1
|
McKinney WS, Schmitt LM, De Stefano LA, Ethridge L, Norris JE, Horn PS, Dauterman S, Rosselot H, Pedapati EV, Reisinger DL, Dominick KC, Shaffer RC, Chin D, Friedman NR, Hong M, Sweeney JA, Erickson C. Results from a Double-Blind, Randomized, Placebo-Controlled, Single-Dose, Crossover Trial of Lovastatin or Minocycline in Fragile X Syndrome. J Child Adolesc Psychopharmacol 2024. [PMID: 39651602 DOI: 10.1089/cap.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Introduction: Treatment studies in FMR1 knockout rodent models have found that minocycline and lovastatin each improve synaptic, neurological, and behavioral functioning, and open-label chronic dosing studies in human patients with fragile X syndrome (FXS) have demonstrated modest clinical improvements. Findings from blinded studies are mixed, and there is a limited understanding of electrophysiological target engagement that would facilitate cross-species translational studies. Smaller-scale, acute (e.g., single-dose) drug studies may speed treatment identification by detecting subtle electrophysiological and behavioral changes. Materials and Methods: Twenty-nine participants with FXS (31% female) ages 15-45 years completed a randomized, double-blind, crossover study in which they received a single oral dose of 40 mg of lovastatin, 270 mg of minocycline, or placebo, with a 2-week washout period between dosing visits. Participants completed a comprehensive neuropsychological battery and three EEG paradigms (resting state; auditory chirp; auditory habituation) before and 4 hours after dosing. Results: No serious adverse events were reported, and both drugs were well-tolerated. Compared with placebo, there were no overall treatment effects for any outcomes, including EEG, but several modest drug responses varied as a function of sex and age. Lovastatin treatment was associated with improved spatial awareness in older participants and females compared with minocycline and placebo. Discussion: We show that single-dose drug studies are highly feasible in FXS and that patients with FXS can complete a range of EEG and behavioral tasks, many of which have been shown to be reliable and may therefore be sensitive to subtle drug target engagement. Conclusions: Acute single doses of lovastatin or minocycline did not lead to changes in electrophysiological or performance-based measures. This may be due to the limited effects of these drugs in human patients or limited acute effects relative to chronic dosing. However, the study design was further validated for use in neurodevelopmental populations.
Collapse
Affiliation(s)
- Walker S McKinney
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lauren M Schmitt
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lisa A De Stefano
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lauren Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Pediatrics, Section of Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jordan E Norris
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, USA
| | - Paul S Horn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shelby Dauterman
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Debra L Reisinger
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rebecca C Shaffer
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Danielle Chin
- The Heidt Center of Excellence, Cincinnati, Ohio, USA
| | - Nicole R Friedman
- Department of Psychology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Michael Hong
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Lu L, Sarkar AK, Dao L, Liu Y, Ma C, Thwin PH, Chang X, Yoshida G, Li A, Wang C, Westerkamp C, Schmitt L, Chelsey M, Stephanie M, Zhao Y, Liu Y, Wang X, Zhu LQ, Liu D, Tchieu J, Miyakoshi M, Zhu H, Gross C, Pedapati E, Salomonis N, Erickson C, Guo Z. An iPSC model of fragile X syndrome reflects clinical phenotypes and reveals m 6 A-mediated epi-transcriptomic dysregulation underlying synaptic dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618205. [PMID: 39464060 PMCID: PMC11507714 DOI: 10.1101/2024.10.14.618205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fragile X syndrome (FXS), the leading genetic cause of intellectual disability, arises from FMR1 gene silencing and loss of the FMRP protein. N6-methyladenosine (m 6 A) is a prevalent mRNA modification essential for post-transcriptional regulation. FMRP is known to bind to and regulate the stability of m 6 A-containing transcripts. However, how loss of FMRP impacts on transcriptome-wide m 6 A modifications in FXS patients remains unknown. To answer this question, we generated cortical neurons differentiated from induced pluripotent stem cells (iPSC) derived from healthy subjects and FXS patients. In electrophysiology recordings, we validated that synaptic and neuronal network defects in iPSC-derived FXS neurons corresponded to the clinical EEG data of the patients from which the corresponding iPSC line was derived. In analysis of transcriptome-wide methylation, we show that FMRP deficiency led to increased translation of m 6 A writers, resulting in hypermethylation that primarily affecting synapse-associated transcripts and increased mRNA decay. Conversely, in the presence of an m 6 A writer inhibitor, synaptic defects in FXS neurons were rescued. Taken together, our findings uncover that an FMRP-dependent epi-transcriptomic mechanism contributes to FXS pathogenesis by disrupting m 6 A modifications in FXS, suggesting a promising avenue for m 6 A-targeted therapies.
Collapse
|
3
|
Ethridge LE, Pedapati EV, Schmitt LM, Norris JE, Auger E, De Stefano LA, Sweeney JA, Erickson CA. Validating brain activity measures as reliable indicators of individual diagnostic group and genetically mediated sub-group membership Fragile X Syndrome. Sci Rep 2024; 14:22982. [PMID: 39362936 PMCID: PMC11450163 DOI: 10.1038/s41598-024-72935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
Recent failures translating preclinical behavioral treatment effects to positive clinical trial results in humans with Fragile X Syndrome (FXS) support refocusing attention on biological pathways and associated measures, such as electroencephalography (EEG), with strong translational potential and small molecule target engagement. This study utilized guided machine learning to test promising translational EEG measures (resting power and auditory chirp oscillatory variables) in a large heterogeneous sample of individuals with FXS to identify best performing EEG variables for reliably separating individuals with FXS, and genetically-mediated subgroups within FXS, from typically developing controls. Best performing variables included resting relative frontal theta power, all combined posterior-head resting power bands, posterior peak alpha frequency (PAF), combined PAF across all measured regions, combined theta, alpha, and gamma power during the chirp, and all combined chirp oscillatory variables. Sub-group analyses for resting EEG best discriminated non-mosaic FXS males via frontal theta resting relative power (AUC = 0.8759), even with data reduced to a 20-channel clinical montage (AUC = 0.9062). In the chirp task, FXS females and non-mosaic males were nearly perfectly discriminated by combined theta, alpha, and gamma power (AUC = 0.9444) and a combination of all variables (AUC = 0.9610), respectively. Results support use of resting and auditory oscillatory tasks to reliably identify neural deficit in FXS, and to identify specific translational targets for genetically-mediated sub-groups, supporting potential points for stratification.
Collapse
Affiliation(s)
- Lauren E Ethridge
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA.
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ernest V Pedapati
- Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jordan E Norris
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA
| | - Emma Auger
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA
| | - Lisa A De Stefano
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
4
|
Ethridge LE, Pedapati EV, Schmitt LM, Norris JE, Auger E, De Stefano LA, Sweeney JA, Erickson CA. Validating brain activity measures as reliable indicators of individual diagnostic group and genetically mediated sub-group membership Fragile X Syndrome. RESEARCH SQUARE 2024:rs.3.rs-3849272. [PMID: 38313274 PMCID: PMC10836101 DOI: 10.21203/rs.3.rs-3849272/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Recent failures translating preclinical behavioral treatment effects to positive clinical trial results in humans with Fragile X Syndrome (FXS) support refocusing attention on biological pathways and associated measures, such as electroencephalography (EEG), with strong translational potential and small molecule target engagement. This study utilized guided machine learning to test promising translational EEG measures (resting power and auditory chirp oscillatory variables) in a large heterogeneous sample of individuals with FXS to identify best performing EEG variables for reliably separating individuals with FXS, and genetically-mediated subgroups within FXS, from typically developing controls. Best performing variables included resting relative frontal theta power, all combined whole-head resting power bands, posterior peak alpha frequency (PAF), combined PAF across all measured regions, combined theta, alpha, and gamma power during the chirp, and all combined chirp oscillatory variables. Sub-group analyses best discriminated non-mosaic FXS males via whole-head resting relative power (AUC = .9250), even with data reduced to a 20-channel clinical montage. FXS females were nearly perfectly discriminated by combined theta, alpha, and gamma power during the chirp (AUC = .9522). Results support use of resting and auditory oscillatory tasks to reliably identify neural deficit in FXS, and to identify specific translational targets for genetically-mediated sub-groups, supporting potential points for stratification.
Collapse
|
5
|
Dakopolos A, Condy E, Smith E, Harvey D, Kaat AJ, Coleman J, Riley K, Berry-Kravis E, Hessl D. Developmental Associations between Cognition and Adaptive Behavior in Intellectual and Developmental Disability. RESEARCH SQUARE 2024:rs.3.rs-3684708. [PMID: 38260292 PMCID: PMC10802716 DOI: 10.21203/rs.3.rs-3684708/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Intellectual and developmental disabilities (IDDs) are associated with both cognitive challenges and difficulties in conceptual, social, and practical areas of living (DSM-5). Individuals with IDD often present with an intellectual disability in addition to a developmental disability such as autism or Down syndrome. Those with IDD may present with deficits in intellectual functioning as well as adaptive functioning that interfere with independence and living skills. The present study sought to examine associations of longitudinal developmental change in domains of cognition (NIH Toolbox Cognition Battery, NIHTB-CB) and adaptive behavior domains (Vineland Adaptive Behavior Scales-3; VABS-3) including Socialization, Communication, and Daily Living Skills (DLS) over a two-year period. Methods Eligible participants for this multisite longitudinal study included those who were between 6 and 26 years at Visit 1, and who had a diagnosis of, or suspected intellectual disability (ID), including borderline ID. Three groups were recruited, including those with fragile X syndrome, Down syndrome, and other/idiopathic intellectual disability. In order to examine the association of developmental change between cognitive and adaptive behavior domains, bivariate latent change score (BLCS) models were fit to compare change in the three cognitive domains measured by the NIHTB-CB (Fluid, Crystallized, Composite) and the three adaptive behavior domains measured by the VABS-3 (Communication, DLS, and Socialization). Results Over a two-year period, change in cognition (both Crystalized and Composite) was significantly and positively associated with change in daily living skills. Also, baseline cognition level predicted growth in adaptive behavior, however baseline adaptive behavior did not predict growth in cognition in any model. Conclusions The present study demonstrated that developmental improvements in cognition and adaptive behavior are associated in children and young adults with IDD, indicating the potential for cross-domain effects of intervention. Notably, improvements in Daily Living Skills on the VABS-3 emerged as a primary area of adaptive behavior that positively related to improvements in cognition. This work provides evidence for the clinical, "real life" meaningfulness of the NIHTB-CB in IDD, and important empirical support for the NIHTB-CB as a fit-for-purpose performance-based outcome measure for this population.
Collapse
Affiliation(s)
| | | | - Elizabeth Smith
- Cincinnati Children's Hospital Medical Center Burnet Campus: Cincinnati Children's Hospital Medical Center
| | | | - Aaron J Kaat
- Northwestern University Feinberg School of Medicine
| | | | | | | | | |
Collapse
|
6
|
Müller AR, van Silfhout NY, den Hollander B, Kampman DHC, Bakkum L, Brands MMMG, Haverman L, Terwee CB, Schuengel C, Daams J, Hessl D, Wijburg FA, Boot E, van Eeghen AM. Navigating the outcome maze: a scoping review of outcomes and instruments in clinical trials in genetic neurodevelopmental disorders and intellectual disability. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241245721. [PMID: 38681798 PMCID: PMC11047260 DOI: 10.1177/26330040241245721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 05/01/2024]
Abstract
Background Individuals with genetic neurodevelopmental disorders (GNDs) or intellectual disability (ID) are often affected by complex neuropsychiatric comorbidities. Targeted treatments are increasingly available, but due to the heterogeneity of these patient populations, choosing a key outcome and corresponding outcome measurement instrument remains challenging. Objectives The aim of this scoping review was to describe the research on outcomes and instruments used in clinical trials in GNDs and ID. Eligibility criteria Clinical trials in individuals with GNDs and ID for any intervention over the past 10 years were included in the review. Sources of evidence MEDLINE, PsycINFO, and Cochrane CENTRAL were searched. Titles and abstracts were independently screened for eligibility with a subsample of 10% double-screening for interrater reliability. Data from full texts were independently reviewed. Discrepancies were discussed until consensus was reached. Charting methods Information was recorded on patient populations, interventions, designs, outcomes, measurement instruments, and type of reporter when applicable. Qualitative and descriptive analyses were performed. Results We included 312 studies reporting 91 different outcomes, with cognitive function most frequently measured (28%). Various outcome measurement instruments (n = 457) were used, with 288 in only a single clinical trial. There were 18 genetic condition-specific instruments and 16 measures were designed ad-hoc for one particular trial. Types of report included proxy-report (39%), self-report (22%), clinician-report (16%), observer-report (6%), self-assisted report (1%), or unknown (16%). Conclusion This scoping review of current practice reveals a myriad of outcomes and outcome measurement instruments for clinical trials in GNDs and ID. This complicates generalization, evidence synthesis, and evaluation. It underlines the need for consensus on suitability, validity, and relevancy of instruments, ultimately resulting in a core outcome set. A series of steps is proposed to move from the myriad of measures to a more unified approach.
