1
|
Zhang T, Zhang C, Wang W, Hu S, Tian Q, Li Y, Cui L, Li L, Wang Z, Cao X, Wang D. Effects of drought stress on the secondary metabolism of Scutellaria baicalensis Georgi and the function of SbWRKY34 in drought resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109362. [PMID: 39642440 DOI: 10.1016/j.plaphy.2024.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The pharmacological properties of the dried root of Scutellaria baicalensis Georgi, a Chinese medicinal herb, include antioxidant, antibacterial, and antiviral effects. In S. baicalensis quality assessment, concentrations of baicalin, wogonoside, baicalein, and wogonin in the root are crucial. Drought stress commonly affects the biomass and build-up of active compounds in medicinal sections of medicinal plants and thus their quality. The molecular mechanisms underlying the response of S. baicalensis to drought stress remain unexplored. To delve into the impacts of drought stress on the growth and metabolic processes of S. baicalensis, as well as to unravel the underlying molecular mechanisms. We found prolonged and intensified drought treatment causes an initial surge in its fresh weight, plant height, and stem diameter followed by a gradual slowdown, while malondialdehyde (MDA) content rises; while the fresh weight, length, superoxide dismutase (SOD), and catalase (CAT) activities peak before declining, and the root's diameter continuously narrows. In this study, flavonoid index ingredient levels in S. baicalensis initially decreased, then rose as the drought duration extended, followed by a notable post-rehydration increase in baicalin, wogonoside, and baicalein content and decrease in levels of wogonin and oroxylin A. Transcriptome sequencing and KEGG analysis revealed a significant enrichment of DEGs involved in phenylpropanoid biosynthesis and plant hormone signal transduction pathways. The expression levels of SbPAL, SbCCL, Sb4CL, SbCHI, SbFNSII, SbF6H, and SbUGT genes in the flavonoid biosynthetic pathway and PYR/PYL, PP2C, ABF, and SnRK2 genes in the abscisic acid signal transduction pathway were significantly changed. Drought responsive SbWRKY34 was selected for the subsequent investigation. SbWRKY34 showed the highest level in stems, and the encoding protein was localized in the nucleus. Overexpression of SbWRKY34 in Arabidopsis thaliana (OE-SbWRKY34 lines) resulted in increased sensitivity to drought stress, with considerably reduced MDA content and elevated SOD and CAT activities. Concurrently, the expression levels of AtCAT3, AtDREB, AtRD22, AtRD29A, and AtRD29B were significantly reduced in these lines, suggesting that SbWRKY34 functions to negatively regulate drought resistance in A. thaliana.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China; Chengdu Institute of Chinese Herbal Medicine, Chengdu, 610016, China
| | - Caijuan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Wentao Wang
- University of Chinese Academy of Science, Beijing, 100049, China; Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Suying Hu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China; Shaanxi Institute of Microbiology, Xi'an, 710043, China
| | - Qian Tian
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Yunyun Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Langjun Cui
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Lin Li
- Taiyuan University, Taiyuan, 030032, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China.
| | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
2
|
Ma X, Liang Q, Han Y, Fan L, Yi D, Ma L, Tang J, Wang X. Integrated transcriptomic, proteomic and metabolomic analyses revealing the roles of amino acid and sucrose metabolism in augmenting drought tolerance in Agropyron mongolicum. FRONTIERS IN PLANT SCIENCE 2024; 15:1515944. [PMID: 39741683 PMCID: PMC11685866 DOI: 10.3389/fpls.2024.1515944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/18/2024] [Indexed: 01/03/2025]
Abstract
Drought, a major consequence of climate change, initiates molecular interactions among genes, proteins, and metabolites. Agropyron mongolicum a high-quality perennial grass species, exhibits robust drought resistance. However, the molecular mechanism underlying this resistance remaining largely unexplored. In this study, we performed an integrated analysis of the transcriptome, proteome, and metabolome of A. mongolicum under optimal and drought stress conditions. This combined analysis highlighted the pivotal role of transporters in responding to drought stress. Moreover, metabolite profiling indicated that arginine and proline metabolism, as well as the pentose phosphate pathway, are significantly involved in the drought response of A. mongolicum. Additionally, the integrated analysis suggested that proline metabolism and the pentose phosphate pathway are key elements of the drought resistance strategy in A. mongolicum plants. In summary, our research elucidates the drought adaptation mechanisms of A. mongolicum and identifies potential candidate genes for further study.
