1
|
Gao Y, Finlay R, Yin X, Brennan L. Urinary Biomarkers of Strawberry and Blueberry Intake. Metabolites 2024; 14:505. [PMID: 39330512 PMCID: PMC11434597 DOI: 10.3390/metabo14090505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction There is increasing interest in food biomarkers to address the shortcomings of self-reported dietary assessments. Berries are regarded as important fruits worldwide; however, there are no well-validated biomarkers of berry intake. Thus, the objective of this study is to identify urinary biomarkers of berry intake. Methods For the discovery study, participants consumed 192 g strawberries with 150 g blueberries, and urine samples were collected at 2, 4, 6, and 24 h post-consumption. A dose-response study was performed, whereby participants consumed three portions (78 g, 278 g, and 428 g) of mixed strawberries and blueberries. The urine samples were profiled by an untargeted LC-MS metabolomics approach in the positive and negative modes. Results Statistical analysis of the data revealed that 39 features in the negative mode and 15 in the positive mode significantly increased between fasting and 4 h following mixed berry intake. Following the analysis of the dose-response data, 21 biomarkers showed overall significance across the portions of berry intake. Identification of the biomarkers was performed using fragmentation matches in the METLIN, HMDB, and MoNA databases and in published papers, confirmed where possible with authentic standards. Conclusions The ability of the panel of biomarkers to assess intake was examined, and the predictability was good, laying the foundations for the development of biomarker panels.
Collapse
Affiliation(s)
- Ya Gao
- Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (Y.G.); (R.F.); (X.Y.)
- UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Rebecca Finlay
- Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (Y.G.); (R.F.); (X.Y.)
- UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Xiaofei Yin
- Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (Y.G.); (R.F.); (X.Y.)
- UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Lorraine Brennan
- Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (Y.G.); (R.F.); (X.Y.)
- UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
2
|
Cuparencu C, Bulmuş-Tüccar T, Stanstrup J, La Barbera G, Roager HM, Dragsted LO. Towards nutrition with precision: unlocking biomarkers as dietary assessment tools. Nat Metab 2024; 6:1438-1453. [PMID: 38956322 DOI: 10.1038/s42255-024-01067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
Precision nutrition requires precise tools to monitor dietary habits. Yet current dietary assessment instruments are subjective, limiting our understanding of the causal relationships between diet and health. Biomarkers of food intake (BFIs) hold promise to increase the objectivity and accuracy of dietary assessment, enabling adjustment for compliance and misreporting. Here, we update current concepts and provide a comprehensive overview of BFIs measured in urine and blood. We rank BFIs based on a four-level utility scale to guide selection and identify combinations of BFIs that specifically reflect complex food intakes, making them applicable as dietary instruments. We discuss the main challenges in biomarker development and illustrate key solutions for the application of BFIs in human studies, highlighting different strategies for selecting and combining BFIs to support specific study designs. Finally, we present a roadmap for BFI development and implementation to leverage current knowledge and enable precision in nutrition research.
Collapse
Affiliation(s)
- Cătălina Cuparencu
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark.
| | - Tuğçe Bulmuş-Tüccar
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
- Department of Nutrition and Dietetics, Yüksek İhtisas University, Ankara, Turkey
| | - Jan Stanstrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Giorgia La Barbera
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Silva AM, Levy J, De Carli E, Cacau LT, de Alvarenga JFR, Benseñor IJM, Lotufo PA, Fiamoncini J, Brennan L, Marchioni DML. Biomarker panels for fruit intake assessment: a metabolomics analysis in the ELSA-Brasil study. Metabolomics 2024; 20:88. [PMID: 39073486 DOI: 10.1007/s11306-024-02145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Food intake biomarkers are used to estimate dietary exposure; however, selecting a single biomarker to evaluate a specific dietary component is difficult due to the overlap of diverse compounds from different foods. Therefore, combining two or more biomarkers can increase the sensitivity and specificity of food intake estimates. OBJECTIVE This study aimed to evaluate the ability of metabolite panels to distinguish between self-reported fruit consumers and non-consumers among participants in the Longitudinal Study of Adult Health. MATERIALS AND METHODS A total of 93 healthy adults of both sexes were selected from the Longitudinal Study of Adult Health. A 24-h dietary recall was obtained using the computer-assisted 24-h food recall GloboDiet software, and 24-h urine samples were collected from each participant. Metabolites were identified in urine using liquid chromatography coupled with high-resolution mass spectrometry by comparing their exact mass and fragmentation patterns using free-access databases. Multivariate receiver operating characteristic curve (ROC) analysis and partial least squares discriminant analysis were used to verify the ability of the metabolite combination to classify daily and non-daily fruit consumers. Fruit intake was identified using a 24 h dietary recall (24 h-DR). RESULTS Bananas, grapes, and oranges are included in the summary. The panel of biomarkers exhibited an area under the curve (AUC) > 0.6 (Orange AUC = 0.665; Grape AUC = 0.622; Bananas AUC = 0.602; All fruits AUC = 0.679; Citrus AUC = 0.693) and variable importance projection score > 1.0, and these were useful for assessing the sensitivity and predictability of food intake in our population. CONCLUSION A panel of metabolites was able to classify self-reported fruit consumers with strong predictive power and high specificity and sensitivity values except for banana and total fruit intake.
Collapse
Affiliation(s)
- Alexsandro Macedo Silva
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - Jéssica Levy
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - Eduardo De Carli
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - Leandro Teixeira Cacau
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - José Fernando Rinaldi de Alvarenga
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center (FoRC), University of São Paulo, São Paulo, SP, Brazil
| | | | - Paulo Andrade Lotufo
- Center for Clinical and Epidemiological Research, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Jarlei Fiamoncini
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center (FoRC), University of São Paulo, São Paulo, SP, Brazil
| | - Lorraine Brennan
- School of Agriculture and Food Science, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
4
|
Pei Y, He Y, Wang X, Xie C, Li L, Sun Q, Liu L, Shan S, Wang P, Liu T, Fan X, Cong M, Jia J. Tartaric acid ameliorates experimental non-alcoholic fatty liver disease by activating the AMP-activated protein kinase signaling pathway. Eur J Pharmacol 2024; 975:176668. [PMID: 38788791 DOI: 10.1016/j.ejphar.2024.176668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Tartaric acid (TA) has been shown beneficial effects on blood pressure and lipid levels. However, its effect on non-alcoholic fatty liver disease (NAFLD) remains unknown. This study aimed to investigate the role of TA in experimental NAFLD. Mice were fed a Western diet for 8 weeks, followed by administration of TA or a vehicle for an additional 12 weeks while continuing on the Western diet. Blood biochemistry including transaminases and glucose tolerance test and liver tissue RNA sequencing (RNA-seq), lipid content, and histology were investigated. The HepG2 cell line was used to explore the mechanism by which TA regulates lipid metabolism. We found that TA significantly improved weight gain, insulin resistance, hepatic steatosis, inflammation and fibrosis in Western diet-fed mice. By comparing gene expression differences, we found that TA affects pathways related to lipid metabolism, inflammatory response, and fibrosis. Furthermore, TA effectively reduced oleic acid-induced lipid accumulation in HepG2 cells and downregulated the genes associated with fatty acid synthesis, which were enriched in the AMP-activated protein kinase (AMPK) signaling pathway. TA also enhanced the phosphorylation of AMPK which could be reverted by the AMPK inhibitor Compound C in HepG2 cells. Our study suggests that TA improves experimental NAFLD by activating the AMPK signaling pathway. These findings indicate that TA may serve as a potential therapy for the human NAFLD.
Collapse
Affiliation(s)
- Yufeng Pei
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Yu He
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Xiaofan Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Chao Xie
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Li Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Qingyun Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Lin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Shan Shan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Xu Fan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China.
| |
Collapse
|
5
|
Tor-Roca A, Sánchez-Pla A, Korosi A, Pallàs M, Lucassen PJ, Castellano-Escuder P, Aigner L, González-Domínguez R, Manach C, Carmona F, Vegas E, Helmer C, Feart C, Lefèvre-Arbogast S, Neuffer J, Lee H, Thuret S, Andres-Lacueva C, Samieri C, Urpi-Sarda M. A Mediterranean Diet-Based Metabolomic Score and Cognitive Decline in Older Adults: A Case-Control Analysis Nested within the Three-City Cohort Study. Mol Nutr Food Res 2024; 68:e2300271. [PMID: 37876144 DOI: 10.1002/mnfr.202300271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/04/2023] [Indexed: 10/26/2023]
Abstract
SCOPE Evidence on the Mediterranean diet (MD) and age-related cognitive decline (CD) is still inconclusive partly due to self-reported dietary assessment. The aim of the current study is to develop an MD- metabolomic score (MDMS) and investigate its association with CD in community-dwelling older adults. METHODS AND RESULTS This study includes participants from the Three-City Study from the Bordeaux (n = 418) and Dijon (n = 422) cohorts who are free of dementia at baseline. Repeated measures of cognition over 12 years are collected. An MDMS is designed based on serum biomarkers related to MD key food groups and using a targeted metabolomics platform. Associations with CD are investigated through conditional logistic regression (matched on age, sex, and education level) in both sample sets. The MDMS is found to be inversely associated with CD (odds ratio [OR] [95% confidence interval (CI)] = 0.90 [0.80-1.00]; p = 0.048) in the Bordeaux (discovery) cohort. Results are comparable in the Dijon (validation) cohort, with a trend toward significance (OR [95% CI] = 0.91 [0.83-1.01]; p = 0.084). CONCLUSIONS A greater adherence to the MD, here assessed by a serum MDMS, is associated with lower odds of CD in older adults.
