1
|
Anderson KJ, Kominoski JS, Choi CJ, Stingl U. Functional effects of subsidies and stressors on benthic microbial communities along freshwater to marine gradients. Ecology 2024; 105:e4427. [PMID: 39353687 DOI: 10.1002/ecy.4427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 10/04/2024]
Abstract
Leaf litter in coastal wetlands lays the foundation for carbon storage, and the creation of coastal wetland soils. As climate change alters the biogeochemical conditions and macrophyte composition of coastal wetlands, a better understanding of the interactions between microbial communities, changing chemistry, and leaf litter is required to understand the dynamics of coastal litter breakdown in changing wetlands. Coastal wetlands are dynamic systems with shifting biogeochemical conditions, with both tidal and seasonal redox fluctuations, and marine subsidies to inland habitats. Here, we investigated gene expression associated with various microbial redox pathways to understand how changing conditions are affecting the benthic microbial communities responsible for litter breakdown in coastal wetlands. We performed a reciprocal transplant of leaf litter from four distinct plant species along freshwater-to-marine gradients in the Florida Coastal Everglades, tracking changes in environmental and litter biogeochemistry, as well as benthic microbial gene expression associated with varying redox conditions, carbon degradation, and phosphorus acquisition. Early litter breakdown varied primarily by species, with highest breakdown in coastal species, regardless of the site they were at during breakdown, while microbial gene expression showed a strong seasonal relationship between sulfate cycling and salinity, and was not correlated with breakdown rates. The effect of salinity is likely a combination of direct effects, and indirect effects from associated marine subsidies. We found a positive correlation between sulfate uptake and salinity during January with higher freshwater inputs to coastal areas. However, we found a peak of dissimilatory sulfate reduction at intermediate salinity during April when freshwater inputs to coastal sites are lower. The combination of these two results suggests that sulfate acquisition is limiting to microbes when freshwater inputs are high, but that when marine influence increases and sulfate becomes more available, dissimilatory sulfate reduction becomes a key microbial process. As marine influence in coastal wetlands increases with climate change, our study suggests that sulfate dynamics will become increasingly important to microbial communities colonizing decomposing leaf litter.
Collapse
Affiliation(s)
- Kenneth J Anderson
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
| | - John S Kominoski
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
| | - Chang Jae Choi
- Fort Lauderdale Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Davie, Florida, USA
| | - Ulrich Stingl
- Fort Lauderdale Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Davie, Florida, USA
| |
Collapse
|
2
|
Sequeira JC, Pereira V, Alves MM, Pereira MA, Rocha M, Salvador AF. MOSCA 2.0: A bioinformatics framework for metagenomics, metatranscriptomics and metaproteomics data analysis and visualization. Mol Ecol Resour 2024; 24:e13996. [PMID: 39099161 DOI: 10.1111/1755-0998.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/14/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
The analysis of meta-omics data requires the utilization of several bioinformatics tools and proficiency in informatics. The integration of multiple meta-omics data is even more challenging, and the outputs of existing bioinformatics solutions are not always easy to interpret. Here, we present a meta-omics bioinformatics pipeline, Meta-Omics Software for Community Analysis (MOSCA), which aims to overcome these limitations. MOSCA was initially developed for analysing metagenomics (MG) and metatranscriptomics (MT) data. Now, it also performs MG and metaproteomics (MP) integrated analysis, and MG/MT analysis was upgraded with an additional iterative binning step, metabolic pathways mapping, and several improvements regarding functional annotation and data visualization. MOSCA handles raw sequencing data and mass spectra and performs pre-processing, assembly, annotation, binning and differential gene/protein expression analysis. MOSCA shows taxonomic and functional analysis in large tables, performs metabolic pathways mapping, generates Krona plots and shows gene/protein expression results in heatmaps, improving omics data visualization. MOSCA is easily run from a single command while also providing a web interface (MOSGUITO). Relevant features include an extensive set of customization options, allowing tailored analyses to suit specific research objectives, and the ability to restart the pipeline from intermediary checkpoints using alternative configurations. Two case studies showcased MOSCA results, giving a complete view of the anaerobic microbial communities from anaerobic digesters and insights on the role of specific microorganisms. MOSCA represents a pivotal advancement in meta-omics research, offering an intuitive, comprehensive, and versatile solution for researchers seeking to unravel the intricate tapestry of microbial communities.
Collapse
Affiliation(s)
- João C Sequeira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Vítor Pereira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - M Madalena Alves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - M Alcina Pereira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel Rocha
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia F Salvador
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Maire Y, Schmitt FG, Kormas K, Vasileiadis S, Caruana A, Skouroliakou DI, Bampouris V, Courcot L, Hervé F, Crouvoisier M, Christaki U. Effects of turbulence on diatoms of the genus Pseudo-nitzschia spp. and associated bacteria. FEMS Microbiol Ecol 2024; 100:fiae094. [PMID: 38986513 PMCID: PMC11264304 DOI: 10.1093/femsec/fiae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024] Open
Abstract
Turbulence is one of the least investigated environmental factors impacting the ecophysiology of phytoplankton, both at the community and individual species level. Here, we investigated, for the first time, the effect of a turbulence gradient (Reynolds number, from Reλ = 0 to Reλ = 360) on two species of the marine diatom Pseudo-nitzschia and their associated bacterial communities under laboratory conditions. Cell abundance, domoic acid (DA) production, chain formation, and Chl a content of P. fraudulenta and P. multiseries were higher for intermediate turbulence (Reλ = 160 or 240). DA was detectable only in P. multiseries samples. These observations were supported by transcriptomic analyses results, which suggested the turbulence related induction of the expression of the DA production locus, with a linkage to an increased photosynthetic activity of the total metatranscriptome. This study also highlighted a higher richness of the bacterial community associated with the nontoxic strain of P. fraudulenta in comparison to the toxic strain of P. multiseries. Bacillus was an important genus in P. multiseries cultures (relative abundance 15.5%) and its highest abundances coincided with the highest DA levels. However, associated bacterial communities of both Pseudo-nitzschia species did not show clear patterns relative to turbulence intensity.
Collapse
Affiliation(s)
- Yanis Maire
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - François G Schmitt
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Fitoko st. 1, 38446 Volos, Greece
- Agricultural Development Institute, University Research and Innovation Centre “IASON”, Argonafton & Filellinon, 38221, Greece
| | - Sotirios Vasileiadis
- Agricultural Development Institute, University Research and Innovation Centre “IASON”, Argonafton & Filellinon, 38221, Greece
- Department of Biochemistry and Biotechnology, Viopolis 41500, University of Thessaly, Larissa, Greece
| | - Amandine Caruana
- IFREMER, PHYTOX, Laboratoire PHYSALG, BP21105, Rue de l'Ile d'Yeu, F-44300 Nantes, France
| | - Dimitra-Ioli Skouroliakou
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Vasileios Bampouris
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Fitoko st. 1, 38446 Volos, Greece
| | - Lucie Courcot
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Fabienne Hervé
- IFREMER, PHYTOX, Laboratoire PHYSALG, BP21105, Rue de l'Ile d'Yeu, F-44300 Nantes, France
| | - Muriel Crouvoisier
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Urania Christaki
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| |
Collapse
|
4
|
Broman E, Olsson M, Maciute A, Donald D, Humborg C, Norkko A, Jilbert T, Bonaglia S, Nascimento FJA. Biotic interactions between benthic infauna and aerobic methanotrophs mediate methane fluxes from coastal sediments. THE ISME JOURNAL 2024; 18:wrae013. [PMID: 38366020 PMCID: PMC10942774 DOI: 10.1093/ismejo/wrae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Coastal ecosystems dominate oceanic methane (CH4) emissions. However, there is limited knowledge about how biotic interactions between infauna and aerobic methanotrophs (i.e. CH4 oxidizing bacteria) drive the spatial-temporal dynamics of these emissions. Here, we investigated the role of meio- and macrofauna in mediating CH4 sediment-water fluxes and aerobic methanotrophic activity that can oxidize significant portions of CH4. We show that macrofauna increases CH4 fluxes by enhancing vertical solute transport through bioturbation, but this effect is somewhat offset by high meiofauna abundance. The increase in CH4 flux reduces CH4 pore-water availability, resulting in lower abundance and activity of aerobic methanotrophs, an effect that counterbalances the potential stimulation of these bacteria by higher oxygen flux to the sediment via bioturbation. These findings indicate that a larger than previously thought portion of CH4 emissions from coastal ecosystems is due to faunal activity and multiple complex interactions with methanotrophs.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm 10691, Sweden
| | - Markus Olsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden
| | - Adele Maciute
- Department of Marine Sciences, University of Gothenburg, Gothenburg 41390, Sweden
| | - Daniel Donald
- Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences, University of Helsinki, Helsinki 10900, Finland
| | - Christoph Humborg
- Baltic Sea Centre, Stockholm University, Stockholm 10691, Sweden
- Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences, University of Helsinki, Helsinki 10900, Finland
| | - Alf Norkko
- Baltic Sea Centre, Stockholm University, Stockholm 10691, Sweden
- Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences, University of Helsinki, Helsinki 10900, Finland
| | - Tom Jilbert
- Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences, University of Helsinki, Helsinki 10900, Finland
- Environmental Geochemistry Group, Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Gothenburg 41390, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
5
|
Hu R, Li F, Chen Y, Liu C, Li J, Ma Z, Wang Y, Cui C, Luo C, Zhou P, Ni W, Yang QY, Hu S. AnimalMetaOmics: a multi-omics data resources for exploring animal microbial genomes and microbiomes. Nucleic Acids Res 2024; 52:D690-D700. [PMID: 37897361 PMCID: PMC10768125 DOI: 10.1093/nar/gkad931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
The Animal Meta-omics landscape database (AnimalMetaOmics, https://yanglab.hzau.edu.cn/animalmetaomics#/) is a comprehensive and freely available resource that includes metagenomic, metatranscriptomic, and metaproteomic data from various non-human animal species and provides abundant information on animal microbiomes, including cluster analysis of microbial cognate genes, functional gene annotations, active microbiota composition, gene expression abundance, and microbial protein identification. In this work, 55 898 microbial genomes were annotated from 581 animal species, including 42 924 bacterial genomes, 12 336 virus genomes, 496 archaea genomes and 142 fungi genomes. Moreover, 321 metatranscriptomic datasets were analyzed from 31 animal species and 326 metaproteomic datasets from four animal species, as well as the pan-genomic dynamics and compositional characteristics of 679 bacterial species and 13 archaea species from animal hosts. Researchers can efficiently access and acquire the information of cross-host microbiota through a user-friendly interface, such as species, genomes, activity levels, expressed protein sequences and functions, and pan-genome composition. These valuable resources provide an important reference for better exploring the classification, functional diversity, biological process diversity and functional genes of animal microbiota.
Collapse
Affiliation(s)
- Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Fulin Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yifan Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuyang Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jiawei Li
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yue Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chaowen Cui
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chengfang Luo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Qing-Yong Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
6
|
Pereira-Marques J, Ferreira RM, Figueiredo C. A metatranscriptomics strategy for efficient characterization of the microbiome in human tissues with low microbial biomass. Gut Microbes 2024; 16:2323235. [PMID: 38425025 PMCID: PMC10913719 DOI: 10.1080/19490976.2024.2323235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
The high background of host RNA poses a major challenge to metatranscriptome analysis of human samples. Hence, metatranscriptomics has been mainly applied to microbe-rich samples, while its application in human tissues with low ratio of microbial to host cells has yet to be explored. Since there is no computational workflow specifically designed for the taxonomic and functional analysis of this type of samples, we propose an effective metatranscriptomics strategy to accurately characterize the microbiome in human tissues with a low ratio of microbial to host content. We experimentally generated synthetic samples with well-characterized bacterial and host cell compositions, and mimicking human samples with high and low microbial loads. These synthetic samples were used for optimizing and establishing the workflow in a controlled setting. Our results show that the integration of the taxonomic analysis of optimized Kraken 2/Bracken with the functional analysis of HUMAnN 3 in samples with low microbial content, enables the accurate identification of a large number of microbial species with a low false-positive rate, while improving the detection of microbial functions. The effectiveness of our metatranscriptomics workflow was demonstrated in synthetic samples, simulated datasets, and most importantly, human gastric tissue specimens, thus providing a proof of concept for its applicability on mucosal tissues of the gastrointestinal tract. The use of an accurate and reliable metatranscriptomics approach for human tissues with low microbial content will expand our understanding of the functional activity of the mucosal microbiome, uncovering critical interactions between the microbiome and the host in health and disease.