Collapse
Affiliation(s)
- Annelieke R. Müller
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Advisium, ’s Heeren Loo, Amersfoort, Utrecht, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nadia Y. van Silfhout
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Child Development, Amsterdam, The Netherlands
- Emma Children’s Hospital, Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bibiche den Hollander
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Dick H. C. Kampman
- Faculty of Science, Operational Management, ICT Department, Utrecht University, Utrecht, The Netherlands
| | - Lianne Bakkum
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Clinical Child and Family Studies, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marion M. M. G. Brands
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Child Development, Amsterdam, The Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Lotte Haverman
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Child Development, Amsterdam, The Netherlands
- Emma Children’s Hospital, Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline B. Terwee
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Carlo Schuengel
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Clinical Child and Family Studies, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joost Daams
- Medical Library, Research Support, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - David Hessl
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Frits A. Wijburg
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Boot
- Advisium, ’s Heeren Loo, Amersfoort, Utrecht, The Netherlands
- The Dalglish Family 22q Clinic, Toronto, ON, Canada
- Department of Psychiatry & Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Agnies M. van Eeghen
- Emma Center for Personalized Medicine, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Advisium, ’s Heeren Loo, Berkenweg 11, 3818 LA, Amersfoort, The Netherlands
- Amsterdam Public Health Research Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Child Development, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Dakopolos A, Glassman D, Scott H, Bass M, Hessl D. iBehavior-a preliminary proof of concept study of a smartphone-based tool for the assessment of behavior change in neurodevelopmental disabilities. Front Psychol 2023; 14:1217821. [PMID: 37920743 PMCID: PMC10619652 DOI: 10.3389/fpsyg.2023.1217821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Purpose The purpose of the present study was to describe the content and function of iBehavior, a smartphone-based caregiver-report electronic ecological momentary assessment (eEMA) tool developed to assess and track behavior change in people with intellectual and developmental disabilities (IDDs), and to examine its preliminary validity. Methods Ten parents of children (ages of 5-17 years) with IDDs (n = 7 with fragile X syndrome; n = 3 with Down syndrome) rated their child's behavior (aggression and irritability, avoidant and fearful behavior, restricted and repetitive behavior and interests, and social initiation) using iBehavior once daily for 14 days. At the conclusion of the 14-day observation period, parents completed traditional rating scales as validation measures, as well as a user feedback survey. Results Across the 140 possible observations, 8 were skipped, leading to a 94% response rate over 10 participants' observation periods. Participants also completed 100% of items for each of their logged observations. Parent ratings using iBehavior showed emerging evidence of convergent validity among domains with traditional rating scales including the Behavior Rating Inventory of Executive Function 2 (BRIEF-2), and Aberrant Behavior Checklist-Community (ABC-C). iBehavior was feasible in the sample, and parent feedback indicated high overall satisfaction. Conclusion Results of the present pilot study indicate successful implementation and preliminary feasibility and validity of an eEMA tool for use as a behavioral outcome measure in IDDs.
Collapse
Affiliation(s)
- Andrew Dakopolos
- MIND Institute, University of California Davis Health, Sacramento, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Dana Glassman
- MIND Institute, University of California Davis Health, Sacramento, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Haleigh Scott
- Department of Psychiatry and Behavioral Sciences, UC Davis MIND Institute, Sacramento, CA, United States
| | - Michael Bass
- Fienberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David Hessl
- MIND Institute, University of California Davis Health, Sacramento, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
8
|
Westmark CJ. Toward an understanding of the role of the exposome on fragile X phenotypes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:141-170. [PMID: 37993176 DOI: 10.1016/bs.irn.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Fragile X syndrome (FXS) is the leading known monogenetic cause of autism with an estimated 21-50% of FXS individuals meeting autism diagnostic criteria. A critical gap in medical care for persons with autism is an understanding of how environmental exposures and gene-environment interactions affect disease outcomes. Our research indicates more severe neurological and metabolic outcomes (seizures, autism, increased body weight) in mouse and human models of autism spectrum disorders (ASD) as a function of diet. Thus, early-life exposure to chemicals in the diet could cause or exacerbate disease outcomes. Herein, we review the effects of potential dietary toxins, i.e., soy phytoestrogens, glyphosate, and polychlorinated biphenyls (PCB) in FXS and other autism models. The rationale is that potentially toxic chemicals in the diet, particularly infant formula, could contribute to the development and/or severity of ASD and that further study in this area has potential to improve ASD outcomes through dietary modification.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Medical Sciences Center, Room 3619, 1300 University Avenue, Madison, WI, United States; Molecular Environmental Toxicology Center, University of Wisconsin-Madison, Medical Sciences Center, Room 3619, 1300 University Avenue, Madison, WI, United States.
| |
Collapse
|
9
|
Milla LA, Corral L, Rivera J, Zuñiga N, Pino G, Nunez-Parra A, Cea-Del Rio CA. Neurodevelopment and early pharmacological interventions in Fragile X Syndrome. Front Neurosci 2023; 17:1213410. [PMID: 37599992 PMCID: PMC10433175 DOI: 10.3389/fnins.2023.1213410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder and the leading monogenic cause of autism and intellectual disability. For years, several efforts have been made to develop an effective therapeutic approach to phenotypically rescue patients from the disorder, with some even advancing to late phases of clinical trials. Unfortunately, none of these attempts have completely succeeded, bringing urgency to further expand and refocus research on FXS therapeutics. FXS arises at early stages of postnatal development due to the mutation and transcriptional silencing of the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1) and consequent loss of the Fragile X Messenger Ribonucleoprotein (FMRP) expression. Importantly, FMRP expression is critical for the normal adult nervous system function, particularly during specific windows of embryogenic and early postnatal development. Cellular proliferation, migration, morphology, axonal guidance, synapse formation, and in general, neuronal network establishment and maturation are abnormally regulated in FXS, underlying the cognitive and behavioral phenotypes of the disorder. In this review, we highlight the relevance of therapeutically intervening during critical time points of development, such as early postnatal periods in infants and young children and discuss past and current clinical trials in FXS and their potential to specifically target those periods. We also discuss potential benefits, limitations, and disadvantages of these pharmacological tools based on preclinical and clinical research.
Collapse
Affiliation(s)
- Luis A. Milla
- Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Lucia Corral
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Jhanpool Rivera
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Nolberto Zuñiga
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Gabriela Pino
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Alexia Nunez-Parra
- Physiology Laboratory, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- Cell Physiology Center, Universidad de Chile, Santiago, Chile
| | - Christian A. Cea-Del Rio
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
10
|
Duis J, Skinner A, Carson R, Gouelle A, Annoussamy M, Silverman JL, Apkon S, Servais L, Carollo J. Quantitative measures of motor development in Angelman syndrome. Am J Med Genet A 2023; 191:1711-1721. [PMID: 37019838 PMCID: PMC11068498 DOI: 10.1002/ajmg.a.63192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
Angelman Syndrome is a rare neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, characteristic behavior, and movement disorders. Clinical gait analysis provides the opportunity for movement quantification to investigate an observed maladaptive change in gait pattern and offers an objective outcome of change. Pressure-sensor-based technology, inertial and activity monitoring, and instrumented gait analysis (IGA) were employed to define motor abnormalities in Angelman syndrome. Temporal-spatial gait parameters of persons with Angelman Syndrome (pwAS) show deficiencies in gait performance through walking speed, step length, step width, and walk ratio. pwAS walk with reduced step lengths, increased step width, and greater variability. Three-dimensional motion kinematics showed increased anterior pelvic tilt, hip flexion, and knee flexion. PwAS have a walk ratio more than two standard deviations below controls. Dynamic electromyography showed prolonged activation of knee extensors, which was associated with a decreased range of motion and the presence of hip flexion contractures. Use of multiple gait tracking modalities revealed that pwAS exhibit a change in gait pattern to a flexed knee gait pattern. Cross-sectional studies of individuals with AS show a regression toward this maladaptive gait pattern over development in pwAS ages 4-11. PwAS unexpectedly did not have spasticity associated with change in gait pattern. Multiple quantitative measures of motor patterning may offer early biomarkers of gait decline consistent with critical periods of intervention, insight into appropriate management strategies, objective primary outcomes, and early indicators of adverse events.
Collapse
Affiliation(s)
- Jessica Duis
- Center for Gait & Movement Analysis (CGMA), Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Section of Genetics and Inherited Metabolic Disease, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Section of Pediatrics, Special Care Clinic, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Austin Skinner
- Center for Gait & Movement Analysis (CGMA), Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robert Carson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Arnaud Gouelle
- Université de Reims Champagne-Ardenne, PSMS (Performance, Santé, Métrologie, Société), Reims, France
- Gait and Balance Academy, ProtoKinetics, Havertown, Pennsylvania, USA
| | | | - Jill L. Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Susan Apkon
- Department of Physical Medicine & Rehabilitation, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laurent Servais
- Department of Paediatrics, Oxford University, Oxford, UK
- Division of Child Neurology, Centre de References des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege & University of Liege, Liege, Belgium
| | - James Carollo
- Center for Gait & Movement Analysis (CGMA), Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Physical Medicine & Rehabilitation, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
11
|
Abbeduto L, Del Hoyo Soriano L, Berry-Kravis E, Sterling A, Edgin JO, Abdelnur N, Drayton A, Hoffmann A, Hamilton D, Harvey DJ, Thurman AJ. Expressive language sampling and outcome measures for treatment trials in fragile X and down syndromes: composite scores and psychometric properties. Sci Rep 2023; 13:9267. [PMID: 37286643 PMCID: PMC10247708 DOI: 10.1038/s41598-023-36087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/29/2023] [Indexed: 06/09/2023] Open
Abstract
The lack of psychometrically sound outcome measures has been a barrier to evaluating the efficacy of treatments proposed for core symptoms of intellectual disability (ID). Research on Expressive Language Sampling (ELS) procedures suggest it is a promising approach to measuring treatment efficacy. ELS entails collecting samples of a participant's talk in interactions with an examiner that are naturalistic but sufficiently structured to ensure consistency and limit examiner effects on the language produced. In this study, we extended previous research on ELS by analyzing an existing dataset to determine whether psychometrically adequate composite scores reflecting multiple dimensions of language can be derived from ELS procedures administered to 6- to 23-year-olds with fragile X syndrome (n = 80) or Down syndrome (n = 78). Data came from ELS conversation and narration procedures administered twice in a 4-week test-retest interval. We found that several composites emerged from variables indexing syntax, vocabulary, planning processes, speech articulation, and talkativeness, although there were some differences in the composites for the two syndromes. Evidence of strong test-retest reliability and construct validity of two of three composites were obtained for each syndrome. Situations in which the composite scores would be useful in evaluating treatment efficacy are outlined.