Collapse
Affiliation(s)
- Alba Tor-Roca
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Alex Sánchez-Pla
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and Institut of Neurosciences, University of Barcelona, Barcelona, 08028, Spain
- Centro de Investigación Biomédica en Red en Neurodegeneracion, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Pol Castellano-Escuder
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Francisco Carmona
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Esteban Vegas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Catherine Helmer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Catherine Feart
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Sophie Lefèvre-Arbogast
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Jeanne Neuffer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Hyunah Lee
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Cécilia Samieri
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
6
|
Zhang W, Sun S, Zhang Y, Zhang Y, Wang J, Liu Z, Yang K. Benzoic acid supplementation improves the growth performance, nutrient digestibility and nitrogen metabolism of weaned lambs. Front Vet Sci 2024; 11:1351394. [PMID: 38406631 PMCID: PMC10884225 DOI: 10.3389/fvets.2024.1351394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Nitrogen is one of the essential components of proteins and nucleic acids and plays a crucial role in the growth and development of ruminants. However, the nitrogen utilization rate of ruminants is lower than that of monogastric animals, which not only reduces protein conversion and utilization, but also increases manure nitrogen discharge as well as causing environmental pollution. The lamb stage is an important period in the life of sheep, which can affect the production performance and meat quality of fattening sheep. The purpose of this experiment was to explore effects of benzoic acid supplementation on growth performance, nutrient digestibility, nitrogen metabolism and plasma parameters of weaned lambs. A total of 40 weaned male Hu sheep lambs with similar body weight were randomly divided into 4 groups: control with no benzoic acid (0 BA) and the lambs in other 3 groups were fed 0.5, 1, and 1.5% benzoic acid on the basis of experimental diet (0.5, 1, and 1.5 BA, respectively). The experiment lasted for 60 days. Results showed that the average daily gain of 1 BA group was significantly increased (p < 0.05) when compared to 0 and 1.5 BA groups, while an opposite tendency of dry matter intake to average daily gain ratio was observed. The dry matter, organic matter, neutral detergent fiber and acid detergent fiber digestibility of 1 BA group was significantly increased (p < 0.05) as compared with 0 and 1.5 BA groups as well as plasma albumin content. Also, the urinary hippuric acid and hippurate nitrogen concentrations in 1 and 1.5 BA groups were higher (p < 0.05) than those in 0 and 0.5 BA groups. Additionally, the nitrogen intake in 0.5 and 1 BA groups was significantly increased (p < 0.05) when compared to other groups. At 1 h after morning feeding, the plasma benzoic acid concentration of 1 BA group reached up to maximum value and was higher (p < 0.05) than other groups, and then began to decrease. Similarly, the hippuric acid concentration in plasma of 1 and 1.5 BA groups was higher (p < 0.05) than that of 0 BA group from 1 to 4 h post morning feeding. At 3 h after feeding, the urea nitrogen concentration in plasma of 0 BA group was higher (p < 0.05) than that of 1.5 BA group. Overall, the appropriate supplementation of benzoic acid (1%) in the diet can improve growth performance and nitrogen metabolism of weaned lambs.
Collapse
Affiliation(s)
- Wenjie Zhang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science and Technology, Xinjiang Agricultural University, Ürümqi, China
| | - Shuo Sun
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science and Technology, Xinjiang Agricultural University, Ürümqi, China
| | - Yaqian Zhang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science and Technology, Xinjiang Agricultural University, Ürümqi, China
| | - Yanan Zhang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science and Technology, Xinjiang Agricultural University, Ürümqi, China
| | - Jianguo Wang
- Xinjiang Shangpin Meiyang Technology Co., Ltd., Changji, China
| | - Zhiqiang Liu
- Xinjiang Shangpin Meiyang Technology Co., Ltd., Changji, China
| | - Kailun Yang
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science and Technology, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
7
|
Rodriguez-Mateos A, Le Sayec M, Cheok A. Dietary (poly)phenols and cardiometabolic health: from antioxidants to modulators of the gut microbiota. Proc Nutr Soc 2024:1-11. [PMID: 38316606 DOI: 10.1017/s0029665124000156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
(Poly)phenols are plant secondary metabolites widely abundant in plant foods and beverages comprising a very large number of compounds with diverse structure and biological activities. Accumulating evidence indicates that these compounds exert beneficial effects against cardiometabolic diseases, and this review will provide a summary of current knowledge in this area. Epidemiological and clinical data collectively suggest that intake of flavonoids reduces the risk of cardiovascular disease (CVD), with the evidence being particularly strong for the flavan-3-ol subclass. However, to provide adequate dietary recommendations, a better understanding of their estimated content in foods and intake among the general public is needed. Regarding mechanisms of action, we now know that it is unlikely that (poly)phenols act as direct antioxidants in vivo, as it was hypothesised for decades with the popularity of in vitro antioxidant capacity assays. One of the reasons is that upon ingestion, (poly)phenols are extensively metabolised into a wide array of circulating metabolites with different bioactivities than their precursors. Well-conducted in vitro and in vivo studies and human nutrigenomic analysis have revealed new molecular targets that may be underlying the health benefits of (poly)phenols, such as the nitric oxide pathway. Recently, a bi-directional relationship was established between (poly)phenols and the gut microbiota, suggesting that individual gut microbial metabolising capacity may be a key factor explaining the variability in the cardiometabolic response to (poly)phenols. Future research is needed to elucidate which are the key factors affecting such capacity, and whether it can be modulated, along with the mechanisms of action.
Collapse
Affiliation(s)
- Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Melanie Le Sayec
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Alex Cheok
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
8
|
Unión-Caballero A, Meroño T, Zamora-Ros R, Rostgaard-Hansen AL, Miñarro A, Sánchez-Pla A, Estanyol-Torres N, Martínez-Huelamo M, Cubedo M, González-Domínguez R, Tjønneland A, Riccardi G, Landberg R, Halkjær J, Andrés-Lacueva C. Metabolome biomarkers linking dietary fibre intake with cardiometabolic effects: results from the Danish Diet, Cancer and Health-Next Generations MAX study. Food Funct 2024; 15:1643-1654. [PMID: 38247399 DOI: 10.1039/d3fo04763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Biomarkers associated with dietary fibre intake, as complements to traditional dietary assessment tools, may improve the understanding of its role in human health. Our aim was to discover metabolite biomarkers related to dietary fibre intake and investigate their association with cardiometabolic risk factors. We used data and samples from the Danish Diet Cancer and Health Next Generation (DCH-NG) MAX-study, a one-year observational study with evaluations at baseline, six and 12 months (n = 624, 55% female, mean age: 43 years, 1353 observations). Direct associations between fibre intake and plasma concentrations of 2,6-dihydroxybenzoic acid (2,6-DHBA) and indolepropionic acid were observed at the three time-points. Both metabolites showed an intraclass-correlation coefficient (ICC) > 0.50 and were associated with the self-reported intake of wholegrain cereals, and of fruits and vegetables, respectively. Other metabolites associated with dietary fibre intake were linolenoyl carnitine, 2-aminophenol, 3,4-DHBA, and proline betaine. Based on the metabolites associated with dietary fibre intake we calculated predicted values of fibre intake using a multivariate, machine-learning algorithm. Metabolomics-based predicted fibre, but not self-reported fibre values, showed negative associations with cardiometabolic risk factors (i.e. high sensitivity C-reactive protein, systolic and diastolic blood pressure, all FDR-adjusted p-values <0.05). Furthermore, different correlations with gut microbiota composition were observed. In conclusion, 2,6-DHBA and indolepropionic acid in plasma may better link dietary fibre intake with its metabolic effects than self-reported values. These metabolites may represent a novel class of biomarkers reflecting both dietary exposure and host and/or gut microbiota characteristics providing a read-out that is differentially related to cardiometabolic risk.