Collapse
Affiliation(s)
- Xiaoran Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingwei Liang
- Chifeng Institute of Agriculture and Animal Husbandry Science, Chifeng, China
| | - Yusi Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Fan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengxia Yi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Tang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Wang L, He P, Hui M, Li H, Sun A, Yin H, Gao X. Metabolomics combined with transcriptomics and physiology reveals the regulatory responses of soybean plants to drought stress. Front Genet 2024; 15:1458656. [PMID: 39512800 PMCID: PMC11541050 DOI: 10.3389/fgene.2024.1458656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Drought, a prevalent environmental stressor, has had significant consequences on soybean (Glycine max L.), notably impeding its growth and production. Therefore, it is crucial to gain insight into the regulatory responses of soybean plants exposed to drought stress during soybean flowering in the field. In this study, the cultivar 'Liaodou 15' was performed light drought (LD, 24.3% soil moisture content), moderate drought (MD, 20.6% soil moisture content) and severe drought (SD, 16.9% soil moisture content) treatments at flowering stages of soybean and then rehydrated (30% soil moisture content) until harvest. The yield-related indicators were measured and revealed that MD and SD treatments significantly reduced 6.3% and 10.8% of the 100-grain weight. Soybean plants subjected to three drought stresses showed that net photosynthetic rates were 20.8%, 51.5% and 71.8% lower in LD, MD and SD than that of CK. The WUE increased by 31.8%, 31.5% and 18.8% under three drought stress treatments compared to CK. In addition, proline content was 25.94%, 41.01% and 65.43% greater than that of CK under three drought stress treatments. The trend of the MDA content was consistent with that of the proline content. SOD activity was significantly increasing by 10.86%, 46.73% and 14.54% under three drought stress treatments. The activity of CAT in the SD treatment increased by 49.28%. All the indices recovered after rehydration. Furthermore, 54,78 and 51 different expressed metabolomics (DEMs) were identified in the LDCK/LD, MDCK/MD and SDCK/SD groups, respectively. There were 1,211, 1,265 and 1,288 different expressed genes (DEGs) were upregulated and 1,003, 1,819 and 1,747 DEGs were downregulated. Finally, combined transcriptomic and metabolomic analysis suggested that 437 DEGs and 24 DEMs of LDCK/LD group, 741 DEGs and 35 DEMs of MDCK/MD group, 633 DEGs and 23 DEMs of SDCK/SD group, were highly positively correlated in soybean plants under drought stress. Drought stress induced the expression of the PAO1, PAO4, PAO5 and P5CS genes to promote the accumulation of spermidine and proline. Our study elucidates the responses of drought-stressed soybean plants in the field and provides a genetic basis for the breeding of drought-tolerant soybean plants.
Collapse
Affiliation(s)
- Liwei Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| | - Peijin He
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Mengmeng Hui
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Hainan Li
- Liaoyang Meteorological Bureau, Liaoyang, Liaoning, China
| | - Anni Sun
- Anshan Meteorological Bureau, Anshan, Liaoning, China
| | - Hong Yin
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| | - Xining Gao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| |
Collapse
|
4
|
Liu M, Su Y, Teng K, Fan X, Yue Y, Xiao G, Liu L. Transcriptome Regulation Mechanisms Difference between Female and Male Buchloe dactyloides in Response to Drought Stress and Rehydration. Int J Mol Sci 2024; 25:9653. [PMID: 39273599 PMCID: PMC11395050 DOI: 10.3390/ijms25179653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Drought, a pervasive global challenge, significantly hampers plant growth and crop yields, with drought stress being a primary inhibitor. Among resilient species, Buchloe dactyloides, a warm-season and dioecious turfgrass, stands out for its strong drought resistance and minimal maintenance requirements, making it a favored choice in ecological management and landscaping. However, there is limited research on the physiological and molecular differences in drought resistance between male and female B. dactyloides. To decipher the transcriptional regulation dynamics of these sexes in response to drought, RNA-sequencing analysis was conducted using the 'Texoka' cultivar as a model. A 14-day natural drought treatment, followed by a 7-day rewatering period, was applied. Notably, distinct physiological responses emerged between genders during and post-drought, accompanied by a more pronounced differential expression of genes (DEGs) in females compared to males. Further, KEGG and GO enrichment analysis revealed different DEGs enrichment pathways of B. dactyloides in response to drought stress. Analysis of the biosynthesis and signaling transduction pathways showed that drought stress significantly enhanced the biosynthesis and signaling pathway of ABA in both female and male B. dactyloides plants, contrasting with the suppression of IAA and JA pathways. Also, we discovered BdMPK8-like as a potential enhancer of drought tolerance in yeast, highlighting novel mechanisms. This study demonstrated the physiological and molecular mechanisms differences between male and female B. dactyloides in response to drought stress, providing a theoretical basis for the corresponding application of female and male B. dactyloides. Additionally, it enriches our understanding of drought resistance mechanisms in dioecious plants, opening avenues for future research and genetic improvement.
