1
|
Zeng S, Zhang J, Jiang W, Zeng C. The paradoxical role of SERPINB5 in gastrointestinal cancers: oncogene or tumor suppressor? Mol Biol Rep 2025; 52:188. [PMID: 39899168 DOI: 10.1007/s11033-025-10293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND SERPINB5, also known as Maspin, is a non-inhibitory member of the serine protease inhibitor superfamily. SERPINB5 exerts diverse effects on a variety of human cancers, including cell proliferation, angiogenesis, apoptosis, tumor invasion, and metastasis. SERPINB5 has traditionally been regarded as a tumor suppressor gene, but emerging evidences supports its oncogenic properties. METHODS We conducted a comprehensive review of the existing literature on SERPINB5 in gastrointestinal cancers, synthesizing data on its expression patterns, subcellular localization, epigenetic modifications, and clinical significance. RESULTS Depending on its subcellular localization and epigenetic modifications, SERPINB5 demonstrate either protumor or antitumor activity in different gastrointestinal cancers, such as colorectal cancer, gastric cancer, pancreatic cancer, gallbladder cancer and liver cancer. We elucidate its potential as a predictive and prognostic biomarker, with a focus on its implications for diagnosis, prognosis, and therapeutic intervention, emphasizing its utility in early lesion detection and treatment. CONCLUSIONS SERPINB5 plays a complex and context-dependent role in gastrointestinal cancers, highlighting further research to dissect the true significance of SERPINB5 expression and the molecular mechanisms underlying its divergent clinical behaviors in cancer.
Collapse
Affiliation(s)
- Shuyan Zeng
- Huankui Academy of Nanchang University, Nanchang, China
| | - Jiayu Zhang
- Huankui Academy of Nanchang University, Nanchang, China
| | - Wanyi Jiang
- Huankui Academy of Nanchang University, Nanchang, China
| | - Chunyan Zeng
- Department of Gastroenterology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, 90 BaYi Avenue, Nanchang, 330000, Jiangxi, China.
- Huankui Academy of Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Hsieh C, Wu Y, Chen Y, Wang C, Li C, Liu I, Chou C, Lin Y, Huang P, Huang T, Chen C. SERPING1 Reduces Cell Migration via ERK-MMP2-MMP-9 Cascade in Sorafenib- Resistant Hepatocellular Carcinoma. ENVIRONMENTAL TOXICOLOGY 2025; 40:318-327. [PMID: 39474998 PMCID: PMC11726270 DOI: 10.1002/tox.24434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic malignant tumor, and it ranks 2nd in terms of mortality rate among all malignancies in Taiwan. Sorafenib is a multiple tyrosine kinase inhibitor that suppresses tumor cell proliferation and angiogenesis around tumors via different pathways. However, the survival outcome of advanced HCC patients treated with sorafenib is still unsatisfactory. Unfortunately, there are no clinically applicable biomarkers to predict sorafenib therapeutic efficiency in HCC thus far. We found that serpin peptidase inhibitor, clade G, member 1 (SERPING1) is highly associated with overall and recurrence-free survival rates in HCC patients and is also highly correlated with several clinical parameters. SERPING1 expression was increased with sorafenib in both the HCC cell extract and conditioned medium, which was also observed in sorafenib-resistant HepG2 and Huh7 cells. Sorafenib decreased cell viability and migration, which was similar to the effect of SERPING1 in HCC progression. Moreover, sorafenib inhibited both MMP-2 and MMP-9 activity and enhanced the expression of p-ERK in HCC cells. In summary, sorafenib reduces HCC cancer progression might through the p-ERK-MMP-2-MMP-9 cascade via upregulation of SERPING1. In the present study, the roles and molecular mechanisms of SERPING1 and its value as a marker for predicting sorafenib resistance and progression in HCC patients were examined. The results of the present study provide a deep understanding of the roles of SERPING1 in HCC sorafenib resistance, which can be applied to develop early diagnosis and prognosis evaluation methods and establish novel therapeutic targets for specifically treating HCC.
Collapse
Affiliation(s)
- Ching‐Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial HospitalChiayiTaiwan
| | - Yuh‐Harn Wu
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yi‐Li Chen
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chun‐I Wang
- Department of Biochemistry, School of MedicineChina Medical UniversityTaichungTaiwan
| | - Chao‐Jen Li
- Department of General & Gastroenterological Surgery, An Nan HospitalChina Medical UniversityTainanTaiwan
| | - I‐Hsiu Liu
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chen‐Wei Chou
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yang‐Hsiang Lin
- Liver Research Center, Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Po‐Shuan Huang
- Department of Biochemistry, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Graduate Institute of Biochemical and Biomedical EngineeringChang Gung UniversityTaoyuanTaiwan
| | - Te‐Chia Huang
- Department of General & Gastroenterological Surgery, An Nan HospitalChina Medical UniversityTainanTaiwan
| | - Cheng‐Yi Chen
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
3
|
Castillo-Lopez E, Biber P, Sener-Aydemir A, Hummel K, Razzazi-Fazeli E, Reisinger N, Zebeli Q, Kreuzer-Redmer S, Hartinger T. Characterization of the colostrum proteome of primiparous Holstein cows and its association with colostrum immunoglobulin G concentrations. J Anim Sci Biotechnol 2025; 16:10. [PMID: 39833978 PMCID: PMC11748342 DOI: 10.1186/s40104-024-01144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The objective was to characterize the colostrum proteome of primiparous Holstein cows in association with immunoglobulin G (IgG) content. Immediately after calving, colostrum samples were collected from 18 cows to measure IgG concentration. Based on colostrum IgG content, samples were classified through cluster analysis and were identified as poor, average, and excellent quality. The proteome was assessed with quantitative shotgun proteomics; abundance data were compared among the colostrum types; enrichment analysis of metabolic processes and proteins classes was performed as well. We also tested correlations between this proteome and blood globulin level of cows and passive immunity level of calves. RESULTS On average, 428 proteins were identified per sample, which belonged mainly to cellular process, biological regulation, response to stimulus, metabolic process, and immune system process. Most abundant proteins were complement C3 (Q2UVX4), alpha-S1-casein (P02662), Ig-like domain-containing protein (A0A3Q1M032), albumin (A0A140T897), polymeric immunoglobulin receptor (P81265), lactotransferrrin (P24627), and IGHG1*01 (X16701_4). Colostrum of excellent quality had greater (P < 0.05) abundance of serpin A3-7 (A2I7N3), complement factor I (A0A3Q1MIF4), lipocalin/cytosolic fatty-acid binding domain-containing protein (A0A3Q1MRQ2), complement C3 (E1B805), complement component 4 binding protein alpha (A0AAF6ZHP5), and complement component C6 (F1MM86). However, colostrum of excellent quality had lower (P < 0.05) abundance of HGF activator (E1BCW0), alpha-S1-casein (P02662), and xanthine dehydrogenase/oxidase (P80457). This resulted in enrichment of the biological processes predominantly for complement activation alternative pathway, complement activation, complement activation classical pathway, humoral immune response, leukocyte mediated immunity, and negative regulation of endopeptidase activity in excellent-quality colostrum. Additionally, some colostrum proteins were found to be correlated with the blood globulin level of cows and with the passive immunity level of calves (P < 0.05; r ≥ 0.57). CONCLUSIONS This study provides new insights into the bovine colostrum proteome, demonstrating associations between IgG levels and the abundance of other proteins, as well as the enrichment of metabolic processes related to innate immune response. Thus, results suggest that the colostrum proteomic profile is associated with the content of IgG. Future research should deeply explore the association of these findings with pre-calving nutrition status and blood composition of the cow, and with passive immunity transfer to the calf.
Collapse
Affiliation(s)
- Ezequias Castillo-Lopez
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria.
| | - Patrick Biber
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Arife Sener-Aydemir
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Karin Hummel
- University of Veterinary Medicine Vienna, VetCore Facility (Mass Spectrometry), Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- University of Veterinary Medicine Vienna, VetCore Facility (Mass Spectrometry), Vienna, Austria
| | - Nicole Reisinger
- Dsm-Firmenich, Animal Nutrition & Health R&D Center, Tulln, Austria
| | - Qendrim Zebeli
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Susanne Kreuzer-Redmer
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Thomas Hartinger
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| |
Collapse
|
4
|
Lopes MES, Marcantonio CC, Salmon CR, Mofatto LS, Nociti Junior FH, Eick S, Deschner J, Cirelli JA, Nogueira AVB. Effects of periodontal disease on the proteomic profile of the periodontal ligament. J Proteomics 2025; 314:105384. [PMID: 39800186 DOI: 10.1016/j.jprot.2025.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Periodontal disease affects over 1 billion people globally. This study investigated how periodontitis affects the protein profile of the periodontal ligament (PDL) in rats. Eight Holtzman rats were divided into control and experimental periodontitis groups. The PDL was isolated using laser capture microdissection and protein extracts were analyzed by mass spectrometry. Data analysis utilized specialized software, and Gene Ontology enrichment analysis identified significant protein functions. The data are available via ProteomeXchange with identifier PXD055817. Proteins such as SerpinB1, C5, and Lgals3 were validated through immunohistochemistry, and their gene expression was examined in an in vitro human PDL cell line. This study identified 1326 proteins, with 156 unique to the control group, 294 unique to the periodontitis group, and 876 common to both groups. Enrichment analysis revealed that proteins associated with the regulation of enzyme activity and RNA binding were significantly represented in the periodontitis group. There were increased levels of SerpinB1, C5, and Lgals3 in the periodontitis group based on proteomic and immunohistochemical analyses. Furthermore, these targets showed increased gene expression in stimulated human PDL cells. This study provides insights into the periodontitis-related alterations in the protein composition of the PDL and PDL cells, identifying both novel and previously known disease-associated proteins. SIGNIFICANCE: The periodontal ligament plays a crucial role in oral functions by providing structural support to the tooth. Due to the presence of undifferentiated mesenchymal cells, research into its regenerative capacity is ongoing. Pathological conditions can affect these functions and protein composition. Currently, there is a lack of comprehensive research specifically focusing on evaluating the periodontal ligament in both healthy and diseased states. This pioneering study screened for protein alterations and the mechanisms related to periodontitis. The possibility of using proteomic analysis to evaluate the protein alterations that occur in periodontitis, a disease with a high global incidence, could provide therapeutic targets and new biomarkers for future clinical studies.
Collapse
Affiliation(s)
- Maria Eduarda Scordamaia Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Cristiane Ribeiro Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil; Dental School, Centro Universitário N. Sra do Patrocínio - CEUNSP, Itu, São Paulo, Brazil
| | - Luciana Souto Mofatto
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Francisco Humberto Nociti Junior
- ADA Forsyth Institute, Cambridge, MA, USA; Dental School, São Leopoldo Mandic, Department of Research, Campinas, São Paulo, Brazil
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, Bern, Switzerland
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| | - Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Xiang S, Yang L, He Y, Ding F, Qiao S, Su Z, Chen Z, Lu A, Li F. Alpha-1 Antitrypsin as a Regulatory Protease Inhibitor Modulating Inflammation and Shaping the Tumor Microenvironment in Cancer. Cells 2025; 14:88. [PMID: 39851516 PMCID: PMC11763672 DOI: 10.3390/cells14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Alpha-1 antitrypsin (AAT) is a key serine protease inhibitor for regulating proteases such as neutrophil elastase. AAT restrains the pulmonary matrix from enzymatic degradation, and a deficiency in AAT leads to inflammatory tissue damage in the lungs, resulting in chronic obstructive pulmonary disease. Due to the crucial biological function of AAT, the emerging research interest in this protein has shifted to its role in cancer-associated inflammation and the dynamics of the tumor microenvironment. However, the lack of comprehensive reviews in this field hinders our understanding of AAT as an essential immune modulator with great potential in cancer immunotherapy. Therefore, in this review, we have elucidated the pivotal roles of AAT in inflammation and the tumor microenvironment, including the structure and molecular properties of AAT, its molecular functions in the regulation of the inflammatory response and tumor microenvironment, and its clinical implications in cancer including its diagnosis, prognosis, and therapeutic intervention. This review seeks to bridge the gap in the understanding of AAT between inflammatory diseases and cancer, and to foster deeper investigations into its translational potential in cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Siyu Xiang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liu Yang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yun He
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Feng Ding
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuangying Qiao
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zonghua Su
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zheng Chen
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
6
|
Kubo A. History and prospects of Nagashima-type palmoplantar keratosis, the most common palmoplantar keratoderma in east Asian populations. J Dermatol 2025. [PMID: 39749860 DOI: 10.1111/1346-8138.17552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
Nagashima-type palmoplantar keratosis (NPPK) has been shown to represent a form of autosomal recessive palmoplantar keratosis due to biallelic pathological variants of SERPINB7, which encodes a serine protease inhibitor expressed in the epidermis. Approximately 10 years have elapsed since NPPK was demonstrated to be an independent genetic disease, and the most prevalent palmoplantar keratoderma (PPK) in East Asian countries due to a high prevalence of founder mutations in SERPINB7. Since then, it has become evident that biallelic pathological variants of SERPINA12, which encodes a serine protease inhibitor expressed in the epidermis, can also manifest symptoms analogous to those of NPPK. Furthermore, a pathological variant of SERPINB7 was identified as a risk factor for the development of atopic dermatitis in a genome-wide association study (GWAS) of atopic dermatitis, indicating that the frequent co-occurrence of NPPK and atopic dermatitis is not a mere coincidence. Despite the documentation of NPPK cases in Japan since the 1970s, there have been no reports of individuals with similar symptoms from other regions, including Europe and the USA. Consequently, the existence and independence of the disease remained uncertain until its genetic cause was identified. The disease's independence was established through the accumulation of data on affected individuals, including the provision of accurate descriptions of their symptoms, which enabled the identification of the genetic cause. This review presents a comprehensive overview of the history and prospects of NPPK with a particular focus on the history of the process of establishing NPPK as an independent disease.