Collapse
Affiliation(s)
- Andrea Unión-Caballero
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de l'Alimentació I Gastronomia, Food Innovation Network (XIA), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tomás Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de l'Alimentació I Gastronomia, Food Innovation Network (XIA), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Raúl Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | | | - Antonio Miñarro
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028, Barcelona, Spain
| | - Alex Sánchez-Pla
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028, Barcelona, Spain
| | - Núria Estanyol-Torres
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de l'Alimentació I Gastronomia, Food Innovation Network (XIA), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain.
| | - Miriam Martínez-Huelamo
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de l'Alimentació I Gastronomia, Food Innovation Network (XIA), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Cubedo
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028, Barcelona, Spain
| | - Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de l'Alimentació I Gastronomia, Food Innovation Network (XIA), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain.
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100 Copenhagen, Denmark
| | - Gabrielle Riccardi
- Diabetes, Nutrition and Metabolism Unit, Department of Clinical Medicine and Surgery, Federico II University, 80138 Naples, Italy
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Jytte Halkjær
- Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100 Copenhagen, Denmark
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de l'Alimentació I Gastronomia, Food Innovation Network (XIA), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Ángel-Martín A, Vaillant F, Moreno-Castellanos N. Daily Consumption of Golden Berry ( Physalis peruviana) Has Been Shown to Halt the Progression of Insulin Resistance and Obesity in Obese Rats with Metabolic Syndrome. Nutrients 2024; 16:365. [PMID: 38337650 PMCID: PMC10857591 DOI: 10.3390/nu16030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
In a study addressing the high risk of chronic diseases in people with diabetes and obesity linked to metabolic syndrome, the impact of a Golden Berry diet was investigated using a diabetic animal model. Obese rats with diabetic characteristics were fed a diet containing five percent Golden Berry for 16 days. This study focused on various parameters including organ weights, expression of metabolic genes, and urinary biomarkers. Post-Golden Berry intake, there was a notable decrease in the body, liver, pancreas, visceral, and subcutaneous adipose tissue weights in these obese, hyperglycemic rats. In contrast, an increase in brown adipose tissue (BAT) cell mass was observed. This diet also resulted in reduced blood glucose levels and normalized plasma biochemical profiles, including cholesterol, triglycerides, LDL, and HDL levels. Additionally, it modulated specific urinary biomarkers, particularly pipe-colic acid, a primary marker for type 2 diabetes. Bioinformatics analysis linked these dietary effects to improved insulin signaling and adipogenesis. Regular consumption of Golden Berry effectively prevented insulin resistance and obesity in rats, underscoring its significant health benefits and the protective role of an antioxidant-rich diet against metabolic syndrome. These findings offer promising insights for future therapeutic strategies to manage and prevent obesity and related chronic diseases.
Collapse
Affiliation(s)
- Alberto Ángel-Martín
- Observatorio Epidemiológico de Nutrición y Enfermedades Crónicas, Nutrition School, Health Faculty, Universidad Industrial de Santander, Cra 32 # 29-31, Bucaramanga 680002, Colombia;
| | - Fabrice Vaillant
- Colombian Corporation for Agricultural Research-Agrosavia, La Selva Research Center, Kilometer 7, Vía a Las Palmas, Vereda Llanogrande, Rionegro 054048, Colombia;
- French Center for Agricultural Research for International Development (CIRAD), UMR Qualisud, 34398 Montpellier, France
| | - Natalia Moreno-Castellanos
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Department of Basic Sciences, Medicine School, Health Faculty, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| |
Collapse
|
10
|
Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum Genomics 2023; 17:109. [PMID: 38062537 PMCID: PMC10704648 DOI: 10.1186/s40246-023-00561-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.
Collapse
Affiliation(s)
- George Lagoumintzis
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
| | - George P Patrinos
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
11
|
Brennan L, de Roos B. Role of metabolomics in the delivery of precision nutrition. Redox Biol 2023; 65:102808. [PMID: 37423161 PMCID: PMC10461186 DOI: 10.1016/j.redox.2023.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Precision nutrition aims to deliver personalised dietary advice to individuals based on their personal genetics, metabolism and dietary/environmental exposures. Recent advances have demonstrated promise for the use of omic technologies for furthering the field of precision nutrition. Metabolomics in particular is highly attractive as measurement of metabolites can capture information on food intake, levels of bioactive compounds and the impact of diets on endogenous metabolism. These aspects contain useful information for precision nutrition. Furthermore using metabolomic profiles to identify subgroups or metabotypes is attractive for the delivery of personalised dietary advice. Combining metabolomic derived metabolites with other parameters in prediction models is also an exciting avenue for understanding and predicting response to dietary interventions. Examples include but not limited to role of one carbon metabolism and associated co-factors in blood pressure response. Overall, while evidence exists for potential in this field there are also many unanswered questions. Addressing these and clearly demonstrating that precision nutrition approaches enable adherence to healthier diets and improvements in health will be key in the near future.
Collapse
Affiliation(s)
- Lorraine Brennan
- Institute of Food and Health and Conway Institute, UCD School of Agriculture and Food Science, UCD, Belfield, Dublin 4, Ireland.
| | - Baukje de Roos
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
12
|
Renai L, Marzullo L, Bonaccorso G, Orlandini S, Mattivi F, Bruzzoniti MC, Del Bubba M. Innovative thermally assisted on-line solid phase extraction-reversed phase liquid chromatography applied to targeted nutrimetabolomics in human biofluids. Anal Chim Acta 2023; 1269:341429. [PMID: 37290855 DOI: 10.1016/j.aca.2023.341429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
In this study, the use of thermal desorption in on-line solid phase extraction coupled with reversed phase liquid chromatography (on-line SPE-LC) was for the first time proposed and demonstrated for the desorption of analytes strongly retained by multiple interaction polymeric sorbents. In detail, this analytical strategy was applied to the on-line SPE-LC targeted analysis of a model set of 34 human gut metabolites characterized by heterogeneous physicochemical properties (i.e., octanol-water partition coefficient in the range -0.3 - 3.4). The novel thermally assisted on-line SPE approach was investigated in comparison to conventional room temperature desorption strategies based on the use of (i) an optimized elution gradient or (ii) organic desorption followed by post-cartridge dilution. The thermally assisted desorption strategy has been shown to be better performing and suitable for the development of a reliable and sensitive method for the analysis of the model group of analytes in urine and serum. In more detail, under the optimized experimental conditions, the proposed method provided negligible matrix effects in both biofluids for almost all target analytes. Moreover, method quantification limits were in the ranges 0.026-7.2 μg L-1 and 0.033-23 μg L-1 for urine and serum, respectively, i.e., comparable to or lower than those reported in methods previously published.
Collapse
Affiliation(s)
- Lapo Renai
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Luca Marzullo
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Giulia Bonaccorso
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Serena Orlandini
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Fulvio Mattivi
- Metabolomics Unit, Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38098, San Michele all'Adige, Trento, Italy
| | | | - Massimo Del Bubba
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
13
|
Mostafa H, Cheok A, Meroño T, Andres-Lacueva C, Rodriguez-Mateos A. Biomarkers of Berry Intake: Systematic Review Update. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11789-11805. [PMID: 37499164 PMCID: PMC10416351 DOI: 10.1021/acs.jafc.3c01142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Berries are rich in (poly)phenols, and these compounds may be beneficial to human health. Estimating berry consumption through self-reported questionnaires has been challenging due to compliance issues and a lack of precision. Estimation via food-derived biomarkers in biofluids was proposed as a complementary alternative. We aimed to review and update the existing evidence on biomarkers of intake for six different types of berries. A systematic literature search was performed to update a previous systematic review on PubMed, Web of Science, and Scopus from January 2020 until December 2022. Out of 42 papers, only 18 studies were eligible. A multimetabolite panel is suggested for blueberry and cranberry intake. Proposed biomarkers for blueberries include hippuric acid and malvidin glycosides. For cranberries, suggested biomarkers are glycosides of peonidin and cyanidin together with sulfate and glucuronide conjugates of phenyl-γ-valerolactone derivatives. No new metabolite candidates have been found for raspberries, strawberries, blackcurrants, and blackberries. Further studies are encouraged to validate these multimetabolite panels for improving the estimation of berry consumption.
