1
|
Boz V, Tesser A, Burlo F, Donadel N, Pastore S, Amaddeo A, Vittoria F, Padovan M, Di Rosa M, Tommasini A, Valencic E. Siglec-1, an easy and contributory inflammation marker in rheumatology. Clin Transl Immunology 2024; 13:e1520. [PMID: 38939726 PMCID: PMC11208081 DOI: 10.1002/cti2.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Objectives Inflammatory markers such as erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are poorly informative about interferon (IFN)-related disorders. In these conditions, the measure of the interferon score (IS), obtained by measuring the expression of IFN-stimulated genes, has been proposed. Flow cytometry-based assays measuring sialic-acid-binding Ig-like lectin 1 (Siglec-1) expression could be a more practical tool for evaluating IFN-inflammation. The study compared Siglec-1 measures with IS and other inflammatory indexes. We compared Siglec-1 measures with IS and other inflammatory indexes in real-world paediatric rheumatology experience. Methods We recruited patients with immuno-rheumatological conditions, acute infectious illness and patients undergoing orthopaedic surgery as controls. Siglec-1 expression was measured in all samples, and IS, ESR and CRP were also recorded if available. Results Overall, 98 subjects were enrolled in the study, with a total of 104 measures of Siglec-1. Compared with IS, Siglec-1 expression showed good accuracy (86.0%), specificity (72.7%) and sensitivity (85.7%). The measure of the percentage of Siglec-1-positive cells performed best at low levels of IFN-inflammation, while the measure of mean fluorescence intensity performed best at higher levels. Ex vivo studies on IFN-stimulated monocytes confirmed this behaviour. There was no link between Siglec-1 expression and either ESR or CRP, and positive Siglec-1 results were found even when ESR and CRP were normal. A high Siglec-1 expression was also recorded in subjects with acute infections. Conclusion Siglec-1 measurement by flow cytometry is an easy tool to detect IFN-related inflammation, even in subjects with normal results of common inflammation indexes.
Collapse
Affiliation(s)
- Valentina Boz
- Department of PediatricsInstitute for Maternal and Child Health IRCCS Burlo GarofoloTriesteItaly
| | - Alessandra Tesser
- Department of PediatricsInstitute for Maternal and Child Health IRCCS Burlo GarofoloTriesteItaly
| | - Francesca Burlo
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Nicola Donadel
- Department of PediatricsInstitute for Maternal and Child Health IRCCS Burlo GarofoloTriesteItaly
| | - Serena Pastore
- Department of PediatricsInstitute for Maternal and Child Health IRCCS Burlo GarofoloTriesteItaly
| | - Alessandro Amaddeo
- Department of PediatricsInstitute for Maternal and Child Health IRCCS Burlo GarofoloTriesteItaly
| | - Francesca Vittoria
- Department of PediatricsInstitute for Maternal and Child Health IRCCS Burlo GarofoloTriesteItaly
| | - Matteo Padovan
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Marianna Di Rosa
- Department of PediatricsInstitute for Maternal and Child Health IRCCS Burlo GarofoloTriesteItaly
- Present address:
Department of Medical, Surgical and Health SciencesUniversity of TriesteTrieste34149Italy
| | - Alberto Tommasini
- Department of PediatricsInstitute for Maternal and Child Health IRCCS Burlo GarofoloTriesteItaly
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Erica Valencic
- Department of PediatricsInstitute for Maternal and Child Health IRCCS Burlo GarofoloTriesteItaly
| |
Collapse
|
2
|
Qian H, Deng C, Chen S, Zhang X, He Y, Lan J, Wang A, Shi G, Liu Y. Targeting pathogenic fibroblast-like synoviocyte subsets in rheumatoid arthritis. Arthritis Res Ther 2024; 26:103. [PMID: 38783357 PMCID: PMC11112866 DOI: 10.1186/s13075-024-03343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Fibroblast-like synoviocytes (FLSs) play a central role in RA pathogenesis and are the main cellular component in the inflamed synovium of patients with rheumatoid arthritis (RA). FLSs are emerging as promising new therapeutic targets in RA. However, fibroblasts perform many essential functions that are required for sustaining tissue homeostasis. Direct targeting of general fibroblast markers on FLSs is challenging because fibroblasts in other tissues might be altered and side effects such as reduced wound healing or fibrosis can occur. To date, no FLS-specific targeted therapies have been applied in the clinical management of RA. With the help of high-throughput technologies such as scRNA-seq in recent years, several specific pathogenic FLS subsets in RA have been identified. Understanding the characteristics of these pathogenic FLS clusters and the mechanisms that drive their differentiation can provide new insights into the development of novel FLS-targeting strategies for RA. Here, we discuss the pathogenic FLS subsets in RA that have been elucidated in recent years and potential strategies for targeting pathogenic FLSs.
Collapse
Affiliation(s)
- Hongyan Qian
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Chaoqiong Deng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Xinwei Zhang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Jingying Lan
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
| | - Aodi Wang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China.
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China.
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China.
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China.
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China.
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China.
| |
Collapse
|
3
|
Guo M, Guo H, Zhu J, Wang F, Chen J, Wan C, Deng Y, Wang F, Xu L, Chen Y, Li R, Liu S, Zhang L, Wang Y, Zhou J, Li S. A novel subpopulation of monocytes with a strong interferon signature indicated by SIGLEC-1 is present in patients with in recent-onset type 1 diabetes. Diabetologia 2024; 67:623-640. [PMID: 38349399 DOI: 10.1007/s00125-024-06098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 03/01/2024]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is a T cell-mediated autoimmune disease characterised by pancreatic beta cell destruction. In this study, we explored the pathogenic immune responses in initiation of type 1 diabetes and new immunological targets for type 1 diabetes prevention and treatment. METHODS We obtained peripheral blood samples from four individuals with newly diagnosed latent autoimmune diabetes in adults (LADA) and from four healthy control participants. Single-cell RNA-sequencing (scRNA-seq) was performed on peripheral blood mononuclear cells to uncover transcriptomic profiles of early LADA. Validation was performed through flow cytometry in a cohort comprising 54 LADA, 17 adult-onset type 2 diabetes, and 26 healthy adults, matched using propensity score matching (PSM) based on age and sex. A similar PSM method matched 15 paediatric type 1 diabetes patients with 15 healthy children. Further flow cytometry analysis was performed in both peripheral blood and pancreatic tissues of non-obese diabetic (NOD) mice. Additionally, cell adoptive transfer and clearance assays were performed in NOD mice to explore the role of this monocyte subset in islet inflammation and onset of type 1 diabetes. RESULTS The scRNA-seq data showed that upregulated genes in peripheral T cells and monocytes from early-onset LADA patients were primarily enriched in the IFN signalling pathway. A new cluster of classical monocytes (cluster 4) was identified, and the proportion of this cluster was significantly increased in individuals with LADA compared with healthy control individuals (11.93% vs 5.93%, p=0.017) and that exhibited a strong IFN signature marked by SIGLEC-1 (encoding sialoadhesin). These SIGLEC-1+ monocytes expressed high levels of genes encoding C-C chemokine receptors 1 or 2, as well as genes for chemoattractants for T cells and natural killer cells. They also showed relatively low levels of genes for co-stimulatory and HLA molecules. Flow cytometry analysis verified the elevated levels of SIGLEC-1+ monocytes in the peripheral blood of participants with LADA and paediatric type 1 diabetes compared with healthy control participants and those with type 2 diabetes. Interestingly, the proportion of SIGLEC-1+ monocytes positively correlated with disease activity and negatively with disease duration in the LADA patients. In NOD mice, the proportion of SIGLEC-1+ monocytes in the peripheral blood was highest at the age of 6 weeks (16.88%), while the peak occurred at 12 weeks in pancreatic tissues (23.65%). Adoptive transfer experiments revealed a significant acceleration in diabetes onset in the SIGLEC-1+ group compared with the SIGLEC-1- or saline control group. CONCLUSIONS/INTERPRETATION Our study identified a novel group of SIGLEC-1+ monocytes that may serve as an important indicator for early diagnosis, activity assessment and monitoring of therapeutic efficacy in type 1 diabetes, and may also be a novel target for preventing and treating type 1 diabetes. DATA AVAILABILITY RNA-seq data have been deposited in the GSA human database ( https://ngdc.cncb.ac.cn/gsa-human/ ) under accession number HRA003649.
Collapse
Affiliation(s)
- Mengqi Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Han Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingjing Zhu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fei Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianni Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuan Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yujie Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ran Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Qingdao, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Jing Zhou
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Ferri DM, Nassar C, Manion KP, Kim M, Baglaenko Y, Muñoz-Grajales C, Wither JE. Elevated Levels of Interferon-α Act Directly on B Cells to Breach Multiple Tolerance Mechanisms Promoting Autoantibody Production. Arthritis Rheumatol 2023; 75:1542-1555. [PMID: 36807718 DOI: 10.1002/art.42482] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/16/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVE Elevated levels of serum interferon-α (IFNα) and the disruption of B cell tolerance are central to systemic lupus erythematosus (SLE) immunopathogenesis; however, the relationship between these 2 processes remains unclear. The purpose of this study was to investigate the impact of elevated IFNα levels on B cell tolerance mechanisms in vivo and determine whether any changes observed were due to the direct effect of IFNα on B cells. METHODS Two classical mouse models of B cell tolerance were used in conjunction with an adenoviral vector encoding IFNα to mimic the sustained elevations of IFNα seen in SLE. The role of B cell IFNα signaling, T cells, and Myd88 signaling was determined using B cell-specific IFNα receptor-knockout, CD4+ T cell-depleted, or Myd88-knockout mice, respectively. Flow cytometry, enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, and cell cultures were used to study the effects of elevated IFNα on the immunologic phenotype. RESULTS Elevation of serum IFNα disrupts multiple B cell tolerance mechanisms and leads to autoantibody production. This disruption was dependent upon B cell expression of IFNα receptor. Many of the IFNα-mediated alterations also required the presence of CD4+ T cells as well as Myd88, suggesting that IFNα acts directly on B cells to modify their response to Myd88 signaling and their ability to interact with T cells. CONCLUSION The results provide evidence that elevated IFNα levels act directly on B cells to facilitate autoantibody production and further highlight the importance of IFN signaling as a potential therapeutic target in SLE.
Collapse
Affiliation(s)
- Dario M Ferri
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Carol Nassar
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kieran P Manion
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael Kim
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yuriy Baglaenko
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Carolina Muñoz-Grajales
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Joan E Wither
- Schroeder Arthritis Institute, Krembil Research Institute, and Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, and Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Nikolaev B, Yakovleva L, Fedorov V, Yudintceva N, Ryzhov V, Marchenko Y, Ischenko A, Zhakhov A, Dobrodumov A, Combs SE, Gao H, Shevtsov M. Magnetic Relaxation Switching Assay Using IFNα-2b-Conjugated Superparamagnetic Nanoparticles for Anti-Interferon Antibody Detection. BIOSENSORS 2023; 13:624. [PMID: 37366989 DOI: 10.3390/bios13060624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Type I interferons, particularly IFNα-2b, play essential roles in eliciting adaptive and innate immune responses, being implicated in the pathogenesis of various diseases, including cancer, and autoimmune and infectious diseases. Therefore, the development of a highly sensitive platform for analysis of either IFNα-2b or anti-IFNα-2b antibodies is of high importance to improve the diagnosis of various pathologies associated with the IFNα-2b disbalance. For evaluation of the anti-IFNα-2b antibody level, we have synthesized superparamagnetic iron oxide nanoparticles (SPIONs) coupled with the recombinant human IFNα-2b protein (SPIONs@IFNα-2b). Employing a magnetic relaxation switching assay (MRSw)-based nanosensor, we detected picomolar concentrations (0.36 pg/mL) of anti-INFα-2b antibodies. The high sensitivity of the real-time antibodies' detection was ensured by the specificity of immune responses and the maintenance of resonance conditions for water spins by choosing a high-frequency filling of short radio-frequency pulses of the generator. The formation of a complex of the SPIONs@IFNα-2b nanoparticles with the anti-INFα-2b antibodies led to a cascade process of the formation of nanoparticle clusters, which was further enhanced by exposure to a strong (7.1 T) homogenous magnetic field. Obtained magnetic conjugates exhibited high negative MR contrast-enhancing properties (as shown by NMR studies) that were also preserved when particles were administered in vivo. Thus, we observed a 1.2-fold decrease of the T2 relaxation time in the liver following administration of magnetic conjugates as compared to the control. In conclusion, the developed MRSw assay based on SPIONs@IFNα-2b nanoparticles represents an alternative immunological probe for the estimation of anti-IFNα-2b antibodies that could be further employed in clinical studies.