Collapse
Affiliation(s)
- Akiharu Kubo
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
Xiang L, Lou J, Zhao J, Geng Y, Zhang J, Wu Y, Zhao Y, Tao Z, Li Y, Qi J, Chen J, Yang L, Zhou K. Underlying Mechanism of Lysosomal Membrane Permeabilization in CNS Injury: A Literature Review. Mol Neurobiol 2025; 62:626-642. [PMID: 38888836 DOI: 10.1007/s12035-024-04290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lysosomes play a crucial role in various intracellular pathways as their final destination. Various stressors, whether mild or severe, can induce lysosomal membrane permeabilization (LMP), resulting in the release of lysosomal enzymes into the cytoplasm. LMP not only plays a pivotal role in various cellular events but also significantly contributes to programmed cell death (PCD). Previous research has demonstrated the participation of LMP in central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and hypoxic-ischemic encephalopathy (HIE). However, the mechanisms underlying LMP in CNS injuries are poorly understood. The occurrence of LMP leads to the activation of inflammatory pathways, increased levels of oxidative stress, and PCD. Herein, we present a comprehensive overview of the latest findings regarding LMP and highlight its functions in cellular events and PCDs (lysosome-dependent cell death, apoptosis, pyroptosis, ferroptosis, and autophagy). In addition, we consolidate the most recent insights into LMP in CNS injury by summarizing and exploring the latest advances. We also review potential therapeutic strategies that aim to preserve LMP or inhibit the release of enzymes from lysosomes to alleviate the consequences of LMP in CNS injury. A better understanding of the role that LMP plays in CNS injury may facilitate the development of strategic treatment options for CNS injury.
Collapse
Affiliation(s)
- Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhichao Tao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, WenzhouZhejiang, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
8
|
Lee CC, Huang YH, Chi CC, Chung WH, Chen CB. Generalized pustular psoriasis: immunological mechanisms, genetics, and emerging therapeutics. Trends Immunol 2025; 46:74-89. [PMID: 39732527 DOI: 10.1016/j.it.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024]
Abstract
Generalized pustular psoriasis (GPP) is a rare human autoinflammatory disorder with life-threatening systemic effects. Keratinocyte-derived interleukin (IL)-36 signaling has been identified as a key mediator of immune response in the skin of affected individuals. Recognition of various mutations along the IL-36 axis and the downstream nuclear transcription factor κB (NF-κB) signaling have established GPP as genetically, immunologically, and histopathologically distinct and amenable to immunomodulation, which is epitomized by the recent success of IL-36 antagonism. This review covers recent discoveries of the genetic and immunological underpinnings of GPP, which have proved fertile ground for improving the quality of care of this clinically challenging and debilitating condition.
Collapse
Affiliation(s)
- Chih-Chun Lee
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Huei Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ching-Chi Chi
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Wen-Hung Chung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China; Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Bing Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
9
|
Ran M, Bao J, Li B, Shi Y, Yang W, Meng X, Chen J, Wei J, Long M, Li T, Li C, Pan G, Zhou Z. Microsporidian Nosema bombycis secretes serine protease inhibitor to suppress host cell apoptosis via Caspase BmICE. PLoS Pathog 2025; 21:e1012373. [PMID: 39775776 PMCID: PMC11741654 DOI: 10.1371/journal.ppat.1012373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/17/2025] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Microsporidia are a group of intracellular pathogens that actively manipulate host cell biological processes to facilitate their intracellular niche. Apoptosis is an important defense mechanism by which host cell control intracellular pathogens. Microsporidia modulating host cell apoptosis has been reported previously, however the molecular mechanism is not yet clear. In this report, we describe that the microsporidia Nosema bombycis inhibits apoptosis of Bombyx mori cells through a secreted protein NbSPN14, which is a serine protease inhibitor (Serpin). An immunofluorescent assay demonstrated that upon infection with N. bombycis, NbSPN14 was initially found in the B. mori cell cytoplasm and then became enriched in the host cell nucleus. Overexpression and RNA-interference (RNAi) of NbSPN14 in B. mori' embryo cell confirmed that NbSPN14 inhibited host cells apoptosis. Immunofluorescent and Co-IP assays verified the co-localization and interaction of NbSPN14 with the BmICE, the Caspase 3 homolog in B. mori. Knocking out of BmICE or mutating the BmICE-interacting P1 site of NbSPN14, eliminated the localization of NbSPN14 into the host nucleus and prevented the apoptosis-inhibiting effect of NbSPN14, which also proved that the interaction between BmICE and NbSPN14 occurred in host cytoplasm and the NbSPN14 translocation into host cell nucleus depends on BmICE. These data elucidate that N. bombycis secretory protein NbSPN14 inhibits host cell apoptosis by directly inhibiting the Caspase protease BmICE, which provides an important insight for understanding pathogen-host interactions and a potential therapeutic target for N. bombycis proliferation.
Collapse
Affiliation(s)
- Maoshuang Ran
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Boning Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Yulian Shi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Wenxin Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Junhong Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing, China
| |
Collapse
|
10
|
Wang J, Li J, Zhou L, Hou H, Zhang K. Regulation of epidermal barrier function and pathogenesis of psoriasis by serine protease inhibitors. Front Immunol 2024; 15:1498067. [PMID: 39737188 PMCID: PMC11683130 DOI: 10.3389/fimmu.2024.1498067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Serine protease inhibitors (Serpins) are a protein superfamily of protease inhibitors that are thought to play a role in the regulation of inflammation, immunity, tumorigenesis, coagulation, blood pressure and cancer metastasis. Serpins is enriched in the skin and play a vital role in modulating the epidermal barrier and maintaining skin homeostasis. Psoriasis is a chronic inflammatory immune-mediated skin disease. At present, most serpins focus on the pathogenesis of psoriasis vulgaris. Only a small number, such as the mutation of SerpinA1/A3/B3, are involved in the pathogenesis of GPP. SerpinA12 and SerpinG1 are significantly elevated in the serum of patients with psoriatic arthritis, but their specific mechanism of action in psoriatic arthritis has not been reported. Some Serpins, including SerpinA12, SerpinB2/B3/B7, play multiple roles in skin barrier function and pathogenesis of psoriasis. The decrease in the expression of SerpinA12, SerpinB7 deficiency and increase in expression of SerpinB3/4 in the skin can promote inflammation and poor differentiation of keratinocyte, with damaged skin barrier. Pso p27, derived from SerpinB3/B4, is an autoantigen that can enhance immune response in psoriasis. SerpinB2 plays a role in maintaining epidermal barrier integrity and inhibiting keratinocyte proliferation. Here we briefly introduce the structure, functional characteristics, expression and distribution of serpins in skin and focus on the regulation of serpins in the epidermal barrier function and the pathogenic role of serpins in psoriasis.
Collapse
Affiliation(s)
- Juanjuan Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| |
Collapse
|
11
|
Lederberg OL, Yan NL, Sanchez J, Ren W, Ash C, Wilkens SJ, Qiu H, Qin B, Grant VH, Jackman AB, Stanfield RL, Wilson IA, Petrassi HM, Rhoades D, Kelly JW. Discovery of Potent and Selective Pyridone-Based Small Molecule Kinetic Stabilizers of Amyloidogenic Immunoglobulin Light Chains. J Med Chem 2024; 67:21070-21105. [PMID: 39626211 DOI: 10.1021/acs.jmedchem.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Kinetic stabilization of amyloidogenic immunoglobulin light chains (LCs) through small molecule binding may become the first treatment for the proteinopathy component of light chain amyloidosis (AL). Kinetic stabilizers selectively bind to the native state over the misfolding transition state, slowing denaturation. Prior λ full-length LC dimer (FL LC2) kinetic stabilizers exhibited considerable plasma protein binding. We hypothesized that the coumarin "aromatic core" of the stabilizers was responsible for the undesirable plasma protein binding. Here, we describe structure-activity relationship (SAR) data initially focused on replacing the coumarin aromatic core. 2-pyridones proved suitable replacements. We subsequently optimized the "anchor substructure" in the context of 2-pyridones, resulting in potent λ FL LC2 kinetic stabilizers exhibiting reduced plasma protein binding. The 3-methyl- or 3-ethyl-3-phenylpyrrolidine-2-pyridone scaffold stabilized multiple AL patient-derived λ FL LC2s in human plasma. This, coupled with X-ray crystallographic data, indicates that 3-alkyl-3-phenylpyrrolidine-2-pyridone-based stabilizers are promising candidates for treating the proteinopathy component of AL.
Collapse
Affiliation(s)
- Oren L Lederberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Nicholas L Yan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Julian Sanchez
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Wen Ren
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Carl Ash
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Steven J Wilkens
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, California 92130, United States
| | - Huang Qiu
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, California 92130, United States
| | - Bo Qin
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, California 92130, United States
| | - Virginia H Grant
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, California 92130, United States
| | - Alex B Jackman
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, California 92130, United States
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road., La Jolla, California 92037, United States
| | - H Michael Petrassi
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, California 92130, United States
| | - Derek Rhoades
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road., La Jolla, California 92037, United States
| |
Collapse
|
12
|
Latourte A, Jaulerry S, Combier A, Cherifi C, Jouan Y, Grange T, Daligault J, Ea HK, Cohen-Solal M, Hay E, Richette P. SerpinA3N limits cartilage destruction in osteoarthritis by inhibiting macrophage-derived leucocyte elastase. Ann Rheum Dis 2024; 83:1781-1790. [PMID: 39134394 DOI: 10.1136/ard-2024-225645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Inflammatory mediators such as interleukin 6 (IL-6) are known to activate catabolic responses in chondrocytes during osteoarthritis (OA). This study aimed to investigate the role of a downstream target gene of IL-6, the serine protease inhibitor SerpinA3N, in the development of cartilage damage in OA. METHODS RNA sequencing was performed in murine primary chondrocytes treated with IL-6, and identified target genes were confirmed in human and murine OA cartilage samples. Male cartilage-specific Serpina3n-deficient mice and control mice underwent meniscectomy (MNX) or sham surgery at 10 weeks of age. Intra-articular injections of SerpinA3N or sivelestat (an inhibitor of leucocyte elastase (LE), a substrate for SerpinA3N) were performed in wild-type mice after MNX. Joint damage was assessed 3-9 weeks after surgery by histology and micro-CT. The effect of sivelestat was assessed in cartilage explants exposed to macrophage-derived conditioned media. RESULTS RNA sequencing revealed that SerpinA3N is a major target gene of IL-6 in chondrocytes. The expression of SerpinA3N is increased in OA cartilage. Conditional loss of SerpinA3N in chondrocytes aggravated OA in mice, while intra-articular injection of SerpinA3N limited joint damage. Chondrocytes did not produce serine proteases targeted by SerpinA3N. By contrast, macrophages produced LE on IL-6 stimulation. Sivelestat limited the cartilage catabolism induced by conditioned media derived from IL-6-stimulated macrophages. Additionally, an intra-articular injection of sivelestat is protected against OA in the MNX model. CONCLUSIONS SerpinA3N protects cartilage against catabolic factors produced by macrophages, including LE. SerpinA3N and LE represent new therapeutic targets to dampen cartilage damage in OA.