Collapse
Affiliation(s)
- Hamza Mostafa
- Biomarkers
and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences
and Gastronomy, Nutrition and Food Safety Research Institute (INSA),
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro
de Investigación Biomédica en Red de Fragilidad y Envejecimiento
Saludable (CIBERFES), Instituto de Salud
Carlos III, Madrid 28029, Spain
| | - Alex Cheok
- Department
of Nutritional Sciences, School of Life Course and Population Sciences,
Faculty of Life Sciences and Medicine, King’s
College London, 150 Stamford
Street, SE1 9NH London, U.K.
| | - Tomás Meroño
- Biomarkers
and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences
and Gastronomy, Nutrition and Food Safety Research Institute (INSA),
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro
de Investigación Biomédica en Red de Fragilidad y Envejecimiento
Saludable (CIBERFES), Instituto de Salud
Carlos III, Madrid 28029, Spain
| | - Cristina Andres-Lacueva
- Biomarkers
and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences
and Gastronomy, Nutrition and Food Safety Research Institute (INSA),
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro
de Investigación Biomédica en Red de Fragilidad y Envejecimiento
Saludable (CIBERFES), Instituto de Salud
Carlos III, Madrid 28029, Spain
| | - Ana Rodriguez-Mateos
- Department
of Nutritional Sciences, School of Life Course and Population Sciences,
Faculty of Life Sciences and Medicine, King’s
College London, 150 Stamford
Street, SE1 9NH London, U.K.
| |
Collapse
|
14
|
Blanton C, Ghimire B, Khajeh Pour S, Aghazadeh-Habashi A. Circadian Modulation of the Antioxidant Effect of Grape Consumption: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6502. [PMID: 37569042 PMCID: PMC10419126 DOI: 10.3390/ijerph20156502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Grape consumption acts on the immune system to produce antioxidant and anti-inflammatory effects. Since immune activity demonstrates circadian rhythmicity, with peak activity occurring during waking hours, the timing of grape intake may influence the magnitude of its antioxidant effect. This study followed a 2 × 2 factorial randomized, controlled design wherein healthy men and women (n = 32) consumed either a grape or placebo drink with a high-fat meal in the morning or evening. Urine was collected for measurements of biomarkers of oxidative stress and grape metabolites at baseline and post-meal at hour 1 and hours 1-6. F-2 isoprostane levels showed main effects of time period (baseline < hour 1 < hours 1-6, p < 0.0001), time (a.m. > p.m., p = 0.008) and treatment (placebo > grape, p = 0.05). Total F2-isoprostane excretion expressed as % baseline was higher in the a.m. vs. p.m. (p = 0.004) and in the a.m. placebo vs. all other groups (p < 0.05). Tartaric acid and resveratrol excretion levels were higher in the grape vs. placebo group (p < 0.05) but were not correlated with F-2 isoprostane levels. The findings support a protective effect of grape consumption against morning sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Cynthia Blanton
- Department of Nutrition and Dietetics, Idaho State University, Pocatello, ID 83209, USA
| | - Biwash Ghimire
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (B.G.); (S.K.P.)
| | - Sana Khajeh Pour
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (B.G.); (S.K.P.)
| | - Ali Aghazadeh-Habashi
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (B.G.); (S.K.P.)
| |
Collapse
|
15
|
Ong ES. Urine Metabolites and Bioactive Compounds from Functional Food: Applications of Liquid Chromatography Mass Spectrometry. Crit Rev Anal Chem 2023:1-16. [PMID: 37454386 DOI: 10.1080/10408347.2023.2235442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Bioactive compounds in functional foods, medicinal plants and others are considered attractive value-added molecules based on their wide range of bioactivity. It is clear that an important role is occupied by polyphenol, phenolic compounds and others. Urine is an effective biofluid to evaluate and monitor alterations in homeostasis and other processes related to metabolism. The current review provides a detailed description of the formation of urine in human body, various aspects relevant to sampling and analysis of urinary metabolites before presenting recent developments leveraging on metabolite profiling of urine. For the profiling of small molecules in urine, advancement of liquid chromatography mass tandem spectrometry (LC/MS/MS), establishment of standardized chemical fragmentation libraries, computational resources, data-analysis approaches with pattern recognition tools have made it an attractive option. The profiling of urinary metabolites gives an overview of the biomarkers associated with the diet and evaluates its biological effects. Metabolic pathways such as glycolysis, tricarboxylic acid cycle, amino acid metabolism, energy metabolism, purine metabolism and others can be evaluated. Finally, a combination of metabolite profiling with chemical standardization and bioassay in functional food and medicinal plants will likely lead to the identification of new biomarkers and novel biochemical insights.
Collapse
Affiliation(s)
- Eng Shi Ong
- Singapore University of Technology and Design, Singapore, Republic of Singapore
| |
Collapse
|
16
|
Olazcuaga L, Baltenweck R, Leménager N, Maia-Grondard A, Claudel P, Hugueney P, Foucaud J. Metabolic consequences of various fruit-based diets in a generalist insect species. eLife 2023; 12:84370. [PMID: 37278030 DOI: 10.7554/elife.84370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Most phytophagous insect species exhibit a limited diet breadth and specialize on a few or a single host plant. In contrast, some species display a remarkably large diet breadth, with host plants spanning several families and many species. It is unclear, however, whether this phylogenetic generalism is supported by a generic metabolic use of common host chemical compounds ('metabolic generalism') or alternatively by distinct uses of diet-specific compounds ('multi-host metabolic specialism')? Here, we simultaneously investigated the metabolomes of fruit diets and of individuals of a generalist phytophagous species, Drosophila suzukii, that developed on them. The direct comparison of metabolomes of diets and consumers enabled us to disentangle the metabolic fate of common and rarer dietary compounds. We showed that the consumption of biochemically dissimilar diets resulted in a canalized, generic response from generalist individuals, consistent with the metabolic generalism hypothesis. We also showed that many diet-specific metabolites, such as those related to the particular color, odor, or taste of diets, were not metabolized, and rather accumulated in consumer individuals, even when probably detrimental to fitness. As a result, while individuals were mostly similar across diets, the detection of their particular diet was straightforward. Our study thus supports the view that dietary generalism may emerge from a passive, opportunistic use of various resources, contrary to more widespread views of an active role of adaptation in this process. Such a passive stance towards dietary chemicals, probably costly in the short term, might favor the later evolution of new diet specializations.
Collapse
Affiliation(s)
- Laure Olazcuaga
- UMR CBGP (INRAE-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet, Montferrier, France
- Department of Agricultural Biology, Colorado State University, Fort Collins, United States
| | | | - Nicolas Leménager
- UMR CBGP (INRAE-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet, Montferrier, France
| | | | | | | | - Julien Foucaud
- UMR CBGP (INRAE-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet, Montferrier, France
| |
Collapse
|
17
|
Trius-Soler M, Praticò G, Gürdeniz G, Garcia-Aloy M, Canali R, Fausta N, Brouwer-Brolsma EM, Andrés-Lacueva C, Dragsted LO. Biomarkers of moderate alcohol intake and alcoholic beverages: a systematic literature review. GENES & NUTRITION 2023; 18:7. [PMID: 37076809 PMCID: PMC10114415 DOI: 10.1186/s12263-023-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
The predominant source of alcohol in the diet is alcoholic beverages, including beer, wine, spirits and liquors, sweet wine, and ciders. Self-reported alcohol intakes are likely to be influenced by measurement error, thus affecting the accuracy and precision of currently established epidemiological associations between alcohol itself, alcoholic beverage consumption, and health or disease. Therefore, a more objective assessment of alcohol intake would be very valuable, which may be established through biomarkers of food intake (BFIs). Several direct and indirect alcohol intake biomarkers have been proposed in forensic and clinical contexts to assess recent or longer-term intakes. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs, have been developed within the Food Biomarker Alliance (FoodBAll) project. The aim of this systematic review is to list and validate biomarkers of ethanol intake per se excluding markers of abuse, but including biomarkers related to common categories of alcoholic beverages. Validation of the proposed candidate biomarker(s) for alcohol itself and for each alcoholic beverage was done according to the published guideline for biomarker reviews. In conclusion, common biomarkers of alcohol intake, e.g., as ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters, and phosphatidyl ethanol, show considerable inter-individual response, especially at low to moderate intakes, and need further development and improved validation, while BFIs for beer and wine are highly promising and may help in more accurate intake assessments for these specific beverages.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
- Polyphenol Research Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Giulia Praticò
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Gözde Gürdeniz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Mar Garcia-Aloy
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Raffaella Canali
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Natella Fausta
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Cristina Andrés-Lacueva
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
18
|
Neuhouser ML, Prentice RL, Tinker LF, Lampe JW. Enhancing Capacity for Food and Nutrient Intake Assessment in Population Sciences Research. Annu Rev Public Health 2023; 44:37-54. [PMID: 36525959 PMCID: PMC10249624 DOI: 10.1146/annurev-publhealth-071521-121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nutrition influences health throughout the life course. Good nutrition increases the probability of good pregnancy outcomes, proper childhood development, and healthy aging, and it lowers the probability of developing common diet-related chronic diseases, including obesity, cardiovascular disease, cancer, and type 2 diabetes. Despite the importance of diet and health, studying these exposures is among the most challenging in population sciences research. US and global food supplies are complex; eating patterns have shifted such that half of meals are eaten away from home, and there are thousands of food ingredients with myriad combinations. These complexities make dietary assessment and links to health challenging both for population sciences research and for public health policy and practice. Furthermore, most studies evaluating nutrition and health usually rely on self-report instruments prone to random and systematic measurement error. Scientific advances involve developing nutritional biomarkers and then applying these biomarkers as stand-alone nutritional exposures or for calibrating self-reports using specialized statistics.
