1
|
Parsad R, Ahlawat S, Bagiyal M, Arora R, Gera R, Chhabra P, Sharma U, Singh A. Climate resilience in goats: a comprehensive review of the genetic basis for adaptation to varied climatic conditions. Mamm Genome 2024:10.1007/s00335-024-10101-z. [PMID: 39738581 DOI: 10.1007/s00335-024-10101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
The sustainability of livestock systems is widely acknowledged to be threatened by climate change on a worldwide scale. There are worries about the effects this phenomenon may have on the productivity and performance of native livestock species due to its influence on environmental stresses, such as the frequency and severity of unfavorable weather occurrences and the ongoing changes in the agro-ecological landscape. Among the most climatically tolerant livestock animals, goats can survive in a range of environments, from deserts to alpine areas. The domestic goat has undergone significant phenotypic changes in terms of shape, behavior, physiological adaptation, reproduction, and production over their evolutionary journey. It will be possible to better understand the genetic mechanisms underlying successful domestication and the practical breeding strategies leading to the improvement in productivity and resilience to environmental challenges by identifying the genes underlying these modifications. This review explores current knowledge on goat adaptation strategies, emphasizing gene expression patterns, epigenetic modifications, and whole-genome selection signatures. It examines how these molecular mechanisms enable goats to endure heat stress, hypoxia, and other environmental challenges. Furthermore, the review highlights the potential of epigenetic markers and selection signatures in developing climate-resilient goat breeds through marker-assisted selection and genome editing, offering actionable insights into sustainable goat production in the context of global climate change.
Collapse
Affiliation(s)
- Ram Parsad
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
- ICAR-National Dairy Research Institute, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Meena Bagiyal
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ritika Gera
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ajay Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
2
|
Husien HM, Saleh AA, Hassanine NNAM, Rashad AMA, Sharaby MA, Mohamed AZ, Abdelhalim H, Hafez EE, Essa MOA, Adam SY, Chen N, Wang M. The Evolution and Role of Molecular Tools in Measuring Diversity and Genomic Selection in Livestock Populations (Traditional and Up-to-Date Insights): A Comprehensive Exploration. Vet Sci 2024; 11:627. [PMID: 39728967 DOI: 10.3390/vetsci11120627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Distinctive molecular approaches and tools, particularly high-throughput SNP genotyping, have been applied to determine and discover SNPs, potential genes of interest, indicators of evolutionary selection, genetic abnormalities, molecular indicators, and loci associated with quantitative traits (QTLs) in various livestock species. These methods have also been used to obtain whole-genome sequencing (WGS) data, enabling the implementation of genomic selection. Genomic selection allows for selection decisions based on genomic-estimated breeding values (GEBV). The estimation of GEBV relies on the calculation of SNP effects using prediction equations derived from a subset of individuals in the reference population who possess both SNP genotypes and phenotypes for target traits. Compared to traditional methods, modern genomic selection methods offer advantages for sex-limited traits, low heritability traits, late-measured traits, and the potential to increase genetic gain by reducing generation intervals. The current availability of high-density genotyping and next-generation sequencing data allow for genome-wide scans for selection. This investigation provides an overview of the essential role of advanced molecular tools in studying genetic diversity and implementing genomic selection. It also highlights the significance of adaptive selection in light of new high-throughput genomic technologies and the establishment of selective comparisons between different genomes. Moreover, this investigation presents candidate genes and QTLs associated with various traits in different livestock species, such as body conformation, meat production and quality, carcass characteristics and composition, milk yield and composition, fertility, fiber production and characteristics, and disease resistance.
Collapse
Affiliation(s)
- Hosameldeen Mohamed Husien
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Albutana University, Rufaa 22217, Sudan
| | - Ahmed A Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria 11865, Egypt
| | - Nada N A M Hassanine
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria 11865, Egypt
| | - Amr M A Rashad
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria 11865, Egypt
| | - Mahmoud A Sharaby
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria 11865, Egypt
| | - Asmaa Z Mohamed
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Heba Abdelhalim
- Animal Production Research Institute, Agriculture Research Centre, Giza 12126, Egypt
| | - Elsayed E Hafez
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria 21934, Egypt
| | - Mohamed Osman Abdalrahem Essa
- College of Veterinary Medicine, Albutana University, Rufaa 22217, Sudan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Saber Y Adam
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ning Chen
- State Key-Laboratory of Sheep Genetic Improvement and Healthy-Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- State Key-Laboratory of Sheep Genetic Improvement and Healthy-Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| |
Collapse
|
3
|
Saleh AA, Mohamed AZ, Elnesr SS, Khafaga AF, Elwan H, Abdel-Aziz MF, Khaled AA, Hafez EE. Expression and Immune Response Profiles in Nile Tilapia ( Oreochromis niloticus) and European Sea Bass ( Dicentrarchus labrax) During Pathogen Challenge and Infection. Int J Mol Sci 2024; 25:12829. [PMID: 39684540 DOI: 10.3390/ijms252312829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Nile tilapia (Oreochromis niloticus) and European sea bass (Dicentrarchus labrax) are economically significant species in Mediterranean countries, serving essential roles in the aquaculture industry due to high market demand and nutritional value. They experience substantial losses from bacterial pathogens Vibrio anguillarum and Streptococcus iniae, particularly at the onset of the summer season. The immune mechanisms involved in fish infections by V. anguillarum and S. iniae remain poorly understood. This study investigated their impact through experiments with control and V. anguillarum- and S. iniae-infected groups for each species. Blood samples were collected at 1, 3, and 7 days post bacterial injection to assess biochemical and immunological parameters, including enzyme activities (AST and ALT), oxidative markers (SOD, GPX, CAT, and MDA), and leukocyte counts. Further analyses included phagocyte activity, lysozyme activity, IgM levels, and complement C3 and C4 levels. Muscle tissues were sampled at 1, 3, and 7 days post injection to assess mRNA expression levels of 18 immune-relevant genes. The focus was on cytokines and immune-related genes, including pro-inflammatory cytokines (TNF-α, TNF-β, IL-2, IL-6, IL-8, IL-12, and IFN-γ), major histocompatibility complex components (MHC-IIα and MHC-IIβ), cytokine receptors (CXCL-10 and CD4-L2), antimicrobial peptides (Pleurocidin and β-defensin), immune regulatory peptides (Thymosin β12, Leap 2, and Lysozyme g), and Galectins (Galectin-8 and Galectin-9). β-actin was used as the housekeeping gene for normalization. Significant species-specific responses were observed in N. Tilapia and E. Sea Bass when infected with V. anguillarum and S. iniae, highlighting differences in biochemical, immune, and gene expression profiles. Notably, in N. Tilapia, AST levels significantly increased by day 7 during S. iniae infection, reaching 45.00 ± 3.00 (p < 0.05), indicating late-stage acute stress or tissue damage. Conversely, E. Sea Bass exhibited a significant rise in ALT levels by day 7 in the S. iniae group, peaking at 33.5 ± 3.20 (p < 0.05), suggesting liver distress or a systemic inflammatory response. On the immunological front, N. Tilapia showed significant increases in respiratory burst activity on day 1 for both pathogens, with values of 0.28 ± 0.03 for V. anguillarum and 0.25 ± 0.02 for S. iniae (p < 0.05), indicating robust initial immune activation. Finally, the gene expression analysis revealed a pronounced peak of TNF-α in E. Sea Bass by day 7 post V. anguillarum infection with a fold change of 6.120, suggesting a strong species-specific pro-inflammatory response strategy. Understanding these responses provides critical insights for enhancing disease management and productivity in aquaculture operations.
Collapse
Affiliation(s)
- Ahmed A Saleh
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria 11865, Egypt
| | - Asmaa Z Mohamed
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Hamada Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt
| | - Mohamed F Abdel-Aziz
- Department of Aquaculture and Biotechnology, Faculty of Aquaculture and Marine Fisheries, Arish University, Arish 45511, Egypt
| | - Asmaa A Khaled
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Elsayed E Hafez
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria 21934, Egypt
| |
Collapse
|
4
|
Tiwari M, Gujar G, Shashank CG, Ponsuksili S. Selection signatures for high altitude adaptation in livestock: A review. Gene 2024; 927:148757. [PMID: 38986751 DOI: 10.1016/j.gene.2024.148757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
High altitude adapted livestock species (cattle, yak, goat, sheep, and horse) has critical role in the human socioeconomic sphere and acts as good source of animal source products including milk, meat, and leather, among other things. These species sustain production and reproduction even in harsh environments on account of adaptation resulting from continued evolution of beneficial traits. Selection pressure leads to various adaptive strategies in livestock whose footprints are evident at the different genomic sites as the "Selection Signature". Scrutiny of these signatures provides us crucial insight into the evolutionary process and domestication of livestock adapted to diverse climatic conditions. These signatures have the potential to change the sphere of animal breeding and further usher the selection programmes in right direction. Technological revolution and recent strides made in genomic studies has opened the routes for the identification of selection signatures. Numerous statistical approaches and bioinformatics tools have been developed to detect the selection signature. Consequently, studies across years have identified candidate genes under selection region found associated with numerous traits which have a say in adaptation to high-altitude environment. This makes it pertinent to have a better understanding about the selection signature, the ways to identify and how to utilize them for betterment of livestock populations as well as farmers. This review takes a closer look into the general concept, various methodologies, and bioinformatics tools commonly employed in selection signature studies and summarize the results of recent selection signature studies related to high-altitude adaptation in various livestock species. This review will serve as an informative and useful insight for researchers and students in the field of animal breeding and evolutionary biology.
Collapse
Affiliation(s)
- Manish Tiwari
- ICAR-National Dairy Research Institute, Karnal, India; U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University and Cattle Research Institute, Mathura, India.
| | | | - C G Shashank
- ICAR-National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
5
|
Mogano RR, Mpofu TJ, Mtileni B, Hadebe K. South African indigenous chickens' genetic diversity, and the adoption of ecological niche modelling and landscape genomics as strategic conservation techniques. Poult Sci 2024; 104:104508. [PMID: 39657468 DOI: 10.1016/j.psj.2024.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Selection pressures found in the prevailing production environments have shaped the genetic structure of indigenous chickens we see today. Indigenous chickens, raised in villages, provide essential genetic resources and income for poverty alleviation by providing affordable protein. However, they are threatened by predators, emerging diseases, and market demand for ideal breeds and fast production which causes loss of their valuable traits. The lack of knowledge about genetic diversity and genetic mechanisms underlying adaptive variants may compromise the goal of conserving indigenous chicken breeds. The main insights of the study are that indigenous chickens are highly diversified, and environmental factors play a key role in enabling chicken adaptation and distribution. Genomic and spatial technologies have made it possible to explore the genetic structure and fully comprehend the mechanism underlying the local adaptation of indigenous chickens. These technologies can aid in creating programs that enhance productivity and promote climate-resilient breeds. This review explores the impact of natural selection on indigenous chicken, genetic diversity, population size, and the advancement of technologies in understanding local adaptation drivers. In conclusion, this review highlights the importance of studying the habitats and how this will guide in conserving local breeds in their intended production environment.