Collapse
Affiliation(s)
- Muye Liu
- The College of Horticulture and Garden, Yangtze University, Jingzhou 434052, China
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yalan Su
- The College of Horticulture and Garden, Yangtze University, Jingzhou 434052, China
| | - Ke Teng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xifeng Fan
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yueseng Yue
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guozeng Xiao
- The College of Horticulture and Garden, Yangtze University, Jingzhou 434052, China
| | - Lingyun Liu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
5
|
Li X, Zhao S, Cao Q, Qiu C, Yang Y, Zhang G, Wu Y, Yang Z. Effect of Green Light Replacing Some Red and Blue Light on Cucumis melo under Drought Stress. Int J Mol Sci 2024; 25:7561. [PMID: 39062804 PMCID: PMC11276641 DOI: 10.3390/ijms25147561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Light quality not only directly affects the photosynthesis of green plants but also plays an important role in regulating the development and movement of leaf stomata, which is one of the key links for plants to be able to carry out normal growth and photosynthesis. By sensing changes in the light environment, plants actively regulate the expansion pressure of defense cells to change stomatal morphology and regulate the rate of CO2 and water vapor exchange inside and outside the leaf. In this study, Cucumis melo was used as a test material to investigate the mitigation effect of different red, blue, and green light treatments on short-term drought and to analyze its drought-resistant mechanism through transcriptome and metabolome analysis, so as to provide theoretical references for the regulation of stomata in the light environment to improve the water use efficiency. The results of the experiment showed that after 9 days of drought treatment, increasing the percentage of green light in the light quality significantly increased the plant height and fresh weight of the treatment compared to the control (no green light added). The addition of green light resulted in a decrease in leaf stomatal conductance and a decrease in reactive oxygen species (ROS) content, malondialdehyde MDA content, and electrolyte osmolality in the leaves of melon seedlings. It indicated that the addition of green light promoted drought tolerance in melon seedlings. Transcriptome and metabolome measurements of the control group (CK) and the addition of green light treatment (T3) showed that the addition of green light treatment not only effectively regulated the synthesis of abscisic acid (ABA) but also significantly regulated the hormonal pathway in the hormones such as jasmonic acid (JA) and salicylic acid (SA). This study provides a new idea to improve plant drought resistance through light quality regulation.
Collapse
Affiliation(s)
- Xue Li
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Shiwen Zhao
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Qianqian Cao
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Chun Qiu
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Yuanyuan Yang
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Guanzhi Zhang
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Yongjun Wu
- College of Life Sciences, Northwest A & F University, Xianyang 712100, China
| | - Zhenchao Yang
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
- Key Laboratory of Northwest Facility Horticulture Engineering of Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| |
Collapse
|
6
|
Wang J, Yao L, Hao J, Li C, Li B, Meng Y, Ma X, Si E, Yang K, Zhang H, Shang X, Wang H. Growth Properties and Metabolomic Analysis Provide Insight into Drought Tolerance in Barley ( Hordeum vulgare L.). Int J Mol Sci 2024; 25:7224. [PMID: 39000330 PMCID: PMC11241679 DOI: 10.3390/ijms25137224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Drought stress is a major meteorological threat to crop growth and yield. Barley (Hordeum vulgare L.) is a vital cereal crop with strong drought tolerance worldwide. However, the underlying growth properties and metabolomic regulatory module of drought tolerance remains less known. Here, we investigated the plant height, spike length, effective tiller, biomass, average spikelets, 1000-grain weight, number of seeds per plant, grain weight per plant, ash content, protein content, starch content, cellulose content, and metabolomic regulation mechanisms of drought stress in barley. Our results revealed that the growth properties were different between ZDM5430 and IL-12 under drought stress at different growth stages. We found that a total of 12,235 metabolites were identified in two barley genotype root samples with drought treatment. More than 50% of these metabolites showed significant differences between the ZDM5430 and IL-12 roots. The Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 368 differential metabolites mainly involved in starch and sucrose metabolism, the pentose phosphate pathway, pyrimidine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis in ZDM5430 under drought stress, whereas the different metabolites of IL-12 under drought stress related to starch and sucrose metabolism, the pentose phosphate pathway, 2-oxocarboxylic acid metabolism, cutin, suberine and wax biosynthesis, carbon metabolism, fatty acid biosynthesis, and C5-branched dibasic acid metabolism. These metabolites have application in the tricarboxylic cycle, the urea cycle, the met salvage pathway, amino acid metabolism, unsaturated fatty acid biosynthesis, phenolic metabolism, and glycolysis. On the other hand, the expression patterns of 13 genes related to the abovementioned bioprocesses in different barley genotypes roots were proposed. These findings afford an overview for the understanding of barley roots' metabolic changes in the drought defense mechanism by revealing the differently accumulated compounds.