Collapse
Affiliation(s)
- Joana Pereira-Marques
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Rui M. Ferreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Adekoya AE, Kargbo HA, Ibberson CB. Defining microbial community functions in chronic human infection with metatranscriptomics. mSystems 2023; 8:e0059323. [PMID: 37823640 PMCID: PMC10734476 DOI: 10.1128/msystems.00593-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The microbial diversity in polymicrobial infections (PMIs) allows for community members to establish interactions with one another, which can result in enhanced disease outcomes such as increased antibiotic tolerance and chronicity. Chronic PMIs result in large burdens on health systems, as they affect a significant proportion of the population and are expensive and difficult to treat. However, investigations into physiology of microbial communities in actual human infection sites are lacking. Here, we highlight that the predominant functions in chronic PMIs differ, and anaerobes, often described as bystanders, may be significant in the progression of chronic infections. Determining the community structure and functions in PMIs is a critical step toward understanding the molecular mechanisms that increase the virulence potential of the microbial community in these environments.
Collapse
Affiliation(s)
- Aanuoluwa E. Adekoya
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Hoody A. Kargbo
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Carolyn B. Ibberson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
8
|
Diaz A, Dixit AR, Khodadad CL, Hummerick ME, Justiano-Velez YA, Li W, O'Rourke A. Biofilm formation is correlated with low nutrient and simulated microgravity conditions in a Burkholderia isolate from the ISS water processor assembly. Biofilm 2023; 5:100110. [PMID: 36922940 PMCID: PMC10009688 DOI: 10.1016/j.bioflm.2023.100110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
The International Space Station (ISS) Water Processor Assembly (WPA) experiences intermittent dormancy in the WPA wastewater tank during water recycling events which promotes biofilm formation within the system. In this work we aimed to gain a deeper understanding of the impact of nutrient limitation on bacterial growth and biofilm formation under microgravity in support of biofilm mitigation efforts in exploration water recovery systems. A representative species of bacteria that is commonly cultured from the ISS WPA was cultured in an WPA influent water ersatz formulation tailored for microbiological studies. An isolate of Burkholderia contaminans was cultured under a simulated microgravity (SμG) treatment in a vertically rotating high-aspect rotating vessel (HARV) to create the low shear modeled microgravity (LSMMG) environment on a rotating wall vessel (RWV), with a rotating control (R) in the horizontal plane at the predetermined optimal rotation per minute (rpm) speed of 20. Over the course of the growth curve, the bacterial culture in ersatz media was harvested for bacterial counts, and transcriptomic and nutrient content analyses. The cultures under SμG treatment showed a transcriptomic signature indicative of nutrient stress and biofilm formation as compared to the R control treatment. Further analysis of the WPA ersatz over the course of the growth curve suggests that the essential nutrients of the media were consumed faster in the early stages of growth for the SμG treatment and thus approached a nutrient limited growth condition earlier than in the R control culture. The observed limited nutrient response may serve as one element to explain a moderate enhancement of adherent biofilm formation in the SμG treatment after 24 h. While nutrients levels can be modulated, one implication of this investigation is that biofilm mitigation in the ISS environment could benefit from methods such as mixing or the maintenance of minimum flow within a dormant water system in order to force convection and offset the response of microbes to the secondary effects of microgravity.
Collapse
Affiliation(s)
- Angie Diaz
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | - Anirudha R Dixit
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | | | - Mary E Hummerick
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | | | - Wenyan Li
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | - Aubrie O'Rourke
- Exploration Research and Technology, NASA Kennedy Space Center, Merritt Island, FL, USA
| |
Collapse
|
9
|
Broman E, Abdelgadir M, Bonaglia S, Forsberg SC, Wikström J, Gunnarsson JS, Nascimento FJA, Sjöling S. Long-Term Pollution Does Not Inhibit Denitrification and DNRA by Adapted Benthic Microbial Communities. MICROBIAL ECOLOGY 2023; 86:2357-2372. [PMID: 37222807 PMCID: PMC10640501 DOI: 10.1007/s00248-023-02241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Denitrification in sediments is a key microbial process that removes excess fixed nitrogen, while dissimilatory nitrate reduction to ammonium (DNRA) converts nitrate to ammonium. Although microorganisms are responsible for essential nitrogen (N) cycling, it is not yet fully understood how these microbially mediated processes respond to toxic hydrophobic organic compounds (HOCs) and metals. In this study, we sampled long-term polluted sediment from the outer harbor of Oskarshamn (Baltic Sea), measured denitrification and DNRA rates, and analyzed taxonomic structure and N-cycling genes of microbial communities using metagenomics. Results showed that denitrification and DNRA rates were within the range of a national reference site and other unpolluted sites in the Baltic Sea, indicating that long-term pollution did not significantly affect these processes. Furthermore, our results indicate an adaptation to metal pollution by the N-cycling microbial community. These findings suggest that denitrification and DNRA rates are affected more by eutrophication and organic enrichment than by historic pollution of metals and organic contaminants.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden.
- Department of Environmental Science, School of Natural Sciences, Technology and Environmental Studies, Södertörn University, 141 89, Huddinge, Sweden.
| | - Mohanad Abdelgadir
- Department of Environmental Science, School of Natural Sciences, Technology and Environmental Studies, Södertörn University, 141 89, Huddinge, Sweden
| | - Stefano Bonaglia
- Department of Marine Sciences, Gothenburg University, 413 19, Gothenburg, Sweden
| | - Sara C Forsberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
- Department of Environmental Science, School of Natural Sciences, Technology and Environmental Studies, Södertörn University, 141 89, Huddinge, Sweden
| | - Johan Wikström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonas S Gunnarsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Sara Sjöling
- Department of Environmental Science, School of Natural Sciences, Technology and Environmental Studies, Södertörn University, 141 89, Huddinge, Sweden
| |
Collapse
|
10
|
Tan A, Murugapiran S, Mikalauskas A, Koble J, Kennedy D, Hyde F, Ruotti V, Law E, Jensen J, Schroth GP, Macklaim JM, Kuersten S, LeFrançois B, Gohl DM. Rational probe design for efficient rRNA depletion and improved metatranscriptomic analysis of human microbiomes. BMC Microbiol 2023; 23:299. [PMID: 37864136 PMCID: PMC10588151 DOI: 10.1186/s12866-023-03037-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
The microbiota that colonize the human gut and other tissues are dynamic, varying both in composition and functional state between individuals and over time. Gene expression measurements can provide insights into microbiome composition and function. However, efficient and unbiased removal of microbial ribosomal RNA (rRNA) presents a barrier to acquiring metatranscriptomic data. Here we describe a probe set that achieves efficient enzymatic rRNA removal of complex human-associated microbial communities. We demonstrate that the custom probe set can be further refined through an iterative design process to efficiently deplete rRNA from a range of human microbiome samples. Using synthetic nucleic acid spike-ins, we show that the rRNA depletion process does not introduce substantial quantitative error in gene expression profiles. Successful rRNA depletion allows for efficient characterization of taxonomic and functional profiles, including during the development of the human gut microbiome. The pan-human microbiome enzymatic rRNA depletion probes described here provide a powerful tool for studying the transcriptional dynamics and function of the human microbiome.
Collapse
Affiliation(s)
- Asako Tan
- Illumina, Inc, Madison, WI, 53719, USA
| | | | | | - Jeff Koble
- Illumina, Inc, San Diego, CA, 92122, USA
| | | | - Fred Hyde
- Illumina, Inc, Madison, WI, 53719, USA
| | | | - Emily Law
- Diversigen, Inc, New Brighton, MN, 55112, USA
| | | | | | | | | | | | - Daryl M Gohl
- Diversigen, Inc, New Brighton, MN, 55112, USA.
- University of Minnesota Genomics Center, Minneapolis, MN, 55455, USA.
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Sharuddin SS, Ramli N, Yusoff MZM, Muhammad NAN, Ho LS, Maeda T. Insights into bacterial community metatranscriptome and metabolome in river water influenced by palm oil mill effluent final discharge. J Appl Microbiol 2023; 134:lxad219. [PMID: 37757470 DOI: 10.1093/jambio/lxad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
AIMS This study aimed to investigate the effect of palm oil mill effluent (POME) final discharge on the active bacterial composition, gene expression, and metabolite profiles in the receiving rivers to establish a foundation for identifying potential biomarkers for monitoring POME pollution in rivers. METHODS AND RESULTS The POME final discharge, upstream (unpolluted by POME), and downstream (effluent receiving point) parts of the rivers from two sites were physicochemically characterized. The taxonomic and gene profiles were then evaluated using de novo metatranscriptomics, while the metabolites were detected using qualitative metabolomics. A similar bacterial community structure in the POME final discharge samples from both sites was recorded, but their composition varied. Redundancy analysis showed that several families, particularly Comamonadaceae and Burkholderiaceae [Pr(>F) = 0.028], were positively correlated with biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results also showed significant enrichment of genes regulating various metabolisms in the POME-receiving rivers, with methane, carbon fixation pathway, and amino acids among the predominant metabolisms identified (FDR < 0.05, PostFC > 4, and PPDE > 0.95). This was further validated through qualitative metabolomics, whereby amino acids were detected as the predominant metabolites. CONCLUSIONS The results suggest that genes regulating amino acid metabolism have significant potential for developing effective biomonitoring and bioremediation strategies in river water influenced by POME final discharge, fostering a sustainable palm oil industry.
Collapse
Affiliation(s)
- Siti S Sharuddin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Mohd Z M Yusoff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Nor A N Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
| | - Li S Ho
- Sime Darby Plantation Technology Centre Sdn Bhd, Sime Darby Plantation, Serdang, Selangor 43400, Malaysia
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
12
|
Béchade B, Cabuslay CS, Hu Y, Mendonca CM, Hassanpour B, Lin JY, Su Y, Fiers VJ, Anandarajan D, Lu R, Olson CJ, Duplais C, Rosen GL, Moreau CS, Aristilde L, Wertz JT, Russell JA. Physiological and evolutionary contexts of a new symbiotic species from the nitrogen-recycling gut community of turtle ants. THE ISME JOURNAL 2023; 17:1751-1764. [PMID: 37558860 PMCID: PMC10504363 DOI: 10.1038/s41396-023-01490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
While genome sequencing has expanded our knowledge of symbiosis, role assignment within multi-species microbiomes remains challenging due to genomic redundancy and the uncertainties of in vivo impacts. We address such questions, here, for a specialized nitrogen (N) recycling microbiome of turtle ants, describing a new genus and species of gut symbiont-Ischyrobacter davidsoniae (Betaproteobacteria: Burkholderiales: Alcaligenaceae)-and its in vivo physiological context. A re-analysis of amplicon sequencing data, with precisely assigned Ischyrobacter reads, revealed a seemingly ubiquitous distribution across the turtle ant genus Cephalotes, suggesting ≥50 million years since domestication. Through new genome sequencing, we also show that divergent I. davidsoniae lineages are conserved in their uricolytic and urea-generating capacities. With phylogenetically refined definitions of Ischyrobacter and separately domesticated Burkholderiales symbionts, our FISH microscopy revealed a distinct niche for I. davidsoniae, with dense populations at the anterior ileum. Being positioned at the site of host N-waste delivery, in vivo metatranscriptomics and metabolomics further implicate I. davidsoniae within a symbiont-autonomous N-recycling pathway. While encoding much of this pathway, I. davidsoniae expressed only a subset of the requisite steps in mature adult workers, including the penultimate step deriving urea from allantoate. The remaining steps were expressed by other specialized gut symbionts. Collectively, this assemblage converts inosine, made from midgut symbionts, into urea and ammonia in the hindgut. With urea supporting host amino acid budgets and cuticle synthesis, and with the ancient nature of other active N-recyclers discovered here, I. davidsoniae emerges as a central player in a conserved and impactful, multipartite symbiosis.