Collapse
Affiliation(s)
- Reneilwe Rose Mogano
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; Agricultural Research Council, Biotechnology Platform, Ondersterpoort 0110, South Africa
| | - Takalani Judas Mpofu
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Bohani Mtileni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Khanyisile Hadebe
- Agricultural Research Council, Biotechnology Platform, Ondersterpoort 0110, South Africa.
| |
Collapse
|
6
|
Thomas M, G R, V RT, V AT. Genomic profiling of selective sweeps through haplotype differentiation unravelled genes associated with production and reproduction traits in Indian goat breeds. Trop Anim Health Prod 2024; 56:296. [PMID: 39340615 DOI: 10.1007/s11250-024-04136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
A comprehensive genomic scan of selective sweeps was conducted in autochthonous Attappady Black and improved dual-purpose Malabari goat breeds in south India. High-throughput single nucleotide polymorphism (SNP) marker data, obtained through Illumina goat SNP50 BeadChip genotyping of 48 goats (24 each of Attappady Black and Malabari goats), were utilized for the analysis. Selection signature analysis, employing hapFLK analysis based on haplotype differentiation, identified seven significant sweep regions (p < 0.005). Notably, one of these regions encompassed the genomic area housing the casein cluster and quantitative trait loci associated with milk production on chromosome 6. Gene ontology enrichment analysis of 166 putative selective genes associated with these sweep regions revealed 13 significantly over-represented Panther pathways (p ≤ 0.05), including the TGF-beta signalling pathway and GNRHR pathway. The selective sweeps detected in this study contributed significantly to the phenotypic divergence observed between Attappady Black and Malabari goats in south India.
Collapse
Affiliation(s)
- Marykutty Thomas
- Centre for Advanced Studies in Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680 651, Kerala, India.
| | - Radhika G
- College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680 651, Kerala, India
| | - R Thirupathy V
- Centre for Pig Production and Research, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, Kerala, India
| | - Aravindakshan T V
- Centre for Advanced Studies in Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680 651, Kerala, India
| |
Collapse
|
7
|
He Q, Zhang F, Zhang X, Yao W, Wu J, Niu H, Wang Y, Luo J. Chromosome-level dairy goat genome reveals the regulatory landscape of lactation. Int J Biol Macromol 2024; 280:135968. [PMID: 39322167 DOI: 10.1016/j.ijbiomac.2024.135968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Goat milk is rich in various nutrients that are beneficial for human health. However, the genomic evolution and genetic basis underlying the nutritional value and unique flavor formation in dairy goats remain poorly understood. In the present study, we generate a chromosome-level genome assembly for dairy goats comprising 2.63 Gb with a contig N50 of 43 Mb and a scaffold N50 of 101 Mb. Genome quality comparisons revealed that the dairy goat genome has higher integrity and continuity than the published goat and sheep genomes. The identification of genes under positive selection in dairy goats highlights potential candidates to explain their high milk production. Comparative genomic analysis elucidates the adaptive evolutionary mechanisms of dairy goats such as strong disease resistance, broad adaptability, and unique milk flavor. Moreover, we demonstrate the conservation of the lactation gene network and identify new potential regulators associated with lipid metabolism. Additionally, we establish the regulatory landscape of lactation for the first time in dairy goats, revealing its unique gene regulatory characteristics. Hence, our study not only provides the first chromosome-level reference genome for dairy goat, but also offers potential research directions for dairy production and genetic improvement.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xianglei Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yaling Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
8
|
Qin C, Wang D, Han H, Cao Y, Wang X, Xuan Z, Wei M, Li Z, Liu Q. Expression patterns of housekeeping genes and tissue-specific genes in black goats across multiple tissues. Sci Rep 2024; 14:21896. [PMID: 39300207 DOI: 10.1038/s41598-024-72844-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Black goats are a significant meat breed in southern China. To investigate the expression patterns and biological functions of genes in various tissues of black goats, we analyzed housekeeping genes (HKGs), tissue-specific genes (TSGs), and hub genes (HUBGs) across 23 tissues. Additionally, we analyzed HKGs in 13 tissues under different feeding conditions. We identified 2968 HKGs, including six important ones. Interestingly, HKGs in grazing black goats demonstrated higher and more stable expression levels. We discovered a total of 9912 TSGs, including 134 newly identified ones. The number of TSGs for mRNA and lncRNA were nearly equal, with 127 mRNA TSGs expressed solely in one tissue. Additionally, the predicted functions of tissue-specific long non-coding RNAs (lncRNAs) targeting mRNAs corresponded with the physiological functions of the tissues.Weighted gene co-expression network analysis (WGCNA) constructed 30 modules, where the dark grey module consists almost entirely of HKGs, and TSGs are located in modules most correlated with their respective tissues. Additionally, we identified 289 HUBGs, which are involved in regulating the physiological functions of their respective tissues. Overall, these identified HKGs, TSGs, and HUBGs provide a foundation for studying the molecular mechanisms affecting the genetic and biological processes of complex traits in black goats.
Collapse
Affiliation(s)
- Chaobin Qin
- School of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Dong Wang
- School of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanhong Cao
- Guangxi Vocational University of Agriculture, Nanning, 530007, Guangxi, China
| | - Xiaobo Wang
- Henan Academy of Crops Molecular Breeding/The Shennong Laboratory, Zhengzhou, 450099, Henan, China
| | - Zeyi Xuan
- Guangxi Vocational University of Agriculture, Nanning, 530007, Guangxi, China
| | - Mingsong Wei
- Guangxi Vocational University of Agriculture, Nanning, 530007, Guangxi, China.
| | - Zhipeng Li
- School of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| |
Collapse
|
9
|
Nawaz MY, Savegnago RP, Lim D, Lee SH, Gondro C. Signatures of selection in Angus and Hanwoo beef cattle using imputed whole genome sequence data. Front Genet 2024; 15:1368710. [PMID: 39161420 PMCID: PMC11331311 DOI: 10.3389/fgene.2024.1368710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
In this study, we detected signatures of selection in Hanwoo and Angus beef cattle using allele frequency and haplotype-based methods based on imputed whole genome sequence variants. Our dataset included 13,202 Angus animals with 10,057,633 imputed SNPs and 10,437 Hanwoo animals with 13,241,550 imputed SNPs. The dataset was subset down to 6,873,624 SNPs in common between the two populations to identify within population (runs of homozygosity, extended haplotype homozygosity) and between population signals of selection (allele fixation index, extended haplotype homozygosity). Assuming these selection signals were complementary to each other, they were combined into a decorrelated composite of multiple signals to identify regions under selection for each of the breeds. 27 genomic regions spanning 25.15 Mb and harboring 360 genes were identified in Angus on chromosomes 1,3, 4, 5, 6, 7, 8, 12, 13, 14, 16, 20, 21 and 28. Similarly, in Hanwoo, 59 genes and 17 genomic regions spanning 5.21 Mb on chromosomes 2, 4, 5, 6, 7, 8, 9, 10, 13, 17, 20 and 24 were identified. Apart from a small region on chromosome 13, there was no major overlap of selection signals between the two breeds reflecting their largely different selection histories, environmental challenges, breeding objectives and breed characteristics. Positional candidate genes identified in selected genomic regions in Angus have been previously associated with growth, immunity, reproductive development, feed efficiency and adaptation to environment while the candidate genes identified in Hanwoo included important genes regulating meat quality, fat deposition, cholesterol metabolism, lipid synthesis, neuronal development, and olfactory reception.
Collapse
Affiliation(s)
- Muhammad Yasir Nawaz
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
- Genetics and Genome Sciences Graduate Program, Michigan State University, East Lansing, MI, United States
| | | | - Dajeong Lim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Seung Hwan Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
- Genetics and Genome Sciences Graduate Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
10
|
Becker GM, Thorne JW, Burke JM, Lewis RM, Notter DR, Morgan JLM, Schauer CS, Stewart WC, Redden RR, Murdoch BM. Genetic diversity of United States Rambouillet, Katahdin and Dorper sheep. Genet Sel Evol 2024; 56:56. [PMID: 39080565 PMCID: PMC11290166 DOI: 10.1186/s12711-024-00905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Managing genetic diversity is critically important for maintaining species fitness. Excessive homozygosity caused by the loss of genetic diversity can have detrimental effects on the reproduction and production performance of a breed. Analysis of genetic diversity can facilitate the identification of signatures of selection which may contribute to the specific characteristics regarding the health, production and physical appearance of a breed or population. In this study, breeds with well-characterized traits such as fine wool production (Rambouillet, N = 745), parasite resistance (Katahdin, N = 581) and environmental hardiness (Dorper, N = 265) were evaluated for inbreeding, effective population size (Ne), runs of homozygosity (ROH) and Wright's fixation index (FST) outlier approach to identify differential signatures of selection at 36,113 autosomal single nucleotide polymorphisms (SNPs). RESULTS Katahdin sheep had the largest current Ne at the most recent generation estimated with both the GONe and NeEstimator software. The most highly conserved ROH Island was identified in Rambouillet with a signature of selection on chromosome 6 containing 202 SNPs called in an ROH in 50 to 94% of the individuals. This region contained the DCAF16, LCORL and NCAPG genes that have been previously reported to be under selection and have biological roles related to milk production and growth traits. The outlier regions identified through the FST comparisons of Katahdin with Rambouillet and Dorper contained genes with known roles in milk production and mastitis resistance or susceptibility, and the FST comparisons of Rambouillet with Katahdin and Dorper identified genes related to wool growth, suggesting these traits have been under natural or artificial selection pressure in these populations. Genes involved in the cytokine-cytokine receptor interaction pathways were identified in all FST breed comparisons, which indicates the presence of allelic diversity between these breeds in genomic regions controlling cytokine signaling mechanisms. CONCLUSIONS In this paper, we describe signatures of selection within diverse and economically important U.S. sheep breeds. The genes contained within these signatures are proposed for further study to understand their relevance to biological traits and improve understanding of breed diversity.
Collapse
Affiliation(s)
- Gabrielle M Becker
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Jacob W Thorne
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Joan M Burke
- USDA, ARS, Dale Bumpers Small Farms Research Center, Booneville, AR, USA
| | - Ronald M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David R Notter
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Christopher S Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND, USA
| | - Whit C Stewart
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - R R Redden
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
11
|
Kichamu N, Wanjala G, Cziszter LT, Strausz P, Astuti PK, Bagi Z, Kusza S. Assessing the population structure and genetic variability of Kenyan native goats under extensive production system. Sci Rep 2024; 14:16342. [PMID: 39014189 PMCID: PMC11252283 DOI: 10.1038/s41598-024-67374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Indigenous goats are important to many livelihoods. Despite this, they are subjected to indiscriminate crossbreeding. This affects their genetic variability which is needed to survive in current regime of climate change. The study assessed population structure and genetic diversity of Galla and Small East African goats (SEA) using pedigree information. A total of 7384 animals, 5222 of the Galla and 2162 of the SEA breeds, born between the years 1983 and 2022, were utilized. Individuals with known parents were defined as reference population. From the results, the maximum generation traced for Galla and SEA populations was 14.6 and 14.5, respectively. However, only 6 and 5 generations for Galla and SEA were complete. Pedigree completeness increased with the increasing number of generations. The average generation interval (GI) for Galla and SEA was 3.84 ± 0.04 and 4.4 ± 0.13 years. The average increase in the rate of inbreeding per generation for Galla and SEA was 0.04 and 0.05, with the effective ancestors and founders (fa/fe) ratio being same (1.00) for both breeds. Fifty percent (50%) of the genetic variability in the populations was contributed by 3 and 1 ancestor for Galla SEA, respectively. The effective population size (Ne) was 5.19 and 4.77 for Galla and SEA. Therefore, the current breeding programs should be changed to avoid future genetic bottlenecks in this population. These findings offer an opportunity to enhance the current genetic status and management of Kenyan native goats and other regions with similar production systems.