Collapse
Affiliation(s)
- Juncheng Wang
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Yao
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jing Hao
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 66667, Australia
| | - Baochun Li
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Erjing Si
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ke Yang
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Hong Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Huajun Wang
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Li X, Mu Y, Hua M, Wang J, Zhang X. Integrated phenotypic, transcriptomics and metabolomics: growth status and metabolite accumulation pattern of medicinal materials at different harvest periods of Astragalus Membranaceus Mongholicus. BMC PLANT BIOLOGY 2024; 24:358. [PMID: 38698337 PMCID: PMC11067282 DOI: 10.1186/s12870-024-05030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Astragalus membranaceus var. mongholicus (Astragalus), acknowledged as a pivotal "One Root of Medicine and Food", boasts dual applications in both culinary and medicinal domains. The growth and metabolite accumulation of medicinal roots during the harvest period is intricately regulated by a transcriptional regulatory network. One key challenge is to accurately pinpoint the harvest date during the transition from conventional yield content of medicinal materials to high and to identify the core regulators governing such a critical transition. To solve this problem, we performed a correlation analysis of phenotypic, transcriptome, and metabolome dynamics during the harvesting of Astragalus roots. RESULTS First, our analysis identified stage-specific expression patterns for a significant proportion of the Astragalus root genes and unraveled the chronology of events that happen at the early and later stages of root harvest. Then, the results showed that different root developmental stages can be depicted by co-expressed genes of Astragalus. Moreover, we identified the key components and transcriptional regulation processes that determine root development during harvest. Furthermore, through correlating phenotypes, transcriptomes, and metabolomes at different harvesting periods, period D (Nov.6) was identified as the critical period of yield and flavonoid content increase, which is consistent with morphological and metabolic changes. In particular, we identified a flavonoid biosynthesis metabolite, isoliquiritigenin, as a core regulator of the synthesis of associated secondary metabolites in Astragalus. Further analyses and experiments showed that HMGCR, 4CL, CHS, and SQLE, along with its associated differentially expressed genes, induced conversion of metabolism processes, including the biosynthesis of isoflavones and triterpenoid saponins substances, thus leading to the transition to higher medicinal materials yield and active ingredient content. CONCLUSIONS The findings of this work will clarify the differences in the biosynthetic mechanism of astragaloside IV and calycosin 7-O-β-D-glucopyranoside accumulation between the four harvesting periods, which will guide the harvesting and production of Astragalus.
Collapse
Affiliation(s)
- Xiaojie Li
- Engineering Research Center for the Seed Breeding of Chinese and Mongolian Medicinal Materials in Inner Mongolia, Hohhot, 010010, Inner Mongolia, China
- Key Laboratory of Grassland Resources, College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, 010021, P.R. of China
| | - Yingtong Mu
- Engineering Research Center for the Seed Breeding of Chinese and Mongolian Medicinal Materials in Inner Mongolia, Hohhot, 010010, Inner Mongolia, China
- Key Laboratory of Grassland Resources, College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, 010021, P.R. of China
| | - Mei Hua
- Engineering Research Center for the Seed Breeding of Chinese and Mongolian Medicinal Materials in Inner Mongolia, Hohhot, 010010, Inner Mongolia, China
- Key Laboratory of Grassland Resources, College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, 010021, P.R. of China
| | - Junjie Wang
- Engineering Research Center for the Seed Breeding of Chinese and Mongolian Medicinal Materials in Inner Mongolia, Hohhot, 010010, Inner Mongolia, China.
- Key Laboratory of Grassland Resources, College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, 010021, P.R. of China.
| | - Xiaoming Zhang
- Engineering Research Center for the Seed Breeding of Chinese and Mongolian Medicinal Materials in Inner Mongolia, Hohhot, 010010, Inner Mongolia, China.
- Key Laboratory of Grassland Resources, College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, 010021, P.R. of China.
| |
Collapse
|
8
|
Ma S, Sun C, Su W, Zhao W, Zhang S, Su S, Xie B, Kong L, Zheng J. Transcriptomic and physiological analysis of atractylodes chinensis in response to drought stress reveals the putative genes related to sesquiterpenoid biosynthesis. BMC PLANT BIOLOGY 2024; 24:91. [PMID: 38317086 PMCID: PMC10845750 DOI: 10.1186/s12870-024-04780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Atractylodes chinensis (DC) Koidz., a dicotyledonous and hypogeal germination species, is an important medicinal plant because its rhizome is enriched in sesquiterpenes. The development and production of A. chinensis are negatively affected by drought stress, especially at the seedling stage. Understanding the molecular mechanism of A. chinensis drought stress response plays an important role in ensuring medicinal plant production and quality. In this study, A. chinensis seedlings were subjected to drought stress treatment for 0 (control), 3 (D3), and 9 days (D9). For the control, the sample was watered every two days and collected on the second morning after watering. The integration of physiological and transcriptomic analyses was carried out to investigate the effects of drought stress on A. chinensis seedlings and to reveal the molecular mechanism of its drought stress response. RESULTS The malondialdehyde, proline, soluble sugar, and crude protein contents and antioxidative enzyme (superoxide dismutase, peroxidase, and catalase) activity were significantly increased under drought stress compared with the control. Transcriptomic analysis indicated a total of 215,665 unigenes with an average length of 759.09 bp and an N50 of 1140 bp. A total of 29,449 differentially expressed genes (DEGs) were detected between the control and D3, and 14,538 DEGs were detected between the control and D9. Under drought stress, terpenoid backbone biosynthesis had the highest number of unigenes in the metabolism of terpenoids and polyketides. To identify candidate genes involved in the sesquiterpenoid and triterpenoid biosynthetic pathways, we observed 22 unigene-encoding enzymes in the terpenoid backbone biosynthetic pathway and 15 unigene-encoding enzymes in the sesquiterpenoid and triterpenoid biosynthetic pathways under drought stress. CONCLUSION Our study provides transcriptome profiles and candidate genes involved in sesquiterpenoid and triterpenoid biosynthesis in A. chinensis in response to drought stress. Our results improve our understanding of how drought stress might affect sesquiterpenoid and triterpenoid biosynthetic pathways in A. chinensis.