Collapse
Affiliation(s)
- Benoît Béchade
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA.
| | - Christian S Cabuslay
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Yi Hu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Caroll M Mendonca
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Bahareh Hassanpour
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathan Y Lin
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Yangzhou Su
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Valerie J Fiers
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Dharman Anandarajan
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Richard Lu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Chandler J Olson
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Christophe Duplais
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA
| | - Corrie S Moreau
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - John T Wertz
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| |
Collapse
|
13
|
Cho H, Qu Y, Liu C, Tang B, Lyu R, Lin BM, Roach J, Azcarate-Peril MA, Aguiar Ribeiro A, Love MI, Divaris K, Wu D. Comprehensive evaluation of methods for differential expression analysis of metatranscriptomics data. Brief Bioinform 2023; 24:bbad279. [PMID: 37738402 PMCID: PMC10516371 DOI: 10.1093/bib/bbad279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/24/2023] Open
Abstract
Understanding the function of the human microbiome is important but the development of statistical methods specifically for the microbial gene expression (i.e. metatranscriptomics) is in its infancy. Many currently employed differential expression analysis methods have been designed for different data types and have not been evaluated in metatranscriptomics settings. To address this gap, we undertook a comprehensive evaluation and benchmarking of 10 differential analysis methods for metatranscriptomics data. We used a combination of real and simulated data to evaluate performance (i.e. type I error, false discovery rate and sensitivity) of the following methods: log-normal (LN), logistic-beta (LB), MAST, DESeq2, metagenomeSeq, ANCOM-BC, LEfSe, ALDEx2, Kruskal-Wallis and two-part Kruskal-Wallis. The simulation was informed by supragingival biofilm microbiome data from 300 preschool-age children enrolled in a study of childhood dental disease (early childhood caries, ECC), whereas validations were sought in two additional datasets from the ECC study and an inflammatory bowel disease study. The LB test showed the highest sensitivity in both small and large samples and reasonably controlled type I error. Contrarily, MAST was hampered by inflated type I error. Upon application of the LN and LB tests in the ECC study, we found that genes C8PHV7 and C8PEV7, harbored by the lactate-producing Campylobacter gracilis, had the strongest association with childhood dental disease. This comprehensive model evaluation offers practical guidance for selection of appropriate methods for rigorous analyses of differential expression in metatranscriptomics. Selection of an optimal method increases the possibility of detecting true signals while minimizing the chance of claiming false ones.
Collapse
Affiliation(s)
- Hunyong Cho
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Yixiang Qu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Chuwen Liu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Boyang Tang
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Ruiqi Lyu
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Bridget M Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Jeffrey Roach
- Research Computing, University of North Carolina, Chapel Hill, NC, United States
| | - M Andrea Azcarate-Peril
- Department of Medicine and Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Apoena Aguiar Ribeiro
- Division of Diagnostic Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Michael I Love
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| | - Kimon Divaris
- Division of Pediatric and Public Health, University of North Carolina, Chapel Hill, NC, United States
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
- Division of Oral and Craniofacial Health Sciences, Adam School of Dentistry, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
14
|
Ojala T, Häkkinen AE, Kankuri E, Kankainen M. Current concepts, advances, and challenges in deciphering the human microbiota with metatranscriptomics. Trends Genet 2023; 39:686-702. [PMID: 37365103 DOI: 10.1016/j.tig.2023.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Metatranscriptomics refers to the analysis of the collective microbial transcriptome of a sample. Its increased utilization for the characterization of human-associated microbial communities has enabled the discovery of many disease-state related microbial activities. Here, we review the principles of metatranscriptomics-based analysis of human-associated microbial samples. We describe strengths and weaknesses of popular sample preparation, sequencing, and bioinformatics approaches and summarize strategies for their use. We then discuss how human-associated microbial communities have recently been examined and how their characterization may change. We conclude that metatranscriptomics insights into human microbiotas under health and disease have not only expanded our knowledge on human health, but also opened avenues for rational antimicrobial drug use and disease management.
Collapse
Affiliation(s)
- Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit, University of Helsinki, Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland.
| |
Collapse
|
15
|
Penumutchu S, Korry BJ, Hewlett K, Belenky P. Fiber supplementation protects from antibiotic-induced gut microbiome dysbiosis by modulating gut redox potential. Nat Commun 2023; 14:5161. [PMID: 37620319 PMCID: PMC10449846 DOI: 10.1038/s41467-023-40553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Antibiotic-induced gut dysbiosis (AID) is a frequent and serious side effect of antibiotic use and mitigating this dysbiosis is a critical therapeutic target. We propose that the host diet can modulate the chemical environment of the gut resulting in changes to the structure and function of the microbiome during antibiotic treatment. Gut dysbiosis is typically characterized by increases in aerobic respiratory bacterial metabolism, redox potential, and abundance of Proteobacteria. In this study, we explore dietary fiber supplements as potential modulators of the chemical environment in the gut to reduce this pattern of dysbiosis. Using defined-diets and whole-genome sequencing of female murine microbiomes during diet modulation and antibiotic treatment, we find that fiber prebiotics significantly reduced the impact of antibiotic treatment on microbiome composition and function. We observe reduced abundance of aerobic bacteria as well as metabolic pathways associated with oxidative metabolism. These metatranscriptomic results are corroborated by chemical measurements of eH and pH suggesting that fiber dampens the dysbiotic effects of antibiotics. This work indicates that fiber may act as a potential therapeutic for AID by modulating bacterial metabolism in the gut to prevent an increase in redox potential and protect commensal microbes during antibiotic treatment.
Collapse
Affiliation(s)
- Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Katharine Hewlett
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
16
|
Mougeot JLC, Beckman MF, Morton DS, Noll J, Steuerwald NM, Brennan MT, Bahrani Mougeot F. Human oral mucosa and oral microbiome interactions following supragingival plaque reconstitution in healthy volunteers: a diet-controlled balanced design proof-of-concept model to investigate oral pathologies. J Oral Microbiol 2023; 15:2246279. [PMID: 37621744 PMCID: PMC10446812 DOI: 10.1080/20002297.2023.2246279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Changes in the oral microbiome may contribute to oral pathologies, especially in patients undergoing cancer therapy. Interactions between oral microbiome and oral mucosa may exacerbate inflammation. We determined whether probiotic-controlled plaque formation could impact proximal oral mucosa gene expression profiles in healthy volunteers. A 3-weeks balanced sample collection design from healthy volunteers (HVs) was implemented. At Week-1 plaques samples and labial mucosa brush biopsies were obtained from HVs in the morning (N = 4) and/or in the afternoon (N = 4), and groups were flipped at Week-3. A fruit yogurt and tea diet were given 2-4hrs before sample collection. mRNA gene expression analysis was completed using RNA-Seq and DESeq2. Bacterial taxa relative abundance was determined by 16S HOMINGS. Bacterial diversity changes and metabolic pathway enrichment were determined using PRIMERv7 and LEfSe programs. Alpha- and beta-diversities did not differ morning (AM) vs. afternoon (PM). The most affected KEGG pathway was Toll-like receptor signaling in oral mucosa. Eighteen human genes and nine bacterial genes were differentially expressed in plaque samples. Increased activity for 'caries-free' health-associated calcifying Corynebacterium matruchotii and reduced activity for Aggregatibacter aphrophilus, an opportunistic pathogen, were observed. Microbial diversity was not altered after 8 hours plaque formation in healthy individuals as opposed to gene expression.
Collapse
Affiliation(s)
- Jean-Luc C. Mougeot
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Micaela F. Beckman
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Darla S. Morton
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Jenene Noll
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Nury M. Steuerwald
- Molecular Biology and Genomics Core Facility, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Michael T. Brennan
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Farah Bahrani Mougeot
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
17
|
Costa SK, Antosca K, Beekman CN, Peterson RL, Penumutchu S, Belenky P. Short-Term Dietary Intervention with Whole Oats Protects from Antibiotic-Induced Dysbiosis. Microbiol Spectr 2023; 11:e0237623. [PMID: 37439681 PMCID: PMC10434222 DOI: 10.1128/spectrum.02376-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Antibiotic-induced gut microbiome dysbiosis (AID) is known to be influenced by host dietary composition. However, how and when diet modulates gut dysbiosis remains poorly characterized. Thus, here, we utilize a multi-omics approach to characterize how a diet supplemented with oats, a rich source of microbiota-accessible carbohydrates, or dextrose impacts amoxicillin-induced changes to gut microbiome structure and transcriptional activity. We demonstrate that oat administration during amoxicillin challenge provides greater protection from AID than the always oats or recovery oats diet groups. In particular, the group in which oats were provided at the time of antibiotic exposure induced the greatest protection against AID while the other oat diets saw greater effects after amoxicillin challenge. The oat diets likewise reduced amoxicillin-driven elimination of Firmicutes compared to the dextrose diet. Functionally, gut communities fed dextrose were carbohydrate starved and favored respiratory metabolism and consequent metabolic stress management while oat-fed communities shifted their transcriptomic profile and emphasized antibiotic stress management. The metabolic trends were exemplified when assessing transcriptional activity of the following two common gut commensal bacteria: Akkermansia muciniphila and Bacteroides thetaiotaomicron. These findings demonstrate that while host diet is important in shaping how antibiotics effect the gut microbiome composition and function, diet timing may play an even greater role in dietary intervention-based therapeutics. IMPORTANCE We utilize a multi-omics approach to demonstrate that diets supplemented with oats, a rich source of microbiota-accessible carbohydrates, are able to confer protection against antibiotic-induced dysbiosis (AID). Our findings affirm that not only is host diet important in shaping antibiotics effects on gut microbiome composition and function but also that the timing of these diets may play an even greater role in managing AID. This work provides a nuanced perspective on dietary intervention against AID and may be informative on preventing AID during routine antibiotic treatment.
Collapse
Affiliation(s)
- Stephen K. Costa
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Katherine Antosca
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Chapman N. Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Rachel L. Peterson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
18
|
D'Angelo EM. Diversity of virulence and antibiotic resistance genes expressed in Class A biosolids and biosolids-amended soil as revealed by metatranscriptomic analysis. Lett Appl Microbiol 2023; 76:ovad097. [PMID: 37596067 DOI: 10.1093/lambio/ovad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023]
Abstract
Class A biosolids is a treated sewage sludge, commonly applied to agricultural fields, home lawns/gardens, golf courses, forests, and remediation sites around the world. This practice is of public and agricultural concern due to the possibility that biosolids contain antibiotic-resistant bacteria and fungal pathogens that could persist for extended periods in soil. This possibility was determined by metatranscriptomic analysis of virulence, antibiotic resistance, and plasmid conjugation genes, a Class A biosolids, organically managed soil, and biosolids-amended soil under realistic conditions. Biosolids harbored numerous transcriptionally active pathogens, antibiotic resistance genes, and conjugative genes that annotated mostly to Gram-positive pathogens of animal hosts. Biosolids amendment to soil significantly increased the expression of virulence genes by numerous pathogens and antibiotic-resistant genes that were strongly associated with biosolids. Biosolids amendment also significantly increased the expression of virulence genes by native soil fungal pathogens of plant hosts, which suggests higher risks of crop damage by soil fungal pathogens in biosolids-amended soil. Although results are likely to be different in other soils, biosolids, and microbial growth conditions, they provide a more holistic, accurate view of potential health risks associated with biosolids and biosolids-amended soils than has been achievable with more selective cultivation and PCR-based techniques.