Collapse
Affiliation(s)
- Nelly Kichamu
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
- Ministry of Agriculture Livestock, Fisheries and Cooperatives, Directorate of Livestock Development, Naivasha Sheep and Goats Breeding Station, P.O. Box 2238-20117, Naivasha, Kenya
| | - George Wanjala
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
- Ministry of Agriculture, Livestock, Fisheries, Cooperatives and Irrigation, Directorate of Livestock Production, P.O. Box 437-50200, Bungoma, Kenya
| | - Ludovic Toma Cziszter
- Faculty of Bioengineering of Animal Resources, University of Life Sciences "King Mihai I" From Timișoara, 300645, Timișoara, Romania
| | - Péter Strausz
- Institute of Strategy and Management, Department of Management, Corvinus University of Budapest, Budapest, 1093, Hungary
| | - Putri Kusuma Astuti
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Zoltán Bagi
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
12
|
Hu G, Do DN, Manafiazar G, Kelvin AA, Sargolzaei M, Plastow G, Wang Z, Davoudi P, Miar Y. Identifying selection signatures for immune response and resilience to Aleutian disease in mink using genotype data. Front Genet 2024; 15:1370891. [PMID: 39071778 PMCID: PMC11272623 DOI: 10.3389/fgene.2024.1370891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Aleutian disease (AD) brings tremendous financial losses to the mink industry. Selecting AD-resilient mink has been conducted to control AD. Such selections could have altered the patterns of genetic variation responding to selection pressures. This study aimed to identify selection signatures for immune response (IRE) and resilience to AD. A total of 1,411 mink from an AD-positive facility were used. For IRE, 264 animals were categorized according to the combined results of enzyme-linked immunosorbent assay (ELISA) and counterimmunoelectrophoresis (CIEP). For resilience, two grouping methods were used: 1) general resilience performance (GRP, n = 30) was evaluated based on the feed conversion ratio, Kleiber ratio, and pelt quality; and 2) female reproductive performance (FRP, n = 36) was measured based on the number of kits alive 24 h after birth. Detection methods were the pairwise fixation index, nucleotide diversity, and cross-population extended haplotype homozygosity. A total of 619, 569, and 526 SNPs were identified as candidates for IRE, GRP, and FRP, respectively. The annotated genes were involved in immune system process, growth, reproduction, and pigmentation. Two olfactory-related Gene Ontology (GO) terms were significant (q < 0.05) for all traits, suggesting the impact of AD on the sense of smell of infected mink. Differences in detected genes and GO terms among different color types for IRE indicated variations in immune response to AD among color types. The mitogen-activated protein kinase (MAPK) signaling pathway was significant (q < 0.05) for FRP, suggesting that AD may disrupt MAPK signaling and affect FRP. The findings of this research contribute to our knowledge of the genomic architecture and biological mechanisms underlying AD resilience in mink.
Collapse
Affiliation(s)
- Guoyu Hu
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Ghader Manafiazar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, Canada
- Select Sires Inc., Plain City, OH, United States
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| |
Collapse
|
13
|
Atağ G, Kaptan D, Yüncü E, Başak Vural K, Mereu P, Pirastru M, Barbato M, Leoni GG, Güler MN, Er T, Eker E, Yazıcı TD, Kılıç MS, Altınışık NE, Çelik EA, Morell Miranda P, Dehasque M, Floridia V, Götherström A, Bilgin CC, Togan İ, Günther T, Özer F, Hadjisterkotis E, Somel M. Population Genomic History of the Endangered Anatolian and Cyprian Mouflons in Relation to Worldwide Wild, Feral, and Domestic Sheep Lineages. Genome Biol Evol 2024; 16:evae090. [PMID: 38670119 PMCID: PMC11109821 DOI: 10.1093/gbe/evae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Once widespread in their homelands, the Anatolian mouflon (Ovis gmelini anatolica) and the Cyprian mouflon (Ovis gmelini ophion) were driven to near extinction during the 20th century and are currently listed as endangered populations by the International Union for Conservation of Nature. While the exact origins of these lineages remain unclear, they have been suggested to be close relatives of domestic sheep or remnants of proto-domestic sheep. Here, we study whole genome sequences of n = 5 Anatolian mouflons and n = 10 Cyprian mouflons in terms of population history and diversity, comparing them with eight other extant sheep lineages. We find reciprocal genetic affinity between Anatolian and Cyprian mouflons and domestic sheep, higher than all other studied wild sheep genomes, including the Iranian mouflon (O. gmelini). Studying diversity indices, we detect a considerable load of short runs of homozygosity blocks (<2 Mb) in both Anatolian and Cyprian mouflons, reflecting small effective population size (Ne). Meanwhile, Ne and mutation load estimates are lower in Cyprian compared with Anatolian mouflons, suggesting the purging of recessive deleterious variants in Cyprian sheep under a small long-term Ne, possibly attributable to founder effects, island isolation, introgression from domestic lineages, or differences in their bottleneck dynamics. Expanding our analyses to worldwide wild and feral Ovis genomes, we observe varying viability metrics among different lineages and a limited consistency between viability metrics and International Union for Conservation of Nature conservation status. Factors such as recent inbreeding, introgression, and unique population dynamics may have contributed to the observed disparities.
Collapse
Affiliation(s)
- Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Paolo Mereu
- Department of Biochemical Sciences, University of Sassari, Sassari, Italy
| | - Monica Pirastru
- Department of Biochemical Sciences, University of Sassari, Sassari, Italy
| | - Mario Barbato
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | | | - Merve Nur Güler
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Tuğçe Er
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Elifnaz Eker
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Tunca Deniz Yazıcı
- Graduate School for Evolution, Ecology and Systematics, Ludwig Maximillian University of Munich, Munich, Germany
| | - Muhammed Sıddık Kılıç
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | | | - Ecem Ayşe Çelik
- Department of Settlement Archeology, Middle East Technical University, Ankara, Turkey
| | - Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Marianne Dehasque
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Viviana Floridia
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm University, Stockholm, Sweden
| | - Cemal Can Bilgin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - İnci Togan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Eleftherios Hadjisterkotis
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
14
|
Asadollahpour Nanaei H, Amiri Ghanatsaman Z, Farahvashi MA, Mousavi SF, Banabazi MH, Asadi Fozi M. High-throughput DNA sequence analysis elucidates novel insight into the genetic basis of adaptation in local sheep. Trop Anim Health Prod 2024; 56:150. [PMID: 38691202 DOI: 10.1007/s11250-024-04002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Understanding how evolutionary factors related to climate adaptation and human selection have influenced the genetic architecture of domesticated animals is of great interest in biology. In the current study, by using 304 whole genomes from different geographical regions (including Europe, north Africa, Southwest Asia, east Asia, west Africa, south Asia, east Africa, Australia and Turkey), We evaluate global sheep population dynamics in terms of genetic variation and population structure. We further conducted comparative population analysis to study the genetic underpinnings of climate adaption to local environments and also morphological traits. In order to identify genomic signals under selection, we applied fixation index (FST) and also nucleotide diversity (θπ) statistical measurements. Our results revealed several candidate genes on different chromosomes under selection for local climate adaptation (e.g. HOXC12, HOXC13, IRF1, FGD2 and GNAQ), body size (PDGFA, HMGA2, PDE3A) and also morphological related traits (RXFP2). The discovered candidate genes may offer newel insights into genetic underpinning of regional adaptation and commercially significant features in local sheep.
Collapse
Affiliation(s)
- Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran.
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| | - Zeinab Amiri Ghanatsaman
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Mohammad Ali Farahvashi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran
| | - Seyedeh Fatemeh Mousavi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Mohammad Hossein Banabazi
- Department of Biotechnology, Animal Science Research Institute of IRAN (ASRI) Agricultural Research, Education & Extension Organization (AREEO), 3146618361, Karaj, Iran
- Department of Animal Biosciences (HBIO), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden
| | - Masood Asadi Fozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran.
| |
Collapse
|
15
|
Jin M, Wang H, Liu G, Lu J, Yuan Z, Li T, Liu E, Lu Z, Du L, Wei C. Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation. Genet Sel Evol 2024; 56:26. [PMID: 38565986 PMCID: PMC10988870 DOI: 10.1186/s12711-024-00880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Chinese indigenous sheep are valuable resources with unique features and characteristics. They are distributed across regions with different climates in mainland China; however, few reports have analyzed the environmental adaptability of sheep based on their genome. We examined the variants and signatures of selection involved in adaptation to extreme humidity, altitude, and temperature conditions in 173 sheep genomes from 41 phenotypically and geographically representative Chinese indigenous sheep breeds to characterize the genetic basis underlying environmental adaptation in these populations. RESULTS Based on the analysis of population structure, we inferred that Chinese indigenous sheep are divided into four groups: Kazakh (KAZ), Mongolian (MON), Tibetan (TIB), and Yunnan (YUN). We also detected a set of candidate genes that are relevant to adaptation to extreme environmental conditions, such as drought-prone regions (TBXT, TG, and HOXA1), high-altitude regions (DYSF, EPAS1, JAZF1, PDGFD, and NF1) and warm-temperature regions (TSHR, ABCD4, and TEX11). Among all these candidate genes, eight ABCD4, CNTN4, DOCK10, LOC105608545, LOC121816479, SEM3A, SVIL, and TSHR overlap between extreme environmental conditions. The TSHR gene shows a strong signature for positive selection in the warm-temperature group and harbors a single nucleotide polymorphism (SNP) missense mutation located between positions 90,600,001 and 90,650,001 on chromosome 7, which leads to a change in the protein structure of TSHR and influences its stability. CONCLUSIONS Analysis of the signatures of selection uncovered genes that are likely related to environmental adaptation and a SNP missense mutation in the TSHR gene that affects the protein structure and stability. It also provides information on the evolution of the phylogeographic structure of Chinese indigenous sheep populations. These results provide important genetic resources for future breeding studies and new perspectives on how animals can adapt to climate change.
Collapse
Affiliation(s)
- Meilin Jin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gang Liu
- National Animal Husbandry Service, National Center of Preservation and Utilization of Animal Genetic Resources, Beijing, China
| | - Jian Lu
- National Animal Husbandry Service, National Center of Preservation and Utilization of Animal Genetic Resources, Beijing, China
| | - Zehu Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Taotao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Engming Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lan-Zhou, China
| | - Lixin Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
16
|
Kumar P, Bharti VK, Kumar K. Effect of short-term exposure to high-altitude hypoxic climate on feed-intake, blood glucose level and physiological responses of native and non-native goat. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:795-806. [PMID: 38374293 DOI: 10.1007/s00484-024-02624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
The exposure to high altitude and cold stress poses challenges in maintaining normal physiological standards and body homeostasis in non-native animals. To enhance our understanding of the physiology of native and non-native goats in high-altitude environments, we conducted a comparative study to examine the impact of natural hypoxic and cold stress conditions on their feed intake (FIT) and associated changes in physiological responses, including plasma glucose concentration (PGC). The study took place at an altitude of 3505.2 m above mean sea level and involved twenty-two healthy females from two different breeds of goats. This study was conducted over a period of 56 days after the arrival of non-native Black Bengal goats (BBN) and compared with native Changthangi (CHAN) goats. Both groups were extensively reared in a natural high-altitude and cold-stress environment in Leh, India, and were subjected to defined housing and management practices. The parameters evaluated included FIT, PGC, respiration rate, heart rate, pulse rate, and rectal temperature. High altitudes had a significant (p < 0.05) impact on FIT, PGC, respiration rate, heart rate, pulse rate, and rectal temperature in BBN, whereas these parameters remained stable in CHAN throughout the study period. Additionally, the detrimental effects of high-altitude stress were more pronounced in non-native goats compared to native goats. These findings suggest that physiological responses in non-native goats tend to stabilize after an initial period of adverse effects in high-altitude environments. Based on the physiological responses and glucose concentration, it is recommended to pay special attention to the nutrition of non-native goats for up to the third week (21 days) after their arrival in high-altitude areas.
Collapse
Affiliation(s)
- Prabhat Kumar
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, Ladakh UT, India.
- Indira Gandhi Institute of Medical Sciences (IGIMS), Patna, Bihar, India.