Collapse
Affiliation(s)
- Marian L Neuhouser
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| | - Ross L Prentice
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| | - Lesley F Tinker
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| | - Johanna W Lampe
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| |
Collapse
|
19
|
Sotelo-González AM, Reynoso-Camacho R, Hernández-Calvillo AK, Castañón-Servín AP, García-Gutiérrez DG, Gómez-Velázquez HDDJ, Martínez-Maldonado MÁ, de los Ríos EA, Pérez-Ramírez IF. Strawberry, Blueberry, and Strawberry-Blueberry Blend Beverages Prevent Hepatic Steatosis in Obese Rats by Modulating Key Genes Involved in Lipid Metabolism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4418. [PMID: 36901426 PMCID: PMC10002361 DOI: 10.3390/ijerph20054418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
There is an increasing interest in developing natural herb-infused functional beverages with health benefits; therefore, in this study, we aimed to evaluate the effect of strawberry, blueberry, and strawberry-blueberry blend decoction-based functional beverages on obesity-related metabolic alterations in high-fat and high-fructose diet-fed rats. The administration of the three berry-based beverages for eighteen weeks prevented the development of hypertriglyceridemia in obese rats (1.29-1.78-fold) and hepatic triglyceride accumulation (1.38-1.61-fold), preventing the development of hepatic steatosis. Furthermore, all beverages significantly down-regulated Fasn hepatic expression, whereas the strawberry beverage showed the greatest down-regulation of Acaca, involved in fatty acid de novo synthesis. Moreover, the strawberry beverage showed the most significant up-regulation of hepatic Cpt1 and Acadm (fatty acid β-oxidation). In contrast, the blueberry beverage showed the most significant down-regulation of hepatic Fatp5 and Cd36 (fatty acid intracellular transport). Nevertheless, no beneficial effect was observed on biometric measurements, adipose tissue composition, and insulin resistance. On the other hand, several urolithins and their derivatives, and other urinary polyphenol metabolites were identified after the strawberry-based beverages supplementation. In contrast, enterolactone was found significantly increase after the intake of blueberry-based beverages. These results demonstrate that functional beverages elaborated with berry fruits prevent diet-induced hypertriglyceridemia and hepatic steatosis by modulating critical genes involved in fatty acid hepatic metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiku Daniel de Jesús Gómez-Velázquez
- Chemistry School, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
- Facultad de Estudios Superiores Cuautilán, Universidad Nacional Autónoma de México, Querétaro 76231, Mexico
| | | | | | | |
Collapse
|
20
|
Dietary Sources of Anthocyanins and Their Association with Metabolome Biomarkers and Cardiometabolic Risk Factors in an Observational Study. Nutrients 2023; 15:nu15051208. [PMID: 36904207 PMCID: PMC10005166 DOI: 10.3390/nu15051208] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Anthocyanins (ACNs) are (poly)phenols associated with reduced cardiometabolic risk. Associations between dietary intake, microbial metabolism, and cardiometabolic health benefits of ACNs have not been fully characterized. Our aims were to study the association between ACN intake, considering its dietary sources, and plasma metabolites, and to relate them with cardiometabolic risk factors in an observational study. A total of 1351 samples from 624 participants (55% female, mean age: 45 ± 12 years old) enrolled in the DCH-NG MAX study were studied using a targeted metabolomic analysis. Twenty-four-hour dietary recalls were used to collect dietary data at baseline, six, and twelve months. ACN content of foods was calculated using Phenol Explorer and foods were categorized into food groups. The median intake of total ACNs was 1.6mg/day. Using mixed graphical models, ACNs from different foods showed specific associations with plasma metabolome biomarkers. Combining these results with censored regression analysis, metabolites associated with ACNs intake were: salsolinol sulfate, 4-methylcatechol sulfate, linoleoyl carnitine, 3,4-dihydroxyphenylacetic acid, and one valerolactone. Salsolinol sulfate and 4-methylcatechol sulfate, both related to the intake of ACNs mainly from berries, were inversely associated with visceral adipose tissue. In conclusion, plasma metabolome biomarkers of dietary ACNs depended on the dietary source and some of them, such as salsolinol sulfate and 4-methylcatechol sulfate may link berry intake with cardiometabolic health benefits.
Collapse
|
21
|
Barbe V, de Toro-Martín J, San-Cristobal R, Garneau V, Pilon G, Couture P, Roy D, Couillard C, Marette A, Vohl MC. A discriminant analysis of plasma metabolomics for the assessment of metabolic responsiveness to red raspberry consumption. Front Nutr 2023; 10:1104685. [PMID: 37125033 PMCID: PMC10130762 DOI: 10.3389/fnut.2023.1104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/06/2023] [Indexed: 05/02/2023] Open
Abstract
Background Many studies show that the intake of raspberries is beneficial to immune-metabolic health, but the responses of individuals are heterogeneous and not fully understood. Methods In a two-arm parallel-group, randomized, controlled trial, immune-metabolic outcomes and plasma metabolite levels were analyzed before and after an 8-week red raspberry consumption. Based on partial least squares discriminant analysis (PLS-DA) on plasma xenobiotic levels, adherence to the intervention was first evaluated. A second PLS-DA followed by hierarchical clustering was used to classify individuals into response subgroups. Clinical immune and metabolic outcomes, including insulin resistance (HOMA-IR) and sensitivity (Matsuda, QUICKI) indices, during the intervention were assessed and compared between response subgroups. Results Two subgroups of participants, type 1 responders (n = 17) and type 2 responders (n = 5), were identified based on plasma metabolite levels measured during the intervention. Type 1 responders showed neutral to negative effects on immune-metabolic clinical parameters after raspberry consumption, and type 2 responders showed positive effects on the same parameters. Changes in waist circumference, waist-to-hip ratio, fasting plasma apolipoprotein B, C-reactive protein and insulin levels as well as Matsuda, HOMA-IR and QUICKI were significantly different between the two response subgroups. A deleterious effect of two carotenoid metabolites was also observed in type 1 responders but these variables were significantly associated with beneficial changes in the QUICKI index and in fasting insulin levels in type 2 responders. Increased 3-ureidopropionate levels were associated with a decrease in the Matsuda index in type 2 responders, suggesting that this metabolite is associated with a decrease in insulin sensitivity for those subjects, whereas the opposite was observed for type 1 responders. Conclusion The beneficial effects associated with red raspberry consumption are subject to inter-individual variability. Metabolomics-based clustering appears to be an effective way to assess adherence to a nutritional intervention and to classify individuals according to their immune-metabolic responsiveness to the intervention. This approach may be replicated in future studies to provide a better understanding of how interindividual variability impacts the effects of nutritional interventions on immune-metabolic health.
Collapse
Affiliation(s)
- Valentin Barbe
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- School of Nutrition, Université Laval, Québec City, QC, Canada
| | - Juan de Toro-Martín
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- School of Nutrition, Université Laval, Québec City, QC, Canada
| | - Rodrigo San-Cristobal
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- School of Nutrition, Université Laval, Québec City, QC, Canada
| | - Véronique Garneau
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- School of Nutrition, Université Laval, Québec City, QC, Canada
| | - Geneviève Pilon
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- Québec Heart and Lung Institute (IUCPQ) Research Center, Québec City, QC, Canada
| | - Patrick Couture
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- Endocrinology and Nephrology Unit, CHU de Quebec Research Center, Québec City, QC, Canada
| | - Denis Roy
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
| | - Charles Couillard
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- School of Nutrition, Université Laval, Québec City, QC, Canada
| | - André Marette
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- Québec Heart and Lung Institute (IUCPQ) Research Center, Québec City, QC, Canada
| | - Marie-Claude Vohl
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- School of Nutrition, Université Laval, Québec City, QC, Canada
- *Correspondence: Marie-Claude Vohl,
| |
Collapse
|
22
|
Zheng R, Xiong X, Li X, Wang D, Xu Z, Li X, Yang M, Ren X, Kong Q. Changes in Polyphenolic Compounds of Hutai No. 8 Grapes during Low-Temperature Storage and Their Shelf-Life Prediction by Identifying Biomarkers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15818-15829. [PMID: 36479857 DOI: 10.1021/acs.jafc.2c06573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The aim of this experiment was to assess the effect of different storage temperatures on the texture quality, phenolic profile, and antioxidant capacity of a grape. Fresh grapes were stored at 4 and 25 °C for nine days and sampled on alternate days. The hardness, total phenolics, total flavanones, total flavanols, total anthocyanin content, antioxidant activity, differential metabolite screening, and key gene expression were evaluated. In addition, four phenolic compounds were screened out as differential metabolites in response to storage temperature by OPLS-DA analysis. The results showed that the fruit firmness was better maintained in low-temperature storage and the storage life was longer than that at 25 °C. During the whole storage process, the contents of phenolics, flavanones, flavanols, and anthocyanins all showed an increasing trend first and then decreased regardless of what temperature. Since the antioxidant capacity of a grape was positively correlated with the contents of total phenols and total flavonoids, the same trend was also shown. However, the grape's phenolic compound content and antioxidant activity were higher at 25 °C than at 4 °C. Furthermore, through qualitative and quantitative analysis of 16 monomeric phenols, this study selected catechin, 1-O-vanilloyl-β-d-glucose, p-coumaric acid 4-glucoside, and resveratrol-3-O-glucoside as the main differentially expressed metabolites at the two temperatures. In conclusion, for a short shelf life or immediate consumption, keeping grapes at room temperature is more beneficial to obtain high antioxidants. However, if the goal is to prolong the storage period of the fruit, keeping the fruit at 4 °C is recommended.