Collapse
Affiliation(s)
- Elisa Marie D'Angelo
- Plant and Soil Sciences Department, University of Kentucky, N-122 Agricultural Science Center North, Lexington, KY 40546, United States
| |
Collapse
|
19
|
Taj B, Adeolu M, Xiong X, Ang J, Nursimulu N, Parkinson J. MetaPro: a scalable and reproducible data processing and analysis pipeline for metatranscriptomic investigation of microbial communities. MICROBIOME 2023; 11:143. [PMID: 37370188 DOI: 10.1186/s40168-023-01562-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/28/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Whole microbiome RNASeq (metatranscriptomics) has emerged as a powerful technology to functionally interrogate microbial communities. A key challenge is how best to process, analyze, and interpret these complex datasets. In a typical application, a single metatranscriptomic dataset may comprise from tens to hundreds of millions of sequence reads. These reads must first be processed and filtered for low quality and potential contaminants, before being annotated with taxonomic and functional labels and subsequently collated to generate global bacterial gene expression profiles. RESULTS Here, we present MetaPro, a flexible, massively scalable metatranscriptomic data analysis pipeline that is cross-platform compatible through its implementation within a Docker framework. MetaPro starts with raw sequence read input (single-end or paired-end reads) and processes them through a tiered series of filtering, assembly, and annotation steps. In addition to yielding a final list of bacterial genes and their relative expression, MetaPro delivers a taxonomic breakdown based on the consensus of complementary prediction algorithms, together with a focused breakdown of enzymes, readily visualized through the Cytoscape network visualization tool. We benchmark the performance of MetaPro against two current state-of-the-art pipelines and demonstrate improved performance and functionality. CONCLUSIONS MetaPro represents an effective integrated solution for the processing and analysis of metatranscriptomic datasets. Its modular architecture allows new algorithms to be deployed as they are developed, ensuring its longevity. To aid user uptake of the pipeline, MetaPro, together with an established tutorial that has been developed for educational purposes, is made freely available at https://github.com/ParkinsonLab/MetaPro . The software is freely available under the GNU general public license v3. Video Abstract.
Collapse
Affiliation(s)
- Billy Taj
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Mobolaji Adeolu
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Xuejian Xiong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jordan Ang
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ON, L5L 1C6, Canada
| | - Nirvana Nursimulu
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - John Parkinson
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3G4, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 3G4, Canada.
| |
Collapse
|
20
|
Adekoya AE, Kargbo HA, Ibberson CB. Defining Microbial Community Functions in Chronic Human Infection with Metatranscriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543868. [PMID: 37333206 PMCID: PMC10274682 DOI: 10.1101/2023.06.06.543868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chronic polymicrobial infections (cPMIs) harbor complex bacterial communities with diverse metabolic capacities, leading to competitive and cooperative interactions. Although the microbes present in cPMIs have been established through culture-dependent and-independent methods, the key functions that drive different cPMIs and the metabolic activities of these complex communities remain unknown. To address this knowledge gap, we analyzed 102 published metatranscriptomes collected from cystic fibrosis sputum (CF) and chronic wound infections (CW) to identify key bacterial members and functions in cPMIs. Community composition analysis identified a high prevalence of pathogens, particularly Staphylococcus and Pseudomonas, and anaerobic members of the microbiota, including Porphyromonas, Anaerococcus, and Prevotella. Functional profiling with HUMANn3 and SAMSA2 revealed that while functions involved in bacterial competition, oxidative stress response, and virulence were conserved across both chronic infection types, >40% of the functions were differentially expressed (padj < 0.05, fold-change >2). Higher expression of antibiotic resistance and biofilm functions were observed in CF, while tissue destructive enzymes and oxidative stress response functions were highly expressed in CW samples. Of note, strict anaerobes had negative correlations with traditional pathogens in both CW (P = -0.43) and CF (P = -0.27) samples and they significantly contributed to the expression of these functions. Additionally, we show microbial communities have unique expression patterns and distinct organisms fulfill the expression of key functions in each site, indicating the infection environment strongly influences bacterial physiology and that community structure influences function. Collectively, our findings indicate that community composition and function should guide treatment strategies for cPMIs.
Collapse
Affiliation(s)
- Aanuoluwa E. Adekoya
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019
| | - Hoody A. Kargbo
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019
| | - Carolyn B. Ibberson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
21
|
Carneiro J, Pascoal F, Semedo M, Pratas D, Tomasino MP, Rego A, Carvalho MDF, Mucha AP, Magalhães C. Mapping human pathogens in wastewater using a metatranscriptomic approach. ENVIRONMENTAL RESEARCH 2023; 231:116040. [PMID: 37150387 PMCID: PMC10172761 DOI: 10.1016/j.envres.2023.116040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
The monitoring of cities' wastewaters for the detection of potentially pathogenic viruses and bacteria has been considered a priority during the COVID-19 pandemic to monitor public health in urban environments. The methodological approaches frequently used for this purpose include deoxyribonucleic acid (DNA)/Ribonucleic acid (RNA) isolation followed by quantitative polymerase chain reaction (qPCR) and reverse transcription (RT)‒qPCR targeting pathogenic genes. More recently, the application of metatranscriptomic has opened opportunities to develop broad pathogenic monitoring workflows covering the entire pathogenic community within the sample. Nevertheless, the high amount of data generated in the process requires an appropriate analysis to detect the pathogenic community from the entire dataset. Here, an implementation of a bioinformatic workflow was developed to produce a map of the detected pathogenic bacteria and viruses in wastewater samples by analysing metatranscriptomic data. The main objectives of this work was the development of a computational methodology that can accurately detect both human pathogenic virus and bacteria in wastewater samples. This workflow can be easily reproducible with open-source software and uses efficient computational resources. The results showed that the used algorithms can predict potential human pathogens presence in the tested samples and that active forms of both bacteria and virus can be identified. By comparing the computational method implemented in this study to other state-of-the-art workflows, the implementation analysis was faster, while providing higher accuracy and sensitivity. Considering these results, the processes and methods to monitor wastewater for potential human pathogens can become faster and more accurate. The proposed workflow is available at https://github.com/waterpt/watermonitor and can be implemented in currently wastewater monitoring programs to ascertain the presence of potential human pathogenic species.
Collapse
Affiliation(s)
- João Carneiro
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal.
| | - Francisco Pascoal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/n, 4169- 007, Porto, Portugal
| | - Miguel Semedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal
| | - Diogo Pratas
- IEETA - Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Portugal; Department of Virology, University of Helsinki, Finland; Department of Electronics Telecommunications and Informatics, University of Aveiro, Portugal
| | - Maria Paola Tomasino
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal
| | - Adriana Rego
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal
| | - Maria de Fátima Carvalho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Portugal
| | - Ana Paula Mucha
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/n, 4169- 007, Porto, Portugal
| | - Catarina Magalhães
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/n, 4169- 007, Porto, Portugal
| |
Collapse
|
22
|
Kariuki EG, Kibet C, Paredes JC, Mboowa G, Mwaura O, Njogu J, Masiga D, Bugg TDH, Tanga CM. Metatranscriptomic analysis of the gut microbiome of black soldier fly larvae reared on lignocellulose-rich fiber diets unveils key lignocellulolytic enzymes. Front Microbiol 2023; 14:1120224. [PMID: 37180276 PMCID: PMC10171111 DOI: 10.3389/fmicb.2023.1120224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Recently, interest in the black soldier fly larvae (BSFL) gut microbiome has received increased attention primarily due to their role in waste bioconversion. However, there is a lack of information on the positive effect on the activities of the gut microbiomes and enzymes (CAZyme families) acting on lignocellulose. In this study, BSFL were subjected to lignocellulose-rich diets: chicken feed (CF), chicken manure (CM), brewers' spent grain (BSG), and water hyacinth (WH). The mRNA libraries were prepared, and RNA-Sequencing was conducted using the PCR-cDNA approach through the MinION sequencing platform. Our results demonstrated that BSFL reared on BSG and WH had the highest abundance of Bacteroides and Dysgonomonas. The presence of GH51 and GH43_16 enzyme families in the gut of BSFL with both α-L-arabinofuranosidases and exo-alpha-L-arabinofuranosidase 2 were common in the BSFL reared on the highly lignocellulosic WH and BSG diets. Gene clusters that encode hemicellulolytic arabinofuranosidases in the CAZy family GH51 were also identified. These findings provide novel insight into the shift of gut microbiomes and the potential role of BSFL in the bioconversion of various highly lignocellulosic diets to fermentable sugars for subsequent value-added products (bioethanol). Further research on the role of these enzymes to improve existing technologies and their biotechnological applications is crucial.
Collapse
Affiliation(s)
- Eric G. Kariuki
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Caleb Kibet
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Juan C. Paredes
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Oscar Mwaura
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - John Njogu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Timothy D. H. Bugg
- Department of Chemistry, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Chrysantus M. Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
23
|
Lamaudière MTF, Arasaradnam R, Weedall GD, Morozov IY. The Colorectal Cancer Gut Environment Regulates Activity of the Microbiome and Promotes the Multidrug Resistant Phenotype of ESKAPE and Other Pathogens. mSphere 2023; 8:e0062622. [PMID: 36847529 PMCID: PMC10117110 DOI: 10.1128/msphere.00626-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/28/2023] [Indexed: 03/01/2023] Open
Abstract
Taxonomic composition of the gut microbiota in colorectal cancer (CRC) patients is altered, a newly recognized driving force behind the disease, the activity of which has been overlooked. We conducted a pilot study on active microbial taxonomic composition in the CRC gut via metatranscriptome and 16S rRNA gene (rDNA) sequencing. We revealed sub-populations in CRC (n = 10) and control (n = 10) cohorts of over-active and dormant species, as changes in activity were often independent from abundance. Strikingly, the diseased gut significantly influenced transcription of butyrate producing bacteria, clinically relevant ESKAPE, oral, and Enterobacteriaceae pathogens. A focused analysis of antibiotic (AB) resistance genes showed that both CRC and control microbiota displayed a multidrug resistant phenotype, including ESKAPE species. However, a significant majority of AB resistance determinants of several AB families were upregulated in the CRC gut. We found that environmental gut factors regulated AB resistance gene expression in vitro of aerobic CRC microbiota, specifically acid, osmotic, and oxidative pressures in a predominantly health-dependent manner. This was consistent with metatranscriptome analysis of these cohorts, while osmotic and oxidative pressures induced differentially regulated responses. This work provides novel insights into the organization of active microbes in CRC, and reveals significant regulation of functionally related group activity, and unexpected microbiome-wide upregulation of AB resistance genes in response to environmental changes of the cancerous gut. IMPORTANCE The human gut microbiota in colorectal cancer patients have a distinct population compared to heathy counterparts. However, the activity (gene expression) of this community has not been investigated. Following quantification of both expressed genes and gene abundance, we established that a sub-population of microbes lies dormant in the cancerous gut, while other groups, namely, clinically relevant oral and multi-drug resistant pathogens, significantly increased in activity. Targeted analysis of community-wide antibiotic resistance determinants found that their expression occurs independently of antibiotic treatment, regardless of host health. However, its expression in aerobes, in vitro, can be regulated by specific environmental stresses of the gut, including organic and inorganic acid pressure in a health-dependent manner. This work advances the field of microbiology in the context of disease, showing, for the first time, that colorectal cancer regulates activity of gut microorganisms and that specific gut environmental pressures can modulate their antibiotic resistance determinants expression.
Collapse
Affiliation(s)
| | - Ramesh Arasaradnam
- Divison of Biomedical Sciences, Warwick Medical School, University of Warwick, Warwick, United Kingdom
- Department of Gastroenterology, University Hospitals of Coventry and Warwickshire, NHS trust, Coventry, United Kingdom
- University of Leicester, Leicester, United Kingdom
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moors University, Liverpool, United Kingdom
| | - Igor Y. Morozov
- Centre for Sports, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
24
|
Parizadeh M, Mimee B, Kembel SW. Soil microbial gene expression in an agricultural ecosystem varies with time and neonicotinoid seed treatments. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001318. [PMID: 37083497 PMCID: PMC10202318 DOI: 10.1099/mic.0.001318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/02/2023] [Indexed: 04/22/2023]
Abstract
Neonicotinoids, a class of systemic insecticides, have been widely used for decades against various insect pests. Previous studies have reported non-target effects of neonicotinoids on some beneficial macro- and micro-organisms. Considering the crucial role the soil microbiota plays in sustaining soil fertility, it is critical to understand how neonicotinoid exposure affects the microbial taxonomic composition and gene expression. However, most studies to date have evaluated soil microbial taxonomic compositions or assessed microbial functions based on soil biochemical analysis. In this study, we have applied a metatranscriptomic approach to quantify the variability in soil microbial gene expression in a 2 year soybean/corn crop rotation in Quebec, Canada. We identified weak and temporally inconsistent effects of neonicotinoid application on soil microbial gene expression, as well as a strong temporal variation in soil microbial gene expression among months and years. Neonicotinoid seed treatment altered the expression of a small number of microbial genes, including genes associated with heat shock proteins, regulatory functions, metabolic processes and DNA repair. These changes in gene expression varied during the growing season and between years. Overall, the composition of soil microbial expressed genes seems to be more resilient and less affected by neonicotinoid application than soil microbial taxonomic composition. Our study is among the first to document the effects of neonicotinoid seed treatment on microbial gene expression and highlights the strong temporal variability of soil microbial gene expression and its responses to neonicotinoid seed treatments.