Collapse
Affiliation(s)
- Boris Nikolaev
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
| | - Ludmila Yakovleva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
- Department of Inorganic Chemistry and Biophysics, Saint-Petersburg State University of Veterinary Medicine, Chernigovskaya Str. 5, 196084 St. Petersburg, Russia
| | - Natalia Yudintceva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
| | - Vyacheslav Ryzhov
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
| | - Yaroslav Marchenko
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
| | - Alexander Ischenko
- Laboratory of Hybridoma Technologies, Saint-Petersburg Pasteur Institute, Mira Str. 14, 197101 St. Petersburg, Russia
| | - Alexander Zhakhov
- Laboratory of Hybridoma Technologies, Saint-Petersburg Pasteur Institute, Mira Str. 14, 197101 St. Petersburg, Russia
| | - Anatoliy Dobrodumov
- Department of Nuclear Magnetic Resonance, Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS), Bolshoi pr. 31, 199004 St. Petersburg, Russia
| | - Stephanie E Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, 690091 Vladivostok, Russia
| |
Collapse
|
6
|
Rodríguez-Carrio J, Burska A, Conaghan PG, Dik WA, Biesen R, Eloranta ML, Cavalli G, Visser M, Boumpas DT, Bertsias G, Wahren-Herlenius M, Rehwinkel J, Frémond ML, Crow MK, Rönnblom L, Versnel MA, Vital EM. 2022 EULAR points to consider for the measurement, reporting and application of IFN-I pathway activation assays in clinical research and practice. Ann Rheum Dis 2023; 82:754-762. [PMID: 36858821 DOI: 10.1136/ard-2022-223628] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/04/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Type I interferons (IFN-Is) play a role in a broad range of rheumatic and musculoskeletal diseases (RMDs), and compelling evidence suggests that their measurement could have clinical value, although testing has not progressed into clinical settings. OBJECTIVE To develop evidence-based points to consider (PtC) for the measurement and reporting of IFN-I assays in clinical research and to determine their potential clinical utility. METHODS EULAR standardised operating procedures were followed. A task force including rheumatologists, immunologists, translational scientists and a patient partner was formed. Two systematic reviews were conducted to address methodological and clinical questions. PtC were formulated based on the retrieved evidence and expert opinion. Level of evidence and agreement was determined. RESULTS Two overarching principles and 11 PtC were defined. The first set (PtC 1-4) concerned terminology, assay characteristics and reporting practices to enable more consistent reporting and facilitate translation and collaborations. The second set (PtC 5-11) addressed clinical applications for diagnosis and outcome assessments, including disease activity, prognosis and prediction of treatment response. The mean level of agreement was generally high, mainly in the first PtC set and for clinical applications in systemic lupus erythematosus. Harmonisation of assay methodology and clinical validation were key points for the research agenda. CONCLUSIONS IFN-I assays have a high potential for implementation in the clinical management of RMDs. Uptake of these PtC will facilitate the progress of IFN-I assays into clinical practice and may be also of interest beyond rheumatology.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Department of Functional Biology, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Agata Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Willem A Dik
- Erasmus MC, University Medical Center Rotterdam, Laboratory Medical Immunology, Department of Immunology, Rotterdam, The Netherlands
| | - Robert Biesen
- Charité University Medicine Berlin, Department of Rheumatology, Berlin, Germany
| | - Maija-Leena Eloranta
- Uppsala University, Department of Medical Sciences, Rheumatology, Uppsala, Sweden
| | - Giulio Cavalli
- Vita-Salute San Raffaele University, Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Milan, Italy
| | - Marianne Visser
- EULAR PARE Patient Research Partner, Amsterdam, The Netherlands
| | - Dimitrios T Boumpas
- Medicine, University of Crete, Medical School, Department of Internal Medicine, Heraklion, Greece
| | - George Bertsias
- University of Crete, Medical School, Department of Rheumatology-Clinical Immunology, Heraklion, Greece
| | - Marie Wahren-Herlenius
- Karolinska Institutet, Division of Rheumatology, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Marie-Louise Frémond
- Université de Paris Cité, Hôpital Necker-Enfants Malades, Immuno-Hématologie et Rhumatologie pédiatriques, Paris, France
| | - Mary K Crow
- Hospital for Special Surgery, Weill Cornell Medical College, Mary Kirkland Center for Lupus Research, New York, New York, USA
| | - Lars Rönnblom
- Uppsala University, Department of Medical Sciences, Rheumatology, Uppsala, Sweden
| | - Marjan A Versnel
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, The Netherlands
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
7
|
Rodríguez-Carrio J, Burska A, Conaghan PG, Dik WA, Biesen R, Eloranta ML, Cavalli G, Visser M, Boumpas DT, Bertsias G, Wahren-Herlenius M, Rehwinkel J, Frémond ML, Crow MK, Ronnblom L, Vital E, Versnel M. Association between type I interferon pathway activation and clinical outcomes in rheumatic and musculoskeletal diseases: a systematic literature review informing EULAR points to consider. RMD Open 2023; 9:e002864. [PMID: 36882218 PMCID: PMC10008483 DOI: 10.1136/rmdopen-2022-002864] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Type I interferons (IFN-I) contribute to a broad range of rheumatic and musculoskeletal diseases (RMDs). Compelling evidence suggests that the measurement of IFN-I pathway activation may have clinical value. Although several IFN-I pathway assays have been proposed, the exact clinical applications are unclear. We summarise the evidence on the potential clinical utility of assays measuring IFN-I pathway activation. METHODS A systematic literature review was conducted across three databases to evaluate the use of IFN-I assays in diagnosis and monitor disease activity, prognosis, response to treatment and responsiveness to change in several RMDs. RESULTS Of 366 screened, 276 studies were selected that reported the use of assays reflecting IFN-I pathway activation for disease diagnosis (n=188), assessment of disease activity (n=122), prognosis (n=20), response to treatment (n=23) and assay responsiveness (n=59). Immunoassays, quantitative PCR (qPCR) and microarrays were reported most frequently, while systemic lupus erythematosus (SLE), rheumatoid arthritis, myositis, systemic sclerosis and primary Sjögren's syndrome were the most studied RMDs. The literature demonstrated significant heterogeneity in techniques, analytical conditions, risk of bias and application in diseases. Inadequate study designs and technical heterogeneity were the main limitations. IFN-I pathway activation was associated with disease activity and flare occurrence in SLE, but their incremental value was uncertain. IFN-I pathway activation may predict response to IFN-I targeting therapies and may predict response to different treatments. CONCLUSIONS Evidence indicates potential clinical value of assays measuring IFN-I pathway activation in several RMDs, but assay harmonisation and clinical validation are urged. This review informs the EULAR points to consider for the measurement and reporting of IFN-I pathway assays.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Agata Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - P G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Willem A Dik
- Laboratory Medical Immunology, department of Immunology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Robert Biesen
- Department of Rheumatology, Charité University Medicine Berlin, Berlin, Germany
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Marianne Visser
- EULAR, PARE Patient Research Partners, Amsterdam, The Netherlands
| | - Dimitrios T Boumpas
- Department of Internal Medicine, University of Crete, Medical School, Heraklion, Greece
| | - George Bertsias
- Department of Rheumatology-Clinical Immunology, University of Crete, Medical School, Heraklion, Greece
| | - Marie Wahren-Herlenius
- Karolinska Institutet, Division of Rheumatology, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Norway
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | - Marie-Louise Frémond
- Université de Paris Cité, Hôpital Necker-Enfants Malades, Immuno-Hématologie et Rhumatologie pédiatriques, Paris, France
| | - Mary K Crow
- Hospital for Special Surgery, Weill Cornell Medical College, Mary Kirkland Center for Lupus Research, New York, USA
| | - Lars Ronnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Ed Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Marjan Versnel
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
8
|
Fattah SA, Abdel Fattah MA, Mesbah NM, Saleh SM, Abo-Elmatty DM, Mehanna ET. The expression of zinc finger 804a (ZNF804a) and cyclin-dependent kinase 1 (CDK1) genes is related to the pathogenesis of rheumatoid arthritis. Arch Physiol Biochem 2022; 128:688-693. [PMID: 31994908 DOI: 10.1080/13813455.2020.1716810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT ZNF804a and CDK1 genes code for proteins involved in inflammatory pathways. OBJECTIVE This study aimed to investigate the correlation of ZNF804a and CDK1 expression profiles in RA with the activity and the severity of the disease and to assess their association with inflammatory reactions in the Egyptian RA patients. METHODS ZNF804a and CDK1 expression profiles were assessed using quantitative PCR (qRT-PCR). Clinical and laboratory parameters were evaluated. RESULTS ZNF804a expression was down-regulated by 0.177-fold while CDK1 expression was up-regulated to 3.29-fold in RA patients compared with healthy controls (p < .001). ZNF804a down-regulation was negatively correlated with CRP, RF, disease activity score of 28 joints (DAS) using CRP (DAS-CRP) and TNF-α. CDK1 overexpression was correlated with IFN-1 and ACPA in RA patients. CONCLUSION ZNF804a and CDK1 genes are implicated in RA pathogenesis due to their influences on TNF-α and IFN-1 which contribute to inflammation in RA patients.
Collapse
Affiliation(s)
- Shaimaa A Fattah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Maha A Abdel Fattah
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samy M Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
9
|
Deng J, Xiao W, Wang Z. FAM46C as a Potential Marker for Pan-Cancer Prognosis and Predicting Immunotherapeutic Efficacy. Front Genet 2022; 13:810252. [PMID: 35222533 PMCID: PMC8864238 DOI: 10.3389/fgene.2022.810252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
Background:FAM46C is a common mutated gene in tumours. A comprehensive understanding of the relationship between FAM46C expression and pan-cancer can guide clinical prognosis and broaden the immunotherapeutic targets.Methods: Data from The Cancer Genome Atlas and Genotype-Tissue Expression (GTEx) databases were obtained, and gene expression of different tumour types and stages was analysed. Immunohistochemical analysis was performed to detect differences in the FAM46C protein levels in normal and cancerous tissues. The genetic variation of FAM46C was characterised using cBioPortal. The clinical prognostic value of FAM46C and the impact of FAM46C expression levels on the prognosis of patients with different types of cancer were assessed based on Kaplan–Meier and Cox regression analyses. Gene set enrichment analysis (GSEA) was used to analyse the pathways associated with FAM46C. Correlations between FAM46C expression levels and immune infiltration were assessed using the TIMER2 database and CIBERSORT algorithm, and correlations between FAM46C expression and the ESTIMATE, immune and stromal scores were analysed using the ESTIMATE algorithm. In addition, we also analysed the correlation between FAM46C expression and immune activation, suppression genes and immune chemokines.Results: The expression level of FAM46C was correlated with the prognosis of most tumours, and low expression levels often suggested a poor prognosis. FAM46C was positively correlated with the abundance of CD4+ T cells, CD8+ T cells and plasma B lymphocytes in the tumour microenvironment. FAM46C exhibited a strong correlation with immunomodulatory pathways, immunomodulatory factors and immune markers. In addition, high FAM46C expression correlated with tumour mutational burden in acute myeloid leukaemia and microsatellite instability in endometrial cancer.Conclusion: Our study suggests that FAM46C can be a potential prognostic marker for pan-cancer, is closely associated with immune regulation and may be an immune checkpoint to guide future clinical immunotherapy.
Collapse
Affiliation(s)
- Jiehua Deng
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Wei Xiao
- Department of Clinical Medicine, Medical College of Shihezi University, Shihezi, China
| | - Zheng Wang
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Zheng Wang,
| |
Collapse
|
10
|
Nakasuji-Togi M, Togi S, Saeki K, Kojima Y, Ozato K. Herbal extracts that induce type I interferons through Toll-like receptor 4 signaling. Food Nutr Res 2022; 66:5524. [PMID: 35173566 PMCID: PMC8809074 DOI: 10.29219/fnr.v66.5524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/29/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background A mixture of five herbal extracts called internatural (INT), which is prepared from pumpkin seeds, purple turmeric, pearl barley, corn pistil, and cinnamon, is widely used by people in Japan and elsewhere for its immunity-enhancing effects and general health. Although anecdotal evidence indicates its efficacy, the mechanisms by which INT boosts immunity have remained unknown. Objective The aim of this study was to investigate whether INT induces type I interferons (IFNs) in murine bone marrow-derived macrophages (BMDMs) and by what mechanism. Design We measured induction of type I IFNs (IFNβ and IFNα) in BMDMs treated with INT or other Toll-like receptor ligands: bacterial lipopolysaccharides (LPS), dsRNA, poly(I:C), and CpG oligonucleotides. To investigate whether INT signals through Toll-like receptor 4 (TLR4), we tested TLR4-specific inhibitor. We also tested if INT utilizes TLR4 adaptors, toll/IL-1 receptor (TIR) domain-containing adaptor (TRIF), or myeloid differentiation factor 88 (MyD88), we examined INT induction of IFNβ in TRIF-KO and MyD88-KO BMDMs. We then investigated whether INT provides an antiviral effect upon fibroblasts either directly or indirectly using the encephalomyocarditis virus (EMCV) model. Results We first observed that INT, when added to BMDMs, potently induces type I IFNs (IFNβ and IFNα) within 2 h. INT induction of IFN expression was mediated by TLR4, which signaled through the TRIF/MyD88 adaptors, similar to LPS. A high-molecular-weight fraction (MW > 10,000) of INT extracts contained IFN-inducing activity. Supernatants from INT-treated BMDMs protected untreated fibroblast from EMCV infection as reduced viral titers. Conclusions INT induced type I IFN mRNA and proteins in BMDMs and other cell types. This induction was mediated by TLR4, which transduces signals using the TRIF/MyD88 pathway. The high-MW component of INT contained type I IFN inducing activity. The supernatants from INT-treated cells displayed antiviral activity and protected cells from EMCV infection. These findings indicate that INT is a novel natural IFN inducer that strengthens host’s innate immunity.