Collapse
Affiliation(s)
- Augustin Latourte
- Inserm UMR-S 1132, Université Paris Cité, Paris, France
- Rheumatology Department, Hôpital Lariboisière APHP.Nord, Paris, France
| | - Sarah Jaulerry
- Inserm UMR-S 1132, Université Paris Cité, Paris, France
- Rheumatology Department, Hôpital Lariboisière APHP.Nord, Paris, France
| | - Alice Combier
- Inserm UMR-S 1132, Université Paris Cité, Paris, France
| | | | - Yohan Jouan
- Inserm UMR-S 1132, Université Paris Cité, Paris, France
| | - Thierry Grange
- Institut Jacques Monod, Université Paris Cité, Paris, Île-de-France, France
| | - Julien Daligault
- Institut Jacques Monod, Université Paris Cité, Paris, Île-de-France, France
| | - Hang-Korng Ea
- Inserm UMR-S 1132, Université Paris Cité, Paris, France
- Rheumatology Department, Hôpital Lariboisière APHP.Nord, Paris, France
| | - Martine Cohen-Solal
- Inserm UMR-S 1132, Université Paris Cité, Paris, France
- Rheumatology Department, Hôpital Lariboisière APHP.Nord, Paris, France
| | - Eric Hay
- Inserm UMR-S 1132, Université Paris Cité, Paris, France
| | - Pascal Richette
- Inserm UMR-S 1132, Université Paris Cité, Paris, France
- Rheumatology Department, Hôpital Lariboisière APHP.Nord, Paris, France
| |
Collapse
|
13
|
Okagawa S, Sakaguchi M, Okubo Y, Takekuma Y, Igata M, Kondo T, Takeda N, Araki K, Brandao BB, Qian WJ, Tseng YH, Kulkarni RN, Kubota N, Kahn CR, Araki E. Hepatic SerpinA1 improves energy and glucose metabolism through regulation of preadipocyte proliferation and UCP1 expression. Nat Commun 2024; 15:9585. [PMID: 39532838 PMCID: PMC11557585 DOI: 10.1038/s41467-024-53835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Lipodystrophy and obesity are associated with insulin resistance and metabolic syndrome accompanied by fat tissue dysregulation. Here, we show that serine protease inhibitor A1 (SerpinA1) expression in the liver is increased during recovery from lipodystrophy caused by the adipocyte-specific loss of insulin signaling in mice. SerpinA1 induces the proliferation of white and brown preadipocytes and increases the expression of uncoupling protein 1 (UCP1) to promote mitochondrial activation in mature white and brown adipocytes. Liver-specific SerpinA1 transgenic mice exhibit increased browning of adipose tissues, leading to increased energy expenditure, reduced adiposity and improved glucose tolerance. Conversely, SerpinA1 knockout mice exhibit decreased adipocyte mitochondrial function, impaired thermogenesis, obesity, and systemic insulin resistance. SerpinA1 forms a complex with the Eph receptor B2 and regulates its downstream signaling in adipocytes. These results demonstrate that SerpinA1 is an important hepatokine that improves obesity, energy expenditure and glucose metabolism by promoting preadipocyte proliferation and activating mitochondrial UCP1 expression in adipocytes.
Collapse
Affiliation(s)
- Shota Okagawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan.
| | - Yuma Okubo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Yuri Takekuma
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Naoki Takeda
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Bruna Brasil Brandao
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yu-Hua Tseng
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Rohit N Kulkarni
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, BIDMC and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| |
Collapse
|
14
|
Wei K, Ding JL, Xu HR, Feng MG, Ying SH. Exploring secretory signal sequences useful in excreting recombinant proteins in Beauveria bassiana as biocontrol fungus. Arch Microbiol 2024; 206:463. [PMID: 39520575 DOI: 10.1007/s00203-024-04190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Entomopathogenic fungi excrete a group of proteins to assimilate nutrients and defeat the host immune defense. Functional secretory signal sequences are needed for efficient secretion of the virulence-related proteins in recombinant strain. In this study, secretome analysis was used to explore the secreted proteins of Beauveria bassiana. Enrichment analysis indicated that B. bassiana secretome was mainly associated with metabolism of glucoside, polysaccharide, extracellular ester compound, and so on. In addition, proteins associated with biogenesis of cellular components were also enriched, including those involved in biogenesis of cell wall and vacuole. Then, four secretory signal sequences were functionally verified with green fluorescent protein as reporter. Finally, a signal sequence was used to excrete three insect venom protein serpins in B. bassiana, in which over-expression of serpin 8 gene resulted in a significant increase in fungal virulence. This study highlights that functional secretory signal sequences are potential molecular elements useful in excretion of virulence-related proteins in insect pathogenic fungi.
Collapse
Affiliation(s)
- Kang Wei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hang-Rong Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Yan T, Zhou A. Crystallization and crystallographic studies of human serine protease inhibitor (serpin) B9. Acta Crystallogr F Struct Biol Commun 2024; 80:286-293. [PMID: 39382088 PMCID: PMC11533364 DOI: 10.1107/s2053230x24009439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Serine protease inhibitor B9 (serpin B9, also known as protease inhibitor 9 or PI9) plays a critical role in regulating the immune response by specifically inhibiting granzyme B, a serine protease found in cytotoxic T lymphocytes and natural killer cells. Despite its potential as an anticancer drug target, the structural details of serpin B9 have remained elusive until now. In this study, a cleaved form of recombinant human serpin B9 was successfully prepared and crystallized. The crystals belonged to space group P212121, with unit-cell parameters a = 68.51, b = 82.32, c = 101.17 Å, and an X-ray diffraction data set was collected at 1.9 Å resolution. The structure shows that serpin B9 adopts a relaxed conformation, with its cleaved reactive-centre loop inserted into the central β-sheet. Unlike other serpins, serpin B9 shows significant structural deviations around helix D, with a larger surface cavity, which could serve as a promising target for small-molecule inhibitors.
Collapse
Affiliation(s)
- Teng Yan
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai200025, People’s Republic of China
| | - Aiwu Zhou
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai200025, People’s Republic of China
| |
Collapse
|
16
|
Cao HH, Wang YL, Toufeeq S, Kong WW, Ayaz S, Liu SH, Wang J, Xu JP. Bombyx mori serpin 3 is involved in innate immunity by interacting with serine protease 7 to regulate prophenoloxidase activation. J Invertebr Pathol 2024; 207:108188. [PMID: 39245295 DOI: 10.1016/j.jip.2024.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
A subfamily of conserved proteins called serpins plays crucial roles in various physiological functions, particularly in the activation pathway of the serine protease cascade, an essential component of insect innate immunity. Here, we found Bombyx mori serpin 3 (BmSerpin3) was most highly expressed in the fat body, and was up-regulated after exposure to bacteria, fungus and virus. Further, the expression of BmSerpin3 in the hemocytes, fat body, midgut of silkworm larvae, and BmN cells was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Through Bac-to-Bac expression system, we obtained the active protein of BmSerpin3, and the enzyme activity assay showed that BmSerpin3 significantly inhibited the activity of both subtilisin and trypsin. In addition, BmSerpin3 could inhibit the activation of prophenoloxidase (PPO) in larvae. The knockdown of BmSerpin3 showed increased phenoloxidase (PO) activity compared to control after BmNPV infection. Ultimately, we confirmed that BmSerpin3 interacts with B. mori Serine Protease 7 (BmSP7). Hence, we hypothesize that BmSerpin3 is involved in innate immunity by interacting with BmSP7 to regulate the PPO activation cascade. Taken together, these results showed that BmSerpin3 play a role in silkworm innate immunity and lay a foundation for studying its functions.
Collapse
Affiliation(s)
- Hui-Hua Cao
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; School of Bioengineering, Huainan Normal University, Huainan 232038, China
| | - Yu-Ling Wang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; School of Bioengineering, Huainan Normal University, Huainan 232038, China
| | - Shahzad Toufeeq
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Wei-Wei Kong
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Sadaf Ayaz
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Shi-Huo Liu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jie Wang
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei 230061, China.
| | - Jia-Ping Xu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China.
| |
Collapse
|
17
|
Moore GW. Thrombophilia Screening: Not So Straightforward. Semin Thromb Hemost 2024; 50:1131-1152. [PMID: 38733983 DOI: 10.1055/s-0044-1786807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Although inherited thrombophilias are lifelong risk factors for a first thrombotic episode, progression to thrombosis is multifactorial and not all individuals with inherited thrombophilia develop thrombosis in their lifetimes. Consequently, indiscriminate screening in patients with idiopathic thrombosis is not recommended, since presence of a thrombophilia does not necessarily predict recurrence or influence management, and testing should be selective. It follows that a decision to undertake laboratory detection of thrombophilia should be aligned with a concerted effort to identify any significant abnormalities, because it will inform patient management. Deficiencies of antithrombin and protein C are rare and usually determined using phenotypic assays assessing biological activities, whereas protein S deficiency (also rare) is commonly detected with antigenic assays for the free form of protein S since available activity assays are considered to lack specificity. In each case, no single phenotypic assay is capable of detecting every deficiency, because the various mutations express different molecular characteristics, rendering thrombophilia screening repertoires employing one assay per potential deficiency, of limited effectiveness. Activated protein C resistance (APCR) is more common than discrete deficiencies of antithrombin, protein C, and protein S and also often detected initially with phenotypic assays; however, some centres perform only genetic analysis for factor V Leiden, as this is responsible for most cases of hereditary APCR, accepting that acquired APCR and rare F5 mutations conferring APCR will go undetected if only factor V Leiden is evaluated. All phenotypic assays have interferences and limitations, which must be factored into decisions about if, and when, to test, and be given consideration in the laboratory during assay performance and interpretation. This review looks in detail at performance and limitations of routine phenotypic thrombophilia assays.