Collapse
Affiliation(s)
- Mona Parizadeh
- Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, Québec, H2X 1Y4, Canada
- Present address: Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Benjamin Mimee
- Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Steven W. Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, Québec, H2X 1Y4, Canada
| |
Collapse
|
25
|
Korry BJ, Belenky P. Trophic level and proteobacteria abundance drive antibiotic resistance levels in fish from coastal New England. Anim Microbiome 2023; 5:16. [PMID: 36879316 PMCID: PMC9990352 DOI: 10.1186/s42523-023-00236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND The natural marine environment represents a vast reservoir of antimicrobial resistant bacteria. The wildlife that inhabits this environment plays an important role as the host to these bacteria and in the dissemination of resistance. The relationship between host diet, phylogeny, and trophic level and the microbiome/resistome in marine fish is not fully understood. To further explore this relationship, we utilize shotgun metagenomic sequencing to define the gastrointestinal tract microbiomes of seven different marine vertebrates collected in coastal New England waters. RESULTS We identify inter and intraspecies differences in the gut microbiota of these wild marine fish populations. Furthermore, we find an association between antibiotic resistance genes and host dietary guild, which suggests that higher trophic level organisms have a greater abundance of resistance genes. Additionally, we demonstrate that antibiotic resistance gene burden is positively correlated with Proteobacteria abundance in the microbiome. Lastly, we identify dietary signatures within the gut of these fish and find evidence of possible dietary selection for bacteria with specific carbohydrate utilization potential. CONCLUSIONS This work establishes a link between host lifestyle/dietary guild, and microbiome composition and the abundance of antibiotic resistance genes within the gastrointestinal tract of marine organisms. We expand the current understanding of marine organism-associated microbial communities and their role as reservoirs of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02906, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02906, USA.
| |
Collapse
|
26
|
Krinos AI, Cohen NR, Follows MJ, Alexander H. Reverse engineering environmental metatranscriptomes clarifies best practices for eukaryotic assembly. BMC Bioinformatics 2023; 24:74. [PMID: 36869298 PMCID: PMC9983209 DOI: 10.1186/s12859-022-05121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Diverse communities of microbial eukaryotes in the global ocean provide a variety of essential ecosystem services, from primary production and carbon flow through trophic transfer to cooperation via symbioses. Increasingly, these communities are being understood through the lens of omics tools, which enable high-throughput processing of diverse communities. Metatranscriptomics offers an understanding of near real-time gene expression in microbial eukaryotic communities, providing a window into community metabolic activity. RESULTS Here we present a workflow for eukaryotic metatranscriptome assembly, and validate the ability of the pipeline to recapitulate real and manufactured eukaryotic community-level expression data. We also include an open-source tool for simulating environmental metatranscriptomes for testing and validation purposes. We reanalyze previously published metatranscriptomic datasets using our metatranscriptome analysis approach. CONCLUSION We determined that a multi-assembler approach improves eukaryotic metatranscriptome assembly based on recapitulated taxonomic and functional annotations from an in-silico mock community. The systematic validation of metatranscriptome assembly and annotation methods provided here is a necessary step to assess the fidelity of our community composition measurements and functional content assignments from eukaryotic metatranscriptomes.
Collapse
Affiliation(s)
- Arianna I Krinos
- MIT-WHOI Joint Program in Oceanography and Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA.
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Natalie R Cohen
- Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
| | - Michael J Follows
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harriet Alexander
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
27
|
The Colorectal Cancer Microbiota Alter Their Transcriptome To Adapt to the Acidity, Reactive Oxygen Species, and Metabolite Availability of Gut Microenvironments. mSphere 2023; 8:e0062722. [PMID: 36847536 PMCID: PMC10117117 DOI: 10.1128/msphere.00627-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The gut microbiome is implicated in the pathology of colorectal cancer (CRC). However, the mechanisms by which the microbiota actively contribute to disease onset and progression remain elusive. In this pilot study, we sequenced fecal metatranscriptomes of 10 non-CRC and 10 CRC patient gut microbiomes and conducted differential gene expression analyses to assess any changed functionality in disease. We report that oxidative stress responses were the dominant activity across cohorts, an overlooked protective housekeeping role of the human gut microbiome. However, expression of hydrogen peroxide and nitric oxide-scavenging genes was diminished and augmented, respectively, positing that these regulated microbial responses have implications for CRC pathology. CRC microbes enhanced expression of genes for host colonization, biofilm formation, genetic exchange, virulence determinants, antibiotic, and acid resistances. Moreover, microbes promoted transcription of genes involved in metabolism of several beneficial metabolites, suggesting their contribution to patient metabolite deficiencies previously solely attributed to tumor cells. We showed in vitro that expression of genes involved in amino acid-dependent acid resistance mechanisms of meta-gut Escherichia coli responded differently to acid, salt, and oxidative pressures under aerobic conditions. These responses were mostly dictated by the host health status of origin of the microbiota, suggesting their exposure to fundamentally different gut conditions. These findings for the first time highlight mechanisms by which the gut microbiota can either protect against or drive colorectal cancer and provide insights into the cancerous gut environment that drives functional characteristics of the microbiome. IMPORTANCE The human gut microbiota has the genetic potential to drive colorectal cancer onset and progression; however, the expression of this genetic potential during the disease has not been investigated. We found that microbial expression of genes that detoxify DNA-damaging reactive oxygen species, which drive colorectal cancer, is compromised in cancer. We observed a greater activation of expression of genes involved in virulence, host colonization, exchange of genetic material, metabolite utilization, defense against antibiotics, and environmental pressures. Culturing gut Escherichia coli of cancerous and noncancerous metamicrobiota revealed different regulatory responses of amino acid-dependent acid resistance mechanisms in a health-dependent manner under environmental acid, oxidative, and osmotic pressures. Here, for the first time, we demonstrate that the activity of microbial genomes is regulated by the health status of the gut in vivo and in vitro and provides new insights for shifts in microbial gene expression in colorectal cancer.
Collapse
|
28
|
Forgie AJ, Pepin DM, Ju T, Tollenaar S, Sergi CM, Gruenheid S, Willing BP. Over supplementation with vitamin B12 alters microbe-host interactions in the gut leading to accelerated Citrobacter rodentium colonization and pathogenesis in mice. MICROBIOME 2023; 11:21. [PMID: 36737826 PMCID: PMC9896722 DOI: 10.1186/s40168-023-01461-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/04/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Vitamin B12 supplements typically contain doses that far exceed the recommended daily amount, and high exposures are generally considered safe. Competitive and syntrophic interactions for B12 exist between microbes in the gut. Yet, to what extent excessive levels contribute to the activities of the gut microbiota remains unclear. The objective of this study was to evaluate the effect of B12 on microbial ecology using a B12 supplemented mouse model with Citrobacter rodentium, a mouse-specific pathogen. Mice were fed a standard chow diet and received either water or water supplemented with B12 (cyanocobalamin: ~120 μg/day), which equates to approximately 25 mg in humans. Infection severity was determined by body weight, pathogen load, and histopathologic scoring. Host biomarkers of inflammation were assessed in the colon before and after the pathogen challenge. RESULTS Cyanocobalamin supplementation enhanced pathogen colonization at day 1 (P < 0.05) and day 3 (P < 0.01) postinfection. The impact of B12 on gut microbial communities, although minor, was distinct and attributed to the changes in the Lachnospiraceae populations and reduced alpha diversity. Cyanocobalamin treatment disrupted the activity of the low-abundance community members of the gut microbiota. It enhanced the amount of interleukin-12 p40 subunit protein (IL12/23p40; P < 0.001) and interleukin-17a (IL-17A; P < 0.05) in the colon of naïve mice. This immune phenotype was microbe dependent, and the response varied based on the baseline microbiota. The cecal metatranscriptome revealed that excessive cyanocobalamin decreased the expression of glucose utilizing genes by C. rodentium, a metabolic attribute previously associated with pathogen virulence. CONCLUSIONS Oral vitamin B12 supplementation promoted C. rodentium colonization in mice by altering the activities of the Lachnospiraceae populations in the gut. A lower abundance of select Lachnospiraceae species correlated to higher p40 subunit levels, while the detection of Parasutterella exacerbated inflammatory markers in the colon of naïve mice. The B12-induced change in gut ecology enhanced the ability of C. rodentium colonization by impacting key microbe-host interactions that help with pathogen exclusion. This research provides insight into how B12 impacts the gut microbiota and highlights potential consequences of disrupting microbial B12 competition/sharing through over-supplementation. Video Abstract.
Collapse
Affiliation(s)
- Andrew J Forgie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Deanna M Pepin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Consolato M Sergi
- Division of Anatomic Pathology, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Ontario, Canada
| | - Samantha Gruenheid
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
29
|
Chen JW, Shrestha L, Green G, Leier A, Marquez-Lago TT. The hitchhikers' guide to RNA sequencing and functional analysis. Brief Bioinform 2023; 24:bbac529. [PMID: 36617463 PMCID: PMC9851315 DOI: 10.1093/bib/bbac529] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 01/10/2023] Open
Abstract
DNA and RNA sequencing technologies have revolutionized biology and biomedical sciences, sequencing full genomes and transcriptomes at very high speeds and reasonably low costs. RNA sequencing (RNA-Seq) enables transcript identification and quantification, but once sequencing has concluded researchers can be easily overwhelmed with questions such as how to go from raw data to differential expression (DE), pathway analysis and interpretation. Several pipelines and procedures have been developed to this effect. Even though there is no unique way to perform RNA-Seq analysis, it usually follows these steps: 1) raw reads quality check, 2) alignment of reads to a reference genome, 3) aligned reads' summarization according to an annotation file, 4) DE analysis and 5) gene set analysis and/or functional enrichment analysis. Each step requires researchers to make decisions, and the wide variety of options and resulting large volumes of data often lead to interpretation challenges. There also seems to be insufficient guidance on how best to obtain relevant information and derive actionable knowledge from transcription experiments. In this paper, we explain RNA-Seq steps in detail and outline differences and similarities of different popular options, as well as advantages and disadvantages. We also discuss non-coding RNA analysis, multi-omics, meta-transcriptomics and the use of artificial intelligence methods complementing the arsenal of tools available to researchers. Lastly, we perform a complete analysis from raw reads to DE and functional enrichment analysis, visually illustrating how results are not absolute truths and how algorithmic decisions can greatly impact results and interpretation.