Collapse
Affiliation(s)
- Renyu Zheng
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Xiaolin Xiong
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Xingyan Li
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Di Wang
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Zhe Xu
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Xue Li
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Miao Yang
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Xueyan Ren
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Qingjun Kong
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| |
Collapse
|
23
|
The Luteolinidin and Petunidin 3- O-Glucoside: A Competitive Inhibitor of Tyrosinase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175703. [PMID: 36080469 PMCID: PMC9458148 DOI: 10.3390/molecules27175703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The enzyme tyrosinase plays a key role in the early stages of melanin biosynthesis. This study evaluated the inhibitory activity of anthocyanidin (1) and anthocyanins (2-6) on the catalytic reaction. Of the six derivatives examined, 1-3 showed inhibitory activity with IC50 values of 3.7 ± 0.1, 10.3 ± 1.0, and 41.3 ± 3.2 μM, respectively. Based on enzyme kinetics, 1-3 were confirmed to be competitive inhibitors with Ki values of 2.8, 9.0, and 51.9 μM, respectively. Molecular docking analysis revealed the formation of a binary encounter complex between 1-3 and the tyrosinase catalytic site. Luteolinidin (1) and petunidin 3-O-glucoside (2) may serve as tyrosinase inhibitors to block melanin production.
Collapse
|
24
|
Beyoğlu D, Park EJ, Quiñones-Lombraña A, Dave A, Parande F, Pezzuto JM, Idle JR. Addition of grapes to both a standard and a high-fat Western pattern diet modifies hepatic and urinary metabolite profiles in the mouse. Food Funct 2022; 13:8489-8499. [PMID: 35876245 DOI: 10.1039/d2fo00961g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The benefits of fruit and vegetable dietary consumption are largely defined in epidemiological terms. Relatively little is known about the discrete effects on metabolic pathways elicited by individual dietary fruits and vegetables. To address this, grape powder was added to both a standard and a high-fat Western pattern diet given to 10-week-old female C57BL/6J mice for a period of 91 days, whereupon 24 h urines were collected and the mice euthanized after a 12 h fast for the collection of liver tissue. Alterations in hepatic and urinary metabolite patterns were determined by gas chromatography-mass spectrometry-based metabolomics. Urinary excretion of the gut microbiota metabolites 4-hydroxyphenylacetic acid, 5-hydroxyindole, glyceric acid, gluconic acid and myo-inositol was attenuated when grape was added to the standard diet but the gut microbiota metabolites gluconic acid, scyllo-inositol, mannitol, xylitol, 5-hydroxyindole and 2-deoxyribonic acid were increased in urine when grape was added to the high-fat diet. Increased hepatic ascorbic acid and 5-oxoproline levels indicated the anti-oxidant effect of grape powder on the liver. Pathway enrichment analysis demonstrated that for both standard and high-fat diets, grape addition significantly upregulated the malate-aspartate shuttle indicating enhanced hepatic utilization of glucose via cytosolic glycolysis for mitochondrial ATP production. It is concluded that a grape diet reprogrammes gut microbiota metabolism, attenuates the hepatic oxidative stress of a high-fat diet and increases the efficiency of glucose utilization by the liver for energy production.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA.
| | - Eun-Jung Park
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA.
| | - Adolfo Quiñones-Lombraña
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA. .,Darwin Research Facility, Division of Biosciences, University College London, London, UK
| | - Asim Dave
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA.
| | - Falguni Parande
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA.
| | - John M Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Jeffrey R Idle
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA.
| |
Collapse
|
25
|
NAUREEN ZAKIRA, CRISTONI SIMONE, DONATO KEVIN, MEDORI MARIACHIARA, SAMAJA MICHELE, HERBST KARENL, AQUILANTI BARBARA, VELLUTI VALERIA, MATERA GIUSEPPINA, FIORETTI FRANCESCO, IACONELLI AMERIGO, PERRONE MARCOALFONSO, DI GIULIO LORENZO, GREGORACE EMANUELE, CHIURAZZI PIETRO, NODARI SAVINA, CONNELLY STEPHENTHADDEUS, BERTELLI MATTEO. Metabolomics application for the design of an optimal diet. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E142-E149. [PMID: 36479478 PMCID: PMC9710392 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Precision nutrition is an emerging branch of nutrition science that aims to use modern omics technologies (genomics, proteomics, and metabolomics) to assess an individual's response to specific foods or dietary patterns and thereby determine the most effective diet or lifestyle interventions to prevent or treat specific diseases. Metabolomics is vital to nearly every aspect of precision nutrition. It can be targeted or untargeted, and it has many applications. Indeed, it can be used to comprehensively characterize the thousands of chemicals in foods, identify food by-products in human biofluids or tissues, characterize nutrient deficiencies or excesses, monitor biochemical responses to dietary interventions, track long- or short-term dietary habits, and guide the development of nutritional therapies. Indeed, metabolomics can be coupled with genomics and proteomics to study and advance the field of precision nutrition. Integrating omics with epidemiological and clinical data will begin to define the beneficial effects of human food metabolites. In this review, we present the metabolome and its relationship to precision nutrition. Moreover, we describe the different techniques used in metabolomics and present how metabolomics has been applied to advance the field of precision nutrition by providing notable examples and cases.
Collapse
Affiliation(s)
| | - SIMONE CRISTONI
- ISB Ion Source & Biotechnologies srl, Italy, Bresso, Milano, Italy
| | | | | | | | - KAREN L. HERBST
- Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA
| | - BARBARA AQUILANTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - VALERIA VELLUTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - GIUSEPPINA MATERA
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - FRANCESCO FIORETTI
- Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy
| | - AMERIGO IACONELLI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | | | - LORENZO DI GIULIO
- Department of Vascular Surgery, University of Rome Tor Vergata, Rome Italy
| | - EMANUELE GREGORACE
- Department of Cardiology and CardioLab, University of Rome Tor Vergata, Rome, Italy
| | - PIETRO CHIURAZZI
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - SAVINA NODARI
- Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy
| | - STEPHEN THADDEUS CONNELLY
- San Francisco Veterans Affairs Health Care System, Department of Oral & Maxillofacial Surgery, University of California, San Francisco, CA, USA
| | - MATTEO BERTELLI
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
26
|
Crowder SL, Playdon MC, Gudenkauf LM, Ose J, Gigic B, Greathouse L, Peoples AR, Sleight AG, Jim HSL, Figueiredo JC. A Molecular Approach to Understanding the Role of Diet in Cancer-Related Fatigue: Challenges and Future Opportunities. Nutrients 2022; 14:nu14071496. [PMID: 35406105 PMCID: PMC9003400 DOI: 10.3390/nu14071496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer-related fatigue (CRF) is considered one of the most frequent and distressing symptoms for cancer survivors. Despite its high prevalence, factors that predispose, precipitate, and perpetuate CRF are poorly understood. Emerging research focuses on cancer and treatment-related nutritional complications, changes in body composition, and nutritional deficiencies that can compound CRF. Nutritional metabolomics, the novel study of diet-related metabolites in cells, tissues, and biofluids, offers a promising tool to further address these research gaps. In this position paper, we examine CRF risk factors, summarize metabolomics studies of CRF, outline dietary recommendations for the prevention and management of CRF in cancer survivorship, and identify knowledge gaps and challenges in applying nutritional metabolomics to understand dietary contributions to CRF over the cancer survivorship trajectory.