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, Ladakh UT, India.
| | - Krishna Kumar
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, Ladakh UT, India
| |
Collapse
|
17
|
Huang C, Zhao Q, Chen Q, Su Y, Ma Y, Ye S, Zhao Q. Runs of Homozygosity Detection and Selection Signature Analysis for Local Goat Breeds in Yunnan, China. Genes (Basel) 2024; 15:313. [PMID: 38540373 PMCID: PMC10970279 DOI: 10.3390/genes15030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 06/14/2024] Open
Abstract
Runs of Homozygosity (ROH) are continuous homozygous DNA segments in diploid genomes, which have been used to estimate the genetic diversity, inbreeding levels, and genes associated with specific traits in livestock. In this study, we analyzed the resequencing data from 10 local goat breeds in Yunnan province of China and five additional goat populations obtained from a public database. The ROH analysis revealed 21,029 ROH segments across the 15 populations, with an average length of 1.27 Mb, a pattern of ROH, and the assessment of the inbreeding coefficient indicating genetic diversity and varying levels of inbreeding. iHS (integrated haplotype score) was used to analyze high-frequency Single-Nucleotide Polymorphisms (SNPs) in ROH regions, specific genes related to economic traits such as coat color and weight variation. These candidate genes include OCA2 (OCA2 melanosomal transmembrane protein) and MLPH (melanophilin) associated with coat color, EPHA6 (EPH receptor A6) involved in litter size, CDKAL1 (CDK5 regulatory subunit associated protein 1 like 1) and POMC (proopiomelanocortin) linked to weight variation and some putative genes associated with high-altitude adaptability and immune. This study uncovers genetic diversity and inbreeding levels within local goat breeds in Yunnan province, China. The identification of specific genes associated with economic traits and adaptability provides actionable insights for utilization and conservation efforts.
Collapse
Affiliation(s)
- Chang Huang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yinxiao Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yuehui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Shaohui Ye
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
| | - Qianjun Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| |
Collapse
|
18
|
Das PK, Mukherjee J, Banerjee D, Ghosh PR, Samanta I, Jas R, Patra AK. Growth, haemato-biochemical, hormonal and disease characteristics in Black Bengal goats: a review. Trop Anim Health Prod 2024; 56:52. [PMID: 38253786 DOI: 10.1007/s11250-024-03898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The goats have been considered one of the noteworthy animals to provide food security and could promote socio-economic upliftment under challenging climatic scenarios in the coming decades, particularly in the tropics. Black Bengal goat (BBG) is one of the recognised native meat-type breeds of hot-humid tropics with distinguished characteristics, including superior-quality meat, excellent skin and high prolificacy. Smaller body mass, lower metabolic rate and efficient utilisation of high-fibre forages enable BBG to adapt to a wide range of harsh climates in the tropics. The BBG can maintain physiological homeostasis efficiently in terms of electrolyte profile, endocrine functions and haemato-biochemical traits in different life phases, including the gestation period, even in high-saline coastal areas of hot-humid tropics. Crossbreeding to improve its growth rate has been attempted, but the prolificacy has been decayed. This review is intended to attract global attention to the adaptive potentialities of Black Bengal goats in terms of growth and production, haemato-biochemical, endocrinological, salt tolerance and disease characteristics that could be an asset of climate-resilient agricultural farming.
Collapse
Affiliation(s)
- Pradip Kumar Das
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India.
| | - Joydip Mukherjee
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Dipak Banerjee
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Indranil Samanta
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Ruma Jas
- Department of Veterinary Parasitology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
- American Institute for Goat Research, Langston University, Langston, Oklahoma, 73050, USA
| |
Collapse
|
19
|
Gebreselase HB, Nigussie H, Wang C, Luo C. Genetic Diversity, Population Structure and Selection Signature in Begait Goats Revealed by Whole-Genome Sequencing. Animals (Basel) 2024; 14:307. [PMID: 38254476 PMCID: PMC10812714 DOI: 10.3390/ani14020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Goats belong to a group of animals called small ruminants and are critical sources of livelihood for rural people. Genomic sequencing can provide information ranging from basic knowledge about goat diversity and evolutionary processes that shape genomes to functional information about genes/genomic regions. In this study, we exploited a whole-genome sequencing data set to analyze the genetic diversity, population structure and selection signatures of 44 individuals belonging to 5 Ethiopian goat populations: 12 Aberegalle (AB), 5 Afar (AF), 11 Begait (BG), 12 Central highlands (CH) and 5 Meafure (MR) goats. Our results revealed the highest genetic diversity in the BG goat population compared to the other goat populations. The pairwise genetic differentiation (FST) among the populations varied and ranged from 0.011 to 0.182, with the closest pairwise value (0.003) observed between the AB and CH goats and a distant correlation (FST = 0.182) between the BG and AB goats, indicating low to moderate genetic differentiation. Phylogenetic tree, ADMIXTURE and principal component analyses revealed a classification of the five Ethiopian goat breeds in accordance with their geographic distribution. We also found three top genomic regions that were detected under selection on chromosomes 2, 5 and 13. Moreover, this study identified different candidate genes related to milk characteristics (GLYCAM1 and SRC), carcass (ZNF385B, BMP-7, PDE1B, PPP1R1A, FTO and MYOT) and adaptive and immune response genes (MAPK13, MAPK14, SCN7A, IL12A, EST1 DEFB116 and DEFB119). In conclusion, this information could be helpful for understanding the genetic diversity and population structure and selection scanning of these important indigenous goats for future genetic improvement and/or as an intervention mechanism.
Collapse
Affiliation(s)
- Haile Berihulay Gebreselase
- State Key Laboratory of Swine and Poultry Breeding Industry Guangdong Key Laboratory of Animal Breeding and Nutrition Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Department of Biotechnology, College of Natural and Computational Science, Aksum University, Aksum 1010, Tigray, Ethiopia
| | | | - Changfa Wang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China;
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry Guangdong Key Laboratory of Animal Breeding and Nutrition Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
20
|
Chessari G, Criscione A, Marletta D, Crepaldi P, Portolano B, Manunza A, Cesarani A, Biscarini F, Mastrangelo S. Characterization of heterozygosity-rich regions in Italian and worldwide goat breeds. Sci Rep 2024; 14:3. [PMID: 38168531 PMCID: PMC10762050 DOI: 10.1038/s41598-023-49125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Heterozygosity-rich regions (HRR) are genomic regions of high heterozygosity, which may harbor loci related to key functional traits such as immune response, survival rate, fertility, and other fitness traits. This study considered 30 Italian and 19 worldwide goat breeds genotyped with the Illumina GoatSNP50k BeadChip. The aim of the work was to study inter-breed relationships and HRR patterns using Sliding Window (SW) and Consecutive Runs (CR) detection methods. Genetic relationships highlighted a clear separation between non-European and European breeds, as well as the north-south geographic cline within the latter. The Pearson correlation coefficients between the descriptive HRR parameters obtained with the SW and CR methods were higher than 0.9. A total of 166 HRR islands were detected. CHI1, CHI11, CHI12 and CHI18 were the chromosomes harboring the highest number of HRR islands. The genes annotated in the islands were linked to various factors such as productive, reproductive, immune, and environmental adaptation mechanisms. Notably, the Montecristo feral goat showed the highest number of HRR islands despite the high level of inbreeding, underlining potential balancing selection events characterizing its evolutionary history. Identifying a species-specific HRR pattern could provide a clearer view of the mechanisms regulating the genome modelling following anthropogenic selection combined with environmental interaction.
Collapse
Affiliation(s)
- Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Andrea Criscione
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy.
| | - Donata Marletta
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Paola Crepaldi
- Dipartimento Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, University of Milan, Via Giovanni Celoria 2, 20133, Milan, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Arianna Manunza
- CNR, Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133, Milan, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Animal and Dairy Science Department, University of Georgia, 425 River Road, 30602, Athens, GA, USA
| | - Filippo Biscarini
- CNR, Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133, Milan, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| |
Collapse
|
21
|
Blondeau Da Silva S, Mwacharo JM, Li M, Ahbara A, Muchadeyi FC, Dzomba EF, Lenstra JA, Da Silva A. IBD sharing patterns as intra-breed admixture indicators in small ruminants. Heredity (Edinb) 2024; 132:30-42. [PMID: 37919398 PMCID: PMC10799084 DOI: 10.1038/s41437-023-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
In this study, we investigated how IBD patterns shared between individuals of the same breed could be informative of its admixture level, with the underlying assumption that the most admixed breeds, i.e. the least genetically isolated, should have a much more fragmented genome. We considered 111 goat breeds (i.e. 2501 individuals) and 156 sheep breeds (i.e. 3304 individuals) from Europe, Africa and Asia, for which beadchip SNP genotypes had been performed. We inferred the breed's level of admixture from: (i) the proportion of the genome shared by breed's members (i.e. "genetic integrity level" assessed from ADMIXTURE software analyses), and (ii) the "AV index" (calculated from Reynolds' genetic distances), used as a proxy for the "genetic distinctiveness". In both goat and sheep datasets, the statistical analyses (comparison of means, Spearman correlations, LM and GAM models) revealed that the most genetically isolated breeds, also showed IBD profiles made up of more shared IBD segments, which were also longer. These results pave the way for further research that could lead to the development of admixture indicators, based on the characterization of intra-breed shared IBD segments, particularly effective as they would be independent of the knowledge of the whole genetic landscape in which the breeds evolve. Finally, by highlighting the fragmentation experienced by the genomes subjected to crossbreeding carried out over the last few generations, the study reminds us of the need to preserve local breeds and the integrity of their adaptive architectures that have been shaped over the centuries.
Collapse
Affiliation(s)
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Menghua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Abulgasim Ahbara
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
| | | | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, 87000, Limoges, France.
| |
Collapse
|
22
|
Nayak SS, Panigrahi M, Rajawat D, Ghildiyal K, Sharma A, Parida S, Bhushan B, Mishra BP, Dutt T. Comprehensive selection signature analyses in dairy cattle exploiting purebred and crossbred genomic data. Mamm Genome 2023; 34:615-631. [PMID: 37843569 DOI: 10.1007/s00335-023-10021-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
The main objective of the current research was to locate, annotate, and highlight specific areas of the bovine genome that are undergoing intense positive selection. Here, we are analyzing selection signatures in crossbred (Bos taurus X Bos indicus), taurine (Bos taurus), and indicine (Bos indicus) cattle breeds. Indicine cattle breeds found throughout India are known for their higher heat tolerance and disease resilience. More breeds and more methods can provide a better understanding of the selection signature. So, we have worked on nine distinct cattle breeds utilizing seven different summary statistics, which is a fairly extensive approach. In this study, we carried out a thorough genome-wide investigation of selection signatures using bovine 50K SNP data. We have included the genotyped data of two taurine, two crossbreds, and five indicine cattle breeds, for a total of 320 animals. During the 1950s, these indicine (cebuine) cattle breeds were exported with the aim of enhancing the resilience of taurine breeds in Western countries. For this study, we employed seven summary statistics, including intra-population, i.e., Tajima's D, CLR, iHS, and ROH and inter-population statistics, i.e., FST, XP-EHH, and Rsb. The NCBI database, PANTHER 17.0, and CattleQTL database were used for annotation after finding the important areas under selection. Some genes, including EPHA6, CTNNA2, NPFFR2, HS6ST3, NPR3, KCNIP4, LIPK, SDCBP, CYP7A1, NSMAF, UBXN2B, UGDH, UBE2K, and DAB1, were shown to be shared by three or more different approaches. Therefore, it gives evidence of the most intense selection in these areas. These genes are mostly linked to milk production and adaptability traits. This study also reveals selection regions that contain genes which are crucial to numerous biological functions, including those associated with milk production, coat color, glucose metabolism, oxidative stress response, immunity and circadian rhythms.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Anurodh Sharma
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - B P Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| |
Collapse
|
23
|
Al Abri M, Alfoudari A, Mohammad Z, Almathen F, Al-Marzooqi W, Al-Hajri S, Al-Amri M, Bahbahani H. Assessing genetic diversity and defining signatures of positive selection on the genome of dromedary camels from the southeast of the Arabian Peninsula. Front Vet Sci 2023; 10:1296610. [PMID: 38098998 PMCID: PMC10720651 DOI: 10.3389/fvets.2023.1296610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Dromedary camels (Camelus dromedarius) are members of the Camelini tribe within the Camelidae family. They are distributed throughout North Africa, the Arabian Peninsula and Southeast Asia. This domestic species is characterized by its superior adaptability to the harsh desert environment. In this study, whole autosomal data of 29 dromedary samples from the Southeast Arabian Peninsula in Oman; 10 from Muscat, 14 from Al-Batinah, and 5 from Al-Sharqiya, were investigated to assess their genetic relationship and to define candidate signatures of positive selection. A minimal genetic distinction that separates Muscat dromedaries from the other two populations was observed, with a degree of genetic admixture between them. Using the de-correlated composite of multiple signals (DCMS) approach, a total of 47 candidate regions within the autosomes of these dromedary populations were defined with signatures of positive selection. These candidate regions harbor a total of 154 genes that are mainly associated with functional categories related to immune response, lipid metabolism and energy expenditure, optical and auditory functions, and long-term memory. Different functional genomic variants were called on the candidate regions and respective genes that warrant further investigation to find possible association with the different favorable phenotypes in dromedaries. The output of this study paves the way for further research efforts aimed at defining markers for use in genomic breeding programs, with the goal of conserving the genetic diversity of the species and enhancing its productivity.