Collapse
Affiliation(s)
- Jiung-Wen Chen
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa Shrestha
- Department of Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - George Green
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Leier
- Department of Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Tatiana T Marquez-Lago
- Department of Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| |
Collapse
|
30
|
Terrón-Camero LC, Gordillo-González F, Salas-Espejo E, Andrés-León E. Comparison of Metagenomics and Metatranscriptomics Tools: A Guide to Making the Right Choice. Genes (Basel) 2022; 13:2280. [PMID: 36553546 PMCID: PMC9777648 DOI: 10.3390/genes13122280] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The study of microorganisms is a field of great interest due to their environmental (e.g., soil contamination) and biomedical (e.g., parasitic diseases, autism) importance. The advent of revolutionary next-generation sequencing techniques, and their application to the hypervariable regions of the 16S, 18S or 23S ribosomal subunits, have allowed the research of a large variety of organisms more in-depth, including bacteria, archaea, eukaryotes and fungi. Additionally, together with the development of analysis software, the creation of specific databases (e.g., SILVA or RDP) has boosted the enormous growth of these studies. As the cost of sequencing per sample has continuously decreased, new protocols have also emerged, such as shotgun sequencing, which allows the profiling of all taxonomic domains in a sample. The sequencing of hypervariable regions and shotgun sequencing are technologies that enable the taxonomic classification of microorganisms from the DNA present in microbial communities. However, they are not capable of measuring what is actively expressed. Conversely, we advocate that metatranscriptomics is a "new" technology that makes the identification of the mRNAs of a microbial community possible, quantifying gene expression levels and active biological pathways. Furthermore, it can be also used to characterise symbiotic interactions between the host and its microbiome. In this manuscript, we examine the three technologies above, and discuss the implementation of different software and databases, which greatly impact the obtaining of reliable results. Finally, we have developed two easy-to-use pipelines leveraging Nextflow technology. These aim to provide everything required for an average user to perform a metagenomic analysis of marker genes with QIMME2 and a metatranscriptomic study using Kraken2/Bracken.
Collapse
Affiliation(s)
- Laura C. Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC (IPBLN-CSIC), 18016 Granada, Spain
| | - Fernando Gordillo-González
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC (IPBLN-CSIC), 18016 Granada, Spain
| | - Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC (IPBLN-CSIC), 18016 Granada, Spain
| |
Collapse
|
31
|
McDaniel EA, van Steenbrugge JJM, Noguera DR, McMahon KD, Raaijmakers JM, Medema MH, Oyserman BO. TbasCO: trait-based comparative 'omics identifies ecosystem-level and niche-differentiating adaptations of an engineered microbiome. ISME COMMUNICATIONS 2022; 2:111. [PMID: 37938301 PMCID: PMC9723799 DOI: 10.1038/s43705-022-00189-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2023]
Abstract
A grand challenge in microbial ecology is disentangling the traits of individual populations within complex communities. Various cultivation-independent approaches have been used to infer traits based on the presence of marker genes. However, marker genes are not linked to traits with complete fidelity, nor do they capture important attributes, such as the timing of gene expression or coordination among traits. To address this, we present an approach for assessing the trait landscape of microbial communities by statistically defining a trait attribute as a shared transcriptional pattern across multiple organisms. Leveraging the KEGG pathway database as a trait library and the Enhanced Biological Phosphorus Removal (EBPR) model microbial ecosystem, we demonstrate that a majority (65%) of traits present in 10 or more genomes have niche-differentiating expression attributes. For example, while many genomes containing high-affinity phosphorus transporter pstABCS display a canonical attribute (e.g. up-regulation under phosphorus starvation), we identified another attribute shared by many genomes where transcription was highest under high phosphorus conditions. Taken together, we provide a novel framework for unravelling the functional dynamics of uncultivated microorganisms by assigning trait-attributes through genome-resolved time-series metatranscriptomics.
Collapse
Affiliation(s)
- E A McDaniel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - J J M van Steenbrugge
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands.
- Microbial Ecology, Netherlands Institute of Ecological Research, Wageningen, The Netherlands.
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands.
| | - D R Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - K D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - J M Raaijmakers
- Microbial Ecology, Netherlands Institute of Ecological Research, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - M H Medema
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - B O Oyserman
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands.
- Microbial Ecology, Netherlands Institute of Ecological Research, Wageningen, The Netherlands.
| |
Collapse
|
32
|
Intraintestinal Analysis of the Functional Activity of Microbiomes and Its Application to the Common Marmoset Intestine. mSystems 2022; 7:e0052022. [PMID: 36005400 PMCID: PMC9601136 DOI: 10.1128/msystems.00520-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The intestinal microbiome is closely related to host health, and metatranscriptomic analysis can be used to assess the functional activity of microbiomes by quantifying microbial gene expression levels, helping elucidate the interactions between the microbiome and the environment. However, the functional changes in the microbiome along the host intestinal tract remain unknown, and previous analytical methods have limitations, such as potentially overlooking unknown genes due to dependence on existing databases. The objective of this study is to develop a computational pipeline combined with next-generation sequencing for spatial covariation analysis of the functional activity of microbiomes at multiple intestinal sites (biogeographic locations) within the same individual. This method reconstructs a reference metagenomic sequence across multiple intestinal sites and integrates the metagenome and metatranscriptome, allowing the gene expression levels of the microbiome, including unknown bacterial genes, to be compared among multiple sites. When this method was applied to metatranscriptomic analysis in the intestinal tract of common marmosets, a New World monkey, the reconstructed metagenome covered most of the expressed genes and revealed that the differences in microbial gene expression among the cecum, transverse colon, and feces were more dynamic and sensitive to environmental shifts than the abundances of the genes. In addition, metatranscriptomic profiling at three intestinal sites of the same individual enabled covariation analysis incorporating spatial relevance, accurately predicting the function of a total of 10,856 unknown genes. Our findings demonstrate that our proposed analytical method captures functional changes in microbiomes at the gene resolution level. IMPORTANCE We developed an analysis method that integrates metagenomes and metatranscriptomes from multiple intestinal sites to elucidate how microbial function varies along the intestinal tract. This method enables spatial covariation analysis of the functional activity of microbiomes and accurate identification of gene expression changes among intestinal sites, including changes in the expression of unknown bacterial genes. Moreover, we applied this method to the investigation of the common marmoset intestine, which is anatomically and pharmacologically similar to that of humans. Our findings indicate the expression pattern of the microbiome varies in response to changes in the internal environment along the intestinal tract, and this microbial change may affect the intestinal environment.
Collapse
|
33
|
Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. THE ISME JOURNAL 2022; 16:2144-2159. [PMID: 35717467 PMCID: PMC9381525 DOI: 10.1038/s41396-022-01255-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
Abstract
AbstractMicrobe–microbe interactions in the human gut are influenced by host-derived glycans and diet. The high complexity of the gut microbiome poses a major challenge for unraveling the metabolic interactions and trophic roles of key microbes. Synthetic minimal microbiomes provide a pragmatic approach to investigate their ecology including metabolic interactions. Here, we rationally designed a synthetic microbiome termed Mucin and Diet based Minimal Microbiome (MDb-MM) by taking into account known physiological features of 16 key bacteria. We combined 16S rRNA gene-based composition analysis, metabolite measurements and metatranscriptomics to investigate community dynamics, stability, inter-species metabolic interactions and their trophic roles. The 16 species co-existed in the in vitro gut ecosystems containing a mixture of complex substrates representing dietary fibers and mucin. The triplicate MDb-MM’s followed the Taylor’s power law and exhibited strikingly similar ecological and metabolic patterns. The MDb-MM exhibited resistance and resilience to temporal perturbations as evidenced by the abundance and metabolic end products. Microbe-specific temporal dynamics in transcriptional niche overlap and trophic interaction network explained the observed co-existence in a competitive minimal microbiome. Overall, the present study provides crucial insights into the co-existence, metabolic niches and trophic roles of key intestinal microbes in a highly dynamic and competitive in vitro ecosystem.
Collapse
|
34
|
Broman E, Izabel-Shen D, Rodríguez-Gijón A, Bonaglia S, Garcia SL, Nascimento FJA. Microbial functional genes are driven by gradients in sediment stoichiometry, oxygen, and salinity across the Baltic benthic ecosystem. MICROBIOME 2022; 10:126. [PMID: 35965333 PMCID: PMC9377124 DOI: 10.1186/s40168-022-01321-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Microorganisms in the seafloor use a wide range of metabolic processes, which are coupled to the presence of functional genes within their genomes. Aquatic environments are heterogenous and often characterized by natural physiochemical gradients that structure these microbial communities potentially changing the diversity of functional genes and its associated metabolic processes. In this study, we investigated spatial variability and how environmental variables structure the diversity and composition of benthic functional genes and metabolic pathways across various fundamental environmental gradients. We analyzed metagenomic data from sediment samples, measured related abiotic data (e.g., salinity, oxygen and carbon content), covering 59 stations spanning 1,145 km across the Baltic Sea. RESULTS The composition of genes and microbial communities were mainly structured by salinity plus oxygen, and the carbon to nitrogen (C:N) ratio for specific metabolic pathways related to nutrient transport and carbon metabolism. Multivariate analyses indicated that the compositional change in functional genes was more prominent across environmental gradients compared to changes in microbial taxonomy even at genus level, and indicate functional diversity adaptation to local environments. Oxygen deficient areas (i.e., dead zones) were more different in gene composition when compared to oxic sediments. CONCLUSIONS This study highlights how benthic functional genes are structured over spatial distances and by environmental gradients and resource availability, and suggests that changes in, e.g., oxygenation, salinity, and carbon plus nitrogen content will influence functional metabolic pathways in benthic habitats. Video Abstract.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Alejandro Rodríguez-Gijón
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
35
|
Morgan EW, Perdew GH, Patterson AD. Multi-Omics Strategies for Investigating the Microbiome in Toxicology Research. Toxicol Sci 2022; 187:189-213. [PMID: 35285497 PMCID: PMC9154275 DOI: 10.1093/toxsci/kfac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microbial communities on and within the host contact environmental pollutants, toxic compounds, and other xenobiotic compounds. These communities of bacteria, fungi, viruses, and archaea possess diverse metabolic potential to catabolize compounds and produce new metabolites. Microbes alter chemical disposition thus making the microbiome a natural subject of interest for toxicology. Sequencing and metabolomics technologies permit the study of microbiomes altered by acute or long-term exposure to xenobiotics. These investigations have already contributed to and are helping to re-interpret traditional understandings of toxicology. The purpose of this review is to provide a survey of the current methods used to characterize microbes within the context of toxicology. This will include discussion of commonly used techniques for conducting omic-based experiments, their respective strengths and deficiencies, and how forward-looking techniques may address present shortcomings. Finally, a perspective will be provided regarding common assumptions that currently impede microbiome studies from producing causal explanations of toxicologic mechanisms.
Collapse
Affiliation(s)
- Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
36
|
Shetty SA, Kuipers B, Atashgahi S, Aalvink S, Smidt H, de Vos WM. Inter-species Metabolic Interactions in an In-vitro Minimal Human Gut Microbiome of Core Bacteria. NPJ Biofilms Microbiomes 2022; 8:21. [PMID: 35395818 PMCID: PMC8993927 DOI: 10.1038/s41522-022-00275-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Knowledge of the functional roles and interspecies interactions are crucial for improving our understanding of the human intestinal microbiome in health and disease. However, the complexity of the human intestinal microbiome and technical challenges in investigating it pose major challenges. In this proof-of-concept study, we rationally designed, assembled and experimentally tested a synthetic Diet-based Minimal Microbiome (Db-MM) consisting of ten core intestinal bacterial species that together are capable of efficiently converting dietary fibres into short chain fatty acids (SCFAs). Despite their genomic potential for metabolic competition, all ten bacteria coexisted during growth on a mixture of dietary fibres, including pectin, inulin, xylan, cellobiose and starch. By integrated analyses of metabolite production, community composition and metatranscriptomics-based gene expression data, we identified interspecies metabolic interactions leading to production of key SCFAs such as butyrate and propionate. While public goods, such as sugars liberated from colonic fibres, are harvested by non-degraders, some species thrive by cross-feeding on energetically challenging substrates, including the butyrogenic conversion of acetate and lactate. Using a reductionist approach in an in-vitro system combined with functional measurements, our study provides key insights into the complex interspecies metabolic interactions between core intestinal bacterial species.