Collapse
Affiliation(s)
- Misa Nakasuji-Togi
- Division of Developmental Biology, Eunice Kennedy Institute of Child Health and Human Development, National Institutes of Health, MD, USA
- Department of Regenerative Medicine, School of Medicine, Kanazawa Medical University, Ishikawa, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Sumihito Togi
- Division of Developmental Biology, Eunice Kennedy Institute of Child Health and Human Development, National Institutes of Health, MD, USA
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Keita Saeki
- Division of Developmental Biology, Eunice Kennedy Institute of Child Health and Human Development, National Institutes of Health, MD, USA
| | | | - Keiko Ozato
- Division of Developmental Biology, Eunice Kennedy Institute of Child Health and Human Development, National Institutes of Health, MD, USA
- Keiko Ozato, Division of Developmental Biology, Eunice Kennedy Institute of Child Health and Human Development, National Institutes of Health Bethesda MD 20892 USA.
| |
Collapse
|
11
|
Cheng CW, Tang KT, Fang WF, Lee TI, Lin JD. Differential serum interferon-β levels in autoimmune thyroid diseases. Arch Med Sci 2022; 18:1231-1240. [PMID: 36160354 PMCID: PMC9479710 DOI: 10.5114/aoms/110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/21/2019] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Interferon (IFN)-β is known as an environmental trigger for the occurrence of autoimmune thyroid disease (AITD). However, the association of another type-1 IFN, IFN-β, with AITD is unknown. MATERIAL AND METHODS In the study, we explored the association of serum IFN-β levels with AITD in an ethnic Chinese (i.e., Taiwanese) population. We enrolled 160 patients with Graves' disease (GD), 47 patients with Hashimoto's thyroiditis (HT), and 119 healthy controls. Serum IFN-β and B-cell activating factor (BAFF) levels were quantified in healthy controls at the baseline and in patients with AITD either prior to receiving medication or while under medication. Thyroid function and thyroid-stimulating hormone receptor antibody (TSHRAb) levels were measured at the time of serum collection. RESULTS Serum IFN-β levels were lower in the HT group than in the control group (p = 0.031). A significant inverse correlation was observed between IFN-β and TSHRAb levels in men with GD (r = -0.433, p = 0.044). Serum IFN-β levels were also negatively associated with BAFF levels in men with GD, HT, and AITD (r = -0.320, p = 0.032; r = -0.817, p = 0.047; and r = -0.354, p = 0.011, respectively), but not in women with GD, HT, or AITD. CONCLUSIONS Serum IFN-β levels were lower in HT patients. Correlations of serum IFN-β with TSHRAb and BAFF levels were found to be gender-specific. Further well-designed studies with larger sample sizes are required to confirm our findings.
Collapse
Affiliation(s)
- Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Traditional Herb Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kam-Tsun Tang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Fang Fang
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiunn-Diann Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
12
|
Lenoir JJ, Parisien JP, Horvath CM. Immune regulator LGP2 targets Ubc13/UBE2N to mediate widespread interference with K63 polyubiquitination and NF-κB activation. Cell Rep 2021; 37:110175. [PMID: 34965427 DOI: 10.1016/j.celrep.2021.110175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Lysine 63-linked polyubiquitin (K63-Ub) chains activate a range of cellular immune and inflammatory signaling pathways, including the mammalian antiviral response. Interferon and antiviral genes are triggered by TRAF family ubiquitin ligases that form K63-Ub chains. LGP2 is a feedback inhibitor of TRAF-mediated K63-Ub that can interfere with diverse immune signaling pathways. Our results demonstrate that LGP2 inhibits K63-Ub by association with and sequestration of the K63-Ub-conjugating enzyme, Ubc13/UBE2N. The LGP2 helicase subdomain, Hel2i, mediates protein interaction that engages and inhibits Ubc13/UBE2N, affecting control over a range of K63-Ub ligase proteins, including TRAF6, TRIM25, and RNF125, all of which are inactivated by LGP2. These findings establish a unifying mechanism for LGP2-mediated negative regulation that can modulate a variety of K63-Ub signaling pathways.
Collapse
Affiliation(s)
- Jessica J Lenoir
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
13
|
Willemsen J, Neuhoff MT, Hoyler T, Noir E, Tessier C, Sarret S, Thorsen TN, Littlewood-Evans A, Zhang J, Hasan M, Rush JS, Guerini D, Siegel RM. TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that support inflammatory arthritis. Cell Rep 2021; 37:109977. [PMID: 34758308 DOI: 10.1016/j.celrep.2021.109977] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor (TNF) is a key driver of several inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, in which affected tissues show an interferon-stimulated gene signature. Here, we demonstrate that TNF triggers a type-I interferon response that is dependent on the cyclic guanosine monophosphate-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. We show that TNF inhibits PINK1-mediated mitophagy and leads to altered mitochondrial function and to an increase in cytosolic mtDNA levels. Using cGAS-chromatin immunoprecipitation (ChIP), we demonstrate that cytosolic mtDNA binds to cGAS after TNF treatment. Furthermore, TNF induces a cGAS-STING-dependent transcriptional response that mimics that of macrophages from rheumatoid arthritis patients. Finally, in an inflammatory arthritis mouse model, cGAS deficiency blocked interferon responses and reduced inflammatory cell infiltration and joint swelling. These findings elucidate a molecular mechanism linking TNF to type-I interferon signaling and suggest a potential benefit for therapeutic targeting of cGAS/STING in TNF-driven diseases.
Collapse
Affiliation(s)
- Joschka Willemsen
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland.
| | - Marie-Therese Neuhoff
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Thomas Hoyler
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Emma Noir
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Clemence Tessier
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Sophie Sarret
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Tara N Thorsen
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | | | - Juan Zhang
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Maroof Hasan
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - James S Rush
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Danilo Guerini
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Richard M Siegel
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| |
Collapse
|
14
|
Singh RP, Hahn BH, Bischoff DS. Interferon Genes Are Influenced by 17β-Estradiol in SLE. Front Immunol 2021; 12:725325. [PMID: 34733276 PMCID: PMC8558410 DOI: 10.3389/fimmu.2021.725325] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
Recent evidence suggests the existence of a nexus between inflammatory pathways and the female sex hormone 17β-estradiol, resulting in increased interferon-stimulated genes (ISGs), autoantibodies, and dysregulation of immune cells in SLE. However, the molecular mechanisms and the effect of estradiol on candidate target genes and their pathways remains poorly understood. Our previous work suggests that female SLE patients have increased estradiol levels compared to healthy controls. In the present study, we explored the effects of 17β-estradiol treatment on expression of IFN (interferons)-stimulated genes and pro-inflammatory cytokines/chemokines. We found significantly increased (5-10-fold) expression of IFN-regulated genes in healthy females. Furthermore, we found significantly increased plasma levels of IL-6, IL-12, IL-17, IL-18, stem cell factor (SCF), and IL-21/IL-23 in SLE patients compared to healthy controls, and those levels positively correlated with the plasma levels of 17β-estradiol. In addition, levels of IL-21 positively correlated with the SLE disease activity index (SLEDAI) score of SLE patients. In vitro treatment of PBMCs from either SLE patients or healthy controls with 17β-estradiol at physiological concentration (~50 pg/ml) also significantly increased secretion of many pro-inflammatory cytokines and chemokines (IL-6, IL-12, IL-17, IL-8, IFN-γ; MIP1α, and MIP1β) in both groups. Further our data revealed that 17β-estradiol significantly increased the percentage of CD3+CD69+ and CD3+IFNγ+ T cells; whereas, simultaneous addition of 17β-estradiol and an ERα inhibitor prevented this effect. Collectively, our findings indicate that 17β-estradiol participates in the induction of pro-inflammatory cytokines and chemokines and further influences interferon genes and pathways.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bevra H Hahn
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Brinkmeyer-Langford C, Amstalden K, Konganti K, Hillhouse A, Lawley K, Perez-Gomez A, Young CR, Welsh CJ, Threadgill DW. Resilience in Long-Term Viral Infection: Genetic Determinants and Interactions. Int J Mol Sci 2021; 22:ijms222111379. [PMID: 34768809 PMCID: PMC8584141 DOI: 10.3390/ijms222111379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-induced neurological sequelae resulting from infection by Theiler's murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. Mouse strains are typically considered susceptible or resistant to TMEV infection based on viral persistence and extreme phenotypes, such as demyelination. We have identified a broader spectrum of phenotypic outcomes by infecting strains of the genetically diverse Collaborative Cross (CC) mouse resource. We evaluated the chronic-infection gene expression profiles of hippocampi and thoracic spinal cords for 19 CC strains in relation to phenotypic severity and TMEV persistence. Strains were clustered based on similar phenotypic profiles and TMEV levels at 90 days post-infection, and we categorized distinct TMEV response profiles. The three most common profiles included "resistant" and "susceptible," as before, as well as a "resilient" TMEV response group which experienced both TMEV persistence and mild neurological phenotypes even at 90 days post-infection. Each profile had a distinct gene expression signature, allowing the identification of pathways and networks specific to each TMEV response group. CC founder haplotypes for genes involved in these pathways/networks revealed candidate response-specific alleles. These alleles demonstrated pleiotropy and epigenetic (miRNA) regulation in long-term TMEV infection, with particular relevance for resilient mouse strains.
Collapse
Affiliation(s)
- Candice Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
- Correspondence:
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
| | - Koedi Lawley
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Aracely Perez-Gomez
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - David W. Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Ramaswamy M, Tummala R, Streicher K, Nogueira da Costa A, Brohawn PZ. The Pathogenesis, Molecular Mechanisms, and Therapeutic Potential of the Interferon Pathway in Systemic Lupus Erythematosus and Other Autoimmune Diseases. Int J Mol Sci 2021; 22:11286. [PMID: 34681945 PMCID: PMC8540355 DOI: 10.3390/ijms222011286] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic success in treating patients with systemic lupus erythematosus (SLE) is limited by the multivariate disease etiology, multi-organ presentation, systemic involvement, and complex immunopathogenesis. Agents targeting B-cell differentiation and survival are not efficacious for all patients, indicating a need to target other inflammatory mediators. One such target is the type I interferon pathway. Type I interferons upregulate interferon gene signatures and mediate critical antiviral responses. Dysregulated type I interferon signaling is detectable in many patients with SLE and other autoimmune diseases, and the extent of this dysregulation is associated with disease severity, making type I interferons therapeutically tangible targets. The recent approval of the type I interferon-blocking antibody, anifrolumab, by the US Food and Drug Administration for the treatment of patients with SLE demonstrates the value of targeting this pathway. Nevertheless, the interferon pathway has pleiotropic biology, with multiple cellular targets and signaling components that are incompletely understood. Deconvoluting the complexity of the type I interferon pathway and its intersection with lupus disease pathology will be valuable for further development of targeted SLE therapeutics. This review summarizes the immune mediators of the interferon pathway, its association with disease pathogenesis, and therapeutic modalities targeting the dysregulated interferon pathway.