Collapse
Affiliation(s)
- Sylvia L. Crowder
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33617, USA; (S.L.C.); (L.M.G.); (H.S.L.J.)
| | - Mary C. Playdon
- Cancer Control and Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Lisa M. Gudenkauf
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33617, USA; (S.L.C.); (L.M.G.); (H.S.L.J.)
| | - Jennifer Ose
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.O.); (A.R.P.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69047 Heidelberg, Germany;
| | - Leigh Greathouse
- Human Science and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798, USA;
| | - Anita R. Peoples
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.O.); (A.R.P.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Alix G. Sleight
- Department of Physical Medicine and Rehabilitation, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Heather S. L. Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33617, USA; (S.L.C.); (L.M.G.); (H.S.L.J.)
| | - Jane C. Figueiredo
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|
27
|
Sharifi-Rad J, Quispe C, Castillo CMS, Caroca R, Lazo-Vélez MA, Antonyak H, Polishchuk A, Lysiuk R, Oliinyk P, De Masi L, Bontempo P, Martorell M, Daştan SD, Rigano D, Wink M, Cho WC. Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3848084. [PMID: 35237379 PMCID: PMC8885183 DOI: 10.1155/2022/3848084] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.
Collapse
Affiliation(s)
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | | | - Rodrigo Caroca
- Biotechnology and Genetic Engineering Group, Science and Technology Faculty, Universidad del Azuay, Av. 24 de Mayo 7-77, Cuenca, Ecuador
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | - Marco A. Lazo-Vélez
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | | | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and Bioresources (IBBR), Via Università 133, 80055 Portici, Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Rigano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49 80131 Naples, Italy
| | - Michael Wink
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, INF 329, D-69120 Heidelberg, Germany
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
28
|
Comparison of chemometric strategies for potential exposure marker discovery and false-positive reduction in untargeted metabolomics: application to the serum analysis by LC-HRMS after intake of Vaccinium fruit supplements. Anal Bioanal Chem 2022; 414:1841-1855. [PMID: 35028688 DOI: 10.1007/s00216-021-03815-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/01/2022]
Abstract
Untargeted liquid chromatographic-high-resolution mass spectrometric (LC-HRMS) metabolomics for potential exposure marker (PEM) discovery in nutrikinetic studies generates complex outputs. The correct selection of statistically significant PEMs is a crucial analytical step for understanding nutrition-health interactions. Hence, in this paper, different chemometric selection workflows for PEM discovery, using multivariate or univariate parametric or non-parametric data analyses, were comparatively tested and evaluated. The PEM selection protocols were applied to a small-sample-size untargeted LC-HRMS study of a longitudinal set of serum samples from 20 volunteers after a single intake of (poly)phenolic-rich Vaccinium myrtillus and Vaccinium corymbosum supplements. The non-parametric Games-Howell test identified a restricted group of significant features, thus minimizing the risk of false-positive retention. Among the forty-seven PEMs exhibiting a statistically significant postprandial kinetics, twelve were successfully annotated as purine pathway metabolites, benzoic and benzodiol metabolites, indole alkaloids, and organic and fatty acids, and five (i.e. octahydro-methyl-β-carboline-dicarboxylic acid, tetrahydro-methyl-β-carboline-dicarboxylic acid, citric acid, caprylic acid, and azelaic acid) were associated to Vaccinium berry consumption for the first time. The analysis of the area under the curve of the longitudinal dataset highlighted thirteen statistically significant PEMs discriminating the two interventions, including four intra-intervention relevant metabolites (i.e. abscisic acid glucuronide, catechol sulphate, methyl-catechol sulphate, and α-hydroxy-hippuric acid). Principal component analysis and sample classification through linear discriminant analysis performed on PEM maximum intensity confirmed the discriminating role of these PEMs.
Collapse
|
29
|
De Simone G, Balducci C, Forloni G, Pastorelli R, Brunelli L. Hippuric acid: Could became a barometer for frailty and geriatric syndromes? Ageing Res Rev 2021; 72:101466. [PMID: 34560280 DOI: 10.1016/j.arr.2021.101466] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
Aging is a natural biological event that has some downsides such as increased frailty, decline in cognitive and physical functions leading to chronical diseases, and lower quality of life. There is therefore a pressing need of reliable biomarkers to identify populations at risk of developing age-associated syndromes in order to improve their quality of life, promote healthy ageing and a more appropriate clinical management, when needed. Here we discuss the importance of hippuric acid, an endogenous co-metabolite, as a possible hallmark of human aging and age-related diseases, summarizing the scientific literature over the last years. Hippuric acid, the glycine conjugate of benzoic acid, derives from the catabolism by means of intestinal microflora of dietary polyphenols found in plant-based foods (e.g. fruits, vegetables, tea and coffee). In healthy conditions hippuric acid levels in blood and/or urine rise significantly during aging while its excretion drops in conditions related with aging, including cognitive impairments, rheumatic diseases, sarcopenia and hypomobility. This literature highlights the utility of hippuric acid in urine and plasma as a plausible hallmark of frailty, related to low fruit and vegetable intake and changes in gut microflora.
Collapse
Affiliation(s)
- Giulia De Simone
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Claudia Balducci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | - Laura Brunelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
30
|
Metabolomics Meets Nutritional Epidemiology: Harnessing the Potential in Metabolomics Data. Metabolites 2021; 11:metabo11100709. [PMID: 34677424 PMCID: PMC8537466 DOI: 10.3390/metabo11100709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022] Open
Abstract
Traditionally, nutritional epidemiology is the study of the relationship between diet and health and disease in humans at the population level. Commonly, the exposure of interest is food intake. In recent years, nutritional epidemiology has moved from a "black box" approach to a systems approach where genomics, metabolomics and proteomics are providing novel insights into the interplay between diet and health. In this context, metabolomics is emerging as a key tool in nutritional epidemiology. The present review explores the use of metabolomics in nutritional epidemiology. In particular, it examines the role that food-intake biomarkers play in addressing the limitations of self-reported dietary intake data and the potential of using metabolite measurements in assessing the impact of diet on metabolic pathways and physiological processes. However, for full realisation of the potential of metabolomics in nutritional epidemiology, key challenges such as robust biomarker validation and novel methods for new metabolite identification need to be addressed. The synergy between traditional epidemiologic approaches and metabolomics will facilitate the translation of nutritional epidemiologic evidence to effective precision nutrition.
Collapse
|
31
|
Parilli-Moser I, Domínguez-López I, Trius-Soler M, Castellví M, Bosch B, Castro-Barquero S, Estruch R, Hurtado-Barroso S, Lamuela-Raventós RM. Consumption of peanut products improves memory and stress response in healthy adults from the ARISTOTLE study: A 6-month randomized controlled trial. Clin Nutr 2021; 40:5556-5567. [PMID: 34656952 DOI: 10.1016/j.clnu.2021.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Peanuts are rich in bioactive compounds that may have a positive impact on memory and stress response. OBJECTIVE To evaluate the effect of regular consumption of peanut products on cognitive functions and stress response in healthy young adults. DESIGN A three-arm parallel-group randomized controlled trial was conducted in 63 healthy young adults that consumed 25 g/day of skin roasted peanuts (SRP, n = 21), 32 g/d of peanut butter (PB, n = 23) or 32 g/d of a control butter made from peanut oil (free of phenolic compounds and fiber) (CB, n = 19) for six months. Polyphenol intake, cognitive functions, and anxiety and depression scores were evaluated using validated tests. Fecal short-chain fatty acids (SCFAs) and plasma and fecal fatty acids were assessed by chromatographic methods. Urinary cortisol was quantified by an enzymatic method. RESULTS Comparing the two interventions with the control, a significant reduction in anxiety scores was observed in the SRP compared to the CB group. After the intervention, consumers of SRP and PB had an improved immediate memory (p = 0.046 and p = 0.011). Lower anxiety scores were associated with SRP and PB (p < 0.001 and p = 0.002, respectively) and lower depression scores with SRP, PB and CB (p = 0.007, p = 0.003 and p = 0.032, respectively). Memory functions and stress response were significantly correlated with polyphenol intake, fecal SCFAs, plasma and fecal very long chain saturated fatty acids (VLCSFAs). CONCLUSIONS Regular peanut and peanut butter consumption may enhance memory function and stress response in a healthy young population. These effects seem to be associated with the intake of peanut polyphenols, increased levels of fecal SCFAs, and unexpectedly, VLCSFAs, which were also present in the control product.