Collapse
Affiliation(s)
- Leonard Abbeduto
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis Health, 2828 50Th St., Sacramento, CA, 95817, USA.
| | - Laura Del Hoyo Soriano
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis Health, 2828 50Th St., Sacramento, CA, 95817, USA
| | | | - Audra Sterling
- Waisman Center and Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| | - Jamie O Edgin
- Department of Psychology, Sonoran UCEDD, UA Family and Community Medicine, University of Arizona, Phoenix, AZ, USA
| | - Nadia Abdelnur
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis Health, 2828 50Th St., Sacramento, CA, 95817, USA
| | - Andrea Drayton
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis Health, 2828 50Th St., Sacramento, CA, 95817, USA
| | - Anne Hoffmann
- Department of Communication Disorders and Sciences, Rush University, Chicago, IL, USA
- Department of Pediatrics, Rush University, Chicago, IL, USA
| | - Debra Hamilton
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, USA
| | - Angela John Thurman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis Health, 2828 50Th St., Sacramento, CA, 95817, USA
| |
Collapse
|
12
|
Shaffer RC, Reisinger DL, Schmitt LM, Lamy M, Dominick KC, Smith EG, Coffman MC, Esbensen AJ. Systematic Review: Emotion Dysregulation in Syndromic Causes of Intellectual and Developmental Disabilities. J Am Acad Child Adolesc Psychiatry 2023; 62:518-557. [PMID: 36007813 DOI: 10.1016/j.jaac.2022.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/03/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To summarize the current state of the literature regarding emotion dysregulation (ED) in syndromic intellectual disabilities (S-IDs) in 6 of the most common forms of S-IDs-Down syndrome, fragile X syndrome (FXS), tuberous sclerosis complex, Williams syndrome, Prader-Willi syndrome, and Angelman syndrome-and to determine future research directions for identification and treatment of ED. METHOD PubMed bibliographic database was searched from date of inception to May 2021. PRISMA 2020 guidelines were followed with the flowchart, table of included studies, list of excluded studies, and checklist provided. Filters applied included human research and English. Only original research articles were included in the final set, but review articles were used to identify secondary citations of primary studies. All articles were reviewed for appropriateness by 2 authors and summarized. Inclusion criteria were met by 145 articles (Down syndrome = 29, FXS = 55, tuberous sclerosis complex = 11, Williams syndrome = 18, Prader-Willi syndrome = 24, Angelman syndrome = 8). RESULTS Each syndrome review was summarized separately and further subdivided into articles related to underlying neurobiology, behaviors associated with ED, assessment, and targeted intervention. FXS had the most thorough research base, followed by Down syndrome and Prader-Willi syndrome, with the other syndromes having more limited available research. Very limited research was available regarding intervention for all disorders except FXS. CONCLUSION Core underlying characteristics of S-IDs appear to place youth at higher risk for ED, but further research is needed to better assess and treat ED in S-IDs. Future studies should have a standard assessment measure of ED, such as the Emotion Dysregulation Inventory, and explore adapting established curricula for ED from the neurotypical and autism spectrum disorder fields.
Collapse
Affiliation(s)
- Rebecca C Shaffer
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio.
| | | | - Lauren M Schmitt
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Martine Lamy
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Kelli C Dominick
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Elizabeth G Smith
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| | | | - Anna J Esbensen
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| |
Collapse
|
13
|
Dakopolos A, Glassman D, Scott H, Bass M, Hessl D. iBehavior - A Smartphone-Based Ecological Momentary Assessment Tool for the Assessment of Behavior Change in Neurodevelopmental Disorders. RESEARCH SQUARE 2023:rs.3.rs-2787281. [PMID: 37131607 PMCID: PMC10153370 DOI: 10.21203/rs.3.rs-2787281/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The purpose of the present study was to describe the content and function of iBehavior, a smartphone-based caregiver-report electronic ecological momentary assessment (eEMA) tool developed to assess and track behavior change in people with intellectual and developmental disabilities (IDDs), and to examine its preliminary validity. Ten parents of children (ages of 5-17 years) with IDDs (n = 7 with fragile X syndrome; n = 3 with Down syndrome) rated their child's behavior (aggression and irritability, avoidant and fearful behavior, restricted and repetitive behavior and interests, and social initiation) using iBehavior once daily for 14 days. At the conclusion of the 14-day observation period, parents completed traditional rating scales as validation measures, as well as a user feedback survey. Parent ratings using iBehavior showed emerging evidence of convergent validity among domains with traditional rating scales including the Behavior Rating Inventory of Executive Function 2 (BRIEF-2), Aberrant Behavior Checklist - Community (ABC-C), and Conners 3. iBehavior was feasible in our sample, and parent feedback indicated high overall satisfaction. Results of the present pilot study indicate successful implementation and preliminary feasibility and validity of an eEMA tool for use as a behavioral outcome measure in IDDs.
Collapse
|
14
|
Straub D, Schmitt LM, Boggs AE, Horn PS, Dominick KC, Gross C, Erickson CA. A sensitive and reproducible qRT-PCR assay detects physiological relevant trace levels of FMR1 mRNA in individuals with Fragile X syndrome. Sci Rep 2023; 13:3808. [PMID: 36882476 PMCID: PMC9992378 DOI: 10.1038/s41598-023-29786-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited intellectual disability. FXS is caused by a trinucleotide repeat expansion in the 5' untranslated region of the FMR1 gene, which leads to gene methylation, transcriptional silencing, and lack of expression of Fragile X Messenger Riboprotein (FMRP). Currently available FXS therapies are inefficient, and the disease severity is highly variable, making it difficult to predict disease trajectory and treatment response. We and others have recently shown that a subset of full-mutation, fully-methylated (FM-FM) males with FXS express low amounts of FMRP which could contribute to phenotypic variability. To better understand the underlying mechanisms, we developed a sensitive qRT-PCR assay to detect FMR1 mRNA in blood. This assay reproducibly detects trace amounts of FMR1 mRNA in a subset of FM-FM males, suggesting that current Southern Blot and PCR determination of FM-FM status is not always associated with complete transcriptional silencing. The functional relevance of trace-level FMR1 mRNA is confirmed by showing a positive correlation with cognitive function; however, phenotypic variability is not fully explained by FMR1 expression. These results corroborate the need for better molecular assays for FXS diagnosis and encourage studies to elucidate the factors contributing to the phenotypic variability of FXS.
Collapse
Affiliation(s)
- Devan Straub
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
| | - Anna E Boggs
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
| | - Paul S Horn
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229-3039, USA
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Stetson Building Suite 3200, 260 Stetson Street, Cincinnati, OH, 45267-0559, USA
| | - Christina Gross
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229-3039, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Stetson Building Suite 3200, 260 Stetson Street, Cincinnati, OH, 45267-0559, USA.
| |
Collapse
|
15
|
Shields RH, Kaat A, Sansone SM, Michalak C, Coleman J, Thompson T, McKenzie FJ, Dakopolos A, Riley K, Berry-Kravis E, Widaman KF, Gershon RC, Hessl D. Sensitivity of the NIH Toolbox to Detect Cognitive Change in Individuals With Intellectual and Developmental Disability. Neurology 2023; 100:e778-e789. [PMID: 36460468 PMCID: PMC9984222 DOI: 10.1212/wnl.0000000000201528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Individuals with intellectual disability (ID) experience protracted cognitive development compared with typical youth. Sensitive measurement of cognitive change in this population is a critical need for clinical trials and other intervention studies, but well-validated outcome measures are scarce. This study's aim was to evaluate the sensitivity of the NIH Toolbox Cognition Battery (NIHTB-CB) to detect developmental changes in groups with ID-fragile X syndrome (FXS), Down syndrome (DS), and other ID (OID)-and to provide further support for its use as an outcome measure for treatment trials. METHODS We administered the NIHTB-CB and a reference standard cross-validation measure (Stanford-Binet Intelligence Scales, Fifth Edition [SB5]) to 256 individuals with FXS, DS, and OID (ages 6-27 years). After 2 years of development, we retested 197 individuals. Group developmental changes in each cognitive domain of the NIHTB-CB and SB5 were assessed using latent change score models, and 2-year growth was evaluated at 3 age points (10, 16, and 22 years). RESULTS Overall, effect sizes of growth measured by the NIHTB-CB tests were comparable with or exceeded those of the SB5. The NIHTB-CB showed significant gains in almost all domains in OID at younger ages (10 years), with continued gains at 16 years and stability in early adulthood (22 years). The FXS group showed delayed gains in attention and inhibitory control compared with OID. The DS group had delayed gains in receptive vocabulary compared with OID. Unlike the other groups, DS had significant growth in early adulthood in 2 domains (working memory and attention/inhibitory control). Notably, each group's pattern of NIHTB-CB growth across development corresponded to their respective pattern of SB5 growth. DISCUSSION The NIHTB-CB is sensitive to developmental changes in individuals with ID. Comparison with levels and timing of growth on the cross-validation measure shows that the NIHTB-CB has potential to identify meaningful trajectories across cognitive domains and ID etiologies. Sensitivity to change within the context of treatment studies and delineation of clinically meaningful changes in NIHTB-CB scores, linked to daily functioning, must be established in future research to evaluate the battery more completely as a key outcome measure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - David Hessl
- From the MIND Institute and Department of Psychiatry and Behavioral Sciences (R.H.S., S.M.S., F.J.M., A.D., D.H.), University of California Davis, Sacramento; Northwestern University Feinberg School of Medicine (A.K., R.C.G.), Chicago, IL; Rush University Medical Center Departments of Pediatrics (C.M., E.B.), Neurological Sciences and Biochemistry, Chicago, IL; University of Denver Morgridge College of Education (J.C.), Denver, CO; University of Colorado School of Medicine (T.T.), Aurora; Regis University (K.R.), Denver, CO; and University of California Riverside Graduate School of Education (K.F.W.), Riverside.
| |
Collapse
|
16
|
Schmitt LM, Arzuaga AL, Dapore A, Duncan J, Patel M, Larson JR, Erickson CA, Sweeney JA, Ragozzino ME. Parallel learning and cognitive flexibility impairments between Fmr1 knockout mice and individuals with fragile X syndrome. Front Behav Neurosci 2023; 16:1074682. [PMID: 36688132 PMCID: PMC9849779 DOI: 10.3389/fnbeh.2022.1074682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Fragile X Syndrome (FXS) is a monogenic condition that leads to intellectual disability along with behavioral and learning difficulties. Among behavioral and learning difficulties, cognitive flexibility impairments are among the most commonly reported in FXS, which significantly impacts daily living. Despite the extensive use of the Fmr1 knockout (KO) mouse to understand molecular, synaptic and behavioral alterations related to FXS, there has been limited development of translational paradigms to understand cognitive flexibility that can be employed in both animal models and individuals with FXS to facilitate treatment development. Methods To begin addressing this limitation, a parallel set of studies were carried out that investigated probabilistic reversal learning along with other behavioral and cognitive tests in individuals with FXS and Fmr1 KO mice. Fifty-five adolescents and adults with FXS (67% male) and 34 age- and sex-matched typically developing controls (62% male) completed an initial probabilistic learning training task and a probabilistic reversal learning task. Results In males with FXS, both initial probabilistic learning and reversal learning deficits were found. However, in females with FXS, we only observed reversal learning deficits. Reversal learning deficits related to more severe psychiatric features in females with FXS, whereas increased sensitivity to negative feedback (lose:shift errors) unexpectedly appear to be adaptive in males with FXS. Male Fmr1 KO mice exhibited both an initial probabilistic learning and reversal learning deficit compared to that of wildtype (WT) mice. Female Fmr1 KO mice were selectively impaired on probabilistic reversal learning. In a prepotent response inhibition test, both male and female Fmr1 KO mice were impaired in learning to choose a non-preferred spatial location to receive a food reward compared to that of WT mice. Neither male nor female Fmr1 KO mice exhibited a change in anxiety compared to that of WT mice. Discussion Together, our findings demonstrate strikingly similar sex-dependent learning disturbances across individuals with FXS and Fmr1 KO mice. This suggests the promise of using analogous paradigms of cognitive flexibility across species that may speed treatment development to improve lives of individuals with FXS.