Collapse
Affiliation(s)
- Madhu Ramaswamy
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| | - Raj Tummala
- Respiratory, Inflammation & Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Katie Streicher
- Translational Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Andre Nogueira da Costa
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| | - Philip Z. Brohawn
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| |
Collapse
|
17
|
Nakano R, Tran LM, Geller DA, Macedo C, Metes DM, Thomson AW. Dendritic Cell-Mediated Regulation of Liver Ischemia-Reperfusion Injury and Liver Transplant Rejection. Front Immunol 2021; 12:705465. [PMID: 34262574 PMCID: PMC8273384 DOI: 10.3389/fimmu.2021.705465] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Liver allograft recipients are more likely to develop transplantation tolerance than those that receive other types of organ graft. Experimental studies suggest that immune cells and other non-parenchymal cells in the unique liver microenvironment play critical roles in promoting liver tolerogenicity. Of these, liver interstitial dendritic cells (DCs) are heterogeneous, innate immune cells that appear to play pivotal roles in the instigation, integration and regulation of inflammatory responses after liver transplantation. Interstitial liver DCs (recruited in situ or derived from circulating precursors) have been implicated in regulation of both ischemia/reperfusion injury (IRI) and anti-donor immunity. Thus, livers transplanted from mice constitutively lacking DCs into syngeneic, wild-type recipients, display increased tissue injury, indicating a protective role of liver-resident donor DCs against transplant IRI. Also, donor DC depletion before transplant prevents mouse spontaneous liver allograft tolerance across major histocompatibility complex (MHC) barriers. On the other hand, mouse liver graft-infiltrating host DCs that acquire donor MHC antigen via "cross-dressing", regulate anti-donor T cell reactivity in association with exhaustion of graft-infiltrating T cells and promote allograft tolerance. In an early phase clinical trial, infusion of donor-derived regulatory DCs (DCreg) before living donor liver transplantation can induce alterations in host T cell populations that may be conducive to attenuation of anti-donor immune reactivity. We discuss the role of DCs in regulation of warm and liver transplant IRI and the induction of liver allograft tolerance. We also address design of cell therapies using DCreg to reduce the immunosuppressive drug burden and promote clinical liver allograft tolerance.
Collapse
Affiliation(s)
- Ryosuke Nakano
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lillian M. Tran
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David A. Geller
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Camila Macedo
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Diana M. Metes
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W. Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Scleroderma specific autoantibodies and MS-like manifestations: A novel association? Autoimmun Rev 2021; 20:102871. [PMID: 34118453 DOI: 10.1016/j.autrev.2021.102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
|
19
|
Singh RP, Hahn BH, Bischoff DS. Effects of Peptide-Induced Immune Tolerance on Murine Lupus. Front Immunol 2021; 12:662901. [PMID: 34093553 PMCID: PMC8171184 DOI: 10.3389/fimmu.2021.662901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
The regulation of autoimmunity and the molecular mechanisms by which different immune cells, including T cells, polymorphonuclear leukocytes (PMN-granulocytes), and B cells suppress autoimmune diseases is complex. We have shown previously that BWF1 lupus mice are protected from autoimmunity after i.v. injection or oral administration of tolerogenic doses of pCons, an artificial synthetic peptide based on sequences containing MHC class I and MHC class II determinants in the VH region of a J558-encoded BWF1 anti-DNA Ab. Several T cell subsets can transfer this tolerance. In this study, we determined the potential roles of granulocytes, B cells and regulatory T cells altered by pCons treatment in the BWF1 (NZB/NZW) mouse model of lupus. Immunophenotyping studies indicated that pCons treatment of BWF1 mice significantly increased CD4+FoxP3+ T cells, reduced the percent of B cells expressing CD19+CD5+ but increased the percent of CD19+CD1d+ regulatory B cells and increased the ability of the whole B cell population to suppress IgG anti-DNA production in vitro. pCons treatment significantly decreased the expression of CTLA-4 (cytotoxic T-lymphocyte-associated protein-4) in CD8+ T cells. In addition, peptide administration modified granulocytes so they became suppressive. We co-cultured sorted naïve B cells from mice making anti-DNA Ab (supported by addition of sorted naive CD4+ and CD8+ T cells from young auto-antibody-negative BWF1 mice) with sorted B cells or granulocytes from tolerized mice. Both tolerized granulocytes and tolerized B cells significantly suppressed the production of anti-DNA in vitro. In granulocytes from tolerized mice compared to saline-treated littermate controls, real-time PCR analysis indicated that expression of interferon-induced TNFAIP2 increased more than 2-fold while Ptdss2 and GATA1 mRNA were up-regulated more than 10-fold. In contrast, expression of these genes was significantly down-regulated in tolerized B cells. Further, another IFN-induced protein, Bcl2, was reduced in tolerized B cells as determined by Western blot analyses. In contrast, expression of FoxP3 was significantly increased in tolerized B cells. Together, these data suggest that B cells and granulocytes are altered toward suppressive functions by in vivo tolerization of BWF1 mice with pCons and it is possible these cell types participate in the clinical benefits seen in vivo.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bevra H Hahn
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
20
|
Lai JH, Hung LF, Huang CY, Wu DW, Wu CH, Ho LJ. Mitochondrial protein CMPK2 regulates IFN alpha-enhanced foam cell formation, potentially contributing to premature atherosclerosis in SLE. Arthritis Res Ther 2021; 23:120. [PMID: 33874983 PMCID: PMC8054390 DOI: 10.1186/s13075-021-02470-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Background Premature atherosclerosis occurs in patients with SLE; however, the mechanisms remain unclear. Both mitochondrial machinery and proinflammatory cytokine interferon alpha (IFN-α) potentially contribute to atherogenic processes in SLE. Here, we explore the roles of the mitochondrial protein cytidine/uridine monophosphate kinase 2 (CMPK2) in IFN-α-mediated pro-atherogenic events. Methods Foam cell measurements were performed by oil red O staining, Dil-oxLDL uptake and the BODIPY approach. The mRNA and protein levels were measured by qPCR and Western blotting, respectively. Isolation of CD4+ T cells and monocytes was performed with monoclonal antibodies conjugated with microbeads. Manipulation of protein expression was conducted by either small interference RNA (siRNA) knockdown or CRISPR/Cas9 knockout. The expression of mitochondrial reactive oxygen species (mtROS) was determined by flow cytometry and confocal microscopy. Results IFN-α enhanced oxLDL-induced foam cell formation and Dil-oxLDL uptake by macrophages. In addition to IFN-α, several triggers of atherosclerosis, including thrombin and IFN-γ, can induce CMPK2 expression, which was elevated in CD4+ T cells and CD14+ monocytes isolated from SLE patients compared to those isolated from controls. The analysis of cellular subfractions revealed that CMPK2 was present in both mitochondrial and cytosolic fractions. IFN-α-induced CMPK2 expression was inhibited by Janus kinase (JAK)1/2 and tyrosine kinase 2 (Tyk2) inhibitors. Both the knockdown and knockout of CMPK2 attenuated IFN-α-mediated foam cell formation, which involved the reduction of scavenger receptor class A (SR-A) expression. CMPK2 also regulated IFN-α-enhanced mtROS production and inflammasome activation. Conclusions The study suggests that CMPK2 plays contributing roles in the pro-atherogenic effects of IFN-α. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02470-6.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, Republic of China.,Graduate Institute of Clinical Research, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, Republic of China
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, Republic of China
| | - De-Wei Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, Republic of China
| | - Chien-Hsiang Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, Republic of China
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, Republic of China.
| |
Collapse
|
21
|
Traves PG, Murray B, Campigotto F, Galien R, Meng A, Di Paolo JA. JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by filgotinib, upadacitinib, tofacitinib and baricitinib. Ann Rheum Dis 2021; 80:865-875. [PMID: 33741556 PMCID: PMC8237188 DOI: 10.1136/annrheumdis-2020-219012] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/16/2023]
Abstract
Objective Janus kinase inhibitors (JAKinibs) are efficacious in rheumatoid arthritis (RA) with variable reported rates of adverse events, potentially related to differential JAK family member selectivity. Filgotinib was compared with baricitinib, tofacitinib and upadacitinib to elucidate the pharmacological basis underlying its clinical efficacy and safety. Methods In vitro JAKinib inhibition of signal transducer and activator of transcription phosphorylation (pSTAT) was measured by flow cytometry in peripheral blood mononuclear cells and whole blood from healthy donors and patients with RA following cytokine stimulation of distinct JAK/STAT pathways. The average daily pSTAT and time above 50% inhibition were calculated at clinical plasma drug exposures in immune cells. The translation of these measures was evaluated in ex vivo-stimulated assays in phase 1 healthy volunteers. Results JAKinib potencies depended on cytokine stimulus, pSTAT readout and cell type. JAK1-dependent pathways (interferon (IFN)α/pSTAT5, interleukin (IL)-6/pSTAT1) were among the most potently inhibited by all JAKinibs in healthy and RA blood, with filgotinib exhibiting the greatest selectivity for JAK1 pathways. Filgotinib (200 mg once daily) had calculated average daily target inhibition for IFNα/pSTAT5 and IL-6/pSTAT1 that was equivalent to tofacitinib (5 mg two times per day), upadacitinib (15 mg once daily) and baricitinib (4 mg once daily), with the least average daily inhibition for the JAK2-dependent and JAK3-dependent pathways including IL-2, IL-15, IL-4 (JAK1/JAK3), IFNγ (JAK1/JAK2), granulocyte colony stimulating factor, IL-12, IL-23 (JAK2/tyrosine kinase 2) and granulocyte-macrophage colony-stimulating factor (JAK2/JAK2). Ex vivo pharmacodynamic data from phase 1 healthy volunteers clinically confirmed JAK1 selectivity of filgotinib. Conclusion Filgotinib inhibited JAK1-mediated signalling similarly to other JAKinibs, but with less inhibition of JAK2-dependent and JAK3-dependent pathways, providing a mechanistic rationale for its apparently differentiated efficacy:safety profile.
Collapse
Affiliation(s)
- Paqui G Traves
- Inflammation Biology, Gilead Sciences, Foster City, California, USA
| | - Bernard Murray
- Drug Metabolism, Gilead Sciences, Foster City, California, USA
| | | | - René Galien
- Translational Research, Galapagos SASU, Romainville, France
| | - Amy Meng
- Clinical Pharmacology, Gilead Sciences, Foster City, California, USA
| | - Julie A Di Paolo
- External Innovation, Gilead Sciences, Foster City, California, USA
| |
Collapse
|
22
|
Ptacek J, Hawtin RE, Sun D, Louie B, Evensen E, Mittleman BB, Cesano A, Cavet G, Bingham CO, Cofield SS, Curtis JR, Danila MI, Raman C, Furie RA, Genovese MC, Robinson WH, Levesque MC, Moreland LW, Nigrovic PA, Shadick NA, O’Dell JR, Thiele GM, Clair EWS, Striebich CC, Hale MB, Khalili H, Batliwalla F, Aranow C, Mackay M, Diamond B, Nolan GP, Gregersen PK, Bridges SL. Diminished cytokine-induced Jak/STAT signaling is associated with rheumatoid arthritis and disease activity. PLoS One 2021; 16:e0244187. [PMID: 33444321 PMCID: PMC7808603 DOI: 10.1371/journal.pone.0244187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic and incurable autoimmune disease characterized by chronic inflammation in synovial lining of joints. To identify the signaling pathways involved in RA, its disease activity, and treatment response, we adapted a systems immunology approach to simultaneously quantify 42 signaling nodes in 21 immune cell subsets (e.g., IFNα→p-STAT5 in B cells) in peripheral blood mononuclear cells (PBMC) from 194 patients with longstanding RA (including 98 patients before and after treatment), and 41 healthy controls (HC). We found multiple differences between patients with RA compared to HC, predominantly in cytokine-induced Jak/STAT signaling in many immune cell subsets, suggesting pathways that may be associated with susceptibility to RA. We also found that high RA disease activity, compared to low disease activity, was associated with decreased (e.g., IFNα→p-STAT5, IL-10→p-STAT1) or increased (e.g., IL-6→STAT3) response to stimuli in multiple cell subsets. Finally, we compared signaling in patients with established, refractory RA before and six months after initiation of methotrexate (MTX) or TNF inhibitors (TNFi). We noted significant changes from pre-treatment to post-treatment in IFNα→p-STAT5 signaling and IL-10→p-STAT1 signaling in multiple cell subsets; these changes brought the aberrant RA signaling profiles toward those of HC. This large, comprehensive functional signaling pathway study provides novel insights into the pathogenesis of RA and shows the potential of quantification of cytokine-induced signaling as a biomarker of disease activity or treatment response.