Collapse
Affiliation(s)
- Mohammad Al Abri
- Department of Animal and Veterinary Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ahmad Alfoudari
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Zainab Mohammad
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Faisal Almathen
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Camel Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Waleed Al-Marzooqi
- Department of Animal and Veterinary Sciences, Sultan Qaboos University, Muscat, Oman
| | - Salim Al-Hajri
- Laboratories and Research Administration, Directorate General of Veterinary Services, Royal Court Affairs, Muscat, Oman
| | - Mahmood Al-Amri
- Laboratories and Research Administration, Directorate General of Veterinary Services, Royal Court Affairs, Muscat, Oman
| | - Hussain Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| |
Collapse
|
24
|
Sun L, Qu K, Liu Y, Ma X, Chen N, Zhang J, Huang B, Lei C. Assessing genomic diversity and selective pressures in Bashan cattle by whole-genome sequencing data. Anim Biotechnol 2023; 34:835-846. [PMID: 34762022 DOI: 10.1080/10495398.2021.1998094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Specific ecological environments and domestication have continuously influenced the physiological characteristics of Chinese indigenous cattle. Among them, Bashan cattle belongs to one of the indigenous breeds. However, the genomic diversity of Bashan cattle is still unknown. Published whole-genome sequencing (WGS) data of 13 Bashan cattle and 48 worldwide cattle were used to investigate the genetic composition and selection characteristics of Bashan cattle. The population structure analysis revealed that Bashan cattle harbored ancestries with East Asian taurine and Chinese indicine. Genetic diversity analysis implied the relatively high genomic diversity in Bashan cattle. Through the identification of containing >5 nsSNPs or frameshift mutations genes in Bashan cattle, a large number of pathways related to sensory perception were discovered. CLR, θπ ratio, FST, and XP-EHH methods were used to detect the candidate signatures of positive selection in Bashan cattle. Among the identified genes, most of the enriched signal pathways were related to environmental information processing, biological systems, and metabolism. We mainly reported genes related to the nervous system (HCN1, KATNA1, FSTL1, GRIK2, and CPLX2), immune (CD244, SLAMF1, LY9, and CD48), and reproduction (AKR1C1, AKR1C3, AKR1C4, and TUSC3). Our findings will be significant in understanding the molecular basis underlying phenotypic variation of breed-related traits and improving productivity in Bashan cattle.
Collapse
Affiliation(s)
- Luyang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Yangkai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaohui Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Diniz FDA, Moura JDO, Bajay MM, Branco LC, Bezerra RD, de Araújo AM. Capra hircus outliers markers in Brazil: Searching for genomic regions under the action of natural selection. Genet Mol Biol 2023; 46:e20230084. [PMID: 37882366 PMCID: PMC10594045 DOI: 10.1590/1678-4685-gmb-2023-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/21/2023] [Indexed: 10/27/2023] Open
Abstract
Identifying genome regions subject to selection in local breeds of Brazil is an opportunity to elucidate the C. hircus genome plasticity, flowing the colonization history of the country. Using SNP Bead Chip Illumina 50K genotyping of Brazilian Anglo-Nubian (standardized breed) and Marota (local endangered population from the semiarid area of Brazil) to show outliers loci in genome regions subject to selection. After applying data quality control, 45,600 SNPs were included in this investigation. Principal component analysis (PCAdapt) and FDIST2 analysis signalized 14 genomic regions more affected by selection in the Brazilian dry zone environment. The genome study signalized regions that are close to the sequences of genes related to growth and embryonic skeletal development (FGF12, AMPD2, OSTN). In addition, flagged regions close to the genes UTSB2 and SLC5A2 contribute to research on functional adaptation with low water needs and poor nutritive diet to survive. Both genes encode proteins that act on osmotic pathways and avoid cell flooding on stress cell responses. Further studies on the genetic role and involvement of these outliers' genomic regions, building a robust conceptual high-resolution map of natural selection drives, help to achieve hardiness candidate genes linked to the evolutionary history of Capra hircus in the semiarid area of Brazil.
Collapse
Affiliation(s)
- Francisco de A. Diniz
- Universidade Federal do Piauí, Teresina, PI, Brazil
- Instituto Federal do Piauí, Teresina, PI, Brazil
| | | | - Miklos M. Bajay
- Universidade do Estado de Santa Catarina, Laguna, SC, Brazil
| | | | | | | |
Collapse
|
26
|
Pérez S, Calvo JH, Calvete C, Joy M, Lobón S. Mitigation and animal response to water stress in small ruminants. Anim Front 2023; 13:81-88. [PMID: 37841759 PMCID: PMC10575300 DOI: 10.1093/af/vfad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Affiliation(s)
- Sara Pérez
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, España
| | - Jorge Hugo Calvo
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, España
- Instituto Agroalimentario de Aragón – IA2 (CITA-Universidad deZaragoza)
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, España
| | - Carlos Calvete
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, España
- Instituto Agroalimentario de Aragón – IA2 (CITA-Universidad deZaragoza)
| | - Margalida Joy
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, España
- Instituto Agroalimentario de Aragón – IA2 (CITA-Universidad deZaragoza)
| | - Sandra Lobón
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, España
- Instituto Agroalimentario de Aragón – IA2 (CITA-Universidad deZaragoza)
| |
Collapse
|
27
|
Saif R, Mahmood T, Zia S, Henkel J, Ejaz A. Genomic selection pressure discovery using site-frequency spectrum and reduced local variability statistics in Pakistani Dera-Din-Panah goat. Trop Anim Health Prod 2023; 55:331. [PMID: 37750990 DOI: 10.1007/s11250-023-03758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Population geneticists have long sought to comprehend various selection traces accumulated in the goat genome due to natural or human driven artificial selection through breeding practices, which led the wild animals to domestication, so understanding evolutionary process may helpful to utilize the full genetic potential of goat genome. METHODS AND RESULTS As a step forward to pinpoint the selection signals in Pakistani Dera-Din-Panah (DDP) goat, whole-genome pooled sequencing (n = 12) was performed, and 618,236,192 clean paired-end reads were mapped against ARS1 reference goat assembly. Five different selection signature statistics were applied using four site-frequency spectrum (SFS) methods (Tajima's D ([Formula: see text]), Fay and Wu's H ([Formula: see text]), Zeng's E ([Formula: see text]), [Formula: see text]) and one reduced local variability approach named pooled heterozygosity ([Formula: see text]). The under-selection regions were annotated with significant threshold values of [Formula: see text]≥4.7, [Formula: see text]≥6, [Formula: see text]≥2.5, Pool-HMM ≥ 12, and [Formula: see text]≥5 that resulted in accumulative 364 candidate gene hits. The highest genomic selection signals were observed on Chr. 4, 6, 10, 12, 15, 16, 18, 20, and 27 and harbor ADAMTS6, CWC27, RELN, MYCBP2, FGF14, STIM1, CFAP74, GNB1, CALML6, TMEM52, FAM149A, NADK, MMP23B, OPN3, FH, MFHAS1, KLKB1, RRM1, KMO, SPEF2, F11, KIT, KMO, ERI1, ATP8B4, and RHOG genes. Next, the validation of our captured genomic hits was also performed by more than one applied statistics which harbor meat production, immunity, and reproduction associated genes to strengthen our hypothesis of under-selection traits in this Pakistani goat breed. Furthermore, common candidate genes captured by more than one statistical method were subjected to gene ontology and KEGG pathway analysis to get insights of particular biological processes associated with this goat breed. CONCLUSION Current perception of genomic architecture of DDP goat provides a better understanding to improve its genetic potential and other economically important traits of medium to large body size, milk, and fiber production by updating the genomic insight driven breeding strategies to boost the livestock and agriculture-based economy of the country.
Collapse
Affiliation(s)
- Rashid Saif
- Department of Biotechnology, Qarshi University, Lahore, Pakistan.
- Decode Genomics, Punjab University Employees Housing Scheme, Lahore, Pakistan.
| | - Tania Mahmood
- Decode Genomics, Punjab University Employees Housing Scheme, Lahore, Pakistan
| | - Saeeda Zia
- Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore, Pakistan
| | - Jan Henkel
- MGZ-Medical Genetics Center, Munich, Germany
| | - Aniqa Ejaz
- Decode Genomics, Punjab University Employees Housing Scheme, Lahore, Pakistan
| |
Collapse
|
28
|
Alatrany AS, Khan W, Hussain AJ, Mustafina J, Al-Jumeily D. Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2700-2711. [PMID: 37018274 DOI: 10.1109/tcbb.2022.3233869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of features. The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89% which is a significant improvement when benchmarked with existing related works.
Collapse
|
29
|
Van Tassell CP, Rosen BD, Woodward-Greene MJ, Silverstein JT, Huson HJ, Sölkner J, Boettcher P, Rothschild MF, Mészáros G, Nakimbugwe HN, Gondwe TN, Muchadeyi FC, Nandolo W, Mulindwa HA, Banda LJ, Kaumbata W, Getachew T, Haile A, Soudre A, Ouédraogo D, Rischkowsky BA, Mwai AO, Dzomba EF, Nash O, Abegaz S, Masiga CW, Wurzinger M, Sayre BL, Stella A, Tosser-Klopp G, Sonstegard TS. The African Goat Improvement Network: a scientific group empowering smallholder farmers. Front Genet 2023; 14:1183240. [PMID: 37712066 PMCID: PMC10497955 DOI: 10.3389/fgene.2023.1183240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
The African Goat Improvement Network (AGIN) is a collaborative group of scientists focused on genetic improvement of goats in small holder communities across the African continent. The group emerged from a series of workshops focused on enhancing goat productivity and sustainability. Discussions began in 2011 at the inaugural workshop held in Nairobi, Kenya. The goals of this diverse group were to: improve indigenous goat production in Africa; characterize existing goat populations and to facilitate germplasm preservation where appropriate; and to genomic approaches to better understand adaptation. The long-term goal was to develop cost-effective strategies to apply genomics to improve productivity of small holder farmers without sacrificing adaptation. Genome-wide information on genetic variation enabled genetic diversity studies, facilitated improved germplasm preservation decisions, and provided information necessary to initiate large scale genetic improvement programs. These improvements were partially implemented through a series of community-based breeding programs that engaged and empowered local small farmers, especially women, to promote sustainability of the production system. As with many international collaborative efforts, the AGIN work serves as a platform for human capacity development. This paper chronicles the evolution of the collaborative approach leading to the current AGIN organization and describes how it builds capacity for sustained research and development long after the initial program funds are gone. It is unique in its effectiveness for simultaneous, multi-level capacity building for researchers, students, farmers and communities, and local and regional government officials. The positive impact of AGIN capacity building has been felt by participants from developing, as well as developed country partners.