Collapse
Affiliation(s)
- Lauren M. Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anna L. Arzuaga
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - Ashley Dapore
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jason Duncan
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - Maya Patel
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - John R. Larson
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States
| | - Craig A. Erickson
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael E. Ragozzino
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States,*Correspondence: Michael E. Ragozzino,
| |
Collapse
|
17
|
Saraf TS, McGlynn RP, Bhatavdekar OM, Booth RG, Canal CE. FPT, a 2-Aminotetralin, Is a Potent Serotonin 5-HT 1A, 5-HT 1B, and 5-HT 1D Receptor Agonist That Modulates Cortical Electroencephalogram Activity in Adult Fmr1 Knockout Mice. ACS Chem Neurosci 2022; 13:3629-3640. [PMID: 36473166 PMCID: PMC10364582 DOI: 10.1021/acschemneuro.2c00574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are no approved medicines for fragile X syndrome (FXS), a monogenic, neurodevelopmental disorder. Electroencephalogram (EEG) studies show alterations in resting-state cortical EEG spectra, such as increased gamma-band power, in patients with FXS that are also observed in Fmr1 knockout models of FXS, offering putative biomarkers for drug discovery. Genes encoding serotonin receptors (5-HTRs), including 5-HT1A, 5-HT1B, and 5-HT1DRs, are differentially expressed in FXS, providing a rationale for investigating them as pharmacotherapeutic targets. Previously we reported pharmacological activity and preclinical neurotherapeutic effects in Fmr1 knockout mice of an orally active 2-aminotetralin, (S)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (FPT). FPT is a potent (low nM), high-efficacy partial agonist at 5-HT1ARs and a potent, low-efficacy partial agonist at 5-HT7Rs. Here we report new observations that FPT also has potent and efficacious agonist activity at human 5-HT1B and 5-HT1DRs. FPT's Ki values at 5-HT1B and 5-HT1DRs were <5 nM, but it had nil activity (>10 μM Ki) at 5-HT1FRs. We tested the effects of FPT (5.6 mg/kg, subcutaneous) on EEG recorded above the somatosensory and auditory cortices in freely moving, adult Fmr1 knockout and control mice. Consistent with previous reports, we observed significantly increased relative gamma power in untreated or vehicle-treated male and female Fmr1 knockout mice from recordings above the left somatosensory cortex (LSSC). In addition, we observed sex effects on EEG power. FPT did not eliminate the genotype difference in relative gamma power from the LSSC. FPT, however, robustly decreased relative alpha power in the LSSC and auditory cortex, with more pronounced effects in Fmr1 KO mice. Similarly, FPT decreased relative alpha power in the right SSC but only in Fmr1 knockout mice. FPT also increased relative delta power, with more pronounced effects in Fmr1 KO mice and caused small but significant increases in relative beta power. Distinct impacts of FPT on cortical EEG were like effects caused by certain FDA-approved psychotropic medications (including baclofen, allopregnanolone, and clozapine). These results advance the understanding of FPT's pharmacological and neurophysiological effects.
Collapse
Affiliation(s)
- Tanishka S Saraf
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Ryan P McGlynn
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, 300 Huntington Street, Boston, Massachusetts 02115, United States
| | - Omkar M Bhatavdekar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Croft Hall B27, Baltimore, Maryland 21218, United States
| | - Raymond G Booth
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, 300 Huntington Street, Boston, Massachusetts 02115, United States
| | - Clinton E Canal
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| |
Collapse
|
18
|
Arpone M, Bretherton L, Amor DJ, Hearps SJC, Rogers C, Field MJ, Hunter MF, Santa Maria L, Alliende AM, Slee J, Godler DE, Baker EK. Agreement between parents' and clinical researchers' ratings of behavioral problems in children with fragile X syndrome and chromosome 15 imprinting disorders. RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 131:104338. [PMID: 36179574 DOI: 10.1016/j.ridd.2022.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Despite the increasing number of clinical trials involving children with neurodevelopmental disorders, appropriate and objective outcome measures for behavioral symptoms are still required. AIM This study assessed the agreement between parents' and clinical researchers' ratings of behavioral problem severity in children with fragile X syndrome (FXS) and chromosome 15 imprinting disorders. METHODS AND PROCEDURES The cohort comprised 123 children (64% males), aged 3-17 years, with FXS (n = 79), Prader-Willi (PWS; n = 19), Angelman (AS; n = 15), and Chromosome 15q duplication (n = 10) syndromes. Specific items from the Autism Diagnostic Observation Schedule-Second Edition and Aberrant Behavior Checklist-Community Edition mapping to corresponding behavioral domains were selected ad-hoc, to assess behavioral problems. OUTCOMES AND RESULTS Inter-rater agreement for the cohort was slight for self-injury (Intraclass Correlation Coefficient (ICC) = 0.12), fair for tantrums/aggression (0.24) and mannerisms/stereotypies (0.25), and moderate for hyperactivity (0.48). When stratified by diagnosis, ICC ranged from poor (0; self-injury, AS and PWS) to substantial (0.48; hyperactivity, females with FXS). CONCLUSIONS AND IMPLICATIONS The high level of inter-rater disagreement across most domains suggests that parents' and researchers' assessments led to discrepant appraisal of behavioral problem severity. These findings have implications for treatment targets and outcome measure selection in clinical trials, supporting a multi-informant approach.
Collapse
Affiliation(s)
- Marta Arpone
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Lesley Bretherton
- Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - David J Amor
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Stephen J C Hearps
- Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Department of Critical Care, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Michael J Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Lorena Santa Maria
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Angelica M Alliende
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Jennie Slee
- Department of Health, Government of Western Australia, Genetic Services of Western Australia, Perth, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
19
|
Megagiannis P, Suresh R, Rouleau GA, Zhou Y. Reversibility and therapeutic development for neurodevelopmental disorders, insights from genetic animal models. Adv Drug Deliv Rev 2022; 191:114562. [PMID: 36183904 DOI: 10.1016/j.addr.2022.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Neurodevelopmental Disorders (NDDs) encompass a broad spectrum of conditions resulting from atypical brain development. Over the past decades, we have had the fortune to witness enormous progress in diagnosis, etiology discovery, modeling, and mechanistic understanding of NDDs from both fundamental and clinical research. Here, we review recent neurobiological advances from experimental models of NDDs. We introduce several examples and highlight breakthroughs in reversal studies of phenotypes using genetically engineered models of NDDs. The in-depth understanding of brain pathophysiology underlying NDDs and evaluations of reversibility in animal models paves the foundation for discovering novel treatment options. We discuss how the expanding property of cutting-edge technologies, such as gene editing and AAV-mediated gene delivery, are leveraged in animal models for the therapeutic development of NDDs. We envision opportunities and challenges toward faithful modeling and fruitful clinical translation.
Collapse
Affiliation(s)
- Platon Megagiannis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Rahul Suresh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
20
|
Ribosomal DNA Abundance in the Patient's Genome as a Feasible Marker in Differential Diagnostics of Autism and Childhood-Onset Schizophrenia. J Pers Med 2022; 12:jpm12111796. [PMID: 36579513 PMCID: PMC9693473 DOI: 10.3390/jpm12111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction: Differential diagnostics of early-onset schizophrenia and autism spectrum disorders (ASD) are a problem of child psychiatry. The prognosis and relevant treatment are to a large degree determined by the correctness of diagnosis. We found earlier that leucocyte DNA of adult schizophrenia patients contained significantly larger copy numbers of ribosomal repeats (rDNA) coding for rRNA, than DNA of mentally healthy controls. Aim: To compare the contents of ribosomal repeats in the leucocyte DNA of children with schizophrenia, children with ASD, and healthy age-matched controls to estimate the possibility of using this genetic trait in the differential diagnostics of the two types of disorders. Patients and methods: Blood samples of patients with infantile autism (A—F84.0 according to ICD-10, N = 75) and with childhood-onset schizophrenia (SZ—F20.8 according to ICD-10, N = 43) were obtained from the Child Psychiatry Department of the Mental Health Research Center. The healthy control blood samples (HC, N = 86) were taken from the Research Centre for Medical Genetics collection. The recruitment of cases was based on the clinical psychopathologic approach. DNA was extracted from blood leukocytes with organic solvents. Nonradioactive quantitative hybridization technique was applied for determining the abundance of ribosomal repeats in the genomes. Statistical processing was performed using StatPlus, Statgraphics and MedCalc. Findings: DNA derived from SZ cases contained 565 ± 163 rDNA copies, which is significantly (p < 10−6) higher than the rDNA content in ASD cases (405 ± 109 copies) and controls (403 ± 86 copies). The HC and A groups did not differ by rDNA copy number (p > 0.4). The genetic trait “rDNA copy number in patient’s genome” can potentially be applied as an additional marker in differential diagnostics of childhood-onset schizophrenia and autism spectrum disorders.
Collapse
|
21
|
Lozano R, Thompson T, Dixon-Weber J, Erickson CA, Berry-Kravis E, Williams S, Smith E, Frazier JA, Rosselot H, Farmer C, Hessl D. Observable Symptoms of Anxiety in Individuals with Fragile X Syndrome: Parent and Caregiver Perspectives. Genes (Basel) 2022; 13:genes13091660. [PMID: 36140827 PMCID: PMC9498703 DOI: 10.3390/genes13091660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Caregiver reports, clinical observations, and diagnostic assessments indicate that most individuals with fragile X syndrome experience high levels of chronic anxiety. However, anxiety is a challenging endpoint for outcome measurement in FXS because most individuals cannot reliably report internal emotional or body states. A comprehensive survey of the presence, frequency, and duration of anxiety-related symptoms and questions to elicit open-ended responses was completed by caregivers of 456 individuals with FXS, ages 2–81 years (87 female, 369 male) and 24 female and 2 male FXS self-advocates ages 15–66 years. Caregivers reported classic behavioral indicators of anxiety, such as avoidance, irritability, motor agitation, and physiological symptoms, as well as behavioral features in FXS such as repetitive behavior, aggression, and self-injury. Self-advocate accounts largely paralleled caregiver data. Factor analyses yielded four factors: (1) increased irritability, aggression, and self-injury; (2) increased physical movement, nervous activity, and restlessness; (3) physical and physiological features of anxiety; and (4) internalizing and gastrointestinal symptoms. Caregivers are capable of observing and reporting behaviors that are valid indicators of anxious states that are usually reported in self-report standardized assessments. These results support the development of an anxiety measure for FXS that minimizes problems with rater inference.
Collapse
Affiliation(s)
- Reymundo Lozano
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (R.L.); (D.H.); Tel.: +1-212-242-5962 (R.L.); +1-916-703-0249 (D.H.)
| | - Talia Thompson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Craig A. Erickson
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Sara Williams
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elizabeth Smith
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jean A. Frazier
- Department of Psychiatry, Chan Medical School, University of Massachusetts, Worcester, MA 01655, USA
| | | | - Cristan Farmer
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Department of Psychiatry and Behavioral Sciences, Davis School of Medicine, University of California, Sacramento, CA 95817, USA
- Correspondence: (R.L.); (D.H.); Tel.: +1-212-242-5962 (R.L.); +1-916-703-0249 (D.H.)
| |
Collapse
|
22
|
Yamazaki M, Arai T, Yarimizu J, Matsumoto M. 5-HT5A Receptor Antagonist ASP5736 Ameliorates Several Abnormal Behaviors in an Fmr1-Targeted Transgenic Male Rat Model of Fragile X Syndrome. Int J Neuropsychopharmacol 2022; 25:786-793. [PMID: 35882205 PMCID: PMC9515134 DOI: 10.1093/ijnp/pyac041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/24/2022] [Accepted: 07/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a genetic condition that causes a range of developmental problems, including intellectual disability, aggressive behavior, anxiety, abnormal sensory processing, and cognitive impairment. Despite intensive preclinical research in Fmr1-targeted transgenic mice, an effective treatment for FXS has yet to be developed. We previously demonstrated that ASP5736, a 5-Hydroxytryptamine (serotonin) receptor 5A receptor antagonist, ameliorated scopolamine-induced working memory deficits in mice, reference memory impairment in aged rats, and methamphetamine-induced positive symptoms and phencyclidine-induced cognitive impairment in animal models of schizophrenia. We hypothesized that ASP5736 may be effective for ameliorating similar behavior deficits in male Fmr1-targeted transgenic rats as a preclinical model of FXS. METHODS We evaluated the effect of acute oral administration of ASP5736 on the abnormal behavior of hyperactivity (0.01, 0.1 mg/kg), prepulse inhibition (0.01, 0.03, 0.1 mg/kg), and the novel object recognition task (0.1 mg/kg) in Frmr1-knockout (KO) rats. RESULTS Fmr1-KO rats showed body weight gain, hyperactivity, abnormal sensory motor gating, and cognitive impairment. ASP5736 (0.1 mg/kg) reversed the hyperactivity and ameliorated the sensory motor gating deficits (0.03-0.1 mg/kg). ASP5736 (0.01 mg/kg) also improved cognitive impairment. CONCLUSIONS ASP5736 is a potential drug candidate for FXS. Further studies are needed to confirm its clinical efficacy.