Collapse
Affiliation(s)
- Gary W Moore
- Specialist Haemostasis Laboratory, Cambridge Haemophilia and Thrombophilia Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Natural Sciences, Middlesex University, London, United Kingdom
| |
Collapse
|
18
|
Zhang Y, Liu L, Yang C, Xie W, Wang J. Regulation of corticosteroid-binding globulin release in murine leydig tumor cell line mLTC-1 by luteinizing hormone and interleukin-6. Arch Biochem Biophys 2024; 761:110158. [PMID: 39307264 DOI: 10.1016/j.abb.2024.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Exogenous assaults interfere with homeostatic processes in the body by inducing stress responses. Corticosteroid-binding globulin (CBG) binds to stress hormone glucocorticoids to transport and dynamically control their availability to target tissues. In our previous study, we confirmed that CBG is locally produced by Leydig cells in the testes. Here, we explored the potential regulators of CBG using a murine Leydig tumor cell line (mLTC-1). Results indicated that luteinizing hormone (LH) and interleukin-6 (IL-6) were important factors stimulating the release of CBG from mLTC-1 cells. In addition, IL-6 stimulated mLTC-1 cells to release alpha-1 antitrypsin (AAT), a serine proteinase inhibitor (serpin) that affects CBG conformation. The results implied that any challenge that altered LH or IL-6 levels also changed the release and binding status of CBG with steroid hormones in the testicular microenvironment and modulated cellular responses to these stress hormones. In addition, secretory proteomic analysis indicated that the extracellular matrix (ECM), cytoskeleton, and proteasomes were essentially produced by the mLTC-1 cells, and LH evoked the secretion of proteins involved in binding and metabolism. These results emphasize that Leydig cells may undertake more functions than just steroidogenesis, and the regulation of Leydig cells by LH is versatile.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Lei Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Chunyu Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Wei Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Jianshe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| |
Collapse
|
19
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024; 28:875-894. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Giddey AD, Hagyousif YA, Soares NC, Al-Hroub HM, Aghila Rani KG, Zaher DM, Omar H, Al Kawas S, Semreen MH, Al-Rawi N. Comparative proteomic analysis of saliva from chewing tobacco users and oral cancer patients reveals shared biomarkers: A case control observational study. J Dent 2024; 149:105268. [PMID: 39089670 DOI: 10.1016/j.jdent.2024.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE The aim of this study was to compare the salivary proteomic profile of smokeless tobacco users with that of non-users and oral cancer patients using Liquid Chromatography-Mass Spectrometry/ Mass Spectrometry (LC-MS/MS). METHODS Saliva samples from 65 participants were collected in three groups: control (25 participants), smokeless tobacco users (25 participants), and oral cancer (15 participants). RESULTS The analysis revealed 343 protein groups with significantly altered abundance in the saliva samples (P < 0.05). Among these, 43 out of 51 dysregulated proteins in the smokeless tobacco group were also dysregulated in the oral cancer group. Notably, Apolipoprotein A1 (ApoA1) and Pon1 were found to be significantly increased in both smokeless tobacco users and oral cancer patients (p < 0.05). Furthermore, six out of the 20 most significantly altered proteins were mitochondrial proteins, and all of these were decreased relative to controls in both smokeless tobacco users and cancer samples. CONCLUSION The proteomic profile of users of chewing (smokeless) tobacco (SLT) shows substantial overlap in the altered pathways and dysregulated proteins with those altered in oral cancer samples, suggesting that SLT use induces a shift toward an oncogenic state. Specifically indicated pathways included blood microparticles, platelet α-granules and protease inhibitors as well as indicators of oxidative stress and exogenous compound processing. What differentiates oral cancer samples from SLT users is enrichment of alterations related to cytoskeletal organisation and tissue remodelling. CLINICAL SIGNIFICANCE The findings emphasize the importance of salivary proteomic profiles because changes in certain proteins may be indicators for early oral cancer identification and risk assessment in smokeless tobacco users.
Collapse
Affiliation(s)
- Alexander D Giddey
- Canter for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yousra A Hagyousif
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates
| | - Nelson C Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates; Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal; Centre for toxicogenomic and Human Health (ToxOmics), NOVA School/ Faculdade de Lisboa, Lisbon, Portugal
| | - Hamza M Al-Hroub
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - K G Aghila Rani
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M Zaher
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany Omar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, Department of Pharmacy practice and Pharmacotherapeutics, University of Sharjah, United Arab Emirates
| | - Sausan Al Kawas
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; College of Dental Medicine, Department of Oral & Craniofacial Health Sciences, University of Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates.
| | - Natheer Al-Rawi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; College of Dental Medicine, Department of Oral & Craniofacial Health Sciences, University of Sharjah, United Arab Emirates.
| |
Collapse
|
21
|
Balderacchi AM, Bignotti M, Ottaviani S, Denardo A, Barzon V, Ben Khlifa E, Vailati G, Piloni D, Benini F, Corda L, Corsico AG, Ferrarotti I, Fra A. Quantification of circulating alpha-1-antitrypsin polymers associated with different SERPINA1 genotypes. Clin Chem Lab Med 2024; 62:1980-1990. [PMID: 38407261 DOI: 10.1515/cclm-2023-1348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES Alpha-1-antitrypsin deficiency is a genetic disorder caused by mutations in the SERPINA1 gene encoding alpha-1-antitrypsin (AAT), the major serine protease inhibitor in plasma. Reduced AAT levels are associated with elevated risk of developing emphysema mainly due to uncontrolled activity of neutrophil elastase in the lungs. The prevalent Z-AAT mutant and many rare pathogenic AAT variants also predispose to liver disease due to their accumulation as polymeric chains in hepatocytes. Part of these polymers are secreted into the bloodstream and could represent biomarkers of intra-hepatic accumulation. Moreover, being inactive, they further lower lung protection against proteases. Aim of our study is to accurately quantify the percentage of circulating polymers (CP) in a cohort of subjects with different SERPINA1 genotypes. METHODS CP concentration was measured in plasma or Dried Blood Spot (DBS) by a sensitive sandwich ELISA based on capture by the polymer-specific 2C1 monoclonal antibody. RESULTS CP were significantly elevated in patients with the prevalent PI*SZ and PI*ZZ genotypes, with considerable intra-genotype variability. Notably, higher percentage of polymers was observed in association with elevated C-reactive protein. CP levels were also increased in carriers of the Mmalton variant, and of Mprocida, I, Plowell and Mherleen in heterozygosity with Z-AAT. CONCLUSIONS These findings highlight the importance of implementing CP quantification in a clinical laboratory. Indeed, the variable amount of CP in patients with the same genotype may correlate with the variable severity of the associated lung and liver diseases. Moreover, CP can reveal the polymerogenic potential of newly discovered ultrarare AAT variants.
Collapse
Affiliation(s)
- Alice M Balderacchi
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mattia Bignotti
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, 9297University of Brescia, Brescia, Italy
| | - Stefania Ottaviani
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Denardo
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, 9297University of Brescia, Brescia, Italy
| | - Valentina Barzon
- Department of Internal Medicine and Therapeutics, Pulmonology Unit, 19001University of Pavia, Pavia, Italy
| | - Emna Ben Khlifa
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, 9297University of Brescia, Brescia, Italy
| | - Guido Vailati
- Referral Centre for Alpha-1 Antitrypsin Deficiency, 18515 Spedali Civili , Brescia, Italy
| | - Davide Piloni
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Benini
- Referral Centre for Alpha-1 Antitrypsin Deficiency, 18515 Spedali Civili , Brescia, Italy
| | - Luciano Corda
- Referral Centre for Alpha-1 Antitrypsin Deficiency, 18515 Spedali Civili , Brescia, Italy
| | - Angelo G Corsico
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, Pulmonology Unit, 19001University of Pavia, Pavia, Italy
| | - Ilaria Ferrarotti
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, Pulmonology Unit, 19001University of Pavia, Pavia, Italy
| | - Annamaria Fra
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, 9297University of Brescia, Brescia, Italy
| |
Collapse
|
22
|
Schillinger J, Koci M, Bravo-Rodriguez K, Heilmann G, Kaschani F, Kaiser M, Beuck C, Luecke H, Huber R, Hellerschmied D, Burston SG, Ehrmann M. High resolution analysis of proteolytic substrate processing. J Biol Chem 2024; 300:107812. [PMID: 39313096 PMCID: PMC11513451 DOI: 10.1016/j.jbc.2024.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Members of the widely conserved high temperature requirement A (HtrA) family of serine proteases are involved in multiple aspects of protein quality control. In this context, they have been shown to efficiently degrade misfolded proteins or protein fragments. However, recent reports suggest that folded proteins can also be native substrates. To gain a deeper understanding of how folded proteins are initially processed and subsequently degraded into short peptides by human HTRA1, we established an integrated and quantitative approach using time-resolved mass spectrometry, CD spectroscopy, and bioinformatics. The resulting data provide high-resolution information on up to 178 individual proteolytic sites within folded ANXA1 (consisting of 346 amino acids), the relative frequency of cuts at each proteolytic site, the preferences of the protease for the amino acid sequence surrounding the scissile bond, as well as the degrees of sequential structural relaxation and unfolding of the substrate that occur during progressive degradation. Our workflow provides precise molecular insights into protease-substrate interactions, which could be readily adapted to address other posttranslational modifications such as phosphorylation in dynamic protein complexes.
Collapse
Affiliation(s)
- Jasmin Schillinger
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Michelle Koci
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | | | - Geronimo Heilmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Hartmut Luecke
- Nova School of Science and Technology, Lisbon, Portugal; Department of Biophysics, University of California, Irvine, California, USA
| | - Robert Huber
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany; Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Doris Hellerschmied
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Steven G Burston
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, United Kingdom
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
23
|
Haynes LM, Holding ML, DiGiovanni H, Siemieniak D, Ginsburg D. High-throughput amino acid-level characterization of the interactions of plasminogen activator inhibitor-1 with variably divergent proteases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612699. [PMID: 39345533 PMCID: PMC11429915 DOI: 10.1101/2024.09.16.612699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
While members of large paralogous protein families share structural features, their functional niches often diverge significantly. Serine protease inhibitors (SERPINs), whose members typically function as covalent inhibitors of serine proteases, are one such family. Plasminogen activator inhibitor-1 (PAI-1) is a prototypic SERPIN, which canonically inhibits tissue-and urokinase-type plasminogen activators (tPA and uPA) to regulate fibrinolysis. PAI-1 has been shown to also inhibit other serine proteases, including coagulation factor XIIa (FXIIa) and transmembrane serine protease 2 (TMPRSS2). The structural determinants of PAI-1 inhibitory function toward these non-canonical protease targets, and the biological significance of these functions, are unknown. We applied deep mutational scanning (DMS) to assess the effects of ∼80% of all possible single amino acid substitutions in PAI-1 on its ability to inhibit three putative serine protease targets (uPA, FXIIa, and TMPRSS2). Selection with each target protease generated a unique PAI-1 mutational landscape, with the determinants of protease specificity distributed throughout PAI-1's primary sequence. Next, we conducted a comparative analysis of extant orthologous sequences, demonstrating that key residues modulating PAI-1 inhibition of uPA and FXIIa, but not TMPRSS2, are maintained by purifying selection. PAI-1's activity toward FXIIa may reflect how protease evolutionary relationships predict SERPIN functional divergence, which we support via a cophylogenetic analysis of all secreted SERPINs and their cognate serine proteases. This work provides insight into the functional diversification of SERPINs and lays the framework for extending these studies to other proteases and their regulators.
Collapse
|
24
|
Le Faouder J, Guého A, Lavigne R, Wauquier F, Boutin-Wittrant L, Bouvret E, Com E, Wittrant Y, Pineau C. Human Serum, Following Absorption of Fish Cartilage Hydrolysate, Promotes Dermal Fibroblast Healing through Anti-Inflammatory and Immunomodulatory Proteins. Biomedicines 2024; 12:2132. [PMID: 39335645 PMCID: PMC11430497 DOI: 10.3390/biomedicines12092132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Marine collagen peptides (MCPs) and glycosaminoglycans (GAGs) have been described as potential wound-healing (WH) agents. Fish cartilage hydrolysate (FCH) is a natural active food ingredient obtained from enzymatic hydrolysis which combines MCPs and GAGs. Recently, the clinical benefits of FCH supplementation for the skin, as well as its mode of action, have been demonstrated. Some of the highlighted mechanisms are common to the WH process. The aim of the study is therefore to investigate the influence of FCH supplementation on the skin healing processes and the underlying mechanisms. Methods: To this end, an ex vivo clinical approach, which takes into account the clinical digestive course of nutrients, coupled with primary cell culture on human dermal fibroblasts (HDFs) and ultra-deep proteomic analysis, was performed. The effects of human serum enriched in circulating metabolites resulting from FCH ingestion (FCH-enriched serum) were assessed on HDF WH via an in vitro scratch wound assay and on the HDF proteome via diaPASEF (Data Independent Acquisition-Parallel Accumulation Serial Fragmentation) proteomic analysis. Results: Results showed that FCH-enriched human serum accelerated wound closure. In support, proteins with anti-inflammatory and immunomodulatory properties and proteins prone to promote hydration and ECM stability showed increased expression in HDFs after exposure to FCH-enriched serum. Conclusions: Taken together, these data provide valuable new insights into the mechanisms that may contribute to FCH's beneficial impact on human skin functionality by supporting WH. Further studies are needed to reinforce these preliminary data and investigate the anti-inflammatory and immunomodulatory properties of FCH.