Collapse
Affiliation(s)
- Curtis P. Van Tassell
- Animal Genomics and Improvement Laboratory, USDA Agricultural Research Service, Beltsville, MD, United States
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, USDA Agricultural Research Service, Beltsville, MD, United States
| | - M. Jennifer Woodward-Greene
- Animal Genomics and Improvement Laboratory, USDA Agricultural Research Service, Beltsville, MD, United States
- National Agricultural Library, USDA Agricultural Research Service, Beltsville, MD, United States
| | - Jeffrey T. Silverstein
- Office of National Programs, USDA Agricultural Research Service, Beltsville, MD, United States
| | - Heather J. Huson
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Johann Sölkner
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul Boettcher
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Max F. Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Gábor Mészáros
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Timothy N. Gondwe
- Department of Animal Science, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Farai C. Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Wilson Nandolo
- Department of Animal Science, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | | | - Liveness J. Banda
- Department of Animal Science, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Wilson Kaumbata
- Department of Animal Science, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Tesfaye Getachew
- International Center for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Aynalem Haile
- International Center for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Albert Soudre
- Unité de Formation et de Recherches - Sciences et Technologies, Université Norbert ZONGO, Koudougou, Burkina Faso
| | | | | | | | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Oyekanmi Nash
- National Biotechnology Development Agency, Abuja, Nigeria
| | - Solomon Abegaz
- Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | | | - Maria Wurzinger
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Brian L. Sayre
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | | | | |
Collapse
|
30
|
Salehian-Dehkordi H, Huang JH, Pirany N, Mehrban H, Lv XY, Sun W, Esmailizadeh A, Lv FH. Genomic Landscape of Copy Number Variations and Their Associations with Climatic Variables in the World's Sheep. Genes (Basel) 2023; 14:1256. [PMID: 37372436 PMCID: PMC10298528 DOI: 10.3390/genes14061256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Sheep show characteristics of phenotypic diversity and adaptation to diverse climatic regions. Previous studies indicated associations between copy number variations (CNVs) and climate-driven adaptive evolution in humans and other domestic animals. Here, we constructed a genomic landscape of CNVs (n = 39,145) in 47 old autochthonous populations genotyped at a set of high-density (600 K) SNPs to detect environment-driven signatures of CNVs using a multivariate regression model. We found 136 deletions and 52 duplications that were significantly (Padj. < 0.05) associated with climatic variables. These climate-mediated selective CNVs are involved in functional candidate genes for heat stress and cold climate adaptation (e.g., B3GNTL1, UBE2L3, and TRAF2), coat and wool-related traits (e.g., TMEM9, STRA6, RASGRP2, and PLA2G3), repairing damaged DNA (e.g., HTT), GTPase activity (e.g., COPG), fast metabolism (e.g., LMF2 and LPIN3), fertility and reproduction (e.g., SLC19A1 and CCDC155), growth-related traits (e.g., ADRM1 and IGFALS), and immune response (e.g., BEGAIN and RNF121) in sheep. In particular, we identified significant (Padj. < 0.05) associations between probes in deleted/duplicated CNVs and solar radiation. Enrichment analysis of the gene sets among all the CNVs revealed significant (Padj. < 0.05) enriched gene ontology terms and pathways related to functions such as nucleotide, protein complex, and GTPase activity. Additionally, we observed overlapping between the CNVs and 140 known sheep QTLs. Our findings imply that CNVs can serve as genomic markers for the selection of sheep adapted to specific climatic conditions.
Collapse
Affiliation(s)
- Hosein Salehian-Dehkordi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.S.-D.); (J.-H.H.)
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (N.P.); (H.M.)
| | - Jia-Hui Huang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.S.-D.); (J.-H.H.)
| | - Nasrollah Pirany
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (N.P.); (H.M.)
| | - Hossein Mehrban
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (N.P.); (H.M.)
| | - Xiao-Yang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.-Y.L.); (W.S.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.-Y.L.); (W.S.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.S.-D.); (J.-H.H.)
| |
Collapse
|
31
|
Bhardwaj S, Singh S, Ganguly I, Bhatia AK, Dixit SP. Deciphering local adaptation of native Indian cattle ( Bos indicus) breeds using landscape genomics and in-silico prediction of deleterious SNP effects on protein structure and function. 3 Biotech 2023; 13:86. [PMID: 36816754 PMCID: PMC9931982 DOI: 10.1007/s13205-023-03493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
India has 50 registered breeds of native cattle (Bos indicus) which are locally adapted to diverse environmental conditions. This study aimed to investigate the genomic basis of adaptation of native Indian cattle and to predict the impact of key SNPs on the amino acid changes that affect protein function. The Illumina 777 K BovineHD BeadChip was used to genotype 178 native cattle belonging to contrasting landscapes and agro-climatic conditions. The genotype-environment association was investigated with R. SamBada, using 5,74,382 QC passed SNPs and 11 predictor variables (10 multi-collinearity controlled environmental variables and 1 variable as "score of PCA" on ancestry coefficients of individuals). In total, 1,12,780 models were selected as significant (q < 0.05) based on G score. The pathway ontology of the annotated genes revealed many important pathways and genes having a direct and indirect role in cold and hot adaptation. Only ten SNP variants had a SIFT score of < 0.05 (deleterious), and only two of them, each lying in the genes CRYBA1 and USP18, were predicted to be deleterious with high confidence. RaptorX predicted the tertiary structures of proteins encoded by wild and mutant variants of these genes. The quality of the models was determined using Ramachandran plots and RaptorX parameters, indicating that they are accurate. RaptorX and I-Mutant 2.0 softwares revealed significant differences among wild and mutant proteins. Adaptive alleles identified in the present investigation might be responsible for the local adaptation of these cattle breeds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03493-3.
Collapse
Affiliation(s)
- Shivam Bhardwaj
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001 India
| | - Sanjeev Singh
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - Indrajit Ganguly
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - Avnish Kumar Bhatia
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - S. P. Dixit
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| |
Collapse
|
32
|
Shi H, Li T, Su M, Wang H, Li Q, Lang X, Ma Y. Whole genome sequencing revealed genetic diversity, population structure, and selective signature of Panou Tibetan sheep. BMC Genomics 2023; 24:50. [PMID: 36707771 PMCID: PMC9883975 DOI: 10.1186/s12864-023-09146-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also provide new insights into phenotypic variation in new varieties and the search for genes associated with important traits. Panou sheep is a cultivated breed of Tibetan sheep in China with stable genetic performance, consistent appearance and fast growth and development after decades of artificial selection and cultivation. Due to long-term adaptation to the high altitude, cold and hypoxic environment in the plateau area, they may have formed a unique gene pool that is different from other Tibetan sheep breeds. To explore the genetic resources of Panou sheep, we used next-generation sequencing technology for the first time to investigate the genome-wide population structure, genetic diversity, and candidate signatures of positive selection in Panou sheep. RESULTS Comparative genomic analysis with the closely related species Oula sheep (a native breed of Tibetan sheep in China) was used to screen the population selection signal of Panou sheep. Principal component analysis and neighbor joining tree showed that Panou sheep and Oula sheep had differences in population differentiation. Furthermore, analyses of population structure, they came from the same ancestor, and when K = 2, the two populations could be distinguished. Panou sheep exhibit genetic diversity comparable to Oula sheep, as shown by observed heterozygosity, expected heterozygosity and runs of homozygosity. Genome-wide scanning using the Fst and π ratio methods revealed a list of potentially selected related genes in Panou sheep compared to Oula sheep, including histone deacetylase 9 (HDAC9), protein tyrosine kinase 2 (PTK2), microphthalmia-related transcription factor (MITF), vesicular amine transporter 1 (VAT1), trichohyalin-like 1 (TCHHL1), amine oxidase, copper containing 3 (AOC3), interferon-inducible protein 35 (IFI35). CONCLUSIONS The results suggest that traits related to growth and development and plateau adaptation may be selection targets for the domestication and breeding improvement of Tibetan sheep. This study provides the fundamental footprints for Panou sheep breeding and management.
Collapse
Affiliation(s)
- Huibin Shi
- grid.411734.40000 0004 1798 5176College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China ,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070 China
| | - Taotao Li
- grid.411734.40000 0004 1798 5176College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China ,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070 China
| | - Manchun Su
- grid.411734.40000 0004 1798 5176College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China ,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070 China
| | - Huihui Wang
- grid.411734.40000 0004 1798 5176College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China ,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070 China
| | - Qiao Li
- grid.411734.40000 0004 1798 5176College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China ,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070 China
| | - Xia Lang
- grid.464277.40000 0004 0646 9133Institute of Animal & Pasture Science and Green Agriculture, Gansu Academy of Agricultural Science, Lanzhou, 730070 China
| | - Youji Ma
- grid.411734.40000 0004 1798 5176College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China ,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070 China
| |
Collapse
|
33
|
Asadollahpour Nanaei H, Cai Y, Alshawi A, Wen J, Hussain T, Fu WW, Xu NY, Essa A, Lenstra JA, Wang X, Jiang Y, Wang X, Jiang Y. Genomic analysis of indigenous goats in Southwest Asia reveals evidence of ancient adaptive introgression related to desert climate. Zool Res 2023; 44:20-29. [PMID: 36257823 PMCID: PMC9841177 DOI: 10.24272/j.issn.2095-8137.2022.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Understanding how evolutionary pressures related to climate change have shaped the current genetic background of domestic animals is a fundamental pursuit of biology. Here, we generated whole-genome sequencing data from native goat populations in Iraq and Pakistan. Combined with previously published data on modern, ancient (Late Neolithic to Medieval periods), and wild Capra species worldwide, we explored the genetic population structure, ancestry components, and signatures of natural positive selection in native goat populations in Southwest Asia (SWA). Results revealed that the genetic structure of SWA goats was deeply influenced by gene flow from the eastern Mediterranean during the Chalcolithic period, which may reflect adaptation to gradual warming and aridity in the region. Furthermore, comparative genomic analysis revealed adaptive introgression of the KITLG locus from the Nubian ibex ( C. nubiana) into African and SWA goats. The frequency of the selected allele at this locus was significantly higher among goat populations located near northeastern Africa. These results provide new insights into the genetic composition and history of goat populations in the SWA region.
Collapse
Affiliation(s)
- Hojjat Asadollahpour Nanaei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Akil Alshawi
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Baghdad, Iraqi Ministry of Higher Education and Scientific Research, Bagdad 10090, Iraq
| | - Jiayue Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tanveer Hussain
- Department of Molecular Biology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Wei-Wei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nai-Yi Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Abdulameer Essa
- Animal Genetics Resources Department, Directorate of Animal Resources, the Ministry of Iraqi Agriculture, Baghdad 10081, Iraq
| | - Johannes A. Lenstra
- Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China,E-mail:
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jones HE, Wilson PB. Progress and opportunities through use of genomics in animal production. Trends Genet 2022; 38:1228-1252. [PMID: 35945076 DOI: 10.1016/j.tig.2022.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 01/24/2023]
Abstract
The rearing of farmed animals is a vital component of global food production systems, but its impact on the environment, human health, animal welfare, and biodiversity is being increasingly challenged. Developments in genetic and genomic technologies have had a key role in improving the productivity of farmed animals for decades. Advances in genome sequencing, annotation, and editing offer a means not only to continue that trend, but also, when combined with advanced data collection, analytics, cloud computing, appropriate infrastructure, and regulation, to take precision livestock farming (PLF) and conservation to an advanced level. Such an approach could generate substantial additional benefits in terms of reducing use of resources, health treatments, and environmental impact, while also improving animal health and welfare.