Collapse
Affiliation(s)
- Shanshan Ma
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Chengzhen Sun
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Wennan Su
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Wenjun Zhao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Sai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Shuyue Su
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Boyan Xie
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Lijing Kong
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Jinshuang Zheng
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China.
| |
Collapse
|
9
|
Afridi MS, Kumar A, Javed MA, Dubey A, de Medeiros FHV, Santoyo G. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol Res 2024; 279:127564. [PMID: 38071833 DOI: 10.1016/j.micres.2023.127564] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
A wide range of abiotic and biotic stresses adversely affect plant's growth and production. Under stress, one of the main responses of plants is the modulation of exudates excreted in the rhizosphere, which consequently leads to alterations in the resident microbiota. Thus, the exudates discharged into the rhizospheric environment play a preponderant role in the association and formation of plant-microbe interactions. In this review, we aimed to provide a synthesis of the latest and most pertinent literature on the diverse biochemical and structural compositions of plant root exudates. Also, this work investigates into their multifaceted role in microbial nutrition and intricate signaling processes within the rhizosphere, which includes quorum-sensing molecules. Specifically, it explores the contributions of low molecular weight compounds, such as carbohydrates, phenolics, organic acids, amino acids, and secondary metabolites, as well as the significance of high molecular weight compounds, including proteins and polysaccharides. It also discusses the state-of-the-art omics strategies that unveil the vital role of root exudates in plant-microbiome interactions, including defense against pathogens like nematodes and fungi. We propose multiple challenges and perspectives, including exploiting plant root exudates for host-mediated microbiome engineering. In this discourse, root exudates and their derived interactions with the rhizospheric microbiota should receive greater attention due to their positive influence on plant health and stress mitigation.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico.
| |
Collapse
|
10
|
Guo X, Yan X, Wang Y, Shi Z, Niu J, Liang J, Jia X. Integrated Transcriptomics and Metabolomics Analysis Reveals the Effects of Cutting on the Synthesis of Flavonoids and Saponins in Chinese Herbal Medicine Astragalus mongholious. Metabolites 2024; 14:97. [PMID: 38392989 PMCID: PMC10891646 DOI: 10.3390/metabo14020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024] Open
Abstract
Astragali Radix, derived from the roots of Astragalus mongholicus, is a traditional Chinese medicine containing flavonoids and saponins as its key ingredients. With a shortage in the wild sources of the herbal plant, it is especially important to explore a cultivation mode for A. mongholicus for medicinal purposes. Cutting, a physical environmental stress method, was used in this study with the objective of improving the quality of this herbal legume. We found that cutting of the top 1/3 of the aboveground part of A. mongholicus during the fruiting period resulted in a significant increase in the content of flavonoids and saponins, as well as in root growth, including length, diameter, and dry weight. Furthermore, the leaves were sampled and analyzed using a combined transcriptome and metabolome analysis approach at five different time points after the treatment. Sixteen differentially expressed unigenes (DEGs) involved in the biosynthesis of flavonoids were identified; these were found to stimulate the synthesis of flavonoids such as formononetin and calycosin-7-O-β-D-glucoside. Moreover, we identified 10 DEGs that were associated with the biosynthesis of saponins, including astragaloside IV and soyasaponin I, and found that they only regulated the mevalonic acid (MVA) pathway. These findings provide new insights into cultivating high-quality A. mongholicus, which could potentially alleviate the scarcity of this valuable medicinal plant.
Collapse
Affiliation(s)
- Xu Guo
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (X.G.); (X.Y.); (Y.W.); (Z.S.); (J.N.); (X.J.)
| | - Xiang Yan
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (X.G.); (X.Y.); (Y.W.); (Z.S.); (J.N.); (X.J.)
| | - Yuanyuan Wang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (X.G.); (X.Y.); (Y.W.); (Z.S.); (J.N.); (X.J.)
| | - Zhiyong Shi
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (X.G.); (X.Y.); (Y.W.); (Z.S.); (J.N.); (X.J.)
| | - Jingping Niu
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (X.G.); (X.Y.); (Y.W.); (Z.S.); (J.N.); (X.J.)
| | - Jianping Liang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (X.G.); (X.Y.); (Y.W.); (Z.S.); (J.N.); (X.J.)
- Shanxi Key Laboratory of Chinese Veterinary Medicine Modernization, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (X.G.); (X.Y.); (Y.W.); (Z.S.); (J.N.); (X.J.)
| |
Collapse
|
11
|
Aliyeva DR, Gurbanova UA, Rzayev FH, Gasimov EK, Huseynova IM. Biochemical and Ultrastructural Changes in Wheat Plants during Drought Stress. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1944-1955. [PMID: 38105211 DOI: 10.1134/s0006297923110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Drought severely slows down plant growth, decreases crop yield, and affects various physiological processes in plants. We examined four local bread wheat cultivars with different drought tolerance (drought-tolerant Zirva 85 and Murov 2 and drought-sensitive Aran and Gyzyl bughda cultivars). Leaves from seedlings of drought-tolerant plants demonstrated higher activity of antioxidant enzymes and lower levels of malondialdehyde and hydrogen peroxide. The content of soluble proteins in drought-exposed increased, possibly due to the stress-induced activation of gene expression and protein synthesis. Drought-exposed Zirva 85 plants exhibited an elevated activity of nitrogen and carbon metabolism enzymes. Ultrastructural analysis by transmission electron microscopy showed drought-induced damage to mesophyll cells and chloroplast membranes, although it was manifested less in the drought-tolerant cultivars. Comparative analysis of the activity of metabolic and antioxidant enzymes, as well as observed ultrastructural changes in drought-exposed plants revealed that the response to drought of seedlings was more pronounced in drought-tolerant cultivars. These findings can be used in further studies of drought stress in wheat plants under natural conditions.