Collapse
Affiliation(s)
- Julie Le Faouder
- Abyss Ingredients, 860 Route de Caudan, 56850 Caudan, France;
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
| | - Aurélie Guého
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
| | - Régis Lavigne
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Fabien Wauquier
- Clinic’n’Cell SAS, Faculty of Medicine and Pharmacy, TSA 50400, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (F.W.); (Y.W.)
| | - Line Boutin-Wittrant
- Clinic’n’Cell SAS, Faculty of Medicine and Pharmacy, TSA 50400, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (F.W.); (Y.W.)
| | - Elodie Bouvret
- Abyss Ingredients, 860 Route de Caudan, 56850 Caudan, France;
| | - Emmanuelle Com
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Yohann Wittrant
- Clinic’n’Cell SAS, Faculty of Medicine and Pharmacy, TSA 50400, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (F.W.); (Y.W.)
- UNH, UMR1019, INRAE, 63009 Clermont-Ferrand, France
- Human Nutrition Unit, Clermont Auvergne University, BP 10448, 63000 Clermont-Ferrand, France
| | - Charles Pineau
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
25
|
Aggarwal S, Vineeth VS, Padwal SS, Bhat SA, Singh A, Kulkarni A, Patil M, Tallapaka K, Pasumarthi D, Venkatapuram V, Thotakura PL, Dalal A, Bhandari R. SERPINA11 related novel serpinopathy - A perinatal lethal disorder. Clin Genet 2024; 106:367-373. [PMID: 38831697 DOI: 10.1111/cge.14564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024]
Abstract
SERPINA11 is a hitherto poorly characterised gene belonging to Clade A of the SERPIN superfamily, with unknown expression pattern and functional significance. We report a perinatal lethal phenotype in two foetuses from the same family associated with a biallelic loss of function variant in SERPINA11, and provide functional evidence to support its candidature as a Mendelian disorder. The SERPINA11 variant-associated foetal phenotype is characterised by gross and histopathological features of extracellular matrix disruption. Western blot and immunofluorescence analyses revealed SERPINA11 expression in multiple mouse tissues, with pronounced expression in the bronchiolar epithelium. We observed a significant decrease in SERPINA11 immunofluorescence in the affected foetal lung compared with a healthy gestation-matched foetus. Protein expression data from HEK293T cell lines following site-directed mutagenesis support the loss of function nature of the variant. Transcriptome analysis from the affected foetal liver indicated the possibility of reduced SERPINA11 transcript abundance. This novel serpinopathy appears to be a consequence of the loss of inhibition of serine proteases involved in extracellular matrix remodelling, revealing SERPINA11 as a protease inhibitor critical for embryonic development.
Collapse
Affiliation(s)
- Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
- Laboratory of Human and Medical Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Venugopal Satidevi Vineeth
- Laboratory of Human and Medical Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Shrutika S Padwal
- Laboratory of Human and Medical Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | - Sameer Ahmed Bhat
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Arpita Singh
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Aditya Kulkarni
- Department of Histopathology, Apollo Hospitals, Hyderabad, India
| | - Mallikarjun Patil
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | | | - Divya Pasumarthi
- Laboratory of Human and Medical Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Vijayasree Venkatapuram
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
- Laboratory of Human and Medical Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Pragna Lakshmi Thotakura
- Laboratory of Human and Medical Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Ashwin Dalal
- Laboratory of Human and Medical Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
26
|
Keller J, O' Siorain JR, Kündig TM, Mellett M. Molecular aspects of Interleukin-36 cytokine activation and regulation. Biochem Soc Trans 2024; 52:1591-1604. [PMID: 38940747 DOI: 10.1042/bst20230548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Interleukin-36 (IL-36) cytokines are structurally similar to other Interleukin-1 superfamily members and are essential to convey inflammatory responses at epithelial barriers including the skin, lung, and gut. Due to their potent effects on immune cells, IL-36 cytokine activation is regulated on multiple levels, from expression and activation to receptor binding. Different IL-36 isoforms convey specific responses as a consequence of particular danger- or pathogen-associated molecular patterns. IL-36 expression and activation are regulated by exogenous pathogens, including fungi, viruses and bacteria but also by endogenous factors such as antimicrobial peptides or cytokines. Processing of IL-36 into potent bioactive forms is necessary for host protection but can elevate tissue damage. Indeed, exacerbated IL-36 signalling and hyperactivation are linked to the pathogenesis of diseases such as plaque and pustular psoriasis, emphasising the importance of understanding the molecular aspects regulating IL-36 activation. Here, we summarise facets of the electrochemical properties, regulation of extracellular cleavage by various proteases and receptor signalling of the pro-inflammatory and anti-inflammatory IL-36 family members. Additionally, this intriguing cytokine subfamily displays many characteristics that are unique from prototypical members of the IL-1 family and these key distinctions are outlined here.
Collapse
Affiliation(s)
- Jennifer Keller
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Science, University of Zürich, 8091 Zürich, Switzerland
| | - James R O' Siorain
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
27
|
Li X, Liu Y, Zou Y, Zhang J, Wang Y, Ding Y, Shi Z, Guo X, Zhang S, Yin H, Guo A, Wang S. Echinococcus multilocularis serpin regulates macrophage polarization and reduces gut dysbiosis in colitis. Infect Immun 2024; 92:e0023224. [PMID: 39037247 PMCID: PMC11320943 DOI: 10.1128/iai.00232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Helminths serve as principal regulators in modulating host immune responses, and their excretory-secretory proteins are recognized as potential therapeutic agents for inflammatory bowel disease. Nevertheless, our comprehension of the mechanisms underlying immunoregulation remains restricted. This investigation delves into the immunomodulatory role of a secretory protein serpin (Emu-serpin), within the larval stage of Echinococcus multilocularis. Our observations indicate that Emu-serpin effectively alleviates dextran sulfate sodium-induced colitis, yielding a substantial reduction in immunopathology and an augmentation of anti-inflammatory cytokines. Furthermore, this suppressive regulatory effect is concomitant with the reduction of gut microbiota dysbiosis linked to colitis, as evidenced by a marked impediment to the expansion of the pathobiont taxa Enterobacteriaceae. In vivo experiments demonstrate that Emu-serpin facilitates the expansion of M2 phenotype macrophages while concurrently diminishing M1 phenotype macrophages, alongside an elevation in anti-inflammatory cytokine levels. Subsequent in vitro investigations involving RAW264.7 and bone marrow macrophages reveal that Emu-serpin induces a conversion of M2 macrophage populations from a pro-inflammatory to an anti-inflammatory phenotype through direct inhibition. Adoptive transfer experiments reveal the peritoneal macrophages induced by Emu-serpin alleviate colitis and gut microbiota dysbiosis. In summary, these findings propose that Emu-serpin holds the potential to regulate macrophage polarization and maintain gut microbiota homeostasis in colitis, establishing it as a promising candidate for developing helminth therapy for preventing inflammatory diseases.
Collapse
Affiliation(s)
- Xiaolu Li
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yihui Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yang Zou
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Jiayun Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yugui Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yingying Ding
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Zhiqi Shi
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Xiaola Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Shaohua Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Aijiang Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Shuai Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
28
|
Cagnin S, Pontisso P, Martini A. SerpinB3: A Multifaceted Player in Health and Disease-Review and Future Perspectives. Cancers (Basel) 2024; 16:2579. [PMID: 39061218 PMCID: PMC11274807 DOI: 10.3390/cancers16142579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
SerpinB3, a member of the serine-protease inhibitor family, has emerged as a crucial player in various physiological and pathological processes. Initially identified as an oncogenic factor in squamous cell carcinomas, SerpinB3's intricate involvement extends from fibrosis progression and cancer to cell protection in acute oxidative stress conditions. This review explores the multifaceted roles of SerpinB3, focusing on its implications in fibrosis, metabolic syndrome, carcinogenesis and immune system impairment. Furthermore, its involvement in tissue protection from oxidative stress and wound healing underscores its potential as diagnostic and therapeutic tool. Recent studies have described the therapeutic potential of targeting SerpinB3 through its upstream regulators, offering novel strategies for cancer treatment development. Overall, this review underscores the importance of further research to fully elucidate the mechanisms of action of SerpinB3 and to exploit its therapeutic potential across various medical conditions.
Collapse
Affiliation(s)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35123 Padova, Italy; (S.C.); (A.M.)
| | | |
Collapse
|
29
|
do Nascimento RG, da Conceição MPF, de Bastos DR, de Toledo Osorio CAB, López RVM, Reis EM, Cerqueira OLD. Prognostic value of Maspin protein level in patients with triple negative breast cancer. Sci Rep 2024; 14:15982. [PMID: 38987610 PMCID: PMC11237076 DOI: 10.1038/s41598-024-53870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/06/2024] [Indexed: 07/12/2024] Open
Abstract
The search for prognostic markers in breast cancer has bumped into a typical feature of these tumors, intra and intertumoral heterogeneity. Changes in the expression profile, localization of these proteins or shedding to the surrounding stroma can be useful in the search for new markers. In this context, classification by molecular subtypes can bring perspectives for both diagnosis and screening for appropriate treatments. However, the Triple Negative (TN) subtype, which is already the one with the worst prognosis, lacks appropriate and consistent molecular markers. In this work, we analyzed 346 human breast cancer samples in tissue microarrays (TMA) from cases diagnosed with invasive breast carcinoma to assess the expression and localization pattern of Maspin and their correlation with clinical parameters. To complement our findings, we also used TCGA data to analyze the mRNA levels of these respective genes. Our data suggests that the TN subtype demonstrates a higher level of cytoplasmic Maspin compared to the other subtypes. Maspin transcript levels follow the same trend. However, TN patients with lower Maspin expression tend to have worse overall survival and free-survival metastasis rates. Finally, we used Maspin expression data to verify possible relationships with the clinicopathological information of our cohort. Our univariate analyses indicate that Maspin is related to the expression of estrogen receptor (ER) and progesterone receptor (PR). Furthermore, Maspin expression levels also showed correlation with Scarff-Bloom-Richardson (SBR) parameter, and stromal Maspin showed a relationship with lymph node involvement. Our data is not consistently robust enough to categorize Maspin as a prognostic marker. However, it does indicate a change in the expression profile within the TN subtype.
Collapse
Affiliation(s)
- Renan Gomes do Nascimento
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), Clinical Hospital Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo, SP, 01246-000, Brazil
- Department of Clinical Pharmacy and Oncology, Hospital São Camilo (HSC), São Paulo, SP, 02401-300, Brazil
| | - Mércia Patrícia Ferreira da Conceição
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), Clinical Hospital Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo, SP, 01246-000, Brazil
| | - Daniel Rodrigues de Bastos
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), Clinical Hospital Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo, SP, 01246-000, Brazil
| | | | - Rossana Verónica Mendoza López
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), Clinical Hospital Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo, SP, 01246-000, Brazil
| | - Eduardo Moraes Reis
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Otto Luiz Dutra Cerqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), Clinical Hospital Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo, SP, 01246-000, Brazil.
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
30
|
Smagin DA, Bezryadnov DV, Zavialova MG, Abramova AY, Pertsov SS, Kudryavtseva NN. Blood Plasma Markers in Depressed Mice under Chronic Social Defeat Stress. Biomedicines 2024; 12:1485. [PMID: 39062058 PMCID: PMC11275122 DOI: 10.3390/biomedicines12071485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
It has previously been shown that, in mice, chronic social defeat stress in daily agonistic interactions leads to a depression-like state similar to that in depressive patients. With this model, it has become obvious that it is possible to study peripheral markers of the depression-like state in an experiment. This paper was aimed at searching for protein markers in the blood plasma of depressed mice in the chronic social conflict model, which allows for us to obtain male mice with repeated experiences of defeat. Proteomic analysis of blood plasma samples was conducted to identify proteins differentially expressed in this state. There were changes in the expression levels of the amyloid proteins SAA1, SAA4, and SAMP and apolipoproteins APOC3, APOD, and ADIPO in the blood plasma of depressed mice compared with controls (unstressed mice). Changes in the expression of serine protease inhibitors and/or proteins associated with lipid metabolism, inflammation, or immune function [ITIH4, SPA3, A1AT5, HTP (HP), CO9, and A2MG] were also found. Here, we showed that chronic social stress is accompanied by increased levels of amyloid proteins and apolipoproteins in blood plasma. A similarity was noted between the marker protein expression changes in the depressed mice and those in patients with Alzheimer's disease. These data indicate a psychopathogenic role of chronic social stress, which can form a predisposition to neurodegenerative and/or psychoemotional disorders.