Collapse
Affiliation(s)
- Isabella Parilli-Moser
- Department of Nutrition, Food Sciences and Gastronomy, XIA, School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Inés Domínguez-López
- Department of Nutrition, Food Sciences and Gastronomy, XIA, School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Marta Trius-Soler
- Department of Nutrition, Food Sciences and Gastronomy, XIA, School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Magda Castellví
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| | - Sara Castro-Barquero
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Department of Internal Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036, Barcelona, Spain.
| | - Ramón Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Department of Internal Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036, Barcelona, Spain.
| | - Sara Hurtado-Barroso
- Department of Nutrition, Food Sciences and Gastronomy, XIA, School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Rosa M Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, XIA, School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
32
|
Giroud S, Chery I, Arrivé M, Prost M, Zumsteg J, Heintz D, Evans AL, Gauquelin-Koch G, Arnemo JM, Swenson JE, Lefai E, Bertile F, Simon C, Blanc S. Hibernating brown bears are protected against atherogenic dyslipidemia. Sci Rep 2021; 11:18723. [PMID: 34548543 PMCID: PMC8455566 DOI: 10.1038/s41598-021-98085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate mechanisms by which hibernators avoid atherogenic hyperlipidemia during hibernation, we assessed lipoprotein and cholesterol metabolisms of free-ranging Scandinavian brown bears (Ursus arctos). In winter- and summer-captured bears, we measured lipoprotein sizes and sub-classes, triglyceride-related plasma-enzyme activities, and muscle lipid composition along with plasma-levels of antioxidant capacities and inflammatory markers. Although hibernating bears increased nearly all lipid levels, a 36%-higher cholesteryl-ester transfer-protein activity allowed to stabilize lipid composition of high-density lipoproteins (HDL). Levels of inflammatory metabolites, i.e., 7-ketocholesterol and 11ß-prostaglandin F2α, declined in winter and correlated inversely with cardioprotective HDL2b-proportions and HDL-sizes that increased during hibernation. Lower muscle-cholesterol concentrations and lecithin-cholesterol acyltransferase activity in winter suggest that hibernating bears tightly controlled peripheral-cholesterol synthesis and/or release. Finally, greater plasma-antioxidant capacities prevented excessive lipid-specific oxidative damages in plasma and muscles of hibernating bears. Hence, the brown bear manages large lipid fluxes during hibernation, without developing adverse atherogenic effects that occur in humans and non-hibernators.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
| | - Isabelle Chery
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France.,CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| | - Mathilde Arrivé
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France.,CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| | | | - Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480, Koppang, Norway
| | | | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480, Koppang, Norway.,Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway
| | - Etienne Lefai
- University of Auvergne, INRAE, UNH UMR1019, 63122, Saint-Genès Champanelle, France
| | - Fabrice Bertile
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France.,CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| | - Chantal Simon
- CARMEN, INSERM U1060/University of Lyon / INRA U1235, Oullins, France
| | - Stéphane Blanc
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France.,CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| |
Collapse
|
33
|
LeVatte M, Keshteli AH, Zarei P, Wishart DS. Applications of Metabolomics to Precision Nutrition. Lifestyle Genom 2021; 15:1-9. [PMID: 34518463 DOI: 10.1159/000518489] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND For thousands of years, disabilities due to nutrient deficiencies have plagued humanity. Rickets, scurvy, anemia, stunted growth, blindness, and mental handicaps due to nutrient deficiencies affected up to 1/10 of the world's population prior to 1900. The discovery of essential amino acids, vitamins, and minerals, in the early 1900s, led to a fundamental change in our understanding of food and a revolution in human health. Widespread vitamin and mineral supplementation, the development of recommended dietary allowances, and the implementation of food labeling and testing along with significant improvements in food production and food quality have meant that nutrient-related disorders have almost vanished in the developed world. The success of nutritional science in preventing disease at a population-wide level is one of the great scientific triumphs of the 20th century. The challenge for nutritional science in the 21st century is to understand how to use nutrients and other food constituents to enhance human health or prevent disease at a more personal level. This is the primary goal of precision nutrition. SUMMARY Precision nutrition is an emerging branch of nutrition science that aims to use modern omics technologies (genomics, proteomics, and metabolomics) to assess an individual's response to specific foods or dietary patterns and thereby determine the most effective diet or lifestyle interventions to prevent or treat specific diseases in that individual. Metabolomics is vital to nearly every aspect of precision nutrition. It can be used to comprehensively characterize the thousands of chemicals in foods, to identify food byproducts in human biofluids or tissues, to characterize nutrient deficiencies or excesses, to monitor biochemical responses to dietary interventions, to track long-term or short-term dietary habits, and to guide the development of nutritional therapies. In this review, we will describe how metabolomics has been used to advance the field of precision nutrition by providing some notable examples or use cases. First, we will describe how metabolomics helped launch the field of precision nutrition through the diagnosis and dietary therapy of individuals with inborn errors of metabolism. Next, we will describe how metabolomics is being used to comprehensively characterize the full chemical complexity of many key foods, and how this is revealing much more about nutrients than ever imagined. Third, we will describe how metabolomics is being used to identify food consumption biomarkers and how this opens the door to a more objective and quantitative assessments of an individual's diet and their response to certain foods. Finally, we will describe how metabolomics is being coupled with other omics technologies to develop custom diets and lifestyle interventions that are leading to positive health benefits. Key Message: Metabolomics is vital to the advancement of nutritional science and in making the dream of precision nutrition a reality.
Collapse
Affiliation(s)
- Marcia LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Computing Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
de la Hunty A, Buttriss J, Draper J, Roche H, Levey G, Florescu A, Penfold N, Frost G. UK Nutrition Research Partnership (NRP) workshop: Forum on advancing dietary intake assessment. NUTR BULL 2021; 46:228-237. [PMID: 35874552 PMCID: PMC9290602 DOI: 10.1111/nbu.12501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
The development of better and more robust measures of dietary intake in free living situations was identified as a priority for advancing nutrition research by the Office of Strategic Coordination for Health Research (OSCHR) Review of Nutrition and Human Health Research in 2017. The UK Nutrition Research Partnership (NRP) sponsored a workshop on Dietary Intake Assessment methodology alongside its series of ‘Hot Topic’ workshops designed to accelerate progress in nutrition research by bringing together people from a range of different disciplines. The workshop on Dietary Intake Assessment methodology took place via Zoom over two half‐days in January 2021 and included 50 scientists from a wide range of disciplines. The problems with current methods of dietary assessment and how emerging technologies might address them were set out in pre‐recorded presentations and explored in panel discussions. Participants then worked in breakout groups to discuss and prioritise the research questions that should be addressed to best further the field and lead to improvements in dietary assessment methodology. Five priority research questions were selected. Participants were asked to brainstorm potential approaches for addressing them and were then asked to focus on one approach and develop it further. At the end of these sessions, participants presented their project ideas to the rest of the workshop and these will be reported back to the Medical Research Council. It is hoped that potential collaborative projects arising from these discussions will be taken forward in response to future funding calls.
Collapse
Affiliation(s)
| | | | - John Draper
- Institute of Biological Environmental and Rural Sciences Aberystwyth University Aberystwyth UK
| | | | | | | | | | | |
Collapse
|
35
|
Beckmann M, Wilson T, Lloyd AJ, Torres D, Goios A, Willis ND, Lyons L, Phillips H, Mathers JC, Draper J. Challenges Associated With the Design and Deployment of Food Intake Urine Biomarker Technology for Assessment of Habitual Diet in Free-Living Individuals and Populations-A Perspective. Front Nutr 2020; 7:602515. [PMID: 33344495 PMCID: PMC7745244 DOI: 10.3389/fnut.2020.602515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Improvement of diet at the population level is a cornerstone of national and international strategies for reducing chronic disease burden. A critical challenge in generating robust data on habitual dietary intake is accurate exposure assessment. Self-reporting instruments (e.g., food frequency questionnaires, dietary recall) are subject to reporting bias and serving size perceptions, while weighed dietary assessments are unfeasible in large-scale studies. However, secondary metabolites derived from individual foods/food groups and present in urine provide an opportunity to develop potential biomarkers of food intake (BFIs). Habitual dietary intake assessment in population surveys using biomarkers presents several challenges, including the need to develop affordable biofluid collection methods, acceptable to participants that allow collection of informative samples. Monitoring diet comprehensively using biomarkers requires analytical methods to quantify the structurally diverse mixture of target biomarkers, at a range of concentrations within urine. The present article provides a perspective on the challenges associated with the development of urine biomarker technology for monitoring diet exposure in free-living individuals with a view to its future deployment in "real world" situations. An observational study (n = 95), as part of a national survey on eating habits, provided an opportunity to explore biomarker measurement in a free-living population. In a second food intervention study (n = 15), individuals consumed a wide range of foods as a series of menus designed specifically to achieve exposure reflecting a diversity of foods commonly consumed in the UK, emulating normal eating patterns. First Morning Void urines were shown to be suitable samples for biomarker measurement. Triple quadrupole mass spectrometry, coupled with liquid chromatography, was used to assess simultaneously the behavior of a panel of 54 potential BFIs. This panel of chemically diverse biomarkers, reporting intake of a wide range of commonly-consumed foods, can be extended successfully as new biomarker leads are discovered. Towards validation, we demonstrate excellent discrimination of eating patterns and quantitative relationships between biomarker concentrations in urine and the intake of several foods. In conclusion, we believe that the integration of information from BFI technology and dietary self-reporting tools will expedite research on the complex interactions between dietary choices and health.
Collapse
Affiliation(s)
- Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Thomas Wilson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Amanda J. Lloyd
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Duarte Torres
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Porto, Portugal
| | - Ana Goios
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Porto, Portugal
| | - Naomi D. Willis
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Laura Lyons
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John C. Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|