Collapse
Affiliation(s)
- Durna R Aliyeva
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, AZ1073, Azerbaijan.
| | - Ulduza A Gurbanova
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, AZ1073, Azerbaijan.
| | - Fuad H Rzayev
- Laboratory of Electron Microscopy of the Scientific Research Center of Azerbaijan Medical University, Baku, AZ1078, Azerbaijan.
| | - Eldar K Gasimov
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, AZ1078, Azerbaijan.
| | - Irada M Huseynova
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, AZ1073, Azerbaijan.
- Department of Molecular Biology and Biotechnologies, Baku State University, Baku, AZ1148, Azerbaijan
| |
Collapse
|
12
|
Su Y, Jiao M, Guan H, Zhao Y, Deji C, Chen G. Comparative transcriptome analysis of Saposhnikovia divaricata to reveal drought and rehydration adaption strategies. Mol Biol Rep 2023; 50:3493-3502. [PMID: 36781610 DOI: 10.1007/s11033-023-08305-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Water scarcity has become one of the most prevalent environmental factors adversely affecting plant growth and development. Different species have developed multiple ways of drought resistance. Saposhnikovia divaricata is a commonly used traditional herb in East Asia. However, limited information is available on the drought response of this herb and further clarification of underlying molecular mechanism remains a challenge. METHODS AND RESULTS In this study, a comparative transcriptome analysis was firstly conducted to identify the major pathways and candidate genes involved in the drought adaptive response of S. divaricata. The seedlings of S. divaricata were subjected to progressive drought by withholding water for 16 days followed by 8 days of rehydration. Transcriptome analysis identified a total of 89,784 annotated unigenes. The number of differentially expressed genes (DEGs) gradually increased with the deepening of drought and decreased after rehydration. Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested genes related to oxidoreductase activity, carbohydrate metabolism, plant hormone signaling pathway and secondary metabolism were important in drought response of S. divaricata. Specific genes involved in reactive oxygen species scavenging system (POD, Cu/Zn-SOD, APX), abscisic acid and jasmonic acid signaling pathway (PYL4, PP2Cs, JAR1, JAZ) and phenylpropanoid biosynthesis (4CL, CCR, CAD) underwent dynamic alterations under drought and rehydration. Finally, the expression pattern of 12 selected DEGs from the transcriptomic profiling was validated by real-time quantitative PCR. CONCLUSION Our study laid a foundation for understanding the stress response of S. divaricata and other Apiaceae family plant at molecular level.
Collapse
Affiliation(s)
- Youla Su
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, China.,School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.,The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Hohhot, 010020, China
| | - Miaomiao Jiao
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, China.,School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.,The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Hohhot, 010020, China
| | - Huan Guan
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, China.,School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.,The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Hohhot, 010020, China
| | - Yuhuan Zhao
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, China.,School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.,The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Hohhot, 010020, China
| | - Cuomu Deji
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, China.,School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Guilin Chen
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, China. .,School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China. .,The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Hohhot, 010020, China.
| |
Collapse
|
13
|
Li Z, Wang H, Feng L, Li H, Li Y, Tian G, Niu P, Yang Y, Peng L. Metabolomic Analysis Reveals the Metabolic Diversity of Wild and Cultivated Stellaria Radix ( Stellaria dichotoma L. var. lanceolata Bge.). PLANTS (BASEL, SWITZERLAND) 2023; 12:775. [PMID: 36840123 PMCID: PMC9959334 DOI: 10.3390/plants12040775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Stellaria Radix, called Yinchaihu in Chinese, is a traditional Chinese medicine, which is obtained from the dried roots of Stellaria dichotoma L. var. lanceolata Bge. Cultivated yinchaihu (YCH) has become a main source of production to alleviate the shortage of wild plant resources, but it is not clear whether the metabolites of YCH change with the mode of production. In this study, the contents of methanol extracts, total sterols and total flavonoids in wild and cultivated YCH are compared. The metabolites were analyzed by ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry. The content of methanol extracts of the wild and cultivated YCH all exceeded the standard content of the Chinese Pharmacopoeia. However, the contents of total sterols and total flavonoids in the wild YCH were significantly higher than those in the cultivated YCH. In total, 1586 metabolites were identified by mass spectrometry, and 97 were significantly different between the wild and cultivated sources, including β-sitosterol, quercetin derivatives as well as many newly discovered potential active components, such as trigonelline, arctiin and loganic acid. The results confirm that there is a rich diversity of metabolites in the wild and cultivated YCH, and provide a useful theoretical guidance for the evaluation of quality in the production of YCH.