Collapse
Affiliation(s)
- Sudarshan A Shetty
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.,Department of Medical Microbiology and Infection prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, The Netherlands
| | - Ben Kuipers
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.,Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands. .,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
37
|
Wu F, Liu YZ, Ling B. MTD: a unique pipeline for host and meta-transcriptome joint and integrative analyses of RNA-seq data. Brief Bioinform 2022; 23:6563416. [PMID: 35380623 PMCID: PMC9116375 DOI: 10.1093/bib/bbac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ribonucleic acid (RNA)-seq data contain not only host transcriptomes but also nonhost information that comprises transcripts from active microbiota in the host cells. Therefore, joint and integrative analyses of both host and meta-transcriptome can reveal gene expression of the microbial community in a given sample as well as the correlative and interactive dynamics of the host response to the microbiome. However, there are no convenient tools that can systemically analyze host-microbiota interactions through simultaneously quantifying the host and meta-transcriptome in the same sample at the tissue and the single-cell level. This poses a challenge for interested researchers with limited expertise in bioinformatics. Here, we developed a software pipeline that can comprehensively and synergistically analyze and correlate the host and meta-transcriptome in a single sample using bulk and single-cell RNA-seq data. This pipeline, named meta-transcriptome detector (MTD), can extensively identify and quantify microbiome, including viruses, bacteria, protozoa, fungi, plasmids and vectors, in the host cells and correlate the microbiome with the host transcriptome. MTD is easy to install and run, involving only a few lines of simple commands. It offers researchers with unique genomics insights into host responses to microorganisms.
Collapse
Affiliation(s)
- Fei Wu
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA.,Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yao-Zhong Liu
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Binhua Ling
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| |
Collapse
|
38
|
Cerdan-Garcia E, Baylay A, Polyviou D, Woodward EMS, Wrightson L, Mahaffey C, Lohan MC, Moore CM, Bibby TS, Robidart JC. Transcriptional responses of Trichodesmium to natural inverse gradients of Fe and P availability. THE ISME JOURNAL 2022; 16:1055-1064. [PMID: 34819612 PMCID: PMC8941076 DOI: 10.1038/s41396-021-01151-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022]
Abstract
The filamentous diazotrophic cyanobacterium Trichodesmium is responsible for a significant fraction of marine di-nitrogen (N2) fixation. Growth and distribution of Trichodesmium and other diazotrophs in the vast oligotrophic subtropical gyres is influenced by iron (Fe) and phosphorus (P) availability, while reciprocally influencing the biogeochemistry of these nutrients. Here we use observations across natural inverse gradients in Fe and P in the North Atlantic subtropical gyre (NASG) to demonstrate how Trichodesmium acclimates in situ to resource availability. Transcriptomic analysis identified progressive upregulation of known iron-stress biomarker genes with decreasing Fe availability, and progressive upregulation of genes involved in the acquisition of diverse P sources with decreasing P availability, while genes involved in N2 fixation were upregulated at the intersection under moderate Fe and P availability. Enhanced N2 fixation within the Fe and P co-stressed transition region was also associated with a distinct, consistent metabolic profile, including the expression of alternative photosynthetic pathways that potentially facilitate ATP generation required for N2 fixation with reduced net oxygen production. The observed response of Trichodesmium to availability of both Fe and P supports suggestions that these biogeochemically significant organisms employ unique molecular, and thus physiological responses as adaptations to specifically exploit the Fe and P co-limited niche they construct.
Collapse
Affiliation(s)
- E Cerdan-Garcia
- Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK.
| | - A Baylay
- Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
| | - D Polyviou
- National Oceanography Centre, Southampton, SO14 3ZH, UK
| | | | - L Wrightson
- Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - C Mahaffey
- Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - M C Lohan
- Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
| | - C M Moore
- Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
| | - T S Bibby
- Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
| | - J C Robidart
- National Oceanography Centre, Southampton, SO14 3ZH, UK.
| |
Collapse
|
39
|
Morais DAA, Cavalcante JVF, Monteiro SS, Pasquali MAB, Dalmolin RJS. MEDUSA: A Pipeline for Sensitive Taxonomic Classification and Flexible Functional Annotation of Metagenomic Shotgun Sequences. Front Genet 2022; 13:814437. [PMID: 35330728 PMCID: PMC8940201 DOI: 10.3389/fgene.2022.814437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Metagenomic studies unravel details about the taxonomic composition and the functions performed by microbial communities. As a complete metagenomic analysis requires different tools for different purposes, the selection and setup of these tools remain challenging. Furthermore, the chosen toolset will affect the accuracy, the formatting, and the functional identifiers reported in the results, impacting the results interpretation and the biological answer obtained. Thus, we surveyed state-of-the-art tools available in the literature, created simulated datasets, and performed benchmarks to design a sensitive and flexible metagenomic analysis pipeline. Here we present MEDUSA, an efficient pipeline to conduct comprehensive metagenomic analyses. It performs preprocessing, assembly, alignment, taxonomic classification, and functional annotation on shotgun data, supporting user-built dictionaries to transfer annotations to any functional identifier. MEDUSA includes several tools, as fastp, Bowtie2, DIAMOND, Kaiju, MEGAHIT, and a novel tool implemented in Python to transfer annotations to BLAST/DIAMOND alignment results. These tools are installed via Conda, and the workflow is managed by Snakemake, easing the setup and execution. Compared with MEGAN 6 Community Edition, MEDUSA correctly identifies more species, especially the less abundant, and is more suited for functional analysis using Gene Ontology identifiers.
Collapse
Affiliation(s)
- Diego A. A. Morais
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
| | - João V. F. Cavalcante
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Shênia S. Monteiro
- Graduate Program in Engineering and Natural Resources Management, Federal University of Campina Grande, Campina Grande, Brazil
| | - Matheus A. B. Pasquali
- Graduate Program in Engineering and Natural Resources Management, Federal University of Campina Grande, Campina Grande, Brazil
- Academic Food Engineering Unit, Federal University of Campina Grande, Campina Grande, Brazil
| | - Rodrigo J. S. Dalmolin
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
- *Correspondence: Rodrigo J. S. Dalmolin,
| |
Collapse
|
40
|
Salachan PV, Rasmussen M, Fredsøe J, Ulhøi B, Borre M, Sørensen KD. Microbiota of the prostate tumor environment investigated by whole-transcriptome profiling. Genome Med 2022; 14:9. [PMID: 35078527 PMCID: PMC8787950 DOI: 10.1186/s13073-022-01011-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Background With over 350,000 estimated deaths worldwide in 2018, prostate cancer (PCa) continues to be a major health concern and a significant cause of cancer-associated mortality among men. While cancer in general is considered a disease of the human genome, there is a growing body of evidence suggesting that changes to the healthy microbiota could play a vital role in cancer development, progression, and/or treatment outcome. Methods Using a metatranscriptomic approach, we annotated the microbial reads obtained from total RNA sequencing of 106 prostate tissue samples from 94 PCa patients (discovery cohort). We investigated microbial dysbiosis associated with PCa by systematically comparing the microbiomes between benign and malignant tissue samples, between less vs. more-aggressive PCa, and between patients who had biochemical recurrence as opposed to those who did not. We further performed differential gene expression and cell type enrichment analysis to explore the host transcriptomic and cellular responses to selected microbial genera. A public dataset (GSE115414) of total RNA sequencing reads from 24 prostate tissue samples (8 benign and 16 malignant) served as the validation cohort. Results We observed decreased species diversity and significant under-representation of Staphylococcus saprophyticus and Vibrio parahaemolyticus, as well as significant over-abundance of Shewanella in malignant as compared to benign prostate tissue samples in both the discovery (p < 0.01) and validation (p < 0.05) cohorts. In addition, we identified Microbacterium species (p < 0.01) to be significantly over-abundant in pathologically advanced T3 tumors compared to T2 in the discovery cohort. Malignant samples having high vs. low Shewanella counts were associated with downregulated Toll-like receptor signaling pathways and decreased enrichment of dendritic cells. Malignant samples having low vs. high V. parahaemolyticus counts were enriched for olfactory transduction and drug metabolism pathways. Finally, malignant samples were enriched for M1 and M2 macrophages as compared to benign tissue samples. Conclusions The results from this exploratory study support the existence of an important biological link between the prostate microbiota and PCa development/progression. Our results highlight Shewanella, V. parahaemolyticus, and Microbacterium sp. as interesting candidates for further investigation of their association with PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01011-3.
Collapse
|
41
|
Salachan PV, Sørensen KD. Dysbiotic microbes and how to find them: a review of microbiome profiling in prostate cancer. J Exp Clin Cancer Res 2022; 41:31. [PMID: 35065652 PMCID: PMC8783429 DOI: 10.1186/s13046-021-02196-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
The role of the microbiota in human health and disease is well established, including its effects on several cancer types. However, the role of microbial dysbiosis in prostate cancer development, progression, and response to treatment is less well understood. This knowledge gap could perhaps be implicated in the lack of better risk stratification and prognostic tools that incorporate risk factors such as bacterial infections and inflammatory signatures. With over a decade’s research investigating associations between microbiome and prostate carcinogenesis, we are ever closer to finding the crucial biological link between the two. Yet, definitive answers remain elusive, calling for continued research into this field. In this review, we outline the three frequently used NGS based analysis methodologies that are used for microbiome profiling, thereby serving as a quick guide for future microbiome research. We next provide a detailed overview of the current knowledge of the role of the human microbiome in prostate cancer development, progression, and treatment response. Finally, we describe proposed mechanisms of host-microbe interactions that could lead to prostate cancer development, progression or treatment response.
Collapse
|
42
|
Nguyen QV, Chong LC, Hor YY, Lew LC, Rather IA, Choi SB. Role of Probiotics in the Management of COVID-19: A Computational Perspective. Nutrients 2022; 14:274. [PMID: 35057455 PMCID: PMC8781206 DOI: 10.3390/nu14020274] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) was declared a pandemic at the beginning of 2020, causing millions of deaths worldwide. Millions of vaccine doses have been administered worldwide; however, outbreaks continue. Probiotics are known to restore a stable gut microbiota by regulating innate and adaptive immunity within the gut, demonstrating the possibility that they may be used to combat COVID-19 because of several pieces of evidence suggesting that COVID-19 has an adverse impact on gut microbiota dysbiosis. Thus, probiotics and their metabolites with known antiviral properties may be used as an adjunctive treatment to combat COVID-19. Several clinical trials have revealed the efficacy of probiotics and their metabolites in treating patients with SARS-CoV-2. However, its molecular mechanism has not been unraveled. The availability of abundant data resources and computational methods has significantly changed research finding molecular insights between probiotics and COVID-19. This review highlights computational approaches involving microbiome-based approaches and ensemble-driven docking approaches, as well as a case study proving the effects of probiotic metabolites on SARS-CoV-2.
Collapse
Affiliation(s)
- Quang Vo Nguyen
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Wilayah Persekutuan, Kuala Lumpur 50490, Malaysia;
| | - Li Chuin Chong
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul 34820, Turkey;
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea;
| | - Lee-Ching Lew
- Probionic Corporation, Jeonbuk Institute for Food-Bioindustry, Jeonju 54810, Korea;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sy-Bing Choi
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Wilayah Persekutuan, Kuala Lumpur 50490, Malaysia;
| |
Collapse
|
43
|
Wurster JI, Peterson RL, Brown CE, Penumutchu S, Guzior DV, Neugebauer K, Sano WH, Sebastian MM, Quinn RA, Belenky P. Streptozotocin-induced hyperglycemia alters the cecal metabolome and exacerbates antibiotic-induced dysbiosis. Cell Rep 2021; 37:110113. [PMID: 34910917 PMCID: PMC8722030 DOI: 10.1016/j.celrep.2021.110113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
It is well established in the microbiome field that antibiotic (ATB) use and metabolic disease both impact the structure and function of the gut microbiome. But how host and microbial metabolism interacts with ATB susceptibility to affect the resulting dysbiosis remains poorly understood. In a streptozotocin-induced model of hyperglycemia (HG), we use a combined metagenomic, metatranscriptomic, and metabolomic approach to profile changes in microbiome taxonomic composition, transcriptional activity, and metabolite abundance both pre- and post-ATB challenge. We find that HG impacts both microbiome structure and metabolism, ultimately increasing susceptibility to amoxicillin. HG exacerbates drug-induced dysbiosis and increases both phosphotransferase system activity and energy catabolism compared to controls. Finally, HG and ATB co-treatment increases pathogen susceptibility and reduces survival in a Salmonella enterica infection model. Our data demonstrate that induced HG is sufficient to modify the cecal metabolite pool, worsen the severity of ATB dysbiosis, and decrease colonization resistance.