Collapse
Affiliation(s)
- Jason Ptacek
- Nodality, Inc., South San Francisco, California, United States of America
| | - Rachael E. Hawtin
- Nodality, Inc., South San Francisco, California, United States of America
| | - Dongmei Sun
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Brent Louie
- Nodality, Inc., South San Francisco, California, United States of America
| | - Erik Evensen
- Nodality, Inc., South San Francisco, California, United States of America
| | | | - Alessandra Cesano
- Nodality, Inc., South San Francisco, California, United States of America
| | - Guy Cavet
- Nodality, Inc., South San Francisco, California, United States of America
| | - Clifton O. Bingham
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stacey S. Cofield
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Jeffrey R. Curtis
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Maria I. Danila
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Chander Raman
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Richard A. Furie
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - Mark C. Genovese
- Stanford University School of Medicine, Stanford, California, United States of America
| | - William H. Robinson
- Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Larry W. Moreland
- University of Colorado Anschutz Medical Campus, Boulder, Colorado, United States of America
| | - Peter A. Nigrovic
- Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts, United States of America
| | - Nancy A. Shadick
- Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts, United States of America
| | - James R. O’Dell
- University of Nebraska Medical Center, Lincoln, Nebraska, United States of America
| | - Geoffrey M. Thiele
- University of Nebraska Medical Center, Lincoln, Nebraska, United States of America
| | - E. William St Clair
- Duke University Medical Center, Durham, North Carolina, United States of America
| | | | - Matthew B. Hale
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Houman Khalili
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - Franak Batliwalla
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - Cynthia Aranow
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - Meggan Mackay
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - Betty Diamond
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - Garry P. Nolan
- Nodality, Inc., South San Francisco, California, United States of America
| | - Peter K. Gregersen
- The Feinstein Institute for Medical Research and Northwell Health, Manhasset, New York, United States of America
| | - S. Louis Bridges
- Hospital for Special Surgery and Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Zan J, Xu R, Tang X, Lu M, Xie S, Cai J, Huang Z, Zhang J. RNA helicase DDX5 suppresses IFN-I antiviral innate immune response by interacting with PP2A-Cβ to deactivate IRF3. Exp Cell Res 2020; 396:112332. [PMID: 33065113 DOI: 10.1016/j.yexcr.2020.112332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022]
Abstract
DEAD-box (DDX) helicases are critical for recognizing viral nucleic acids to regulate antiviral innate immunity. Although DDX5 has been reported to participate in various virus infection, whether DDX5 regulates innate immune responses and its underlying mechanisms are still unknown. Here, we report that DDX5 is a negative regulator of type I IFN (IFN-I) production in antiviral responses. DDX5 knockdown significantly promoted DNA or RNA virus infection-induced IFN-I production and IFN-stimulated genes (ISGs) expression, while ectopic expression of DDX5 inhibited IFN-I production and promoted viral replication. Furthermore, we found that DDX5 specifically interacted with serine/threonine-protein phosphatase 2 A catalytic subunit beta (PP2A-Cβ) and viral infection enhanced the interaction between DDX5 and PP2A-Cβ. Besides, PP2A-Cβ interacted with IFN regulatory factor 3 (IRF3), and PP2A-Cβ knockdown promoted viral infection-induced IRF3 phosphorylation and IFN-I production. In addition, DDX5 knockdown rendered the mice more resistant to viral infection and enhanced antiviral innate immunity in vivo. Thus, DDX5 suppresses IFN-I antiviral innate immune response by interacting with PP2A-Cβ to deactivate IRF3. Together, these findings identify a negative role of DDX5 on regulating IFN-I signaling in innate immune responses.
Collapse
Affiliation(s)
- Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ruixian Xu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xialin Tang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Minyi Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shanshan Xie
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jun Cai
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhi Huang
- Key Laboratory of Endemic and Ethnic Disease, Ministry of Education, Guizhou Medical University, Guiyang, 550002, China; The Infectious Disease Monitoring Laboratory of Guizhou International Travel Heathcare Center, Guiyang, 550002, China.
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
24
|
Nejatbakhsh Samimi L, Farhadi E, Tahmasebi MN, Jamshidi A, Sharafat Vaziri A, Mahmoudi M. NF-κB signaling in rheumatoid arthritis with focus on fibroblast-like synoviocytes. AUTOIMMUNITY HIGHLIGHTS 2020. [PMCID: PMC7414649 DOI: 10.1186/s13317-020-00135-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The nuclear factor-κB (NF-κB) signaling pathway regulates multiple processes in innate and adaptive immune cells. This pathway is involved in inflammation through the regulation of cytokines, chemokines, and adhesion molecules expression. The NF-κB transcription factor also participates in the survival, proliferation, and differentiation of cells. Therefore, deregulated NF-κB activation contributes to the pathogenesis of inflammatory diseases. Rheumatoid arthritis (RA) is classified as a heterogeneous and complex autoimmune inflammatory disease. Although different immune and non-immune cells contribute to the RA pathogenesis, fibroblast-like synoviocytes (FLSs) play a crucial role in disease progression. These cells are altered during the disease and produce inflammatory mediators, including inflammatory cytokines and matrix metalloproteinases, which result in joint and cartilage erosion. Among different cell signaling pathways, it seems that deregulated NF-κB activation is associated with the inflammatory picture of RA. NF-κB activation can also promote the proliferation of RA-FLSs as well as the inhibition of FLS apoptosis that results in hyperplasia in RA synovium. In this review, the role of NF-κB transcription factor in immune and non-immune cells (especially FLSs) that are involved in RA pathogenesis are discussed.
Collapse
|
25
|
Andersson CR, Selvin T, Blom K, Rubin J, Berglund M, Jarvius M, Lenhammar L, Parrow V, Loskog A, Fryknäs M, Nygren P, Larsson R. Mebendazole is unique among tubulin-active drugs in activating the MEK-ERK pathway. Sci Rep 2020; 10:13124. [PMID: 32753665 PMCID: PMC7403428 DOI: 10.1038/s41598-020-68986-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/19/2020] [Indexed: 11/09/2022] Open
Abstract
We recently showed that the anti-helminthic compound mebendazole (MBZ) has immunomodulating activity in monocyte/macrophage models and induces ERK signalling. In the present study we investigated whether MBZ induced ERK activation is shared by other tubulin binding agents (TBAs) and if it is observable also in other human cell types. Curated gene signatures for a panel of TBAs in the LINCS Connectivity Map (CMap) database showed a unique strong negative correlation of MBZ with MEK/ERK inhibitors indicating ERK activation also in non-haematological cell lines. L1000 gene expression signatures for MBZ treated THP-1 monocytes also connected negatively to MEK inhibitors. MEK/ERK phosphoprotein activity testing of a number of TBAs showed that only MBZ increased the activity in both THP-1 monocytes and PMA differentiated macrophages. Distal effects on ERK phosphorylation of the substrate P90RSK and release of IL1B followed the same pattern. The effect of MBZ on MEK/ERK phosphorylation was inhibited by RAF/MEK/ERK inhibitors in THP-1 models, CD3/IL2 stimulated PBMCs and a MAPK reporter HEK-293 cell line. MBZ was also shown to increase ERK activity in CD4+ T-cells from lupus patients with known defective ERK signalling. Given these mechanistic features MBZ is suggested suitable for treatment of diseases characterized by defective ERK signalling, notably difficult to treat autoimmune diseases.
Collapse
Affiliation(s)
- Claes R Andersson
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden.
| | - Tove Selvin
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Kristin Blom
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Jenny Rubin
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Malin Berglund
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Malin Jarvius
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Lena Lenhammar
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Vendela Parrow
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, 75185, Uppsala, Sweden
| | - Mårten Fryknäs
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, 75185, Uppsala, Sweden
| | - Rolf Larsson
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
26
|
Ma L, He H, Jiang K, Jiang P, He H, Feng S, Chen K, Shao J, Deng G. FAM46C inhibits cell proliferation and cell cycle progression and promotes apoptosis through PTEN/AKT signaling pathway and is associated with chemosensitivity in prostate cancer. Aging (Albany NY) 2020; 12:6352-6369. [PMID: 32283544 PMCID: PMC7185131 DOI: 10.18632/aging.103030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/23/2020] [Indexed: 04/11/2023]
Abstract
Family with sequence similarity 46 member C (FAM46C) is a non-canonical poly(A) polymerase that is associated with tumorigenesis. However, its role in prostate cancer development is not fully understood. Herein, we determined expression pattern of FAM46C in prostate cancer and further identified its effect on the tumorigenesis and chemosensitivity. FAM46C expression was decreased in prostate cancer tissues and cell lines compared with corresponding controls. FAM46C expression was significantly associated with the Gleason score, tumor size and overall survival. FAM46C knockdown in 22RV1 and DU145 cells significantly inhibited apoptosis and promoted cell proliferation and cell cycle progression as well as activation of AKT. FAM46C overexpression had an inverse effect in DU145 cells and inhibited tumor growth in vivo. FAM46C inhibited cell proliferation and cell cycle progression and induced apoptosis via the PTEN/AKT signaling pathway. FAM46C promoted PTEN expression through inhibiting PTEN ubiquitination. The prostate cancer cells and patient-derived xenograft (PDX) mice with high-FAM46C-expressing demonstrated an enhanced chemosensitivity to docetaxel. These findings suggest that FAM46C control cell proliferation, cell cycle and apoptosis through PTEN/AKT signaling pathway and is associated with chemosensitivity of prostate cancer. Modulation of their levels may offer a new approach for improving anti-tumor efficacy for chemotherapeutic agents in prostate cancer.
Collapse
Affiliation(s)
- Libin Ma
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Huadong He
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Kang Jiang
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Peiwu Jiang
- Surgical Department I, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China
| | - Han He
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Shengjia Feng
- Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, China
| | - Kean Chen
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314001, Zhejiang, China
| | - Jia Shao
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Gang Deng
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| |
Collapse
|
27
|
McCormack R, Hunte R, Podack ER, Plano GV, Shembade N. An Essential Role for Perforin-2 in Type I IFN Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 204:2242-2256. [PMID: 32161097 DOI: 10.4049/jimmunol.1901013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
Type I IFNs play a complex role in determining the fate of microbial pathogens and may also be deleterious to the host during bacterial and viral infections. Upon ligand binding, a receptor proximal complex consisting of IFN-α and -β receptors 1 and 2 (IFNAR1, IFNAR2, respectively), tyrosine kinase 2 (Tyk2), Jak1, and STAT2 are assembled and promote the phosphorylation of STAT1 and STAT2. However, how the IFNARs proximal complex is assembled upon binding to IFN is poorly understood. In this study, we show that the membrane-associated pore-forming protein Perforin-2 (P2) is critical for LPS-induced endotoxic shock in wild-type mice. Type I IFN-mediated JAK-STAT signaling is severely impaired, and activation of MAPKs and PI3K signaling pathways are delayed in P2-deficient mouse bone marrow-derived macrophages, mouse embryonic fibroblasts (MEFs), and human HeLa cells upon IFN stimulation. The P2 N-glycosylated extracellular membrane attack complex/perforin domain and the P2 domain independently associate with the extracellular regions of IFNAR1 and IFNAR2, respectively, in resting MEFs. In addition, the P2 cytoplasmic tail domain mediated the constitutive interaction between STAT2 and IFNAR2 in resting MEFs, an interaction that is dependent on the association of the extracellular regions of P2 and IFNAR2. Finally, the constitutive association of P2 with both receptors and STAT2 is critical for the receptor proximal complex assembly and reciprocal transphosphorylation of Jak1 and Tyk2 as well as the phosphorylation and activation of STAT1 and STAT2 upon IFN-β stimulation.
Collapse
Affiliation(s)
- Ryan McCormack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Richard Hunte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Eckhard R Podack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Gregory V Plano
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Noula Shembade
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136 .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| |
Collapse
|
28
|
Petralia MC, Mazzon E, Basile MS, Cutuli M, Di Marco R, Scandurra F, Saraceno A, Fagone P, Nicoletti F, Mangano K. Effects of Treatment with the Hypomethylating Agent 5-aza-2'-deoxycytidine in Murine Type II Collagen-Induced Arthritis. Pharmaceuticals (Basel) 2019; 12:ph12040174. [PMID: 31783688 PMCID: PMC6958460 DOI: 10.3390/ph12040174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
The emerging role of epigenetics in the pathogenesis of autoimmune diseases has recently attracted much interest on the possible use of epigenetic modulators for the prevention and treatment of these diseases. In particular, we and others have shown that drugs that inhibit DNA methylation, such as azacitidine (AZA) and decitabine (DAC), already used for the treatment of acute myeloid leukemia, exert powerful beneficial effects in rodent models of type 1 diabetes, multiple sclerosis, and Guillain Barrè syndrome. Along this line of research, we have presently studied the effects of DAC in a murine model of rheumatoid arthritis induced by type II collagen and have demonstrated that DAC administration was associated with a significant amelioration of the clinical condition, along with in vivo and ex vivo modification of the immunological profile of the so-treated mice, that exhibited a diminished production of Th1 and Th17 pro-inflammatory cytokines and reduction of anti-type II collagen autoantibodies.
Collapse
Affiliation(s)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy; (M.C.P.); (E.M.)
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.B.); (F.S.); (A.S.); (P.F.); (K.M.)
| | - Marco Cutuli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.C.); (R.D.M.)