Collapse
Affiliation(s)
- Mayako Yamazaki
- Correspondence: Mayako Yamazaki, PhD, Research Fellow, Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan ()
| | - Takatomo Arai
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Junko Yarimizu
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Mitsuyuki Matsumoto
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan,Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| |
Collapse
|
23
|
Petkova SP, Adhikari A, Berg EL, Fenton TA, Duis J, Silverman JL. Gait as a quantitative translational outcome measure in Angelman syndrome. Autism Res 2022; 15:821-833. [PMID: 35274462 PMCID: PMC9311146 DOI: 10.1002/aur.2697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
Angelman syndrome (AS) is a genetic neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, hypotonia, and motor coordination deficits. Motor abilities are an important outcome measure in AS as they comprise a broad repertoire of metrics including ataxia, hypotonia, delayed ambulation, crouched gait, and poor posture, and motor dysfunction affects nearly every individual with AS. Guided by collaborative work with AS clinicians studying gait, the goal of this study was to perform an in‐depth gait analysis using the automated treadmill assay, DigiGait. Our hypothesis is that gait presents a strong opportunity for a reliable, quantitative, and translational metric that can serve to evaluate novel pharmacological, dietary, and genetic therapies. In this study, we used an automated gait analysis system, in addition to standard motor behavioral assays, to evaluate components of motor, exploration, coordination, balance, and gait impairments across the lifespan in an AS mouse model. Our study demonstrated marked global motoric deficits in AS mice, corroborating previous reports. Uniquely, this is the first report of nuanced aberrations in quantitative spatial and temporal components of gait in AS mice compared to sex‐ and age‐matched wildtype littermates followed longitudinally using metrics that are analogous in AS individuals. Our findings contribute evidence toward the use of nuanced motor outcomes (i.e., gait) as valuable and translationally powerful metrics for therapeutic development for AS, as well as other genetic neurodevelopmental syndromes.
Collapse
Affiliation(s)
- Stela P Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Anna Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Elizabeth L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Timothy A Fenton
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Jessica Duis
- Section of Genetics & Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anshutz Medical Campus, Aurora, Colorado, USA
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
24
|
Goeldner C, Kishnani PS, Skotko BG, Casero JL, Hipp JF, Derks M, Hernandez MC, Khwaja O, Lennon-Chrimes S, Noeldeke J, Pellicer S, Squassante L, Visootsak J, Wandel C, Fontoura P, d’Ardhuy XL, De La Torre Fornell R, Glue P, Hoover-Fong J, Uhlmann S, Malagón Valdez J, Marshall A, Martinón-Torres F, Redondo-Collazo L, Rodriguez-Tenreiro C, Marquez Chin V, Michel Reynoso AG, Mitchell EA, Slykerman RF, Wouldes T, Loveday S, Moldenhauer F, Novell R, Ochoa C, Rafii MS, Rebillat AS, Sanlaville D, Sarda P, Shankar R, Pulsifer M, Evans CL, Silva AM, McDonough ME, Stanley M, McCary LM, Vicari S, Wilcox W, Zampino G, Zuddas A. A randomized, double-blind, placebo-controlled phase II trial to explore the effects of a GABAA-α5 NAM (basmisanil) on intellectual disability associated with Down syndrome. J Neurodev Disord 2022; 14:10. [PMID: 35123401 PMCID: PMC8903644 DOI: 10.1186/s11689-022-09418-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background There are currently no pharmacological therapies to address the intellectual disability associated with Down syndrome. Excitatory/inhibitory imbalance has been hypothesized to contribute to impairments in cognitive functioning in Down syndrome. Negative modulation of the GABAA-α5 receptor is proposed as a mechanism to attenuate GABAergic function and restore the excitatory/inhibitory balance. Methods Basmisanil, a selective GABAA-α5 negative allosteric modulator, was evaluated at 120 mg or 240 mg BID (80 or 160 mg for 12–13 years) in a 6-month, randomized, double-blind, placebo-controlled phase II trial (Clematis) for efficacy and safety in adolescents and young adults with Down syndrome. The primary endpoint was based on a composite analysis of working memory (Repeatable Battery for the Assessment of Neuropsychological Scale [RBANS]) and independent functioning and adaptive behavior (Vineland Adaptive Behavior Scales [VABS-II] or the Clinical Global Impression-Improvement [CGI-I]). Secondary measures included the Behavior Rating Inventory of Executive Functioning-Preschool (BRIEF-P), Clinical Evaluation of Language Fundamentals (CELF-4), and Pediatric Quality of Life Inventory (Peds-QL). EEG was conducted for safety monitoring and quantitatively analyzed in adolescents. Results Basmisanil was safe and well-tolerated; the frequency and nature of adverse events were similar in basmisanil and placebo arms. EEG revealed treatment-related changes in spectral power (increase in low ~ 4-Hz and decrease in high ~ 20-Hz frequencies) providing evidence of functional target engagement. All treatment arms had a similar proportion of participants showing above-threshold improvement on the primary composite endpoint, evaluating concomitant responses in cognition and independent functioning (29% in placebo, 20% in low dose, and 25% in high dose). Further analysis of the individual measures contributing to the primary endpoint revealed no difference between placebo and basmisanil-treated groups in either adolescents or adults. There were also no differences across the secondary endpoints assessing changes in executive function, language, or quality of life. Conclusions Basmisanil did not meet the primary efficacy objective of concomitant improvement on cognition and adaptive functioning after 6 months of treatment, despite evidence for target engagement. This study provides key learnings for future clinical trials in Down syndrome. Trial registration The study was registered on December 31, 2013, at clinicaltrials.gov as NCT02024789. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09418-0.
Collapse
|
25
|
Personalized medicine for rare neurogenetic disorders: can we make it happen? Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006200. [PMID: 35332073 PMCID: PMC8958924 DOI: 10.1101/mcs.a006200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rare neurogenetic disorders are collectively common, affecting 3% of the population, and often manifest with complex multiorgan comorbidity. With advances in genetic, -omics, and computational analysis, more children can be diagnosed and at an earlier age. Innovations in translational research facilitate the identification of treatment targets and development of disease-modifying drugs such as gene therapy, nutraceuticals, and drug repurposing. This increasingly allows targeted therapy to prevent the often devastating manifestations of rare neurogenetic disorders. In this perspective, successes in diagnosis, prevention, and treatment are discussed with a focus on inherited disorders of metabolism. Barriers for the identification, development, and implementation of rare disease-specific therapies are discussed. New methodologies, care networks, and collaborative frameworks are proposed to optimize the potential of personalized genomic medicine to decrease morbidity and improve lives of these vulnerable patients.
Collapse
|
26
|
Chiola S, Edgar NU, Shcheglovitov A. iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Mol Psychiatry 2022; 27:249-258. [PMID: 34497379 PMCID: PMC8901782 DOI: 10.1038/s41380-021-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Over the past decade, tremendous progress has been made in defining autism spectrum disorder (ASD) as a disorder of brain connectivity. Indeed, whole-brain imaging studies revealed altered connectivity in the brains of individuals with ASD, and genetic studies identified rare ASD-associated mutations in genes that regulate synaptic development and function. However, it remains unclear how specific mutations alter the development of neuronal connections in different brain regions and whether altered connections can be restored therapeutically. The main challenge is the lack of preclinical models that recapitulate important aspects of human development for studying connectivity. Through recent technological innovations, it is now possible to generate patient- or mutation-specific human neurons or organoids from induced pluripotent stem cells (iPSCs) and to study altered connectivity in vitro or in vivo upon xenotransplantation into an intact rodent brain. Here, we discuss how deficits in neurodevelopmental processes may lead to abnormal brain connectivity and how iPSC-based models can be used to identify abnormal connections and to gain insights into underlying cellular and molecular mechanisms to develop novel therapeutics.
Collapse
Affiliation(s)
- Simone Chiola
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Nicolas U Edgar
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
27
|
Protic D, Salcedo-Arellano MJ, Stojkovic M, Saldarriaga W, Ávila Vidal LA, Miller RM, Tabatadze N, Peric M, Hagerman R, Budimirovic DB. Raising Knowledge and Awareness of Fragile X Syndrome in Serbia, Georgia, and Colombia: A Model for Other Developing Countries? THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:559-571. [PMID: 34970093 PMCID: PMC8686783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fragile X syndrome is the most common monogenetic cause of inherited intellectual disability and syndromic autism spectrum disorder. Fragile X syndrome is caused by an expansion (full mutation ≥200 CGGs repeats, normal 10-45 CGGs) of the fragile X mental retardation 1 (FMR1) gene, epigenetic silencing of the gene, which leads to reduction or lack of the gene's product: the fragile X mental retardation protein. In this cross-sectional study, we assessed general and pharmacotherapy knowledge (GK and PTK) of fragile X syndrome and satisfaction with education in neurodevelopmental disorders (NDDs) among senior medical students in Serbia (N=348), Georgia (N=112), and Colombia (N=58). A self-administered 18-item questionnaire included GK (8/18) and PTK (7/18) components and self-assessment of the participants education in NDDs (3/18). Roughly 1 in 5 respondents had correct answers on half or more facts about fragile X syndrome (GK>PTK), which ranged similarly 5-7 in Serbia, 6-8 in Georgia, and 5-8 in Colombia, respectively. No cohort had an average value greater than 9 (60%) that would represent passing score "cut-off." None of the participants answered all the questions correctly. More than two-thirds of the participants concluded that they gained inadequate knowledge of NDDs during their studies, and that their education in this field should be more intense. In conclusion, there is a major gap in knowledge regarding fragile X syndrome among senior medical students in these three developing countries. The finding could at least in part be generalized to other developing countries aimed toward increasing knowledge and awareness of NDDs and fostering an institutional collaboration between developed and developing countries.
Collapse
Affiliation(s)
- Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of
Medicine, University of Belgrade, Belgrade, Serbia
| | - Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine,
Sacramento, CA, USA,Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS,
University of California Davis, Sacramento, CA, USA,Department of Pathology and Laboratory Medicine, University of California Davis
School of Medicine, Sacramento, CA, USA
| | - Maja Stojkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of
Medicine, University of Belgrade, Belgrade, Serbia
| | - Wilmar Saldarriaga
- Department of Morphology, Universidad del Valle School of Medicine, Cali,
Colombia,Department of Obstetrics and Gynecology, Hospital Universitario del Valle,
Evaristo Garcia, Cali, Colombia
| | | | | | - Nazi Tabatadze
- Fragile X Center, MediClubGeorgia Medical Center, Tbilisi, Georgia
| | | | - Randi Hagerman
- Department of Pediatrics, University of California Davis School of Medicine,
Sacramento, CA, USA,Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS,
University of California Davis, Sacramento, CA, USA
| | - Dejan B. Budimirovic
- Departments of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute,
Baltimore, MD, USA,Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns
Hopkins School of Medicine, Baltimore, MD, USA,To whom all correspondence should be addressed: Dejan Budimirovic, MD,
Department of Psychiatry, Psychiatry Mental Health Program, Outpatient Services, Kennedy
Krieger Institute, Baltimore, MD;
| |
Collapse
|
28
|
Auerbach BD, Manohar S, Radziwon K, Salvi R. Auditory hypersensitivity and processing deficits in a rat model of fragile X syndrome. Neurobiol Dis 2021; 161:105541. [PMID: 34751141 DOI: 10.1016/j.nbd.2021.105541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Fragile X (FX) syndrome is one of the leading inherited causes of autism spectrum disorder (ASD). A majority of FX and ASD patients exhibit sensory hypersensitivity, including auditory hypersensitivity or hyperacusis, a condition in which everyday sounds are perceived as much louder than normal. Auditory processing deficits in FX and ASD also afford the opportunity to develop objective and quantifiable outcome measures that are likely to translate between humans and animal models due to the well-conserved nature of the auditory system and well-developed behavioral read-outs of sound perception. Therefore, in this study we characterized auditory hypersensitivity in a Fmr1 knockout (KO) transgenic rat model of FX using an operant conditioning task to assess sound detection thresholds and suprathreshold auditory reaction time-intensity (RT-I) functions, a reliable psychoacoustic measure of loudness growth, at a variety of stimulus frequencies, bandwidths, and durations. Male Fmr1 KO and littermate WT rats both learned the task at the same rate and exhibited normal hearing thresholds. However, Fmr1 KO rats had faster auditory RTs over a broad range of intensities and steeper RT-I slopes than WT controls, perceptual evidence of excessive loudness growth in Fmr1 KO rats. Furthermore, we found that Fmr1 KO animals exhibited abnormal perceptual integration of sound duration and bandwidth, with diminished temporal but enhanced spectral integration of sound intensity. Because temporal and spectral integration of sound stimuli were altered in opposite directions in Fmr1 KO rats, this suggests that abnormal RTs in these animals are evidence of aberrant auditory processing rather than generalized hyperactivity or altered motor responses. Together, these results are indicative of fundamental changes to low-level auditory processing in Fmr1 KO animals. Finally, we demonstrated that antagonism of metabotropic glutamate receptor 5 (mGlu5) selectively and dose-dependently restored normal loudness growth in Fmr1 KO rats, suggesting a pharmacologic approach for alleviating sensory hypersensitivity associated with FX. This study leverages the tractable nature of the auditory system and the unique behavioral advantages of rats to provide important insights into the nature of a centrally important yet understudied aspect of FX and ASD.