Collapse
Affiliation(s)
- Dmitry A. Smagin
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry V. Bezryadnov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, P.K. Anokhin Research Institute of Normal Physiology, Moscow 125315, Russia; (D.V.B.); (S.S.P.)
| | | | - Anastasia Yu. Abramova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, P.K. Anokhin Research Institute of Normal Physiology, Moscow 125315, Russia; (D.V.B.); (S.S.P.)
| | - Sergey S. Pertsov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, P.K. Anokhin Research Institute of Normal Physiology, Moscow 125315, Russia; (D.V.B.); (S.S.P.)
| | - Natalia N. Kudryavtseva
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
31
|
Blanco-Doval A, Azkargorta M, Iloro I, Beaskoetxea J, Elortza F, Barron LJR, Aldai N. Comparative proteomic analysis of the changes in mare milk associated with different lactation stages and management systems. Food Chem 2024; 445:138766. [PMID: 38402663 DOI: 10.1016/j.foodchem.2024.138766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Mare milk has traditionally been attributed a number of health promoting properties. However, knowledge on its composition and functionality remains scarce, with particularly limited studies on mare milk proteomics. This study deeply characterized mare milk proteome accounting for both caseins and proteins in the whey fraction, also addressing the impact of lactation stage and different management systems. Milk samples from Basque Mountain Horse breed mares belonging to three different farms and three lactation stages were analysed after in-gel and in-solution digestion using nLC-MS/MS. Among the 469 proteins identified, the content of alpha-1 antitrypsin was significantly higher in pasture-based compared to other systems. Moreover, lactation stage significantly affected the content of beta-lactoglobulin II, immunoglobulin-like domain-containing protein, interferon alpha-inducible protein 27, lactotransferrin, polypeptide N-acetylgalactosaminyltransferase, and transforming acidic coiled-coil containing protein 2. This study contributes to the deep characterization of mare milk proteome and provides new insights into the effect of different production factors.
Collapse
Affiliation(s)
- Ana Blanco-Doval
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160 Derio, Spain.
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160 Derio, Spain.
| | - Jabier Beaskoetxea
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160 Derio, Spain.
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160 Derio, Spain.
| | - Luis Javier R Barron
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
32
|
Medipally A, Xiao M, Biederman L, Dasgupta A, Satoskar AA, Parikh S, Ivanov I, Mikhalina G, Brodsky SV. Role of plasminogen activated inhibitor-1 in the pathogenesis of anticoagulant related nephropathy. FRONTIERS IN NEPHROLOGY 2024; 4:1406655. [PMID: 39006160 PMCID: PMC11239567 DOI: 10.3389/fneph.2024.1406655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024]
Abstract
Anticoagulant related nephropathy (ARN) is the result of glomerular hemorrhage in patients on systemic anticoagulation therapy or underlying coagulopathy. Red blood cells (RBC) that passed through the glomerular filtration barrier form RBC casts in the tubules, increase oxidative stress and result in acute tubular necrosis (ATN). The mechanisms of ARN still not completely discovered. Plasminogen activator inhibitor-1 (PAI-1) plays a significant role in the maintenance of coagulation homeostasis. We developed an animal model to study ARN in 5/6 nephrectomy (5/6NE) rats. The aim of this study was to elucidate the role of PAI-1 in the ARN pathogenesis. 5/6NE rats were treated per os with warfarin (0.75 mg/kg/day) or dabigatran (150 mg/kg/day) alone or in combination with PAI-1 antagonist TM5441 (2.5, 5.0 and 10 mg/kg/day). TM5441 in a dose dependent manner ameliorated anticoagulant-induced increase in serum creatinine in 5/6NE rats. Anticoagulant-associated increase in hematuria was no affected by TM5441. The levels of reactive oxygen species (ROS) in the kidneys were in a dose-dependent manner decreased in 5/6NE rats treated with an anticoagulant and TM5441. Our data demonstrates that PAI-1 may reduce ARN by decreasing ROS in the kidneys. Glomerular hemorrhage is not affected by anti-PAI-1 treatment. These findings indicate that while symptoms of ARN can be reduced by PAI-1 inhibition, the main pathogenesis of ARN - glomerular hemorrhage - cannot be prevented.
Collapse
Affiliation(s)
- Ajay Medipally
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Min Xiao
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Laura Biederman
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Pathology, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Alana Dasgupta
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Anjali A. Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Samir Parikh
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Iouri Ivanov
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Galina Mikhalina
- Medicine, Rochester Regional Health Nephrology, Rochester, NY, United States
| | - Sergey V. Brodsky
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
33
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
34
|
Ogino N, Leite MF, Guerra MT, Kruglov E, Asashima H, Hafler DA, Ito T, Pereira JP, Peiffer BJ, Sun Z, Ehrlich BE, Nathanson MH. Neutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis. J Clin Invest 2024; 134:e171691. [PMID: 38916955 PMCID: PMC11324315 DOI: 10.1172/jci171691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Neutrophil infiltration occurs in a variety of liver diseases, but it is unclear how neutrophils and hepatocytes interact. Neutrophils generally use granule proteases to digest phagocytosed bacteria and foreign substances or neutralize them in neutrophil extracellular traps. In certain pathological states, granule proteases play a destructive role against the host as well. More recently, nondestructive actions of neutrophil granule proteins have been reported, such as modulation of tissue remodeling and metabolism. Here, we report a completely different mechanism by which neutrophils act nondestructively, by inserting granules directly into hepatocytes. Specifically, elastase-containing granules were transferred to hepatocytes where elastase selectively degraded intracellular calcium channels to reduce cell proliferation without cytotoxicity. In response, hepatocytes increased expression of Serpin E2 and A3, which inhibited elastase activity. Elastase insertion was seen in patient specimens of alcohol-associated hepatitis, and the relationship between elastase-mediated ITPR2 degradation and reduced cell proliferation was confirmed in mouse models. Moreover, neutrophils from patients with alcohol-associated hepatitis were more prone to degranulation and more potent in reducing calcium channel expression than neutrophils from healthy individuals. This nondestructive and reversible action on hepatocytes defines a previously unrecognized role for neutrophils in the transient regulation of epithelial calcium signaling mechanisms.
Collapse
Affiliation(s)
- Noriyoshi Ogino
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - M. Fatima Leite
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- INCT - NanoBiofar – Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mateus T. Guerra
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emma Kruglov
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Takeshi Ito
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - João P. Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brandon J. Peiffer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barbara E. Ehrlich
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Michael H. Nathanson
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
35
|
Huang H, Mu Y, Li S. The biological function of Serpinb9 and Serpinb9-based therapy. Front Immunol 2024; 15:1422113. [PMID: 38966643 PMCID: PMC11222584 DOI: 10.3389/fimmu.2024.1422113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Recent breakthroughs in discovering novel immune signaling pathways have revolutionized different disease treatments. SERPINB9 (Sb9), also known as Proteinase Inhibitor 9 (PI-9), is a well-known endogenous inhibitor of Granzyme B (GzmB). GzmB is a potent cytotoxic molecule secreted by cytotoxic T lymphocytes and natural killer cells, which plays a crucial role in inducing apoptosis in target cells during immune responses. Sb9 acts as a protective mechanism against the potentially harmful effects of GzmB within the cells of the immune system itself. On the other hand, overexpression of Sb9 is an important mechanism of immune evasion in diseases like cancers and viral infections. The intricate functions of Sb9 in different cell types represent a fine-tuned regulatory mechanism for preventing immunopathology, protection against autoimmune diseases, and the regulation of cell death, all of which are essential for maintaining health and responding effectively to disease challenges. Dysregulation of the Sb9 will disrupt human normal physiological condition, potentially leading to a range of diseases, including cancers, inflammatory conditions, viral infections or other pathological disorders. Deepening our understanding of the role of Sb9 will aid in the discovery of innovative and effective treatments for various medical conditions. Therefore, the objective of this review is to consolidate current knowledge regarding the biological role of Sb9. It aims to offer insights into its discovery, structure, functions, distribution, its association with various diseases, and the potential of nanoparticle-based therapies targeting Sb9.
Collapse
Affiliation(s)
- Haozhe Huang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiqing Mu
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
36
|
Luo C, Zhu Y, Zhang S, Zhou J, Mao S, Tang R, Gu Y, Tan S, Lin H, Li Z, Zhang W. Increased SERPINB2 potentiates 15LO1 expression via STAT6 signalling in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Clin Exp Allergy 2024; 54:412-424. [PMID: 38639267 DOI: 10.1111/cea.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND SERPINB2, a biomarker of Type-2 (T2) inflammatory processes, has been described in the context of asthma. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also correlated with T2 inflammation and elevated 15LO1 induced by IL-4/13 in nasal epithelial cells. The aim of this study was to evaluate the expression and location of SERPINB2 in nasal epithelial cells (NECs) and determine whether SERPINB2 regulates 15LO1 and downstream T2 markers in NECs via STAT6 signalling. METHODS SERPINB2 gene expression in bulk and single-cell RNAseq database was analysed by bioinformatics analysis. SERPINB2, 15LO1 and other T2 markers were evaluated from CRSwNP and HCs NECs. The colocalization of SERPINB2 and 15LO1 was evaluated by immunofluorescence. Fresh NECs were cultured at an air-liquid interface with or without IL-13, SERPINB2 Dicer-substrate short interfering RNAs (DsiRNAs) transfection, exogenous SERPINB2, 15-HETE recombinant protein and pSTAT6 inhibitors. 15LO1, 15-HETE and downstream T2 markers were analysed by qRT-PCR, western blot and ELISA. RESULTS SERPINB2 expression was increased in eosinophilic nasal polyps compared with that in noneosinophilic nasal polyps and control tissues and positively correlated with 15LO1 and other downstream T2 markers. SERPINB2 was predominantly expressed by epithelial cells in NP tissue and was colocalized with 15LO1. In primary NECs in vitro, SERPINB2 expression was induced by IL-13. Knockdown or overexpression SERPINB2 decreased or enhanced expression of 15LO1 and 15-HETE in NECs, respectively, in a STAT6-dependent manner. SERPINB2 siRNA also inhibited the expression of the 15LO1 downstream genes, such as CCL26, POSTN and NOS2. STAT6 inhibition similarly decreased SERPINB2-induced 15LO1. CONCLUSIONS SERPINB2 is increased in NP epithelial cells of eosinophilic CRSwNP (eCRSwNP) and contributes to T2 inflammation via STAT6 signalling. SERPINB2 could be considered a novel therapeutic target for eCRSwNP.
Collapse
Affiliation(s)
- Chunyu Luo
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ying Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shiyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiayao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Song Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ru Tang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yuelong Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shaolin Tan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Postgraduate Training Base of Shanghai Sixth People's Hospital, Jinzhou Medical University, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
37
|
Janciauskiene S, Lechowicz U, Pelc M, Olejnicka B, Chorostowska-Wynimko J. Diagnostic and therapeutic value of human serpin family proteins. Biomed Pharmacother 2024; 175:116618. [PMID: 38678961 DOI: 10.1016/j.biopha.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SERPIN (serine proteinase inhibitors) is an acronym for the superfamily of structurally similar proteins found in animals, plants, bacteria, viruses, and archaea. Over 1500 SERPINs are known in nature, while only 37 SERPINs are found in humans, which participate in inflammation, coagulation, angiogenesis, cell viability, and other pathophysiological processes. Both qualitative or quantitative deficiencies or overexpression and/or abnormal accumulation of SERPIN can lead to diseases commonly referred to as "serpinopathies". Hence, strategies involving SERPIN supplementation, elimination, or correction are utilized and/or under consideration. In this review, we discuss relationships between certain SERPINs and diseases as well as putative strategies for the clinical explorations of SERPINs.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Magdalena Pelc
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland.
| |
Collapse
|
38
|
Patel MA, Daley M, Van Nynatten LR, Slessarev M, Cepinskas G, Fraser DD. A reduced proteomic signature in critically ill Covid-19 patients determined with plasma antibody micro-array and machine learning. Clin Proteomics 2024; 21:33. [PMID: 38760690 PMCID: PMC11100131 DOI: 10.1186/s12014-024-09488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes in critically ill COVID-19 patients' proteomes enables a better understanding of markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify novel proteins of COVID-19. METHODS A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific expression. RESULTS Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key proteins, with the digestive and nervous systems being the leading systems. CONCLUSIONS The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | | | - Marat Slessarev
- Medicine, Western University, London, ON, N6A 3K7, Canada
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada.