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.C.); (R.D.M.)
| | - Fabiola Scandurra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.B.); (F.S.); (A.S.); (P.F.); (K.M.)
| | - Andrea Saraceno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.B.); (F.S.); (A.S.); (P.F.); (K.M.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.B.); (F.S.); (A.S.); (P.F.); (K.M.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.B.); (F.S.); (A.S.); (P.F.); (K.M.)
- Correspondence: ; Tel.: +39-095-478-1270
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.B.); (F.S.); (A.S.); (P.F.); (K.M.)
| |
Collapse
|
29
|
Ferreira RC, Castro Dopico X, Oliveira JJ, Rainbow DB, Yang JH, Trzupek D, Todd SA, McNeill M, Steri M, Orrù V, Fiorillo E, Crouch DJM, Pekalski ML, Cucca F, Tree TI, Vyse TJ, Wicker LS, Todd JA. Chronic Immune Activation in Systemic Lupus Erythematosus and the Autoimmune PTPN22 Trp 620 Risk Allele Drive the Expansion of FOXP3 + Regulatory T Cells and PD-1 Expression. Front Immunol 2019; 10:2606. [PMID: 31781109 PMCID: PMC6857542 DOI: 10.3389/fimmu.2019.02606] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 02/01/2023] Open
Abstract
In systemic lupus erythematosus (SLE), perturbed immunoregulation underpins a pathogenic imbalance between regulatory and effector CD4+ T-cell activity. However, to date, the characterization of the CD4+ regulatory T cell (Treg) compartment in SLE has yielded conflicting results. Here we show that patients have an increased frequency of CD4+FOXP3+ cells in circulation owing to a specific expansion of thymically-derived FOXP3+HELIOS+ Tregs with a demethylated FOXP3 Treg-specific demethylated region. We found that the Treg expansion was strongly associated with markers of recent immune activation, including PD-1, plasma concentrations of IL-2 and the type I interferon biomarker soluble SIGLEC-1. Since the expression of the negative T-cell signaling molecule PTPN22 is increased and a marker of poor prognosis in SLE, we tested the influence of its missense risk allele Trp620 (rs2476601C>T) on Treg frequency. Trp620 was reproducibly associated with increased frequencies of thymically-derived Tregs in blood, and increased PD-1 expression on both Tregs and effector T cells (Teffs). Our results support the hypothesis that FOXP3+ Tregs are increased in SLE patients as a consequence of a compensatory mechanism in an attempt to regulate pathogenic autoreactive Teff activity. We suggest that restoration of IL-2-mediated homeostatic regulation of FOXP3+ Tregs by IL-2 administration could prevent disease flares rather than treating at the height of a disease flare. Moreover, stimulation of PD-1 with specific agonists, perhaps in combination with low-dose IL-2, could be an effective therapeutic strategy in autoimmune disease and in other immune disorders.
Collapse
Affiliation(s)
- Ricardo C Ferreira
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Wellcome Centre for Human Genetics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Xaquin Castro Dopico
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - João J Oliveira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Daniel B Rainbow
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Wellcome Centre for Human Genetics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jennie H Yang
- Department of Immunobiology, NIHR Biomedical Research Centre, King's College London, London, United Kingdom
| | - Dominik Trzupek
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Wellcome Centre for Human Genetics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sarah A Todd
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Mhairi McNeill
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Daniel J M Crouch
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Wellcome Centre for Human Genetics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Marcin L Pekalski
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Wellcome Centre for Human Genetics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Tim I Tree
- Department of Immunobiology, NIHR Biomedical Research Centre, King's College London, London, United Kingdom
| | - Tim J Vyse
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Linda S Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Wellcome Centre for Human Genetics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Wellcome Centre for Human Genetics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Zhang Z, Zhang L, Wang B, Zhu X, Zhao L, Chu C, Guo Q, Wei R, Yin X, Zhang Y, Li X. RNF144B inhibits LPS-induced inflammatory responses via binding TBK1. J Leukoc Biol 2019; 106:1303-1311. [PMID: 31509299 PMCID: PMC6899866 DOI: 10.1002/jlb.2a0819-055r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 01/02/2023] Open
Abstract
Innate immune responses need to be precisely controlled to avoid prolonged inflammation and prevent unwanted damage to the host. Here, we report that RNF144B responded dynamically to LPS stimulation and negatively regulated LPS‐induced inflammation. We found that RNF144B interacted with the scaffold/dimerization domain (SDD) of TANK binding kinase 1 (TBK1) through the in between RING (IBR) domain to inhibit its phosphorylation and K63‐linked polyubiquitination, which led to TBK1 inactivation, IRF3 dephosphorylation, and IFN‐β reduction. RNF144B knockdown with siRNA increased IRF3 activation and IFN‐β production in response to LPS stimulation. Our study identifies that RNF144B interaction with TBK1 is sufficient to inactivate TBK1 and delineates a previously unrecognized role for RNF144B in innate immune responses.
Collapse
Affiliation(s)
- Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Luoyan Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Bin Wang
- Department of Peripheral Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chu Chu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xunqiang Yin
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yunhong Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
31
|
Severa M, Rizzo F, Srinivasan S, Di Dario M, Giacomini E, Buscarinu MC, Cruciani M, Etna MP, Sandini S, Mechelli R, Farina A, Trivedi P, Hertzog PJ, Salvetti M, Farina C, Coccia EM. A cell type-specific transcriptomic approach to map B cell and monocyte type I interferon-linked pathogenic signatures in Multiple Sclerosis. J Autoimmun 2019; 101:1-16. [PMID: 31047767 DOI: 10.1016/j.jaut.2019.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Alteration in endogenous Interferon (IFN) system may profoundly impact immune cell function in autoimmune diseases. Here, we provide evidence that dysregulation in IFN-regulated genes and pathways are involved in B cell- and monocyte-driven pathogenic contribution to Multiple Sclerosis (MS) development and maintenance. In particular, by using an Interferome-based cell type-specific approach, we characterized an increased susceptibility to an IFN-linked caspase-3 dependent apoptotic cell death in both B cells and monocytes of MS patients that may arise from their chronic activation and persistent stimulation by activated T cells. Ongoing caspase-3 activation functionally impacts on MS monocyte properties influencing the STAT-3/IL-16 axis, thus, driving increased expression and massive release of the bio-active IL-16 triggering and perpetuating CD4+ T cell migration. Importantly, our analysis also identified a previously unknown multi-component defect in type I IFN-mediated signaling and response to virus pathways specific of MS B cells, impacting on induction of anti-viral responses and Epstein-barr virus infection control in patients. Taking advantage of cell type-specific transcriptomics and in-depth functional validation, this study revealed pathogenic contribution of endogenous IFN signaling and IFN-regulated cell processes to MS pathogenesis with implications on fate and functions of B cells and monocytes that may hold therapeutic potential.
Collapse
Affiliation(s)
- Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Fabiana Rizzo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Sundararajan Srinivasan
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Di Dario
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Giacomini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Chiara Buscarinu
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy
| | - Melania Cruciani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marilena P Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Rosella Mechelli
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy; Department of Human Science and Promotion of Quality of Life, San Raffaele Roma Open University and IRCCS San Raffaele-Pisana, Rome, Italy
| | - Antonella Farina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Paul J Hertzog
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Marco Salvetti
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy; Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Isernia, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Eliana M Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
32
|
Llibre A, Duffy D. Immune response biomarkers in human and veterinary research. Comp Immunol Microbiol Infect Dis 2018; 59:57-62. [PMID: 30290889 PMCID: PMC7172169 DOI: 10.1016/j.cimid.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/22/2018] [Accepted: 09/17/2018] [Indexed: 11/30/2022]
Abstract
Biomarkers are increasingly utilised in biological research and clinical practice for diagnosis of disease, monitoring of therapeutic prognosis, or as end points in clinical studies. Cytokines are small molecules that orchestrate immune responses and as such have great potential as biomarkers for both human and veterinary fields. Given the ease of sampling in the blood, and their high prevalence in clinical applications we will focus on protein detection as an area for biomarker discovery. This is facilitated by new technological developments such as digital ELISA that have led to significant increases in sensitivity. Two highly relevant examples include type I interferons, namely IFNα, that is now directly quantifiable by digital ELISA from biological samples. The application of this approach to the study of the unique bat interferon response may reveal novel findings with applications in both human and veterinary research. As a second example we will describe the use of CXCL10 as a disease biomarker in Tuberculosis, highlighting findings from human and mouse studies that should be considered in veterinary research. In summary, we describe how cytokines may be applied as novel biomarkers and illustrate two key examples where human and veterinary research may complement each other in line with the One Health objectives.
Collapse
Affiliation(s)
- Alba Llibre
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France; INSERM U1223, Paris, France
| | - Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France; INSERM U1223, Paris, France.
| |
Collapse
|
33
|
Chetina EV, Markova GA. [Upcoming value of gene expression analysis in rheumatology]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:221-232. [PMID: 29964257 DOI: 10.18097/pbmc20186403221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease of unknown etiology, which involves disturbance in immune system signaling pathway functions, damage of other tissues, pain and joint destruction. Modern treatment attempts to improve pathophysiological and biochemical mechanisms damaged by the disease. However, due to the RA patient heterogeneity personalized approach to treatment is required; the choice of personalized treatment is complicated by the variability of patient's response to treatment. Gene expression analysis might serve a tool for the disease control and therapy personification for inhibition of inflammation and pain as well as for prevention of joint destruction.
Collapse
Affiliation(s)
- E V Chetina
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - G A Markova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| |
Collapse
|
34
|
Recombinant interferon alpha 2b in rheumatoid arthritis: good antigen for rheumatoid arthritis antibodies. Cent Eur J Immunol 2018; 43:58-68. [PMID: 29736147 PMCID: PMC5927174 DOI: 10.5114/ceji.2018.74874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023] Open
Abstract
Aim of the study Interferon alpha-induced arthritis and activation of the type 1 interferon pathway during rheumatoid arthritis (RA) has been well documented but the underlying mechanism remains unclear. This study addressed the binding specificity of antibodies with recombinant interferon alpha 2b (rIFN α-2b) in sera from different RA patients. Utilization of anti-hrIFN α-2b antibodies as a probe for estimation of interferon α-2b concentration in RA patients’ synovial fluid (SF) was also investigated. Material and methods Binding specificities of antibodies from the sera of 60 RA patients and 35 controls subjects were studied by direct binding, inhibition ELISA, and quantitative precipitation titration. Inhibition ELISA was also used to estimate patients’ SF interferon α-2b concentrations. Results RA IgG from patients’ sera showed strong recognition to hrIFN α-2b in comparison to commercially available interferon (IFN α-2b) (p < 0.05) or the gene encoding this interferon (IFN α-2b gene) (p < 0.05). The affinity of RA antibodies for rIFN α-2b (1.10 × 10–7 M) was found to be high as assessed by Langmuir plot. No significant difference in the level of interferon α in the SF of RA patients was observed as compared to the healthy controls. Conclusions rIFN α-2b presents unique epitopes that might explain the possible antigenic role in the induction of RA antibodies and anti-rIFN α-2b antibodies represent an alternative immunological probe for the estimation of interferon α in the SF of RA patients.
Collapse
|
35
|
Qaisar N, Jurczyk A, Wang JP. Potential role of type I interferon in the pathogenic process leading to type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2018; 25:94-100. [PMID: 29369915 PMCID: PMC5836805 DOI: 10.1097/med.0000000000000399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Understanding the relationship between viral infections and the development of type 1 diabetes (T1D) is essential for T1D prevention. Virus-induced innate immune responses, specifically type I interferon (IFN-I) and the IFN gene signature, orchestrate early events of β-cell dysfunction preceding islet autoimmunity. We summarize recent advances in how IFN-I and the IFN gene signature can drive T1D development. RECENT FINDINGS IFN-I, particularly IFN-α, and the IFN gene signature have been detected in islets and peripheral blood of T1D patients. T1D risk genes in the IFN-I signaling pathway regulate antiviral responses in β cells driven by IFN-I and proinflammatory cytokines. Polymorphisms in these genes may cause chronic dysregulated IFN signaling in islets, characterized by hyperexpression of IFN-I, the IFN gene signature, and major histocompatibility complex class I during viral infection. Islet-cell inflammation mediated by aberrant IFN signaling drives β-cell apoptosis by initiating autoreactivity against β-cell antigens. The profound elevation in IFN-I and the IFN gene signature observed in some forms of T1D are also seen in a novel group of human autoimmune and autoinflammatory diseases called interferonopathies. SUMMARY Despite significant advances, further studies are required to functionally dissect the mechanisms by which excessive IFN-I contributes to the evolution of autoimmunity that destroys β cells.
