration and neuronal death has been demonstrated in different GM structures, thus raising the possibility that synaptic dysfunction could be an early and possibly independent event in the neurodegenerative process associated with MS. This review provides an overview of microglial-dependent synapse elimination in the neuroinflammatory process that underlies MS and its experimental models.
Collapse
|
50
|
Rahmanzadeh R, Lu PJ, Barakovic M, Weigel M, Maggi P, Nguyen TD, Schiavi S, Daducci A, La Rosa F, Schaedelin S, Absinta M, Reich DS, Sati P, Wang Y, Bach Cuadra M, Radue EW, Kuhle J, Kappos L, Granziera C. Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging. Brain 2021; 144:1684-1696. [PMID: 33693571 PMCID: PMC8374972 DOI: 10.1093/brain/awab088] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022] Open
Abstract
Damage to the myelin sheath and the neuroaxonal unit is a cardinal feature of multiple sclerosis; however, a detailed characterization of the interaction between myelin and axon damage in vivo remains challenging. We applied myelin water and multi-shell diffusion imaging to quantify the relative damage to myelin and axons (i) among different lesion types; (ii) in normal-appearing tissue; and (iii) across multiple sclerosis clinical subtypes and healthy controls. We also assessed the relation of focal myelin/axon damage with disability and serum neurofilament light chain as a global biological measure of neuroaxonal damage. Ninety-one multiple sclerosis patients (62 relapsing-remitting, 29 progressive) and 72 healthy controls were enrolled in the study. Differences in myelin water fraction and neurite density index were substantial when lesions were compared to healthy control subjects and normal-appearing multiple sclerosis tissue: both white matter and cortical lesions exhibited a decreased myelin water fraction and neurite density index compared with healthy (P < 0.0001) and peri-plaque white matter (P < 0.0001). Periventricular lesions showed decreased myelin water fraction and neurite density index compared with lesions in the juxtacortical region (P < 0.0001 and P < 0.05). Similarly, lesions with paramagnetic rims showed decreased myelin water fraction and neurite density index relative to lesions without a rim (P < 0.0001). Also, in 75% of white matter lesions, the reduction in neurite density index was higher than the reduction in the myelin water fraction. Besides, normal-appearing white and grey matter revealed diffuse reduction of myelin water fraction and neurite density index in multiple sclerosis compared to healthy controls (P < 0.01). Further, a more extensive reduction in myelin water fraction and neurite density index in normal-appearing cortex was observed in progressive versus relapsing-remitting participants. Neurite density index in white matter lesions correlated with disability in patients with clinical deficits (P < 0.01, beta = -10.00); and neurite density index and myelin water fraction in white matter lesions were associated to serum neurofilament light chain in the entire patient cohort (P < 0.01, beta = -3.60 and P < 0.01, beta = 0.13, respectively). These findings suggest that (i) myelin and axon pathology in multiple sclerosis is extensive in both lesions and normal-appearing tissue; (ii) particular types of lesions exhibit more damage to myelin and axons than others; (iii) progressive patients differ from relapsing-remitting patients because of more extensive axon/myelin damage in the cortex; and (iv) myelin and axon pathology in lesions is related to disability in patients with clinical deficits and global measures of neuroaxonal damage.
Collapse
Affiliation(s)
- Reza Rahmanzadeh
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Po-Jui Lu
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland.,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Pietro Maggi
- Department of Neurology, Lausanne University Hospital, Lausanne, Switzerland.,Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussel, Belgium
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Radiology Department, Center for Biomedical Imaging (CIBM), Lausanne University and University Hospital, Lausanne, Switzerland
| | - Sabine Schaedelin
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Meritxell Bach Cuadra
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Radiology Department, Center for Biomedical Imaging (CIBM), Lausanne University and University Hospital, Lausanne, Switzerland
| | - Ernst-Wilhelm Radue
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|