Collapse
Affiliation(s)
- Zhenkai Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Hong Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Lu Feng
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Haishan Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Yanqing Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Gege Tian
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Pilian Niu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Yan Yang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Li Peng
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- Ningxia Natural Medicine Engineering Technology Research Center, Yinchuan 750021, China
| |
Collapse
|
14
|
Fan L, Shi G, Yang J, Liu G, Niu Z, Ye W, Wu S, Wang L, Guan Q. A Protective Role of Phenylalanine Ammonia-Lyase from Astragalus membranaceus against Saline-Alkali Stress. Int J Mol Sci 2022; 23:ijms232415686. [PMID: 36555329 PMCID: PMC9779599 DOI: 10.3390/ijms232415686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Phenylalanine ammonia-lyase (PAL, E.C.4.3.1.5) catalyzes the benzene propane metabolism and is the most extensively studied enzyme of the phenylpropanoid pathway. However, the role of PAL genes in Astragalus membranaceus, a non-model plant showing high capability toward abiotic stress, is less studied. Here, we cloned AmPAL and found that it encodes a protein that resides in the cytoplasmic membrane. The mRNA of AmPAL was strongly induced by NaCl or NaHCO3 treatment, especially in the root. Overexpressing AmPAL in Nicotiana tabacum resulted in higher PAL enzyme activities, lower levels of malondialdehyde (MDA), and better root elongation in the seedlings under stress treatment compared to the control plants. The protective role of AmPAL under saline-alkali stress was also observed in 30-day soil-grown plants, which showed higher levels of superoxide dismutase (SOD), proline, and chlorophyll compared to wild-type N. Tabacum. Collectively, we provide evidence that AmPAL is responsive to multiple abiotic stresses and that manipulating the expression of AmPAL can be used to increase the tolerance to adverse environmental factors in plants.
Collapse
Affiliation(s)
- Lijuan Fan
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Gongfa Shi
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Juan Yang
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Guiling Liu
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Zhaoqian Niu
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Wangbin Ye
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Songquan Wu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Ling Wang
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Correspondence: or (L.W.); (Q.G.)
| | - Qingjie Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Correspondence: or (L.W.); (Q.G.)
| |
Collapse
|
15
|
Yang F, Lv G. Combined analysis of transcriptome and metabolome reveals the molecular mechanism and candidate genes of Haloxylon drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1020367. [PMID: 36330247 PMCID: PMC9622360 DOI: 10.3389/fpls.2022.1020367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Haloxylon ammodendron and Haloxylon persicum, as typical desert plants, show strong drought tolerance and environmental adaptability. They are ideal model plants for studying the molecular mechanisms of drought tolerance. Transcriptomic and metabolomic analyses were performed to reveal the response mechanisms of H. ammodendron and H. persicum to a drought environment at the levels of transcription and physiological metabolism. The results showed that the morphological structures of H. ammodendron and H. persicum showed adaptability to drought stress. Under drought conditions, the peroxidase activity, abscisic acid content, auxin content, and gibberellin content of H. ammodendron increased, while the contents of proline and malondialdehyde decreased. The amino acid content of H. persicum was increased, while the contents of proline, malondialdehyde, auxin, and gibberellin were decreased. Under drought conditions, 12,233 and 17,953 differentially expressed genes (DEGs) were identified in H. ammodendron and H. persicum , respectively, including members of multiple transcription factor families such as FAR1, AP2/ERF, C2H2, bHLH, MYB, C2C2, and WRKY that were significantly up-regulated under drought stress. In the positive ion mode, 296 and 452 differential metabolites (DEMs) were identified in H. ammodendron and H. persicum, respectively; in the negative ion mode, 252 and 354 DEMs were identified, primarily in carbohydrate and lipid metabolism. A combined transcriptome and metabolome analysis showed that drought stress promoted the glycolysis/gluconeogenesis pathways of H. ammodendron and H. persicum and increased the expression of amino acid synthesis pathways, consistent with the physiological results. In addition, transcriptome and metabolome were jointly used to analyze the expression changes of the genes/metabolites of H. ammodendron and H. persicum that were associated with drought tolerance but were regulated differently in the two plants. This study identified drought-tolerance genes and metabolites in H. ammodendron and H. persicum and has provided new ideas for studying the drought stress response of Haloxylon.