Collapse
Affiliation(s)
- Benjamin D Auerbach
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA; Department of Molecular & Integrative Physiology, Beckman Institute for Advanced Science & Technology, Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | - Kelly Radziwon
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
29
|
Kurosaki T, Sakano H, Pröschel C, Wheeler J, Hewko A, Maquat LE. NMD abnormalities during brain development in the Fmr1-knockout mouse model of fragile X syndrome. Genome Biol 2021; 22:317. [PMID: 34784943 PMCID: PMC8597091 DOI: 10.1186/s13059-021-02530-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/28/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is an intellectual disability attributable to loss of fragile X protein (FMRP). We previously demonstrated that FMRP binds mRNAs targeted for nonsense-mediated mRNA decay (NMD) and that FMRP loss results in hyperactivated NMD and inhibition of neuronal differentiation in human stem cells. RESULTS We show here that NMD is hyperactivated during the development of the cerebral cortex, hippocampus, and cerebellum in the Fmr1-knockout (KO) mouse during embryonic and early postnatal periods. Our findings demonstrate that NMD regulates many neuronal mRNAs that are important for mouse brain development. CONCLUSIONS We reveal the abnormal regulation of these mRNAs in the Fmr1-KO mouse, a model of FXS, and highlight the importance of early intervention.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
- Center for RNA Biology, University of Rochester, Rochester, NY 14642 USA
| | - Hitomi Sakano
- Center for RNA Biology, University of Rochester, Rochester, NY 14642 USA
- Department of Otolaryngology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
- Stem Cell and Regenerative Medicine Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
| | - Jason Wheeler
- Center for RNA Biology, University of Rochester, Rochester, NY 14642 USA
- Department of Otolaryngology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
| | - Alexander Hewko
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
- Center for RNA Biology, University of Rochester, Rochester, NY 14642 USA
| | - Lynne E. Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
- Center for RNA Biology, University of Rochester, Rochester, NY 14642 USA
| |
Collapse
|
30
|
Mody M, Petibon Y, Han P, Kuruppu D, Ma C, Yokell D, Neelamegam R, Normandin MD, Fakhri GE, Brownell AL. In vivo imaging of mGlu5 receptor expression in humans with Fragile X Syndrome towards development of a potential biomarker. Sci Rep 2021; 11:15897. [PMID: 34354107 PMCID: PMC8342610 DOI: 10.1038/s41598-021-94967-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder caused by silencing of the Fragile X Mental Retardation (FMR1) gene. The resulting loss of Fragile X Mental Retardation Protein (FMRP) leads to excessive glutamate signaling via metabotropic glutamate subtype 5 receptors (mGluR5) which has been implicated in the pathogenesis of the disorder. In the present study we used the radioligand 3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB) in simultaneous PET-MR imaging of males with FXS and age- and gender-matched controls to assess the availability of mGlu5 receptors in relevant brain areas. Patients with FXS showed lower [18F]FPEB binding potential (p < 0.01), reflecting reduced mGluR5 availability, than the healthy controls throughout the brain, with significant group differences in insula, anterior cingulate, parahippocampal, inferior temporal and olfactory cortices, regions associated with deficits in inhibition, memory, and visuospatial processes characteristic of the disorder. The results are among the first to provide in vivo evidence of decreased availability of mGluR5 in the brain in individuals with FXS than in healthy controls. The consistent results across the subjects, despite the tremendous challenges with neuroimaging this population, highlight the robustness of the protocol and support for its use in drug occupancy studies; extending our radiotracer development and application efforts from mice to humans.
Collapse
Affiliation(s)
- Maria Mody
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Paul Han
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Darshini Kuruppu
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Daniel Yokell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Ramesh Neelamegam
- Department of Radiology, University of Texas Health Science at San Antonio, San Antonio, TX, 78229, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
31
|
McCracken JT, Anagnostou E, Arango C, Dawson G, Farchione T, Mantua V, McPartland J, Murphy D, Pandina G, Veenstra-VanderWeele J. Drug development for Autism Spectrum Disorder (ASD): Progress, challenges, and future directions. Eur Neuropsychopharmacol 2021; 48:3-31. [PMID: 34158222 PMCID: PMC10062405 DOI: 10.1016/j.euroneuro.2021.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
In 2017, facing lack of progress and failures encountered in targeted drug development for Autism Spectrum Disorder (ASD) and related neurodevelopmental disorders, the ISCTM with the ECNP created the ASD Working Group charged to identify barriers to progress and recommending research strategies for the field to gain traction. Working Group international academic, regulatory and industry representatives held multiple in-person meetings, teleconferences, and subgroup communications to gather a wide range of perspectives on lessons learned from extant studies, current challenges, and paths for fundamental advances in ASD therapeutics. This overview delineates the barriers identified, and outlines major goals for next generation biomedical intervention development in ASD. Current challenges for ASD research are many: heterogeneity, lack of validated biomarkers, need for improved endpoints, prioritizing molecular targets, comorbidities, and more. The Working Group emphasized cautious but unwavering optimism for therapeutic progress for ASD core features given advances in the basic neuroscience of ASD and related disorders. Leveraging genetic data, intermediate phenotypes, digital phenotyping, big database discovery, refined endpoints, and earlier intervention, the prospects for breakthrough treatments are substantial. Recommendations include new priorities for expanded research funding to overcome challenges in translational clinical ASD therapeutic research.
Collapse
Affiliation(s)
- James T McCracken
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, United States.
| | | | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Univesitario Gregorio Maranon, and School of Medicine, Universidad Complutense de Madrid, CIBERSAM, Madrid, Spain
| | - Geraldine Dawson
- Duke University Medical Center, Durham, North Carolina, United States
| | - Tiffany Farchione
- Food and Drug Administration, Silver Spring, Maryland, United States
| | - Valentina Mantua
- Food and Drug Administration, Silver Spring, Maryland, United States
| | | | - Declan Murphy
- Institute of Psychiatry, Psychology and Neuroscience, King's College De Crespigny Park, Denmark Hill, London SE5 8AF, United Kingdom
| | - Gahan Pandina
- Neuroscience Therapeutic Area, Janssen Research & Development, Pennington, New Jersey, United States
| | | |
Collapse
|
32
|
Armstrong C, Marsh ED. Electrophysiological Biomarkers in Genetic Epilepsies. Neurotherapeutics 2021; 18:1458-1467. [PMID: 34642905 PMCID: PMC8609056 DOI: 10.1007/s13311-021-01132-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
Precision treatments for epilepsy targeting the underlying genetic diagnoses are becoming a reality. Historically, the goal of epilepsy treatments was to reduce seizure frequency. In the era of precision medicine, however, outcomes such as prevention of epilepsy progression or even improvements in cognitive functions are both aspirational targets for any intervention. Developing methods, both in clinical trial design and in novel endpoints, will be necessary for measuring, not only seizures, but also the other neurodevelopmental outcomes that are predicted to be targeted by precision treatments. Biomarkers that quantitatively measure disease progression or network level changes are needed to allow for unbiased measurements of the effects of any gene-level treatments. Here, we discuss some of the promising electrophysiological biomarkers that may be of use in clinical trials of precision therapies, as well as the difficulties in implementing them.
Collapse
Affiliation(s)
- Caren Armstrong
- Division of Neurology and Pediatric Epilepsy Program, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Eric D Marsh
- Division of Neurology and Pediatric Epilepsy Program, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics and Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Replication Stress Induces Global Chromosome Breakage in the Fragile X Genome. Cell Rep 2021; 32:108179. [PMID: 32966779 DOI: 10.1016/j.celrep.2020.108179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/17/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene and deficiency of a functional FMRP protein. FMRP is known as a translation repressor whose nuclear function is not understood. We investigated the global impact on genome stability due to FMRP loss. Using Break-seq, we map spontaneous and replication stress-induced DNA double-strand breaks (DSBs) in an FXS patient-derived cell line. We report that the genomes of FXS cells are inherently unstable and accumulate twice as many DSBs as those from an unaffected control. We demonstrate that replication stress-induced DSBs in FXS cells colocalize with R-loop forming sequences. Exogenously expressed FMRP in FXS fibroblasts ameliorates DSB formation. FMRP, not the I304N mutant, abates R-loop-induced DSBs during programmed replication-transcription conflict. These results suggest that FMRP is a genome maintenance protein that prevents R-loop accumulation. Our study provides insights into the etiological basis for FXS.
Collapse
|
34
|
iPSCs: A Preclinical Drug Research Tool for Neurological Disorders. Int J Mol Sci 2021; 22:ijms22094596. [PMID: 33925625 PMCID: PMC8123805 DOI: 10.3390/ijms22094596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
The development and commercialization of new drugs is an articulated, lengthy, and very expensive process that proceeds through several steps, starting from target identification, screening new leading compounds for testing in preclinical studies, and subsequently in clinical trials to reach the final approval for therapeutic use. Preclinical studies are usually performed using both cell cultures and animal models, although they do not completely resume the complexity of human diseases, in particular neurodegenerative conditions. To this regard, stem cells represent a powerful tool in all steps of drug discovery. The recent advancement in induced Pluripotent Stem Cells (iPSCs) technology has opened the possibility to obtain patient-specific disease models for drug screening and development. Here, we report the use of iPSCs as a disease model for drug development in the contest of neurological disorders, including Alzheimer’s (AD) and Parkinson’s disease (PD), Amyotrophic lateral Sclerosis (ALS), and Fragile X syndrome (FRAX).
Collapse
|
35
|
Saré RM, Lemons A, Smith CB. Behavior Testing in Rodents: Highlighting Potential Confounds Affecting Variability and Reproducibility. Brain Sci 2021; 11:brainsci11040522. [PMID: 33924037 PMCID: PMC8073298 DOI: 10.3390/brainsci11040522] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Rodent models of brain disorders including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases are essential for increasing our understanding of underlying pathology and for preclinical testing of potential treatments. Some of the most important outcome measures in such studies are behavioral. Unfortunately, reports from different labs are often conflicting, and preclinical studies in rodent models are not often corroborated in human trials. There are many well-established tests for assessing various behavioral readouts, but subtle aspects can influence measurements. Features such as housing conditions, conditions of testing, and the sex and strain of the animals can all have effects on tests of behavior. In the conduct of behavior testing, it is important to keep these features in mind to ensure the reliability and reproducibility of results. In this review, we highlight factors that we and others have encountered that can influence behavioral measures. Our goal is to increase awareness of factors that can affect behavior in rodents and to emphasize the need for detailed reporting of methods.