Collapse
Affiliation(s)
- Jenna I Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Rachel L Peterson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Claire E Brown
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Douglas V Guzior
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kerri Neugebauer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - William H Sano
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Manu M Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA.
| |
Collapse
|
44
|
Xue CX, Lin H, Zhu XY, Liu J, Zhang Y, Rowley G, Todd JD, Li M, Zhang XH. DiTing: A Pipeline to Infer and Compare Biogeochemical Pathways From Metagenomic and Metatranscriptomic Data. Front Microbiol 2021; 12:698286. [PMID: 34408730 PMCID: PMC8367434 DOI: 10.3389/fmicb.2021.698286] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Metagenomics and metatranscriptomics are powerful methods to uncover key micro-organisms and processes driving biogeochemical cycling in natural ecosystems. Databases dedicated to depicting biogeochemical pathways (for example, metabolism of dimethylsulfoniopropionate (DMSP), which is an abundant organosulfur compound) from metagenomic/metatranscriptomic data are rarely seen. Additionally, a recognized normalization model to estimate the relative abundance and environmental importance of pathways from metagenomic and metatranscriptomic data has not been organized to date. These limitations impact the ability to accurately relate key microbial-driven biogeochemical processes to differences in environmental conditions. Thus, an easy-to-use, specialized tool that infers and visually compares the potential for biogeochemical processes, including DMSP cycling, is urgently required. To solve these issues, we developed DiTing, a tool wrapper to infer and compare biogeochemical pathways among a set of given metagenomic or metatranscriptomic reads in one step, based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and a manually created DMSP cycling gene database. Accurate and specific formulae for over 100 pathways were developed to calculate their relative abundance. Output reports detail the relative abundance of biogeochemical pathways in both text and graphical format. DiTing was applied to simulated metagenomic data and resulted in consistent genetic features of simulated benchmark genomic data. Subsequently, when applied to natural metagenomic and metatranscriptomic data from hydrothermal vents and the Tara Ocean project, the functional profiles predicted by DiTing were correlated with environmental condition changes. DiTing can now be confidently applied to wider metagenomic and metatranscriptomic datasets, and it is available at https://github.com/xuechunxu/DiTing.
Collapse
Affiliation(s)
- Chun-Xu Xue
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heyu Lin
- School of Earth Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Xiao-Yu Zhu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yunhui Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
45
|
Thind AS, Monga I, Thakur PK, Kumari P, Dindhoria K, Krzak M, Ranson M, Ashford B. Demystifying emerging bulk RNA-Seq applications: the application and utility of bioinformatic methodology. Brief Bioinform 2021; 22:6330938. [PMID: 34329375 DOI: 10.1093/bib/bbab259] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Significant innovations in next-generation sequencing techniques and bioinformatics tools have impacted our appreciation and understanding of RNA. Practical RNA sequencing (RNA-Seq) applications have evolved in conjunction with sequence technology and bioinformatic tools advances. In most projects, bulk RNA-Seq data is used to measure gene expression patterns, isoform expression, alternative splicing and single-nucleotide polymorphisms. However, RNA-Seq holds far more hidden biological information including details of copy number alteration, microbial contamination, transposable elements, cell type (deconvolution) and the presence of neoantigens. Recent novel and advanced bioinformatic algorithms developed the capacity to retrieve this information from bulk RNA-Seq data, thus broadening its scope. The focus of this review is to comprehend the emerging bulk RNA-Seq-based analyses, emphasizing less familiar and underused applications. In doing so, we highlight the power of bulk RNA-Seq in providing biological insights.
Collapse
Affiliation(s)
- Amarinder Singh Thind
- University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Isha Monga
- Columbia University, New York City, NY, USA
| | | | - Pallawi Kumari
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Kiran Dindhoria
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | | | - Marie Ranson
- University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Bruce Ashford
- University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| |
Collapse
|
46
|
Zhang Y, Thompson KN, Branck T, Yan Yan, Nguyen LH, Franzosa EA, Huttenhower C. Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. Annu Rev Biomed Data Sci 2021; 4:279-311. [PMID: 34465175 DOI: 10.1146/annurev-biodatasci-031121-103035] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shotgun metatranscriptomics (MTX) is an increasingly practical way to survey microbial community gene function and regulation at scale. This review begins by summarizing the motivations for community transcriptomics and the history of the field. We then explore the principles, best practices, and challenges of contemporary MTX workflows: beginning with laboratory methods for isolation and sequencing of community RNA, followed by informatics methods for quantifying RNA features, and finally statistical methods for detecting differential expression in a community context. In thesecond half of the review, we survey important biological findings from the MTX literature, drawing examples from the human microbiome, other (nonhuman) host-associated microbiomes, and the environment. Across these examples, MTX methods prove invaluable for probing microbe-microbe and host-microbe interactions, the dynamics of energy harvest and chemical cycling, and responses to environmental stresses. We conclude with a review of open challenges in the MTX field, including making assays and analyses more robust, accessible, and adaptable to new technologies; deciphering roles for millions of uncharacterized microbial transcripts; and solving applied problems such as biomarker discovery and development of microbial therapeutics.
Collapse
Affiliation(s)
- Yancong Zhang
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kelsey N Thompson
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Tobyn Branck
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Systems, Synthetic, and Quantitative Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yan Yan
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Long H Nguyen
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02108, USA
| | - Eric A Franzosa
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
47
|
Zhang Y, Thompson KN, Huttenhower C, Franzosa EA. Statistical approaches for differential expression analysis in metatranscriptomics. Bioinformatics 2021; 37:i34-i41. [PMID: 34252963 PMCID: PMC8275336 DOI: 10.1093/bioinformatics/btab327] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Motivation Metatranscriptomics (MTX) has become an increasingly practical way to profile the functional activity of microbial communities in situ. However, MTX remains underutilized due to experimental and computational limitations. The latter are complicated by non-independent changes in both RNA transcript levels and their underlying genomic DNA copies (as microbes simultaneously change their overall abundance in the population and regulate individual transcripts), genetic plasticity (as whole loci are frequently gained and lost in microbial lineages) and measurement compositionality and zero-inflation. Here, we present a systematic evaluation of and recommendations for differential expression (DE) analysis in MTX. Results We designed and assessed six statistical models for DE discovery in MTX that incorporate different combinations of DNA and RNA normalization and assumptions about the underlying changes of gene copies or species abundance within communities. We evaluated these models on multiple simulated and real multi-omic datasets. Models adjusting transcripts relative to their encoding gene copies as a covariate were significantly more accurate in identifying DE from MTX in both simulated and real datasets. Moreover, we show that when paired DNA measurements (metagenomic data) are not available, models normalizing MTX measurements within-species while also adjusting for total-species RNA balance sensitivity, specificity and interpretability of DE detection, as does filtering likely technical zeros. The efficiency and accuracy of these models pave the way for more effective MTX-based DE discovery in microbial communities. Availability and implementation The analysis code and synthetic datasets used in this evaluation are available online at http://huttenhower.sph.harvard.edu/mtx2021. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yancong Zhang
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kelsey N Thompson
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Eric A Franzosa
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
48
|
Nichols RG, Davenport ER. The relationship between the gut microbiome and host gene expression: a review. Hum Genet 2021; 140:747-760. [PMID: 33221945 PMCID: PMC7680557 DOI: 10.1007/s00439-020-02237-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Despite the growing knowledge surrounding host-microbiome interactions, we are just beginning to understand how the gut microbiome influences-and is influenced by-host gene expression. Here, we review recent literature that intersects these two fields, summarizing themes across studies. Work in model organisms, human biopsies, and cell culture demonstrate that the gut microbiome is an important regulator of several host pathways relevant for disease, including immune development and energy metabolism, and vice versa. The gut microbiome remodels host chromatin, causes differential splicing, alters the epigenetic landscape, and directly interrupts host signaling cascades. Emerging techniques like single-cell RNA sequencing and organoid generation have the potential to refine our understanding of the relationship between the gut microbiome and host gene expression in the future. By intersecting microbiome and host gene expression, we gain a window into the physiological processes important for fostering the extensive cross-kingdom interactions and ultimately our health.
Collapse
Affiliation(s)
- Robert G. Nichols
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Emily R. Davenport
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
49
|
Wu X, Chen X, Lyu X, Zheng H. Advances in Microbiome Detection Technologies and Application in Antirheumatic Drug Design. Curr Pharm Des 2021; 27:891-899. [PMID: 33308114 DOI: 10.2174/1381612826666201211114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
Rheumatic diseases are a kind of chronic inflammatory and autoimmune disease affecting the connection or supporting structures of the human body, such as the most common diseases Ankylosing spondylitis (AS), gout and Systemic lupus erythematosus (SLE). Although the precise etiology and pathogenesis of the different types of rheumatic diseases remain mostly unknown, it is now commonly believed that these diseases are attributed to some complex interactions between genetics and environmental factors, especially the gut microbiome. Altered microbiome showed clinical improvement in disease symptoms and partially restored to normality after prescribing disease-modifying antirheumatic drugs (DMARDs) or other treatment strategies. Recent advances in next-generation sequencing-based microbial profiling technology, especially metagenomics, have identified alteration of the composition and function of the gut microbiota in patients. Clinical and experimental data suggest that dysbiosis may play a pivotal role in the pathogenesis of these diseases. In this paper, we provide a brief review of the advances in the microbial profiling technology and up-to-date resources for accurate taxonomic assignment of metagenomic reads, which is a key step for metagenomics studies. In addition, we review the altered gut microbiota signatures that have been reported so far across various studies, upon which diagnostics classification models can be constructed, and the drug-induced regulation of the host microbiota can be used to control disease progression and symptoms.
Collapse
Affiliation(s)
- Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, China
| | - Xiang Chen
- Department of Bioinformatics, Hangzhou Nuowei Information Technology, Co., Ltd. Hangzhou, China
| | - Xiaochen Lyu
- Department of Bioinformatics, Hangzhou Nuowei Information Technology, Co., Ltd. Hangzhou, China
| | - Hao Zheng
- Department of Bioinformatics, Hangzhou Nuowei Information Technology, Co., Ltd. Hangzhou, China
| |
Collapse
|
50
|
Payling L, Roy NC, Fraser K, Loveday SM, Sims IM, Janssen PH, Hill SJ, Raymond LG, McNabb WC. A protocol combining breath testing and ex vivo fermentations to study the human gut microbiome. STAR Protoc 2021; 2:100227. [PMID: 33786457 PMCID: PMC7988238 DOI: 10.1016/j.xpro.2020.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This protocol describes the application of breath testing and ex vivo fermentations to study the association between breath methane and the composition and functionality of the gut microbiome. The protocol provides a useful systems biology approach for studying the gut microbiome in humans, which combines standardized methods in human breath testing and fecal sampling. The model described is accessible and easy to repeat, but its relative simplicity means that it can deviate from human physiological conditions.
Collapse
Affiliation(s)
- Laura Payling
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand
- Food and Bio-Based Products, AgResearch Limited, Tennent Drive, Palmerston North 4410, New Zealand
| | - Nicole C. Roy
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand
- Department of Nutrition, University of Otago, Dunedin 9016, New Zealand
- Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Karl Fraser
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand
- Food and Bio-Based Products, AgResearch Limited, Tennent Drive, Palmerston North 4410, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Simon M. Loveday
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand
- Food and Bio-Based Products, AgResearch Limited, Tennent Drive, Palmerston North 4410, New Zealand
| | - Ian M. Sims
- Ferrier Research Institute, Victoria University of Wellington, Wellington 5010, New Zealand
| | - Peter H. Janssen
- Food and Bio-Based Products, AgResearch Limited, Tennent Drive, Palmerston North 4410, New Zealand
| | - Stefan J. Hill
- Advanced Chemical Characterisation, Scion, Te Papa Tipu Innovation Park, Rotorua 3010, New Zealand
| | - Laura G. Raymond
- Advanced Chemical Characterisation, Scion, Te Papa Tipu Innovation Park, Rotorua 3010, New Zealand
| | - Warren C. McNabb
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| |
Collapse
|