Collapse
Affiliation(s)
- Huw E Jones
- UK Genetics for Livestock and Equines (UKGLE) Committee, Department for Environment, Food and Rural Affairs, Nobel House, 17 Smith Square, London, SW1P 3JR, UK; Nottingham Trent University, Brackenhurst Campus, Brackenhurst Lane, Southwell, NG25 0QF, UK.
| | - Philippe B Wilson
- UK Genetics for Livestock and Equines (UKGLE) Committee, Department for Environment, Food and Rural Affairs, Nobel House, 17 Smith Square, London, SW1P 3JR, UK; Nottingham Trent University, Brackenhurst Campus, Brackenhurst Lane, Southwell, NG25 0QF, UK
| |
Collapse
|
35
|
Baseline composition and microbial quality assessment of raw milk from small ruminants and Maghrebi camels in the oasis area of Tunisia. Trop Anim Health Prod 2022; 54:391. [DOI: 10.1007/s11250-022-03408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
|
36
|
Magoro AM, Mtileni B, Hadebe K, Zwane A. Assessment of Genetic Diversity and Conservation in South African Indigenous Goat Ecotypes: A Review. Animals (Basel) 2022; 12:ani12233353. [PMID: 36496874 PMCID: PMC9735466 DOI: 10.3390/ani12233353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Goats were amongst the first livestock to be domesticated more than 10,000 years ago for their meat, milk, skin, and fiber. They were introduced to Southern Africa by migrating nations from Central Africa to the south. Due to local adaptation to the different agro-ecological zones and selection, indigenous goats are identified as ecotypes within the indigenous veld goat breed. Their ability to thrive in a resource-limited production system and in challenging environmental conditions makes them valuable animal resources for small-scale and emerging farmers. They play important roles in household agriculture and cultural activities as well as in poverty alleviation. Studies have described the phenotypic and genetic variations in indigenous goats, targeting the major goat-producing regions and the breeds of South Africa. In turn, information is restricted to certain breeds and regions, and the experimental design is often not adequate to inform the conservation status and priorities in changing environments. Advances in genomics technologies have availed more opportunities for the assessment of the biodiversity, demographic histories, and detection regions associated with local adaptation. These technologies are essential for breeding and conservation strategies for sustainable production for food security. This review focuses on the status of indigenous goats in South Africa and the application of genomics technologies for characterization, with emphasis on prioritization for conservation and sustainable utilization.
Collapse
Affiliation(s)
- Aletta Matshidiso Magoro
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
- Agricultural Research Council, Animal Production, Irene 0062, South Africa
- Correspondence:
| | - Bohani Mtileni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Khanyisile Hadebe
- Agricultural Research Council, Biotechnology Platform, Onderstepoort 0110, South Africa
| | - Avhashoni Zwane
- Agricultural Research Council, Animal Production, Irene 0062, South Africa
| |
Collapse
|
37
|
Shi L, Wang L, Fang L, Li M, Tian J, Wang L, Zhao F. Integrating genome-wide association studies and population genomics analysis reveals the genetic architecture of growth and backfat traits in pigs. Front Genet 2022; 13:1078696. [PMID: 36506319 PMCID: PMC9732542 DOI: 10.3389/fgene.2022.1078696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Growth and fat deposition are complex traits, which can affect economical income in the pig industry. Due to the intensive artificial selection, a significant genetic improvement has been observed for growth and fat deposition in pigs. Here, we first investigated genomic-wide association studies (GWAS) and population genomics (e.g., selection signature) to explore the genetic basis of such complex traits in two Large White pig lines (n = 3,727) with the GeneSeek GGP Porcine HD array (n = 50,915 SNPs). Ten genetic variants were identified to be associated with growth and fatness traits in two Large White pig lines from different genetic backgrounds by performing both within-population GWAS and cross-population GWAS analyses. These ten significant loci represented eight candidate genes, i.e., NRG4, BATF3, IRS2, ANO1, ANO9, RNF152, KCNQ5, and EYA2. One of them, ANO1 gene was simultaneously identified for both two lines in BF100 trait. Compared to single-population GWAS, cross-population GWAS was less effective for identifying SNPs with population-specific effect, but more powerful for detecting SNPs with population-shared effects. We further detected genomic regions specifically selected in each of two populations, but did not observe a significant enrichment for the heritability of growth and backfat traits in such regions. In summary, the candidate genes will provide an insight into the understanding of the genetic architecture of growth-related traits and backfat thickness, and may have a potential use in the genomic breeding programs in pigs.
Collapse
Affiliation(s)
- Liangyu Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ligang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Mianyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingjing Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Lixian Wang, ; Fuping Zhao,
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Lixian Wang, ; Fuping Zhao,
| |
Collapse
|
38
|
Abioja M, Logunleko M, Majekodunmi B, Adekunle E, Shittu O, Odeyemi A, Nwosu E, Oke O, Iyasere O, Abiona J, Williams T, James I, Smith O, Daramola J. Roles of Candidate Genes in the Adaptation of Goats to Heat Stress: A Review. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Tolone M, Sardina MT, Senczuk G, Chessari G, Criscione A, Moscarelli A, Riggio S, Rizzuto I, Di Gerlando R, Portolano B, Mastrangelo S. Genomic Tools for the Characterization of Local Animal Genetic Resources: Application in Mascaruna Goat. Animals (Basel) 2022; 12:2840. [PMID: 36290231 PMCID: PMC9597745 DOI: 10.3390/ani12202840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 02/06/2024] Open
Abstract
Italy contains a large number of local goat populations, some of which do not have a recognized genetic structure. The "Mascaruna" is a goat population reared for milk production in Sicily. In this study, a total of 72 individuals were genotyped with the Illumina Goat_IGGC_65K_v2 BeadChip with the aim to characterize the genetic diversity, population structure and relatedness with another 31 Italian goat populations. The results displayed a moderate level of genetic variability for Mascaruna, in concordance with the estimated values for Italian goats. Runs of homozygosity islands are linked to genes involved in milk production, immune response and local adaptation. Population structure analyses separated Mascaruna from the other goat populations, indicating a clear genetic differentiation. Although they are not conclusive, our current results represent a starting point for the creation of monitoring and conservation plans. Additional analyses and a wider sampling would contribute to refine and validate these results. Finally, our study describing the diversity and structure of Mascaruna confirms the usefulness of applied genomic analyses as valid tools for the study of the local uncharacterized genetic resources.
Collapse
Affiliation(s)
- Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | - Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, 95131 Catania, Italy
| | - Andrea Criscione
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, 95131 Catania, Italy
| | - Angelo Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Silvia Riggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Ilaria Rizzuto
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
40
|
The whole mitochondrial genome signature of Teressa goat, an indigenous goat germplasm of Andaman and Nicobar Islands, India. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Genetic Diversity and Selection Signatures in Jianchang Black Goats Revealed by Whole-Genome Sequencing Data. Animals (Basel) 2022; 12:ani12182365. [PMID: 36139225 PMCID: PMC9495118 DOI: 10.3390/ani12182365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the genetic composition of indigenous goats is essential to promote the scientific conservation and sustainable utilization of these breeds. The Jianchang Black (JC) goat, a Chinese native breed, is solid black and exhibits crude feed tolerance, but is characterized by a low growth rate and small body size. Based on the whole-genome sequencing data for 30 JC, 41 Jintang Black (JT), and 40 Yunshang Black (YS) goats, and 21 Bezoar ibexes, here, we investigated the genetic composition of JC goats by conducting analyses of the population structure, runs of homozygosity (ROH), genomic inbreeding, and selection signature. Our results revealed that JT and YS showed a close genetic relationship with a non-negligible amount of gene flows but were genetically distant from JC, apart from Bezoars. An average of 2039 ROHs were present in the autosomal genome per individual. The ROH-based inbreeding estimates in JC goats generally showed moderate values ranging from 0.134 to 0.264, mainly due to rapid declines in the effective population size during recent generations. The annotated genes (e.g., IL2, IL7, and KIT) overlapping with ROH islands were significantly enriched in immune-related biological processes. Further, we found 61 genes (e.g., STIM1, MYO9A, and KHDRBS2) under positive selection in JC goats via three complementary approaches, which may underly genetic adaptations to local environmental conditions. Our findings provided references for the conservation and sustainable utilization of JC goats.
Collapse
|
42
|
Banos G, Talenti A, Chatziplis D, Sánchez-Molano E. Genomic analysis of the rare British Lop pig and identification of distinctive genomic markers. PLoS One 2022; 17:e0271053. [PMID: 35960784 PMCID: PMC9374264 DOI: 10.1371/journal.pone.0271053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Concentration of production on a few commercial pig breeds has led to the marginalization of many native, numerically small breeds, increasing their risk of endangerment. In the UK, one such rare breed is the British Lop, a lop-eared breed, of similar origin to the Welsh breed. The objective of the present study was to address the genomic status of the British Lop and its relationship with other breeds and identify a small set of genomic markers that uniquely characterize and distinguish British Lop animals. Results have shown that the British Lop is a relatively distinct population with reduced genomic diversity and effective size consistent with its status as a rare breed. Furthermore, we demonstrated the genetic closeness of the British Lop to phenotypically similar breeds such as Landrace and Welsh as well Large White, Middle White and Pietrain. Finally, a set of 75 Single Nucleotide Polymorphisms distributed across multiple chromosomes were identified and validated as markers that can consistently distinguish British Lops from other closely related breeds. Results may inform breeding and management strategies aiming to enhance diversity as well as the development of a breed purity test.
Collapse
Affiliation(s)
- Georgios Banos
- Scotland’s Rural College (SRUC), Department of Animal and Veterinary Sciences, The Roslin Institute Building, Edinburgh, United Kingdom
| | - Andrea Talenti
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Dimitrios Chatziplis
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- Laboratory of Agrobiotechnology and Inspection of Agricultural Products, Department of Agriculture, International Hellenic University, Sindos, Greece
| | - Enrique Sánchez-Molano
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Genome-Wide Selective Analysis of Boer Goat to Investigate the Dynamic Heredity Evolution under Different Stages. Animals (Basel) 2022; 12:ani12111356. [PMID: 35681821 PMCID: PMC9204547 DOI: 10.3390/ani12111356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Boer goats, as kemp in meat-type goats, are selected and bred from African indigenous goats under a long period of artificial selection. Their advantages in multiple economic traits, particularly their plump growth, have attracted worldwide attention. The current study displayed the genome-wide selection signature analyses of South African indigenous goat (AF), African Boer (BH), and Australian Boer (AS) to investigate the hereditary basis of artificial selection in different stages. Four methods (principal component analysis, nucleotide diversity, linkage disequilibrium decay, and neighbor-joining tree) implied the genomic diversity changes with different artificial selection intensities in Boer goats. In addition, the θπ, FST, and XP-CLR methods were used to search for the candidate signatures of positive selection in Boer goats. Consequently, 339 (BH vs. AF) and 295 (AS vs. BH) candidate genes were obtained from SNP data. Especially, 10 genes (e.g., BMPR1B, DNER, ITGAL, and KIT) under selection in both groups were identified. Functional annotation analysis revealed that these genes are potentially responsible for reproduction, metabolism, growth, and development. This study used genome-wide sequencing data to identify inheritance by artificial selection. The results of the current study are valuable for future molecular-assisted breeding and genetic improvement of goats.