Collapse
|
36
|
Thurman AJ, Edgin JO, Sherman SL, Sterling A, McDuffie A, Berry-Kravis E, Hamilton D, Abbeduto L. Spoken language outcome measures for treatment studies in Down syndrome: feasibility, practice effects, test-retest reliability, and construct validity of variables generated from expressive language sampling. J Neurodev Disord 2021; 13:13. [PMID: 33827417 PMCID: PMC8028777 DOI: 10.1186/s11689-021-09361-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/17/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The purpose of this study was to evaluate expressive language sampling (ELS) as a procedure for generating spoken language outcome measures for treatment research in Down syndrome (DS). We addressed (a) feasibility, (b) practice effects across two short-term administrations, (c) test-retest reliability across two short-term administrations, (d) convergent and discriminant construct validity, and (e) considered comparisons across the conversation and narration contexts. METHOD Participants were 107 individuals with DS between 6 and 23 years of age who presented with intellectual disability (IQ < 70). The utility of ELS procedures designed to collect samples of spoken language in conversation and narration were evaluated separately. Variables of talkativeness, vocabulary, syntax, utterance planning, and articulation quality, derived from transcripts segmented into C-units (i.e., an independent clause and its modifiers), were considered. A 4-week interval was used to assess practice effects and test-retest reliability. Standardized direct assessments and informant report measures were collected to evaluate construct validity of the ELS variables. RESULTS Low rates of noncompliance were observed; youth who were under 12 years of age, had phrase-level speech or less, and had a 4-year-old developmental level or less were at particular risk for experiencing difficulty completing the ELS procedures. Minimal practice effects and strong test-retest reliability across the 4-week test-retest interval was observed. The vocabulary, syntax, and speech intelligibility variables demonstrated strong convergent and discriminant validity. Although significant correlations were found between the variables derived from both the conversation and narration contexts, some differences were noted. CONCLUSION The ELS procedures considered were feasible and yielded variables with adequate psychometric properties for most individuals with DS between 6 and 23 years old. That said, studies of outcome measures appropriate for individuals with DS with more limited spoken language skills are needed. Context differences were observed in ELS variables suggest that comprehensive evaluation of expressive language is likely best obtained when utilizing both contexts.
Collapse
Affiliation(s)
- Angela John Thurman
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, CA, USA.
| | - Jamie O Edgin
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | | | - Audra Sterling
- Waisman Center and Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea McDuffie
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, CA, USA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Debra Hamilton
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Leonard Abbeduto
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
37
|
Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis. Cell Rep 2021; 35:108991. [PMID: 33852833 PMCID: PMC8133829 DOI: 10.1016/j.celrep.2021.108991] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Transcriptional silencing of the FMR1 gene in fragile X syndrome (FXS) leads to the loss of the RNA-binding protein FMRP. In addition to regulating mRNA translation and protein synthesis, emerging evidence suggests that FMRP acts to coordinate proliferation and differentiation during early neural development. However, whether loss of FMRP-mediated translational control is related to impaired cell fate specification in the developing human brain remains unknown. Here, we use human patient induced pluripotent stem cell (iPSC)-derived neural progenitor cells and organoids to model neurogenesis in FXS. We developed a high-throughput, in vitro assay that allows for the simultaneous quantification of protein synthesis and proliferation within defined neural subpopulations. We demonstrate that abnormal protein synthesis in FXS is coupled to altered cellular decisions to favor proliferative over neurogenic cell fates during early development. Furthermore, pharmacologic inhibition of elevated phosphoinositide 3-kinase (PI3K) signaling corrects both excess protein synthesis and cell proliferation in a subset of patient neural cells. Raj et al. developed a multiparametric assay to measure cellular and molecular phenotypes during neurogenesis in fragile X syndrome iPSC-derived neural cells. Relative to controls, FXS patient cultures have more proliferative cells with increased protein synthesis. Defects in cell fate acquisition can be normalized by inhibiting overactive PI3K signaling.
Collapse
|
38
|
Upreti C, Woodruff CM, Zhang XL, Yim MJ, Zhou ZY, Pagano AM, Rehanian DS, Yin D, Kandel ER, Stanton PK, Nicholls RE. Loss of retinoid X receptor gamma subunit impairs group 1 mGluR mediated electrophysiological responses and group 1 mGluR dependent behaviors. Sci Rep 2021; 11:5552. [PMID: 33692389 PMCID: PMC7946894 DOI: 10.1038/s41598-021-84943-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Retinoid X receptors are members of the nuclear receptor family that regulate gene expression in response to retinoic acid and related ligands. Group 1 metabotropic glutamate receptors are G-protein coupled transmembrane receptors that activate intracellular signaling cascades in response to the neurotransmitter, glutamate. These two classes of molecules have been studied independently and found to play important roles in regulating neuronal physiology with potential clinical implications for disorders such as depression, schizophrenia, Parkinson's and Alzheimer's disease. Here we show that mice lacking the retinoid X receptor subunit, RXRγ, exhibit impairments in group 1 mGluR-mediated electrophysiological responses at hippocampal Schaffer collateral-CA1 pyramidal cell synapses, including impaired group 1 mGluR-dependent long-term synaptic depression (LTD), reduced group 1 mGluR-induced calcium release, and loss of group 1 mGluR-activated voltage-sensitive currents. These animals also exhibit impairments in a subset of group 1 mGluR-dependent behaviors, including motor performance, spatial object recognition, and prepulse inhibition. Together, these observations demonstrate convergence between the RXRγ and group 1 mGluR signaling pathways that may function to coordinate their regulation of neuronal activity. They also identify RXRγ as a potential target for the treatment of disorders in which group 1 mGluR signaling has been implicated.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Caitlin M Woodruff
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Xiao-Lei Zhang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Michael J Yim
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Zhen-Yu Zhou
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.,Department of Neurology, New York Medical College, Valhalla, NY, 10595, USA
| | - Andrew M Pagano
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Dina S Rehanian
- Department of Pathology and Cell Biology, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA.,Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA
| | - Deqi Yin
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Howard Hughes Medical Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Howard Hughes Medical Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Kavli Institute for Brain Science, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.,Department of Neurology, New York Medical College, Valhalla, NY, 10595, USA
| | - Russell E Nicholls
- Department of Pathology and Cell Biology, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA. .,Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA.
| |
Collapse
|
39
|
Devinsky O, King L, Bluvstein J, Friedman D. Ataluren for drug-resistant epilepsy in nonsense variant-mediated Dravet syndrome and CDKL5 deficiency disorder. Ann Clin Transl Neurol 2021; 8:639-644. [PMID: 33538404 PMCID: PMC7951093 DOI: 10.1002/acn3.51306] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/03/2023] Open
Abstract
Objective Ataluren is a compound that reads through premature stop codons and increases protein expression by increasing translation without modifying transcription or mRNA stability. We investigated the safety and efficacy of ataluren in children with nonsense variants causing Dravet Syndrome (DS) and CDKL5 Deficiency Syndrome (CDD). Methods This single‐center double‐blind, placebo‐controlled crossover trial randomized subjects to receive ataluren or placebo for 12 weeks (period 1), a 4‐week washout, then another 12‐week treatment (period 2). The primary outcome was ataluren’s safety profile. The secondary outcome measures were (1) changes in convulsive and/or drop seizure frequency and (2) changes in minor seizure types during ataluren treatment compared to placebo. Exploratory objectives assessed changes in cognitive, motor, and behavioral function as well as quality of life during ataluren therapy. Results We enrolled seven subjects with DS and eight subjects with CDD. Three treatment‐related adverse events (AE) occurred during the blinded phases. Two subjects withdrew due to AE. Ataluren was not effective in reducing seizure frequency or improving cognitive, motor, or behavioral function or quality of life in subjects with either DS or CDD due to nonsense variants. Limitations included a small sample size and 12‐week treatment phase, possibly too short to identify a disease‐modifying effect. Significance There was no difference between ataluren and placebo; ataluren is not an effective therapy for seizures or other disorders in children with DS or CDD due to nonsense variants. There were no drug‐related serious AE during the double‐blind period, consistent with ataluren’s favorable safety profile in larger studies. (Funded by Epilepsy Foundation, Dravet Syndrome Foundation, Finding A Cure for Seizures and Epilepsy and PTC Therapeutics, Inc.; ClinicalTrials.gov number, NCT02758626).
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, New York, USA
| | - LaToya King
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Judith Bluvstein
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Daniel Friedman
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
40
|
Lu MH, Hsueh YP. Protein synthesis as a modifiable target for autism-related dendritic spine pathophysiologies. FEBS J 2021; 289:2282-2300. [PMID: 33511762 DOI: 10.1111/febs.15733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is increasingly recognized as a condition of altered brain connectivity. As synapses are fundamental subcellular structures for neuronal connectivity, synaptic pathophysiology has become one of central themes in autism research. Reports disagree upon whether the density of dendritic spines, namely excitatory synapses, is increased or decreased in ASD and whether the protein synthesis that is critical for dendritic spine formation and function is upregulated or downregulated. Here, we review recent evidence supporting a subgroup of ASD models with decreased dendritic spine density (hereafter ASD-DSD), including Nf1 and Vcp mutant mice. We discuss the relevance of branched-chain amino acid (BCAA) insufficiency in relation to unmet protein synthesis demand in ASD-DSD. In contrast to ASD-DSD, ASD models with hyperactive mammalian target of rapamycin (mTOR) may represent the opposite end of the disease spectrum, often characterized by increases in protein synthesis and dendritic spine density (denoted ASD-ISD). Finally, we propose personalized dietary leucine as a strategy tailored to balancing protein synthesis demand, thereby ameliorating dendritic spine pathophysiologies and autism-related phenotypes in susceptible patients, especially those with ASD-DSD.
Collapse
Affiliation(s)
- Ming-Hsuan Lu
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
41
|
Wong PK, Cheah FC, Syafruddin SE, Mohtar MA, Azmi N, Ng PY, Chua EW. CRISPR Gene-Editing Models Geared Toward Therapy for Hereditary and Developmental Neurological Disorders. Front Pediatr 2021; 9:592571. [PMID: 33791256 PMCID: PMC8006930 DOI: 10.3389/fped.2021.592571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/19/2021] [Indexed: 12/26/2022] Open
Abstract
Hereditary or developmental neurological disorders (HNDs or DNDs) affect the quality of life and contribute to the high mortality rates among neonates. Most HNDs are incurable, and the search for new and effective treatments is hampered by challenges peculiar to the human brain, which is guarded by the near-impervious blood-brain barrier. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), a gene-editing tool repurposed from bacterial defense systems against viruses, has been touted by some as a panacea for genetic diseases. CRISPR has expedited the research into HNDs, enabling the generation of in vitro and in vivo models to simulate the changes in human physiology caused by genetic variation. In this review, we describe the basic principles and workings of CRISPR and the modifications that have been made to broaden its applications. Then, we review important CRISPR-based studies that have opened new doors to the treatment of HNDs such as fragile X syndrome and Down syndrome. We also discuss how CRISPR can be used to generate research models to examine the effects of genetic variation and caffeine therapy on the developing brain. Several drawbacks of CRISPR may preclude its use at the clinics, particularly the vulnerability of neuronal cells to the adverse effect of gene editing, and the inefficiency of CRISPR delivery into the brain. In concluding the review, we offer some suggestions for enhancing the gene-editing efficacy of CRISPR and how it may be morphed into safe and effective therapy for HNDs and other brain disorders.
Collapse
Affiliation(s)
- Poh Kuan Wong
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fook Choe Cheah
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norazrina Azmi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Schaefer TL, Ashworth AA, Tiwari D, Tomasek MP, Parkins EV, White AR, Snider A, Davenport MH, Grainger LM, Becker RA, Robinson CK, Mukherjee R, Williams MT, Gibson JR, Huber KM, Gross C, Erickson CA. GABA A Alpha 2,3 Modulation Improves Select Phenotypes in a Mouse Model of Fragile X Syndrome. Front Psychiatry 2021; 12:678090. [PMID: 34093287 PMCID: PMC8175776 DOI: 10.3389/fpsyt.2021.678090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability. FXS is caused by functional loss of the Fragile X Protein (FXP), also known as Fragile X Mental Retardation Protein (FMRP). In humans and animal models, loss of FXP leads to sensory hypersensitivity, increased susceptibility to seizures and cortical hyperactivity. Several components of the GABAergic system, the major inhibitory system in the brain, are dysregulated in FXS, and thus modulation of GABAergic transmission was suggested and tested as a treatment strategy. However, so far, clinical trials using broad spectrum GABAA or GABAB receptor-specific agonists have not yielded broad improvement of FXS phenotypes in humans. Here, we tested a more selective strategy in Fmr1 knockout (KO) mice using the experimental drug BAER-101, which is a selective GABAA α2/α3 agonist. Our results suggest that BAER-101 reduces hyperexcitability of cortical circuits, partially corrects increased frequency-specific baseline cortical EEG power, reduces susceptibility to audiogenic seizures and improves novel object memory. Other Fmr1 KO-specific phenotypes were not improved by the drug, such as increased hippocampal dendritic spine density, open field activity and marble burying. Overall, this work shows that BAER-101 improves select phenotypes in Fmr1 KO mice and encourages further studies into the efficacy of GABAA-receptor subunit-selective agonists for the treatment of FXS.