- Children's Health Research Institute, London, ON, N6C 4V3, Canada.
- Pediatrics, Western University, London, ON, N6A 3K7, Canada.
- Clinical Neurological Sciences, Western University, London, ON, N6A 3K7, Canada.
- Physiology & Pharmacology, Western University, London, ON, N6A 3K7, Canada.
- London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
39
|
Croft J, Grajeda B, Aguirre LA, Abou-Fadel JS, Ellis CC, Estevao I, Almeida IC, Zhang J. Circulating Blood Prognostic Biomarker Signatures for Hemorrhagic Cerebral Cavernous Malformations (CCMs). Int J Mol Sci 2024; 25:4740. [PMID: 38731959 PMCID: PMC11084792 DOI: 10.3390/ijms25094740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are a neurological disorder characterized by enlarged intracranial capillaries in the brain, increasing the susceptibility to hemorrhagic strokes, a major cause of death and disability worldwide. The limited treatment options for CCMs underscore the importance of prognostic biomarkers to predict the likelihood of hemorrhagic events, aiding in treatment decisions and identifying potential pharmacological targets. This study aimed to identify blood biomarkers capable of diagnosing and predicting the risk of hemorrhage in CCM1 patients, establishing an initial set of circulating biomarker signatures. By analyzing proteomic profiles from both human and mouse CCM models and conducting pathway enrichment analyses, we compared groups to identify potential blood biomarkers with statistical significance. Specific candidate biomarkers primarily associated with metabolism and blood clotting pathways were identified. These biomarkers show promise as prognostic indicators for CCM1 deficiency and the risk of hemorrhagic stroke, strongly correlating with the likelihood of hemorrhagic cerebral cavernous malformations (CCMs). This lays the groundwork for further investigation into blood biomarkers to assess the risk of hemorrhagic CCMs.
Collapse
Affiliation(s)
- Jacob Croft
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Luis A. Aguirre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Johnathan S. Abou-Fadel
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Cameron C. Ellis
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor Estevao
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor C. Almeida
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Jun Zhang
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| |
Collapse
|
40
|
Guo B, Sun Y, Wang Y, Zhang Y, Zheng Y, Xu S, Yang G, Ren W. Evolutionary genetics of pulmonary anatomical adaptations in deep-diving cetaceans. BMC Genomics 2024; 25:339. [PMID: 38575860 PMCID: PMC10993460 DOI: 10.1186/s12864-024-10263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Cetaceans, having experienced prolonged adaptation to aquatic environments, have undergone evolutionary changes in their respiratory systems. This process of evolution has resulted in the emergence of distinctive phenotypic traits, notably the abundance of elastic fibers and thickened alveolar walls in their lungs, which may facilitate alveolar collapse during diving. This structure helps selective exchange of oxygen and carbon dioxide, while minimizing nitrogen exchange, thereby reducing the risk of DCS. Nevertheless, the scientific inquiry into the mechanisms through which these unique phenotypic characteristics govern the diving behavior of marine mammals, including cetaceans, remains unresolved. RESULTS This study entails an evolutionary analysis of 42 genes associated with pulmonary fibrosis across 45 mammalian species. Twenty-one genes in cetaceans exhibited accelerated evolution, featuring specific amino acid substitutions in 14 of them. Primarily linked to the development of the respiratory system and lung morphological construction, these genes play a crucial role. Moreover, among marine mammals, we identified eight genes undergoing positive selection, and the evolutionary rates of three genes significantly correlated with diving depth. Specifically, the SFTPC gene exhibited convergent amino acid substitutions. Through in vitro cellular experiments, we illustrated that convergent amino acid site mutations in SFTPC contribute positively to pulmonary fibrosis in marine mammals, and the presence of this phenotype can induce deep alveolar collapse during diving, thereby reducing the risk of DCS during diving. CONCLUSIONS The study unveils pivotal genetic signals in cetaceans and other marine mammals, arising through evolution. These genetic signals may influence lung characteristics in marine mammals and have been linked to a reduced risk of developing DCS. Moreover, the research serves as a valuable reference for delving deeper into human diving physiology.
Collapse
Affiliation(s)
- Boxiong Guo
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Yixuan Sun
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Yuehua Wang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Ya Zhang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Yu Zheng
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
41
|
Zhang H, Wu Y, Zhu Y, Ge L, Huang J, Qin Z. Identification and functional analysis of a serine protease inhibitor using machine learning strategy. Int J Biol Macromol 2024; 265:130852. [PMID: 38508547 DOI: 10.1016/j.ijbiomac.2024.130852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
In the intricate realm of animal biology, a multitude of vital processes heavily rely on precisely orchestrated proteinase cascades, but the potential for havoc makes proteinase inhibitors indispensable, with serine proteinase inhibitors (serpins) at the forefront, serving as custodians of homeostasis and participating in various critical biological processes. Importantly, there are still many unexplored facets of serpin functionality. In this study, we focused on the serpin family proteins from Marsupenaeus japonicus, utilizing a fine-tuned pretrained protein language model. This approach led to the identification and evolutionary validation of 28 serpins, one of which, referred to as Mjserpin-1, was both computationally and experimentally demonstrated to show potential as an antiviral and apoptosis inhibitor. Our research unveils exciting prospects for the fusion of state-of-the-art artificial intelligence and rich bioinformatics, holding the promise of significant discoveries that could pave the way for future therapeutic advancements.
Collapse
Affiliation(s)
- Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China.
| | - Yaxin Wu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Yanran Zhu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Liangjun Ge
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jiaquan Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China.
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
42
|
Yu Q, Xie T, Zhang Y, Pan T, Tan Y, Qin H, Yan S. Exploration of SERPINA family functions and prognostic value in breast cancer based on transcriptome and in vitro analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:1951-1967. [PMID: 38069587 DOI: 10.1002/tox.24079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
Breast cancer poses a significant risk to women worldwide, yet specific role of SERPINA gene family in breast cancer remains unclarified. Data were collected from online databases. SERPINA family gene expression was presented, and prognosis value was evaluated. Multi-omics methods were employed to explore the SERPINA-related biological processes, followed by comprehensive analyses of their roles in breast cancer. Single-cell data were analyzed to characterize the SERPINA family gene expression in different cell clusters. We selected SERPINA5 as the target gene. Via pan-cancer analysis, SERPINA5 was also investigated in various cancers. The experimental validation was conducted in MDA-MB-231 cell line eventually. SERPINA family showed differential expression in breast cancer, which were mainly expressed in myeloid cells, epithelial cells, and dendritic cells. SERPINA5 expression was upregulated in breast cancer, which was associated with a better prognosis. Immune infiltration illustrated the positive correlativity between SERPINA5 intensity and eosinophilic recruitment. Pan-cancer analysis indicated the function of SERPINA5 as a potential biomarker in other cancers. Finally, experimental validation demonstrated that SERPINA5 contributes to lower invasion and metastatic potential of breast cancer cells. With bioinformatics analysis, the significant role SERPINA family genes functioned in breast cancer was comprehensively explored, with SERPINA5 emerging as a key gene in suppressing breast cancer progression.
Collapse
Affiliation(s)
- Qiyi Yu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yidong Zhang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tianyue Pan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongmei Tan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Simin Yan
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
43
|
Rodriguez Galvan JJ, de Vries M, Belblidia S, Fisher A, Prescott RA, Crosse KM, Mangel WF, Duerr R, Dittmann M. In-silico docking platform with serine protease inhibitor (SERPIN) structures identifies host cysteine protease targets with significance for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.11.18.517133. [PMID: 36415456 PMCID: PMC9681043 DOI: 10.1101/2022.11.18.517133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Serine Protease Inhibitors (SERPINs) regulate protease activity in various physiological processes such as inflammation, cancer metastasis, angiogenesis, and neurodegenerative diseases. However, their potential in combating viral infections, where proteases are also crucial, remains underexplored. This is due to our limited understanding of SERPIN expression during viral-induced inflammation and of the SERPINs' full spectrum of target proteases. Here, we demonstrate widespread expression of human SERPINs in response to respiratory virus infections, both in vitro and in vivo , alongside classical antiviral effectors. Through comprehensive in-silico docking with full-length SERPIN and protease 3D structures, we confirm known inhibitors of specific proteases; more importantly, the results predict novel SERPIN-protease interactions. Experimentally, we validate the direct inhibition of key proteases essential for viral life cycles, including the SERPIN PAI-1's capability to inhibit select cysteine proteases such as cathepsin L, and the serine protease TMPRSS2. Consequently, PAI-1 suppresses spike maturation and multi-cycle SARS-CoV-2 replication. Our findings challenge conventional notions of SERPIN selectivity, underscore the power of in-silico docking for SERPIN target discovery, and offer potential therapeutic interventions targeting host proteolytic pathways to combat viruses with urgent unmet therapeutic needs. SIGNIFICANCE Serine protease inhibitors (SERPINs) play crucial roles in various physiological processes, including viral infections. However, our comprehension of the full array of proteases targeted by the SERPIN family has traditionally been limited, hindering a comprehensive understanding of their regulatory potential. We developed an in-silico docking platform to identify new SERPIN target proteases expressed in the respiratory tract, a critical viral entry portal. The platform confirmed known and predicted new targets for every SERPIN examined, shedding light on previously unrecognized patterns in SERPIN selectivity. Notably, both key proteases for SARS-CoV-2 maturation were among the newly predicted targets, which we validated experimentally. This underscores the platform's potential in uncovering targets with significance in viral infections, paving the way to define the full potential of the SERPIN family in infectious disease and beyond.
Collapse
|
44
|
Schiff HF, Walker NF, Ugarte-Gil C, Tebruegge M, Manousopoulou A, Garbis SD, Mansour S, Wong PH(M, Rockett G, Piazza P, Niranjan M, Vallejo AF, Woelk CH, Wilkinson RJ, Tezera LB, Garay-Baquero D, Elkington P. Integrated plasma proteomics identifies tuberculosis-specific diagnostic biomarkers. JCI Insight 2024; 9:e173273. [PMID: 38512356 PMCID: PMC11141874 DOI: 10.1172/jci.insight.173273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUNDNovel biomarkers to identify infectious patients transmitting Mycobacterium tuberculosis are urgently needed to control the global tuberculosis (TB) pandemic. We hypothesized that proteins released into the plasma in active pulmonary TB are clinically useful biomarkers to distinguish TB cases from healthy individuals and patients with other respiratory infections.METHODSWe applied a highly sensitive non-depletion tandem mass spectrometry discovery approach to investigate plasma protein expression in pulmonary TB cases compared to healthy controls in South African and Peruvian cohorts. Bioinformatic analysis using linear modeling and network correlation analyses identified 118 differentially expressed proteins, significant through 3 complementary analytical pipelines. Candidate biomarkers were subsequently analyzed in 2 validation cohorts of differing ethnicity using antibody-based proximity extension assays.RESULTSTB-specific host biomarkers were confirmed. A 6-protein diagnostic panel, comprising FETUB, FCGR3B, LRG1, SELL, CD14, and ADA2, differentiated patients with pulmonary TB from healthy controls and patients with other respiratory infections with high sensitivity and specificity in both cohorts.CONCLUSIONThis biomarker panel exceeds the World Health Organization Target Product Profile specificity criteria for a triage test for TB. The new biomarkers have potential for further development as near-patient TB screening assays, thereby helping to close the case-detection gap that fuels the global pandemic.FUNDINGMedical Research Council (MRC) (MR/R001065/1, MR/S024220/1, MR/P023754/1, and MR/W025728/1); the MRC and the UK Foreign Commonwealth and Development Office; the UK National Institute for Health Research (NIHR); the Wellcome Trust (094000, 203135, and CC2112); Starter Grant for Clinical Lecturers (Academy of Medical Sciences UK); the British Infection Association; the Program for Advanced Research Capacities for AIDS in Peru at Universidad Peruana Cayetano Heredia (D43TW00976301) from the Fogarty International Center at the US NIH; the UK Technology Strategy Board/Innovate UK (101556); the Francis Crick Institute, which receives funding from UKRI-MRC (CC2112); Cancer Research UK (CC2112); and the NIHR Biomedical Research Centre of Imperial College NHS.