Collapse
|
44
|
Salek Ardestani S, Zandi MB, Vahedi SM, Mahboudi H, Mahboudi F, Meskoob A. Detection of common copy number of variation underlying selection pressure in Middle Eastern horse breeds using whole-genome sequence data. J Hered 2022; 113:421-430. [PMID: 35605262 DOI: 10.1093/jhered/esac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/21/2022] [Indexed: 11/14/2022] Open
Abstract
Dareshouri, Arabian, and Akhal-Teke are three Middle Eastern horse breeds that have been selected for endurance and adaptation to harsh climates. Deciphering the genetic characteristics of these horses by tracing selection footprints and copy number of variations will be helpful in improving our understanding of equine breeds' development and adaptation. For this purpose, we sequenced the whole-genome of four Dareshouri horses using Illumina Hiseq panels and compared them with publicly available whole-genome sequences of Arabian (n=3) and Akhal-Teke (n=3) horses . Three tests of FLK, hapFLK, and pooled heterozygosity were applied using a sliding window (window size=100kb, step size=50kb) approach to detect putative selection signals. Copy number variation analysis was applied to investigate copy number of variants (CNVs), and the results were used to suggest selection signatures involving CNVs. Whole-genome sequencing demonstrated 8,837,950 single nucleotide polymorphisms (SNPs) in autosomal chromosomes. We suggested 58 genes and three quantitative trait loci (QTLs), including some related to horse gait, insect bite hypersensitivity, and withers height, based on selective signals detected by adjusted p-value of Mahalanobis distance based on the rank-based P-values (Md-rank-P) method. We proposed 12 genomic regions under selection pressure involving CNVs which were previously reported to be associated with metabolism energy (SLC5A8), champagne dilution in horses (SLC36A1), and synthesis of polyunsaturated fatty acids (FAT2). Only 10 Middle Eastern horses were tested in this study; therefore, the conclusions are speculative. Our findings are useful to better understanding the evolution and adaptation of Middle Eastern horse breeds.
Collapse
Affiliation(s)
- Siavash Salek Ardestani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Hossein Mahboudi
- Department of Biotechnology, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | | | | |
Collapse
|
45
|
Li G, Tang J, Huang J, Jiang Y, Fan Y, Wang X, Ren J. Genome-Wide Estimates of Runs of Homozygosity, Heterozygosity, and Genetic Load in Two Chinese Indigenous Goat Breeds. Front Genet 2022; 13:774196. [PMID: 35559012 PMCID: PMC9086400 DOI: 10.3389/fgene.2022.774196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Runs of homozygosity (ROH) and heterozygosity (ROHet) are windows into population demographic history and adaptive evolution. Numerous studies have shown that deleterious mutations are enriched in the ROH of humans, pigs, cattle, and chickens. However, the relationship of deleterious variants to ROH and the pattern of ROHet in goats have been largely understudied. Here, 240 Guangfeng and Ganxi goats from Jiangxi Province, China, were genotyped using the Illumina GoatSNP50 BeadChip and genome-wide ROH, ROHet, and genetic load analyses were performed in the context of 32 global goat breeds. The classes with the highest percentage of ROH and ROHet were 0.5–2 Mb and 0.5–1 Mb, respectively. The results of inbreeding coefficients (based on SNP and ROH) and ROHet measurements showed that Guangfeng goats had higher genetic variability than most Chinese goats, while Ganxi goats had a high degree of inbreeding, even exceeding that of commercial goat breeds. Next, the predicted damaging homozygotes were more enriched in long ROHs, especially in Guangfeng goats. Therefore, we suggest that information on damaging alleles should also be incorporated into the design of breeding and conservation programs. A list of genes related to fecundity, growth, and environmental adaptation were identified in the ROH hotspots of two Jiangxi goats. A sense-related ROH hotspot (chromosome 12: 50.55–50.81 Mb) was shared across global goat breeds and may have undergone selection prior to goat domestication. Furthermore, an identical ROHet hotspot (chromosome 1: 132.21–132.54 Mb) containing two genes associated with embryonic development (STAG1 and PCCB) was detected in domestic goat breeds worldwide. Tajima’s D and BetaScan2 statistics indicated that this region may be caused by long-term balancing selection. These findings not only provide guidance for the design of conservation strategies for Jiangxi goat breeds but also enrich our understanding of the adaptive evolution of goats.
Collapse
Affiliation(s)
- Guixin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jianhong Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Jinyan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongchuang Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yin Fan
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang, China
| | - Xiaopeng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Waineina RW, Okeno TO, Ilatsia ED, Ngeno K. Selection Signature Analyses Revealed Genes Associated With Adaptation, Production, and Reproduction in Selected Goat Breeds in Kenya. Front Genet 2022; 13:858923. [PMID: 35528543 PMCID: PMC9068939 DOI: 10.3389/fgene.2022.858923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Artificial and natural selection in livestock is expected to leave unique footprints on their genomes. Goat breeds in Kenya have evolved for survival, breeding, and production in various harsh ecological areas, and their genomes are likely to have acquired unique alleles for adaptation to such diverse production environments and other traits of economic importance. To investigate signals of selection for some selected goat breeds in Kenya, Alpine (n = 29), Galla (n = 12), Saanen (n = 24), and Toggenburg (n = 31) were considered. A total of 53,347 single-nucleotide polymorphisms (SNPs) generated using the Illumina GoatSNP50 BeadChip were analyzed. After quality control, 47,663 autosomal single-nucleotide polymorphisms remained for downstream analyses. Several complementary approaches were applied for the following analyses: integrated Haplotype Score (iHS), cross-population-extended haplotype homozygosity (XP-EHH), hapFLK, and FLK. A total of 404 top genomic regions were identified across all the four breeds, based on the four complementary analyses. Out of the 16 identified putative selection signature regions by the intersection of multiple-selective signal analyses, most of the putative regions were found to overlap significantly with the iHS and XP-EHH analyses on chromosomes 3, 4, 10, 15, 22, and 26. These regions were enriched with some genes involved in pathways associated directly or indirectly with environmental adaptation regulating immune responses (e.g., HYAL1 and HYAL3), milk production (e.g., LEPR and PDE4B), and adaptability (e.g., MST1 and PCK). The results revealed few intersect between breeds in genomic selection signature regions. In general, this did not present the typical classic selection signatures as predicted due to the complex nature of the traits. The results support that some various selection pressures (e.g., environmental challenges, artificial selection, and genome admixture challenges) have molded the genome of goat breeds in Kenya. Therefore, the research provides new knowledge on the conservation and utilization of these goat genetic resources in Kenya. In-depth research is needed to detect precise genes connected with adaptation and production in goat breeds in Kenya.
Collapse
Affiliation(s)
- Ruth W Waineina
- Department of Animal Sciences, Animal Breeding and Genomics Group, Egerton University, Egerton, Kenya.,Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | - Tobias O Okeno
- Department of Animal Sciences, Animal Breeding and Genomics Group, Egerton University, Egerton, Kenya
| | - Evans D Ilatsia
- Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | - Kiplangat Ngeno
- Department of Animal Sciences, Animal Breeding and Genomics Group, Egerton University, Egerton, Kenya
| |
Collapse
|
47
|
Suyadi S, Murtika I, Susilorini T, Septian W, Saputra F, Furqon A. Genetic diversity of goats in East Java through analysis of the cytochrome B and cytochrome oxidase I genes in mitochondrial DNA. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Hou H, Wang X, Ding W, Xiao C, Cai X, Lv W, Tu Y, Zhao W, Yao J, Yang C. Whole-genome sequencing reveals the artificial selection and local environmental adaptability of pigeons ( Columba livia). Evol Appl 2022; 15:603-617. [PMID: 35505885 PMCID: PMC9046921 DOI: 10.1111/eva.13284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
To meet human needs, domestic pigeons (Columba livia) with various phenotypes have been bred to provide genetic material for our research on artificial selection and local environmental adaptation. Seven pigeon breeds were resequenced and can be divided into commercial varieties (Euro-pigeon, Shiqi, Shen King, Taishen, and Silver King), ornamental varieties (High Fliers), and local varieties (Tarim pigeon). Phylogenetic analysis based on population resequencing showed that one group contained local breeds and ornamental pigeons from China, whereas all commercial varieties were clustered together. It is revealed that the traditional Chinese ornamental pigeon is a branch of Tarim pigeon. Runs of homozygosity (ROH) and linkage disequilibrium (LD) analyses revealed significant differences in the genetic diversity of the three types of pigeons. Genome sweep analysis revealed that the selected genes of commercial breeds were related to body size, reproduction, and plumage color. The genomic imprinting genes left by the ornamental pigeon breeds were mostly related to special human facial features and muscular dystrophy. The Tarim pigeon has evolved genes related to chemical ion transport, photoreceptors, oxidative stress, organ development, and olfaction in order to adapt to local environmental stress. This research provides a molecular basis for pigeon genetic resource evaluation and genetic improvement and suggests that the understanding of adaptive evolution should integrate the effects of various natural environmental characteristics.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Weixing Ding
- Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Changfeng Xiao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xia Cai
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Wenwei Lv
- National Poultry Engineer Research CenterShanghaiChina
| | - Yingying Tu
- National Poultry Engineer Research CenterShanghaiChina
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon CompanyShanghaiChina
| | - Junfeng Yao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Changsuo Yang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| |
Collapse
|
49
|
Gu B, Sun R, Fang X, Zhang J, Zhao Z, Huang D, Zhao Y, Zhao Y. Genome-Wide Association Study of Body Conformation Traits by Whole Genome Sequencing in Dazu Black Goats. Animals (Basel) 2022; 12:ani12050548. [PMID: 35268118 PMCID: PMC8908837 DOI: 10.3390/ani12050548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Body conformation traits are economically important in the goat meat industry. Good growth performance in goats, including an accelerated growth rate, can improve carcass weight and meat yield. The identification of genetic variants associated with these traits provides a basis for the genetic improvement of growth performance. In this study, we measured six body conformation traits, including body height, body length, cannon circumference, chest depth, chest width, and heart girth. By a genome-wide association study of a Chinese meat goat breed, 53 significant single nucleotide polymorphisms and 42 candidate genes associated with these traits were detected. These findings improve our understanding of the genetic basis of body conformation traits in goats. Abstract Identifying associations between genetic markers and economic traits has practical benefits for the meat goat industry. To better understand the genomic regions and biological pathways contributing to body conformation traits of meat goats, a genome-wide association study was performed using Dazu black goats (DBGs), a Chinese indigenous goat breed. In particular, 150 DBGs were genotyped by whole-genome sequencing, and six body conformation traits, including body height (BH), body length (BL), cannon circumference (CC), chest depth (CD), chest width (CW), and heart girth (HG), were examined. In total, 53 potential SNPs were associated with these body conformation traits. A bioinformatics analysis was performed to evaluate the genes located close to the significant SNPs. Finally, 42 candidate genes (e.g., PSTPIP2, C7orf57, CCL19, FGF9, SGCG, FIGN, and SIPA1L) were identified as components of the genetic architecture underlying body conformation traits. Our results provide useful biological information for the improvement of growth performance and have practical applications for genomic selection in goats.
Collapse
Affiliation(s)
- Bowen Gu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Ruifan Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Xingqiang Fang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Jipan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Deli Huang
- Tengda Animal Husbandry Co., Ltd., Chongqing 402360, China;
| | - Yuanping Zhao
- Dazu County Agriculture and Rural Committee, Chongqing 402360, China;
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
50
|
|