Collapse
Affiliation(s)
- Tori L Schaefer
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Amy A Ashworth
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Madison P Tomasek
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Emma V Parkins
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Angela R White
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Andrew Snider
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew H Davenport
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lindsay M Grainger
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Robert A Becker
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chandler K Robinson
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rishav Mukherjee
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael T Williams
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jay R Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Craig A Erickson
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
43
|
Briševac D, Scholz R, Du D, Elagabani MN, Köhr G, Kornau HC. The small GTPase Arf6 is dysregulated in a mouse model for fragile X syndrome. J Neurochem 2020; 157:666-683. [PMID: 33125726 DOI: 10.1111/jnc.15230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
Fragile X syndrome (FXS), the most common inherited cause of intellectual disability, results from silencing of the fragile X mental retardation gene 1 (FMR1). The analyses of FXS patients' brain autopsies revealed an increased density of immature dendritic spines in cortical areas. We hypothesize that the small GTPase Arf6, an actin regulator critical for the development of glutamatergic synapses and dendritic spines, is implicated in FXS. Here, we determined the fraction of active, GTP-bound Arf6 in cortical neuron cultures and synaptoneurosomes from Fmr1 knockout mice, measured actin polymerization in neurons expressing Arf6 mutants with variant GTP- or GDP-binding properties, and recorded hippocampal long-term depression induced by metabotropic glutamate receptors (mGluR-LTD) in acute brain slices. We detected a persistently elevated Arf6 activity, a loss of Arf6 sensitivity to synaptic stimulation and an increased Arf6-dependent dendritic actin polymerization in mature Fmr1 knockout neurons. Similar imbalances in Arf6-GTP levels and actin filament assembly were caused in wild-type neurons by RNAi-mediated depletion of the postsynaptic Arf6 guanylate exchange factors IQSEC1 (BRAG2) or IQSEC2 (BRAG1). Targeted deletion of Iqsec1 in hippocampal neurons of 3-week-old mice interfered with mGluR-LTD in wild-type, but not in Fmr1 knockout mice. Collectively, these data suggest an aberrant Arf6 regulation in Fmr1 knockout neurons with consequences for the actin cytoskeleton, spine morphology, and synaptic plasticity. Moreover, FXS and syndromes caused by genetic variants in IQSEC1 and IQSEC2 share intellectual disabilities and developmental delay as main symptoms. Therefore, dysregulation of Arf6 may contribute to the cognitive impairment in FXS.
Collapse
Affiliation(s)
- Dušica Briševac
- Neuroscience Research Center (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ralf Scholz
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dan Du
- Central Institute of Mental Health, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Georg Köhr
- Central Institute of Mental Health, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Christian Kornau
- Neuroscience Research Center (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| |
Collapse
|
44
|
Pandina G, Ring RH, Bangerter A, Ness S. Current Approaches to the Pharmacologic Treatment of Core Symptoms Across the Lifespan of Autism Spectrum Disorder. Psychiatr Clin North Am 2020; 43:629-645. [PMID: 33126999 DOI: 10.1016/j.psc.2020.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are no approved medications for autism spectrum disorder (ASD) core symptoms. However, given the significant clinical need, children and adults with ASD are prescribed medication off label for core or associated conditions, sometimes based on limited evidence for effectiveness. Recent developments in the understanding of biologic basis of ASD have led to novel targets with potential to impact core symptoms, and several clinical trials are underway. Heterogeneity in course of development, co-occurring conditions, and age-related treatment response variability hampers study outcomes. Novel measures and approaches to ASD clinical trial design will help in development of effective pharmacologic treatments.
Collapse
Affiliation(s)
- Gahan Pandina
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA.
| | | | - Abigail Bangerter
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA
| | - Seth Ness
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA
| |
Collapse
|
45
|
Brašić JR, Nandi A, Russell DS, Jennings D, Barret O, Mathur A, Slifer K, Sedlak T, Martin SD, Brinson Z, Vyas P, Seibyl JP, Berry-Kravis EM, Wong DF, Budimirovic DB. Reduced Expression of Cerebral Metabotropic Glutamate Receptor Subtype 5 in Men with Fragile X Syndrome. Brain Sci 2020; 10:E899. [PMID: 33255214 PMCID: PMC7760509 DOI: 10.3390/brainsci10120899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/07/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022] Open
Abstract
Glutamatergic receptor expression is mostly unknown in adults with fragile X syndrome (FXS). Favorable behavioral effects of negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGluR5) in fmr1 knockout (KO) mouse models have not been confirmed in humans with FXS. Measurement of cerebral mGluR5 expression in humans with FXS exposed to NAMs might help in that effort. We used positron emission tomography (PET) to measure the mGluR5 density as a proxy of mGluR5 expression in cortical and subcortical brain regions to confirm target engagement of NAMs for mGluR5s. The density and the distribution of mGluR5 were measured in two independent samples of men with FXS (N = 9) and typical development (TD) (N = 8). We showed the feasibility of this complex study including MRI and PET, meaning that this challenging protocol can be accomplished in men with FXS with an adequate preparation. Analysis of variance of estimated mGluR5 expression showed that mGluR5 expression was significantly reduced in cortical and subcortical regions of men with FXS in contrast to age-matched men with TD.
Collapse
Affiliation(s)
- James R. Brašić
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
| | - Ayon Nandi
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
| | - David S. Russell
- Clinical Research, Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Research Clinic, Invicro LLC, New Haven, CT 06510, USA
| | - Danna Jennings
- Clinical Research, Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Research Clinic, Invicro LLC, New Haven, CT 06510, USA
- Denali Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Olivier Barret
- Clinical Research, Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
| | - Anil Mathur
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
| | - Keith Slifer
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Thomas Sedlak
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
- Department of Psychiatry and Behavioral Sciences-General Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Samuel D. Martin
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
- Department of Neuroscience, Zanvyl Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zabecca Brinson
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
| | - Pankhuri Vyas
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
| | - John P. Seibyl
- Clinical Research, Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Research Clinic, Invicro LLC, New Haven, CT 06510, USA
| | - Elizabeth M. Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Dean F. Wong
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (A.M.); (T.S.); (S.D.M.); (Z.B.); (P.V.); (D.F.W.)
- Precision Radio-Theranostics Translational Laboratories, Mallinckrodt Institute of Radiology, School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Departments of Psychiatry and Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
46
|
Moulin TC, Covill LE, Itskov PM, Williams MJ, Schiöth HB. Rodent and fly models in behavioral neuroscience: An evaluation of methodological advances, comparative research, and future perspectives. Neurosci Biobehav Rev 2020; 120:1-12. [PMID: 33242563 DOI: 10.1016/j.neubiorev.2020.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/25/2020] [Accepted: 11/12/2020] [Indexed: 01/31/2023]
Abstract
The assessment of behavioral outcomes is a central component of neuroscientific research, which has required continuous technological innovations to produce more detailed and reliable findings. In this article, we provide an in-depth review on the progress and future implications for three model organisms (mouse, rat, and Drosophila) essential to our current understanding of behavior. By compiling a comprehensive catalog of popular assays, we are able to compare the diversity of tasks and usage of these animal models in behavioral research. This compilation also allows for the evaluation of existing state-of-the-art methods and experimental applications, including optogenetics, machine learning, and high-throughput behavioral assays. We go on to discuss novel apparatuses and inter-species analyses for centrophobism, feeding behavior, aggression and mating paradigms, with the goal of providing a unique view on comparative behavioral research. The challenges and recent advances are evaluated in terms of their translational value, ethical procedures, and trustworthiness for behavioral research.
Collapse
Affiliation(s)
- Thiago C Moulin
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Laura E Covill
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pavel M Itskov
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Department of Pharmacology, Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia; Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Michael J Williams
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
47
|
Gamma power abnormalities in a Fmr1-targeted transgenic rat model of fragile X syndrome. Sci Rep 2020; 10:18799. [PMID: 33139785 PMCID: PMC7608556 DOI: 10.1038/s41598-020-75893-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Fragile X syndrome (FXS) is characteristically displayed intellectual disability, hyperactivity, anxiety, and abnormal sensory processing. Electroencephalography (EEG) abnormalities are also observed in subjects with FXS, with many researchers paying attention to these as biomarkers. Despite intensive preclinical research using Fmr1 knock out (KO) mice, an effective treatment for FXS has yet to be developed. Here, we examined Fmr1-targeted transgenic rats (Fmr1-KO rats) as an alternative preclinical model of FXS. We characterized the EEG phenotypes of Fmr1-KO rats by measuring basal EEG power and auditory steady state response (ASSR) to click trains of stimuli at a frequency of 10–80 Hz. Fmr1-KO rats exhibited reduced basal alpha power and enhanced gamma power, and these rats showed enhanced locomotor activity in novel environment. While ASSR clearly peaked at around 40 Hz, both inter-trial coherence (ITC) and event-related spectral perturbation (ERSP) were significantly reduced at the gamma frequency band in Fmr1-KO rats. Fmr1-KO rats showed gamma power abnormalities and behavioral hyperactivity that were consistent with observations reported in mouse models and subjects with FXS. These results suggest that gamma power abnormalities are a translatable biomarker among species and demonstrate the utility of Fmr1-KO rats for investigating drugs for the treatment of FXS.
Collapse
|
48
|
Mizen LAM, Stanfield AC. Demystifying neuroscience laboratory techniques used to investigate single-gene disorders. BJPSYCH ADVANCES 2020. [DOI: 10.1192/bja.2020.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SUMMARYThere is considerable work being carried out in neuroscientific laboratories to delineate the mechanisms underlying single-gene disorders, particularly those related to intellectual disability and autism spectrum disorder. Many clinicians will have little if any direct experience of this type of work and so find the procedures and terminology difficult to understand. This article describes some of the laboratory techniques used and their increasing relevance to clinical practice. It is pitched for clinicians with little or no laboratory science background.
Collapse
|
49
|
Kelleher BL, Wheeler AC. Introduction to Special Issue on Outcome Measures for IDD: Where We Have Been, Where We Are Now, and Where We Are Heading. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2020; 125:413-417. [PMID: 33211811 DOI: 10.1352/1944-7558-125.6.413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Bridgette L Kelleher
- Bridgette L. Kelleher, Purdue University Department of Psychological Sciences
- Guest Editors
| | | |
Collapse
|
50
|
Ghatak S, Talantova M, McKercher SR, Lipton SA. Novel Therapeutic Approach for Excitatory/Inhibitory Imbalance in Neurodevelopmental and Neurodegenerative Diseases. Annu Rev Pharmacol Toxicol 2020; 61:701-721. [PMID: 32997602 DOI: 10.1146/annurev-pharmtox-032320-015420] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excitatory/inhibitory (E/I) balance, defined as the balance between excitation and inhibition of synaptic activity in a neuronal network, accounts in part for the normal functioning of the brain, controlling, for example, normal spike rate. In many pathological conditions, this fine balance is perturbed, leading to excessive or diminished excitation relative to inhibition, termed E/I imbalance, reflected in network dysfunction. E/I imbalance has emerged as a contributor to neurological disorders that occur particularly at the extremes of life, including autism spectrum disorder and Alzheimer's disease, pointing to the vulnerability of neuronal networks at these critical life stages. Hence, it is important to develop approaches to rebalance neural networks. In this review, we describe emerging therapies that can normalize the E/I ratio or the underlying abnormality that contributes to the imbalance in electrical activity, thus improving neurological function in these maladies.
Collapse
Affiliation(s)
- Swagata Ghatak
- Department of Molecular Medicine and Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Maria Talantova
- Department of Molecular Medicine and Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Scott R McKercher
- Department of Molecular Medicine and Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Stuart A Lipton
- Department of Molecular Medicine and Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California 92037, USA; .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|