Collapse
Affiliation(s)
- Hannah F. Schiff
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, Southampton, United Kingdom
| | - Naomi F. Walker
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Cesar Ugarte-Gil
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Epidemiology, School of Public and Population Health, University of Texas Medical Branch, Galveston, Texas, USA
| | - Marc Tebruegge
- Department of Infection, Immunity & Inflammation, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatrics, Klinik Ottakring, Wiener Gesundheitsverbund, Vienna, Austria
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Antigoni Manousopoulou
- Proteas Bioanalytics, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Spiros D. Garbis
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Proteas Bioanalytics, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Salah Mansour
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, Southampton, United Kingdom
| | | | - Gabrielle Rockett
- Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Paolo Piazza
- Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Mahesan Niranjan
- Institute for Life Sciences, Southampton, United Kingdom
- Electronics and Computer Sciences, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Andres F. Vallejo
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Robert J. Wilkinson
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, and
- Department of Medicine, University of Cape Town, Observatory, Republic of South Africa
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Liku B. Tezera
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, Southampton, United Kingdom
| | - Diana Garay-Baquero
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, Southampton, United Kingdom
| | - Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, Southampton, United Kingdom
| |
Collapse
|
45
|
Markocsy A, Hrubiskova K, Hrubisko M, Freiberger T, Grombirikova H, Dolesova L, Slivka Vavrova L, Lohajova Behulova R, Ondrusova M, Banovcin P, Vorcakova K, Jesenak M. Complex analysis of the national Hereditary angioedema cohort in Slovakia - Identification of 12 novel variants in SERPING1 gene. World Allergy Organ J 2024; 17:100885. [PMID: 38486718 PMCID: PMC10937951 DOI: 10.1016/j.waojou.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Background Hereditary angioedema (HAE) is a rare autosomal dominant genetic disease characterised by acute episodes of non-pruritic skin and submucosal swelling caused by increase in vascular permeability. Objective Here we present the first complex analysis of the National HAE Slovakian cohort with the detection of 12 previously un-published genetic variants in SERPING1 gene. Methods In patients diagnosed with hereditary angioedema caused by deficiency or dysfunction of C1 inhibitor (C1-INH-HAE) based on clinical manifestation and complement measurements, SERPING1 gene was tested by DNA sequencing (Sanger sequencing/massive parallel sequencing) and/or multiplex ligation-dependent probe amplification for detection of large rearrangements. Results The Slovakian national cohort consisted of 132 living patients with confirmed HAE. We identified 51 index cases (32 families, 19 sporadic patients/112 adults, 20 children). One hundred seventeen patients had HAE caused by deficiency of C1 inhibitor (C1-INH-HAE-1) and 15 patients had HAE caused by dysfunction of C1 inhibitor (C1-INH-HAE-2). The prevalence of HAE in Slovakia has recently been calculated to 1:41 280 which is higher than average calculated prevalence. The estimated incidence was 1:1360 000. Molecular-genetic testing of the SERPING1 gene found 22 unique causal variants in 26 index cases, including 12 previously undescribed and unreported. Conclusion The first complex report about epidemiology and genetics of the Slovakian national HAE cohort expands the knowledge of the C1-INH-HAE genetics. Twelve novel causal variants were present in the half of the index cases. A higher percentage of inframe variants comparing to other studies was observed. Heterozygous deletion of exon 3 found in a large C1-INH-HAE-1 family probably causes the dysregulation of the splicing isoforms balance and leads to the decrease of full-length C1-INH level.
Collapse
Affiliation(s)
- Adam Markocsy
- National Centre for Hereditary Angioedema, Clinic of Children and Adolescents, Clinics of Pulmonology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Hospital in Martin, Slovakia
| | - Katarina Hrubiskova
- Centre for Hereditary Angioedema, 5th Clinic of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, University Hospital Bratislava, Bratislava, Slovakia
| | - Martin Hrubisko
- Department of Clinical Immunology and Allergology, St. Elisabeth Cancer Institute in Bratislava, Slovakia
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Grombirikova
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Dolesova
- Department of Medical Genetics, St. Elisabeth Cancer Institute in Bratislava, Slovakia
| | | | | | - Martina Ondrusova
- Pharm-In, Ltd., Bratislava, Slovakia
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Peter Banovcin
- National Centre for Hereditary Angioedema, Clinic of Children and Adolescents, Clinics of Pulmonology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Hospital in Martin, Slovakia
| | - Karolina Vorcakova
- Clinic of Dermatovenerology, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Hospital in Martin, Slovakia
| | - Milos Jesenak
- National Centre for Hereditary Angioedema, Clinic of Children and Adolescents, Clinics of Pulmonology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Clinical Immunology and Allergology, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Hospital in Martin, Slovakia
| |
Collapse
|
46
|
Peled A, Sprecher E. Proteolytic and Antiproteolytic Activity in the Skin: Gluing the Pieces Together. J Invest Dermatol 2024; 144:466-473. [PMID: 37865898 DOI: 10.1016/j.jid.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 10/23/2023]
Abstract
Epidermal differentiation is ultimately aimed at the formation of a functional barrier capable of protecting the organism from the environment while preventing loss of biologically vital elements. Epidermal differentiation entails a delicately regulated process of cell-cell junction formation and dissolution to enable upward cell migration and desquamation. Over the past two decades, the deciphering of the genetic basis of a number of inherited conditions has delineated the pivotal role played in this process by a series of proteases and protease inhibitors, including serpins, cathepsins, and cystatins, suggesting novel avenues for therapeutic intervention in both rare and common disorders of cornification.
Collapse
Affiliation(s)
- Alon Peled
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
47
|
Huang YK, Cheng WC, Kuo TT, Yang JC, Wu YC, Wu HH, Lo CC, Hsieh CY, Wong SC, Lu CH, Wu WL, Liu SJ, Li YC, Lin CC, Shen CN, Hung MC, Lin JT, Yeh CC, Sher YP. Inhibition of ADAM9 promotes the selective degradation of KRAS and sensitizes pancreatic cancers to chemotherapy. NATURE CANCER 2024; 5:400-419. [PMID: 38267627 DOI: 10.1038/s43018-023-00720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
Kirsten rat sarcoma virus (KRAS) signaling drives pancreatic ductal adenocarcinoma (PDAC) malignancy, which is an unmet clinical need. Here, we identify a disintegrin and metalloproteinase domain (ADAM)9 as a modulator of PDAC progression via stabilization of wild-type and mutant KRAS proteins. Mechanistically, ADAM9 loss increases the interaction of KRAS with plasminogen activator inhibitor 1 (PAI-1), which functions as a selective autophagy receptor in conjunction with light chain 3 (LC3), triggering lysosomal degradation of KRAS. Suppression of ADAM9 by a small-molecule inhibitor restricts disease progression in spontaneous models, and combination with gemcitabine elicits dramatic regression of patient-derived tumors. Our findings provide a promising strategy to target the KRAS signaling cascade and demonstrate a potential modality to enhance sensitivity to chemotherapy in PDAC.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Ting-Ting Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Juan-Cheng Yang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Heng-Hsiung Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Chien Lo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Ying Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Sze-Ching Wong
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chih-Hao Lu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Ling Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ching-Chan Lin
- Division of Hematology and Oncology, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mien-Chie Hung
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jaw-Town Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Chun-Chieh Yeh
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Surgery, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
48
|
Wu S, Yang Y, Zhang M, Khan AU, Dai J, Ouyang J. Serpin peptidase inhibitor, clade E, member 2 in physiology and pathology: recent advancements. Front Mol Biosci 2024; 11:1334931. [PMID: 38469181 PMCID: PMC10927012 DOI: 10.3389/fmolb.2024.1334931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
Serine protease inhibitors (serpins) are the most numerous and widespread multifunctional protease inhibitor superfamily and are expressed by all eukaryotes. Serpin E2 (serpin peptidase inhibitor, clade E, member 2), a member of the serine protease inhibitor superfamily is a potent endogenous thrombin inhibitor, mainly found in the extracellular matrix and platelets, and expressed in numerous organs and secreted by many cell types. The multiple functions of serpin E2 are mainly mediated through regulating urokinase-type plasminogen activator (uPA, also known as PLAU), tissue-type plasminogen activator (tPA, also known as PLAT), and matrix metalloproteinase activity, and include hemostasis, cell adhesion, and promotion of tumor metastasis. The importance serpin E2 is clear from its involvement in numerous physiological and pathological processes. In this review, we summarize the structural characteristics of the Serpin E2 gene and protein, as well as its roles physiology and disease.
Collapse
Affiliation(s)
- Shutong Wu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Xinjin Branch of Chengdu Municipal Public Security Bureau, Chengdu, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, China
| | - Meiling Zhang
- Chengdu Municipal Public Security Bureau Wenjiang Branch, Chengdu, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Lotke R, Petersen M, Sauter D. Restriction of Viral Glycoprotein Maturation by Cellular Protease Inhibitors. Viruses 2024; 16:332. [PMID: 38543698 PMCID: PMC10975521 DOI: 10.3390/v16030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
The human genome is estimated to encode more than 500 proteases performing a wide range of important physiological functions. They digest proteins in our food, determine the activity of hormones, induce cell death and regulate blood clotting, for example. During viral infection, however, some proteases can switch sides and activate viral glycoproteins, allowing the entry of virions into new target cells and the spread of infection. To reduce unwanted effects, multiple protease inhibitors regulate the proteolytic processing of self and non-self proteins. This review summarizes our current knowledge of endogenous protease inhibitors, which are known to limit viral replication by interfering with the proteolytic activation of viral glycoproteins. We describe the underlying molecular mechanisms and highlight the diverse strategies by which protease inhibitors reduce virion infectivity. We also provide examples of how viruses evade the restriction imposed by protease inhibitors. Finally, we briefly outline how cellular protease inhibitors can be modified and exploited for therapeutic purposes. In summary, this review aims to summarize our current understanding of cellular protease inhibitors as components of our immune response to a variety of viral pathogens.
Collapse
Affiliation(s)
| | | | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
50
|
Ruf M, Cunningham S, Wandersee A, Brox R, Achenbach S, Strobel J, Hackstein H, Schneider S. SERPINC1 c.1247dupC: a novel SERPINC1 gene mutation associated with familial thrombosis results in a secretion defect and quantitative antithrombin deficiency. Thromb J 2024; 22:19. [PMID: 38347553 PMCID: PMC10860291 DOI: 10.1186/s12959-024-00589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Antithrombin (AT) is an important anticoagulant in hemostasis. We describe here the characterization of a novel AT mutation associated with clinically relevant thrombosis. A pair of sisters with confirmed type I AT protein deficiency was genetically analyzed on suspicion of an inherited SERPINC1 mutation. A frameshift mutation, c.1247dupC, was identified and the effect of this mutation was examined on the cellular and molecular level. METHODS Plasmids for the expression of wild-type (WT) and mutated SERPINC1 coding sequence (CDS) fused to green fluorescent protein (GFP) or hemagglutinin (HA) tag were transfected into HEK293T cells. Subcellular localization and secretion of the respective fusion proteins were analyzed by confocal laser scanning microscopy and Western blot. RESULTS The c.1247dupC mutation results in a frameshift in the CDS of the SERPINC1 gene and a subsequently altered amino acid sequence (p.Ser417LysfsTer48). This alteration affects the C-terminus of the AT antigen and results in impaired secretion as confirmed by GFP- and HA-tagged mutant AT analyzed in HEK293T cells. CONCLUSION The p.Ser417LysfsTer48 mutation leads to impaired secretion, thus resulting in a quantitative AT deficiency. This is in line with the type I AT deficiency observed in the patients.
Collapse
Affiliation(s)
- Maximilian Ruf
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Alexandra Wandersee
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Regine Brox
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Susanne Achenbach
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Sabine Schneider
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany.
| |
Collapse
|