Collapse
Affiliation(s)
- Natasha Qaisar
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Agata Jurczyk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Corresponding author: Jennifer P. Wang, M.D., Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, Phone: 508-856-8414, Fax: 508-856-6176,
| |
Collapse
|
36
|
Tarbell KV, Egen JG. Breaking self-tolerance during autoimmunity and cancer immunity: Myeloid cells and type I IFN response regulation. J Leukoc Biol 2018; 103:1117-1129. [PMID: 29393979 DOI: 10.1002/jlb.3mir1017-400r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 02/28/2024] Open
Abstract
The generation and regulation of innate immune signals are key determinants of autoimmune pathogenesis. Emerging evidence suggests that parallel processes operating in the setting of solid tumors can similarly determine the balance between tolerance and immunity and ultimately the effectiveness of the antitumor immune response. In both contexts, self-specific responses start with innate immune cell activation that leads to the initial break in self-tolerance, which can be followed by immune response amplification and maturation through innate-adaptive crosstalk, and finally immune-mediated tissue/tumor destruction that can further potentiate inflammation. Of particular importance for these processes is type I IFN, which is induced in response to endogenous ligands, such as self-nucleic acids, and acts on myeloid cells to promote the expansion of autoreactive or tumor-specific T cells and their influx into the target tissue. Evidence from the study of human disease pathophysiology and genetics and mouse models of disease has revealed an extensive and complex network of negative regulatory pathways that has evolved to restrain type I IFN production and activity. Here, we review the overlapping features of self- and tumor-specific immune responses, including the central role that regulators of the type I IFN response and innate immune cell activation play in maintaining tolerance, and discuss how a better understanding of the pathophysiology of autoimmunity can help to identify new approaches to promote immune-mediated tumor destruction.
Collapse
Affiliation(s)
- Kristin V Tarbell
- Department of Oncology, Amgen, Inc., South San Francisco, California, USA
| | - Jackson G Egen
- Department of Oncology, Amgen, Inc., South San Francisco, California, USA
| |
Collapse
|
37
|
Romão VC, Vital EM, Fonseca JE, Buch MH. Right drug, right patient, right time: aspiration or future promise for biologics in rheumatoid arthritis? Arthritis Res Ther 2017; 19:239. [PMID: 29065909 PMCID: PMC5655983 DOI: 10.1186/s13075-017-1445-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Individualising biologic disease-modifying anti-rheumatic drugs (bDMARDs) to maximise outcomes and deliver safe and cost-effective care is a key goal in the management of rheumatoid arthritis (RA). Investigation to identify predictive tools of bDMARD response is a highly active and prolific area of research. In addition to clinical phenotyping, cellular and molecular characterisation of synovial tissue and blood in patients with RA, using different technologies, can facilitate predictive testing. This narrative review will summarise the literature for the available bDMARD classes and focus on where progress has been made. We will also look ahead and consider the increasing use of 'omics' technologies, the potential they hold as well as the challenges, and what is needed in the future to fully realise our ambition of personalised bDMARD treatment.
Collapse
Affiliation(s)
- Vasco C. Romão
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Department of Rheumatology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Av. Professor Egas Moniz, 1649-035 Lisboa, Portugal
| | - Edward M. Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - João Eurico Fonseca
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Department of Rheumatology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Av. Professor Egas Moniz, 1649-035 Lisboa, Portugal
| | - Maya H. Buch
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
38
|
Tchetina E, Markova G. The clinical utility of gene expression examination in rheumatology. Mediterr J Rheumatol 2017; 28:116-126. [PMID: 32185269 PMCID: PMC7046055 DOI: 10.31138/mjr.28.3.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/24/2017] [Indexed: 01/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease with unknown etiology that affects various pathways within the immune system, involves many other tissues and is associated with pain and joint destruction. Current treatments fail to address pathophysiological and biochemical mechanisms involved in joint degeneration and the induction of pain. Moreover, RA patients are extremely heterogeneous and require specific treatments, the choice of which is complicated by the fact that not all patients equally respond to therapy. Gene expression analysis offer tools for patient management and personalization of patient’s care to meet individual needs in controlling inflammation and pain and delaying joint destruction.
Collapse
Affiliation(s)
- Elena Tchetina
- Immunology and Molecular Biology Laboratory, Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Galina Markova
- Immunology and Molecular Biology Laboratory, Nasonova Research Institute of Rheumatology, Moscow, Russia
| |
Collapse
|
39
|
Wu D, Sanin DE, Everts B, Chen Q, Qiu J, Buck MD, Patterson A, Smith AM, Chang CH, Liu Z, Artyomov MN, Pearce EL, Cella M, Pearce EJ. Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function. Immunity 2017; 44:1325-36. [PMID: 27332732 DOI: 10.1016/j.immuni.2016.06.006] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/24/2016] [Accepted: 03/23/2016] [Indexed: 12/17/2022]
Abstract
Greater understanding of the complex host responses induced by type 1 interferon (IFN) cytokines could allow new therapeutic approaches for diseases in which these cytokines are implicated. We found that in response to the Toll-like receptor-9 agonist CpGA, plasmacytoid dendritic cells (pDC) produced type 1 IFNs, which, through an autocrine type 1 IFN receptor-dependent pathway, induced changes in cellular metabolism characterized by increased fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS). Direct inhibition of FAO and of pathways that support this process, such as fatty acid synthesis, prevented full pDC activation. Type 1 IFNs also induced increased FAO and OXPHOS in non-hematopoietic cells and were found to be responsible for increased FAO and OXPHOS in virus-infected cells. Increased FAO and OXPHOS in response to type 1 IFNs was regulated by PPARα. Our findings reveal FAO, OXPHOS and PPARα as potential targets to therapeutically modulate downstream effects of type 1 IFNs.
Collapse
Affiliation(s)
- Duojiao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - David E Sanin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Bart Everts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Qiongyu Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jing Qiu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Michael D Buck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Annette Patterson
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Amber M Smith
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chih-Hao Chang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhiping Liu
- Department of Biomedical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erika L Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Edward J Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
40
|
Hussain N, Zhu W, Jiang C, Xu J, Wu X, Geng M, Hussain S, Cai Y, Xu K, Xu P, Han Y, Sun J, Meng L, Lu S. Down-regulation of miR-10a-5p in synoviocytes contributes to TBX5-controlled joint inflammation. J Cell Mol Med 2017; 22:241-250. [PMID: 28782180 PMCID: PMC5742673 DOI: 10.1111/jcmm.13312] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs are considered to play critical roles in the pathogenesis of human inflammatory arthritis, including rheumatoid arthritis (RA). The purpose of this study was to determine the relationship between miR‐10a‐5p and TBX5 in synoviocytes and evaluate their contribution to joint inflammation. The expression of miR‐10a‐5p and TBX5 in the synovium of RA and human synovial sarcoma cell line SW982 stimulated by IL‐1β was determined by RT‐qPCR and Western blotting. The direct interaction between miR‐10a‐5p and TBX5 3′UTR was determined by dual‐luciferase reporter assay in HeLa cells. Mimics and inhibitors of miR‐10a‐5p were transfected into SW982 cells. TBX5 was overexpressed by plasmid transfection or knocked down by RNAi. Proinflammatory cytokines and TLR3 and MMP13 expressions were determined by RT‐qPCR and Western blotting. Down‐regulated expression of miR‐10a‐5p and up‐regulation of TBX5 in human patients with RA were found compared to patients with OA. IL‐1β could reduce miR‐10a‐5p and increase TBX5 expression in SW982 cells in vitro. The direct target relationship between miR‐10a‐5p and 3′UTR of TBX5 was confirmed by luciferase reporter assay. Alterations of miR‐10‐5p after transfection with its mimic and inhibitor caused the related depression and re‐expression of TBX5 and inflammatory factors in SW982 cells. Overexpression of TBX5 after pCMV3‐TBX5 plasmid transfection significantly promoted the production of TLR3, MMP13 and various inflammatory cytokines, while this effect was rescued after knocking down of TBX5 with its specific siRNA. We conclude that miR‐10a‐5p in a relation with TBX5 regulates joint inflammation in arthritis, which would serve as a diagnostic and therapeutic target for RA treatment.
Collapse
Affiliation(s)
- Nazim Hussain
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Xiaoying Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Manman Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Safdar Hussain
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ke Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Jian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
41
|
Li H, Reksten TR, Ice JA, Kelly JA, Adrianto I, Rasmussen A, Wang S, He B, Grundahl KM, Glenn SB, Miceli-Richard C, Bowman S, Lester S, Eriksson P, Eloranta ML, Brun JG, Gøransson LG, Harboe E, Guthridge JM, Kaufman KM, Kvarnström M, Cunninghame Graham DS, Patel K, Adler AJ, Farris AD, Brennan MT, Chodosh J, Gopalakrishnan R, Weisman MH, Venuturupalli S, Wallace DJ, Hefner KS, Houston GD, Huang AJW, Hughes PJ, Lewis DM, Radfar L, Vista ES, Edgar CE, Rohrer MD, Stone DU, Vyse TJ, Harley JB, Gaffney PM, James JA, Turner S, Alevizos I, Anaya JM, Rhodus NL, Segal BM, Montgomery CG, Scofield RH, Kovats S, Mariette X, Rönnblom L, Witte T, Rischmueller M, Wahren-Herlenius M, Omdal R, Jonsson R, Ng WF, Nordmark G, Lessard CJ, Sivils KL. Identification of a Sjögren's syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons. PLoS Genet 2017. [PMID: 28640813 PMCID: PMC5501660 DOI: 10.1371/journal.pgen.1006820] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sjögren's syndrome (SS) is a common, autoimmune exocrinopathy distinguished by keratoconjunctivitis sicca and xerostomia. Patients frequently develop serious complications including lymphoma, pulmonary dysfunction, neuropathy, vasculitis, and debilitating fatigue. Dysregulation of type I interferon (IFN) pathway is a prominent feature of SS and is correlated with increased autoantibody titers and disease severity. To identify genetic determinants of IFN pathway dysregulation in SS, we performed cis-expression quantitative trait locus (eQTL) analyses focusing on differentially expressed type I IFN-inducible transcripts identified through a transcriptome profiling study. Multiple cis-eQTLs were associated with transcript levels of 2'-5'-oligoadenylate synthetase 1 (OAS1) peaking at rs10774671 (PeQTL = 6.05 × 10-14). Association of rs10774671 with SS susceptibility was identified and confirmed through meta-analysis of two independent cohorts (Pmeta = 2.59 × 10-9; odds ratio = 0.75; 95% confidence interval = 0.66-0.86). The risk allele of rs10774671 shifts splicing of OAS1 from production of the p46 isoform to multiple alternative transcripts, including p42, p48, and p44. We found that the isoforms were differentially expressed within each genotype in controls and patients with and without autoantibodies. Furthermore, our results showed that the three alternatively spliced isoforms lacked translational response to type I IFN stimulation. The p48 and p44 isoforms also had impaired protein expression governed by the 3' end of the transcripts. The SS risk allele of rs10774671 has been shown by others to be associated with reduced OAS1 enzymatic activity and ability to clear viral infections, as well as reduced responsiveness to IFN treatment. Our results establish OAS1 as a risk locus for SS and support a potential role for defective viral clearance due to altered IFN response as a genetic pathophysiological basis of this complex autoimmune disease.
Collapse
Affiliation(s)
- He Li
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Tove Ragna Reksten
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - John A. Ice
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Jennifer A. Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Indra Adrianto
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Shaofeng Wang
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Bo He
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kiely M. Grundahl
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Stuart B. Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Corinne Miceli-Richard
- Université Paris-Sud, AP-HP, Hôpitaux Universitaires Paris-Sud, INSERM U1012, Le Kremlin Bicêtre, France
| | - Simon Bowman
- Rheumatology Department, University Hospital Birmingham, Birmingham, United Kingdom
| | - Sue Lester
- The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Per Eriksson
- Department of Rheumatology, Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, SciLIfeLab, Uppsala University, Uppsala, Sweden
| | - Johan G. Brun
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Lasse G. Gøransson
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Erna Harboe
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Kenneth M. Kaufman
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | | | | | - Ketan Patel
- Division of Oral and Maxillofacial Surgery, Department of Developmental and Surgical Science, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
- Department of Oral and Maxillofacial Surgery, North Memorial Medical Center, Robbinsdale, Minnesota, United States of America
| | - Adam J. Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - A. Darise Farris
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Michael T. Brennan
- Department of Oral Medicine, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - James Chodosh
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rajaram Gopalakrishnan
- Division of Oral Pathology, Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Michael H. Weisman
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Swamy Venuturupalli
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Daniel J. Wallace
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Kimberly S. Hefner
- Hefner Eye Care and Optical Center, Oklahoma City, Oklahoma, United States of America
| | - Glen D. Houston
- Department of Oral and Maxillofacial Pathology, University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, United States of America
- Heartland Pathology Consultants, Edmond, Oklahoma, United States of America
| | - Andrew J. W. Huang
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, United States of America
| | - Pamela J. Hughes
- Division of Oral and Maxillofacial Surgery, Department of Developmental and Surgical Science, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - David M. Lewis
- Department of Oral and Maxillofacial Pathology, University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, United States of America
| | - Lida Radfar
- Oral Diagnosis and Radiology Department, University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, United States of America
| | - Evan S. Vista
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- University of Santo Tomas Hospital, Manila, The Philippines
| | - Contessa E. Edgar
- The Biology Department, Oklahoma Baptist University, Oklahoma City, Oklahoma, United States of America
| | - Michael D. Rohrer
- Hard Tissue Research Laboratory, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Donald U. Stone
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Timothy J. Vyse
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - John B. Harley
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Patrick M. Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Judith A. James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Sean Turner
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Ilias Alevizos
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, United States of America
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research, Universidad del Rosario, Bogotá, Colombia
| | - Nelson L. Rhodus
- Department of Oral Surgery, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Barbara M. Segal
- Division of Rheumatology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Courtney G. Montgomery
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- US Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States of America
| | - Susan Kovats
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Xavier Mariette
- Université Paris-Sud, AP-HP, Hôpitaux Universitaires Paris-Sud, INSERM U1012, Le Kremlin Bicêtre, France
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, SciLIfeLab, Uppsala University, Uppsala, Sweden
| | - Torsten Witte
- Clinic for Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Maureen Rischmueller
- The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
- The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Wan-Fai Ng
- Institute of Cellular Medicine & NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Gunnel Nordmark
- Department of Medical Sciences, Rheumatology, SciLIfeLab, Uppsala University, Uppsala, Sweden
| | - Christopher J. Lessard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kathy L. Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
42
|
Goin DE, Smed MK, Pachter L, Purdom E, Nelson JL, Kjærgaard H, Olsen J, Hetland ML, Zoffmann V, Ottesen B, Jawaheer D. Pregnancy-induced gene expression changes in vivo among women with rheumatoid arthritis: a pilot study. Arthritis Res Ther 2017; 19:104. [PMID: 28545501 PMCID: PMC5445464 DOI: 10.1186/s13075-017-1312-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy women followed prospectively from a pre-pregnancy baseline. In this study, we tested the hypothesis that pregnancy-induced changes in gene expression among women with RA who improve during pregnancy (pregDASimproved) overlap substantially with changes observed among healthy women and differ from changes observed among women with RA who worsen during pregnancy (pregDASworse). METHODS Global gene expression profiles were generated by RNA sequencing (RNA-seq) from 11 women with RA and 5 healthy women before pregnancy (T0) and at the third trimester (T3). Among the women with RA, eight showed an improvement in disease activity by T3, whereas three worsened. Differential expression analysis was used to identify genes demonstrating significant changes in expression within each of the RA and healthy groups (T3 vs T0), as well as between the groups at each time point. Gene set enrichment was assessed in terms of Gene Ontology processes and protein networks. RESULTS A total of 1296 genes were differentially expressed between T3 and T0 among the 8 pregDASimproved women, with 161 genes showing at least two-fold change (FC) in expression by T3. The majority (108 of 161 genes) were also differentially expressed among healthy women (q<0.05, FC≥2). Additionally, a small cluster of genes demonstrated contrasting changes in expression between the pregDASimproved and pregDASworse groups, all of which were inducible by type I interferon (IFN). These IFN-inducible genes were over-expressed at T3 compared to the T0 baseline among the pregDASimproved women. CONCLUSIONS In our pilot RNA-seq dataset, increased pregnancy-induced expression of type I IFN-inducible genes was observed among women with RA who improved during pregnancy, but not among women who worsened. These findings warrant further investigation into expression of these genes in RA pregnancy and their potential role in modulation of disease activity. These results are nevertheless preliminary and should be interpreted with caution until replicated in a larger sample.
Collapse
Affiliation(s)
- Dana E Goin
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| | - Mette Kiel Smed
- Juliane Marie Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lior Pachter
- University of California, Berkeley, Berkeley, CA, USA.,California Institute of Technology, Pasadena, CA, USA
| | | | - J Lee Nelson
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,University of Washington, Seattle, WA, USA
| | - Hanne Kjærgaard
- Juliane Marie Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jørn Olsen
- University of California, Los Angeles, Los Angeles, CA, USA.,Aarhus University, Aarhus, Denmark
| | - Merete Lund Hetland
- DANBIO Registry and Copenhagen Centre for Arthritis Research, Centre for Rheumatology and Spine Diseases (VRR), Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Zoffmann
- Juliane Marie Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bent Ottesen
- Juliane Marie Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Damini Jawaheer
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, USA. .,Aarhus University, Aarhus, Denmark. .,University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
43
|
Margery-Muir AA, Bundell C, Nelson D, Groth DM, Wetherall JD. Gender balance in patients with systemic lupus erythematosus. Autoimmun Rev 2017; 16:258-268. [DOI: 10.1016/j.autrev.2017.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022]
|
44
|
Qaisar N, Lin S, Ryan G, Yang C, Oikemus SR, Brodsky MH, Bortell R, Mordes JP, Wang JP. A Critical Role for the Type I Interferon Receptor in Virus-Induced Autoimmune Diabetes in Rats. Diabetes 2017; 66:145-157. [PMID: 27999109 PMCID: PMC5204313 DOI: 10.2337/db16-0462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/01/2016] [Indexed: 12/11/2022]
Abstract
The pathogenesis of human type 1 diabetes, characterized by immune-mediated damage of insulin-producing β-cells of pancreatic islets, may involve viral infection. Essential components of the innate immune antiviral response, including type I interferon (IFN) and IFN receptor-mediated signaling pathways, are candidates for determining susceptibility to human type 1 diabetes. Numerous aspects of human type 1 diabetes pathogenesis are recapitulated in the LEW.1WR1 rat model. Diabetes can be induced in LEW.1WR1 weanling rats challenged with virus or with the viral mimetic polyinosinic:polycytidylic acid (poly I:C). We hypothesized that disrupting the cognate type I IFN receptor (type I IFN α/β receptor [IFNAR]) to interrupt IFN signaling would prevent or delay the development of virus-induced diabetes. We generated IFNAR1 subunit-deficient LEW.1WR1 rats using CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) genome editing and confirmed functional disruption of the Ifnar1 gene. IFNAR1 deficiency significantly delayed the onset and frequency of diabetes and greatly reduced the intensity of insulitis after poly I:C treatment. The occurrence of Kilham rat virus-induced diabetes was also diminished in IFNAR1-deficient animals. These findings firmly establish that alterations in innate immunity influence the course of autoimmune diabetes and support the use of targeted strategies to limit or prevent the development of type 1 diabetes.
Collapse
Affiliation(s)
- Natasha Qaisar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Suvana Lin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Glennice Ryan
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Chaoxing Yang
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Sarah R Oikemus
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Michael H Brodsky
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Rita Bortell
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - John P Mordes
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
45
|
Dendritic Cells in Systemic Lupus Erythematosus: From Pathogenic Players to Therapeutic Tools. Mediators Inflamm 2016; 2016:5045248. [PMID: 27122656 PMCID: PMC4829720 DOI: 10.1155/2016/5045248] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/13/2016] [Indexed: 12/20/2022] Open
Abstract
System lupus erythematosus (SLE) is a multifactorial systemic autoimmune disease with a wide variety of presenting features. SLE is believed to result from dysregulated immune responses, loss of tolerance of CD4 T cells and B cells to ubiquitous self-antigens, and the subsequent production of anti-nuclear and other autoreactive antibodies. Recent research has associated lupus development with changes in the dendritic cell (DC) compartment, including altered DC subset frequency and localization, overactivation of mDCs and pDCs, and functional defects in DCs. Here we discuss the current knowledge on the role of DC dysfunction in SLE pathogenesis, with the focus on DCs as targets for interventional therapies.
Collapse
|
46
|
Affiliation(s)
- Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
| | - Chien-Huan Weng
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Biochemistry Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
| | - Cristina Rozo
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
| | - Woelsung Yi
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
47
|
Interferon Beta: From Molecular Level to Therapeutic Effects. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:343-72. [DOI: 10.1016/bs.ircmb.2016.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Pellerin A, Otero K, Czerkowicz JM, Kerns HM, Shapiro RI, Ranger AM, Otipoby KL, Taylor FR, Cameron TO, Viney JL, Rabah D. Anti-BDCA2 monoclonal antibody inhibits plasmacytoid dendritic cell activation through Fc-dependent and Fc-independent mechanisms. EMBO Mol Med 2015; 7:464-76. [PMID: 25762615 PMCID: PMC4403047 DOI: 10.15252/emmm.201404719] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Type I interferons (IFN-I) are implicated in the pathogenesis of systemic lupus erythematosus (SLE). In SLE, immune complexes bind to the CD32a (FcγRIIa) receptor on the surface of plasmacytoid dendritic cells (pDCs) and stimulate the secretion of IFN-I from pDCs. BDCA2 is a pDC-specific receptor that, when engaged, inhibits the production of IFN-I in human pDCs. BDCA2 engagement, therefore, represents an attractive therapeutic target for inhibiting pDC-derived IFN-I and may be an effective therapy for the treatment of SLE. In this study, we show that 24F4A, a humanized monoclonal antibody (mAb) against BDCA2, engages BDCA2 and leads to its internalization and the consequent inhibition of TLR-induced IFN-I by pDCs in vitro using blood from both healthy and SLE donors. These effects were confirmed in vivo using a single injection of 24F4A in cynomolgus monkeys. 24F4A also inhibited pDC activation by SLE-associated immune complexes (IC). In addition to the inhibitory effect of 24F4A through engagement of BDCA2, the Fc region of 24F4A was critical for potent inhibition of IC-induced IFN-I production through internalization of CD32a. This study highlights the novel therapeutic potential of an effector-competent anti-BDCA2 mAb that demonstrates a dual mechanism to dampen pDC responses for enhanced clinical efficacy in SLE.
Collapse
Affiliation(s)
- Alex Pellerin
- Immunology Research, Biogen Idec, Cambridge, MA, USA
| | - Karel Otero
- Immunology Research, Biogen Idec, Cambridge, MA, USA
| | | | | | | | - Ann M Ranger
- Immunology Research, Biogen Idec, Cambridge, MA, USA
| | | | | | | | | | - Dania Rabah
- Immunology Research, Biogen Idec, Cambridge, MA, USA
| |
Collapse
|
49
|
Auto-reactions, autoimmunity and psoriatic arthritis. Autoimmun Rev 2015; 14:1142-6. [DOI: 10.1016/j.autrev.2015.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022]
|
50
|
Looney BM, Xia CQ, Concannon P, Ostrov DA, Clare-Salzler MJ. Effects of type 1 diabetes-associated IFIH1 polymorphisms on MDA5 function and expression. Curr Diab Rep 2015; 15:96. [PMID: 26385483 DOI: 10.1007/s11892-015-0656-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent evidence has highlighted the role of the innate immune system in type 1 diabetes (T1D) pathogenesis. Specifically, aberrant activation of the interferon response prior to seroconversion of T1D-associated autoantibodies supports a role for the interferon response as a precipitating event toward activation of autoimmunity. Melanoma differentiation-associated protein 5 (MDA5), encoded by IFIH1, mediates the innate immune system's interferon response to certain viral species that form double-stranded RNA (dsRNA), the MDA5 ligand, during their life cycle. Extensive research has associated single nucleotide polymorphisms (SNPs) within the coding region of IFIH1 with T1D. This review discusses the different risk and protective IFIH1 alleles in the context of recent structural and functional analysis that relate to MDA5 regulation of interferon responses. These studies have provided a functional hypothesis for IFIH1 T1D-associated SNPs' effects on MDA5-mediated interferon responses as well as supporting the genome-wide association (GWA) studies that first associated IFIH1 with T1D.
Collapse
Affiliation(s)
- Benjamin M Looney
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine Interdisciplinary Program in Biomedical Sciences, University of Florida, 1600 SW Archer Rd., Gainesville, FL, 32610, USA.
| | - Chang-Qing Xia
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd., Gainesville, FL, 32610, USA.
| | - Patrick Concannon
- University of Florida Genetics Institute, 2033 Mowry Rd., P.O. Box 103610, Gainesville, FL, 32611, USA.
| | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 2033 Mowry Rd., P.O. Box 103633, Gainesville, FL, 32611, USA.
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 2033 Mowry Rd., P.O. Box 103633, Gainesville, FL, 32611, USA.
- Center for Immunology and Transplantation, University of Florida, 1600 SW Archer Rd., P.O. Box 100275, Gainesville, FL, 32610, USA.
| |
Collapse
|