Collapse
Affiliation(s)
- Fang Yang
- School of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Guanghui Lv
- School of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| |
Collapse
|
16
|
Si C, He C, Teixeira da Silva JA, Yu Z, Duan J. Metabolic accumulation and related synthetic genes of O-acetyl groups in mannan polysaccharides of Dendrobium officinale. PROTOPLASMA 2022; 259:641-657. [PMID: 34251532 DOI: 10.1007/s00709-021-01672-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Mannan polysaccharides (MPs), which contain substituted O-acetyl groups in their backbone, are abundant in the medicinal plant Dendrobium officinale. Acetyl groups can influence the physiological and biochemical properties of polysaccharides, which mainly accumulate in the stems of D. officinale at four developmental stages (S1-S4), showing an increasing trend and a link with water-soluble polysaccharides (WSPs) and mannose. The genes coding for enzymes that catalyze O-acetyl groups to MPs are unknown in D. officinale. The TRICHOME BIREFRINGENCE-LIKE (TBL) gene family contains TBL and DUF231 domains that can transfer O-acetyl groups to various polysaccharides. Based on an established D. officinale genome database, 37 DoTBL genes were identified. Analysis of cis-elements in the promoter region showed that DoTBL genes might respond to different hormones and abiotic stresses. Most of the genes with MeJA-responsive elements were upregulated or downregulated after treatment with MeJA. qRT-PCR results demonstrated that DoTBL genes had significantly higher expression levels in stems and leaves than in roots. Eight DoTBL genes showed relatively higher expression at S2-S4 stages, which showed a link with the content of WSPs and O-acetyl groups. DoTBL35 and its homologous gene DoTBL34 displayed the higher mRNA level in different organs and developmental stages, which might participate in the acetylation of MPs in D. officinale. The subcellular localization of DoTBL34 and DoTBL35 reveals that the endoplasmic reticulum may play an important role in the acetylation of MPs.
Collapse
Affiliation(s)
- Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis of Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis of Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jaime A Teixeira da Silva
- Independent Researcher, P. O. Box 7, Miki-cho post office, Ikenobe 3011-2, Miki-cho, Kita-gun, Kagawa-ken, 761-0799, Japan
| | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis of Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis of Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
17
|
Guo J, Lu X, Tao Y, Guo H, Min W. Comparative Ionomics and Metabolic Responses and Adaptive Strategies of Cotton to Salt and Alkali Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:871387. [PMID: 35548284 PMCID: PMC9084190 DOI: 10.3389/fpls.2022.871387] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 05/27/2023]
Abstract
Soil salinization and alkalization severely inhibit agriculture. However, the response mechanisms of cotton to salt stress or alkali stress are unclear. Ionomics and metabolomics were used to investigate salt and alkali stresses in cotton roots and leaves. Compared with the control, salt-treated and alkali-treated cotton plants showed 51.8 and 53.0% decreases in biomass, respectively. Under salt stress, the concentration of N decreased in roots but increased in leaves, and the concentrations of P and K increased in roots but decreased in leaves. Salt stress inhibited Ca, B, N, and Fe uptake and Mg, K, P, S, and Cu transport, but promoted Mo, Mn, Zn, Mg, K, P, S, and Cu uptake and Mo, Mn, Zn, B, N, and Fe transport. Under alkali stress, the concentrations of N and P in roots and leaves decreased, while the concentrations of K in roots and leaves increased. Alkali stress inhibited P, Ca, S, N, Fe, and Zn uptake and N, P, Mg and B transport, but promoted K, Mn, Cu, Mo, Mg, and B uptake and K, Mn, Cu, Mo, Fe, and Zn transport. Under salt stress in the leaves, 93 metabolites increased, mainly organic acids, amino acids, and sugars, increased in abundance, while 6 decreased. In the roots, 72 metabolites increased, mainly amino acids, organic acids, and sugars, while 18 decreased. Under alkali stress, in the leaves, 96 metabolites increased, including organic acids, amino acids, and sugars, 83 metabolites decreased, including organic acids, amino acids, and sugars; In the roots, 108 metabolites increased, including organic acids, amino acids, and sugars. 83 metabolites decreased, including organic acids and amino acids. Under salt stress, cotton adapts to osmotic stress through the accumulation of organic acids, amino acids and sugars, while under alkali stress, osmoregulation was achieved via inorganic ion accumulation. Under salt stress, significant metabolic pathways in the leaves and roots were associated with amino acid and organic acid metabolism, sugar metabolism was mainly used as a source of energy, while under alkali stress, the pathways in the leaves were related to amino acid and linoleic acid metabolism, β-Oxidation, TCA cycle, and glycolysis were enhanced to provide the energy needed for life activities. Enhancing organic acid accumulation and metabolism in the roots is the key response mechanism of cotton to alkalinity.
Collapse
Affiliation(s)
| | | | | | | | - Wei Min
- Department of Resources and Environmental Science, Shihezi University, Shihezi, China
| |
Collapse
|
18
|
Differential Expression of Calycosin-7-O-β-D-glucoside Biosynthesis Genes and Accumulation of Related Metabolites in Different Organs of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao Under Drought Stress. Appl Biochem Biotechnol 2022; 194:3182-3195. [PMID: 35349087 DOI: 10.1007/s12010-022-03883-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 03/14/2022] [Indexed: 01/10/2023]
Abstract
Calycosin-7-O-β-D-glycoside (CG), as a flavonoid, plays an important role in the abiotic stress response of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao (A. mongholicus). CG is also an active ingredient in A. mongholicus with high medicinal value. However, the response mechanism of the CG biosynthetic pathway of drought stress is not clear. In this research, drought stress was inflicted upon A. mongholicus, and the variations in flavonoid metabolites and the correlating gene expression in CG biosynthesis were studied in roots, stems, and leaves of A. mongholicus by UHPLC-MRM-MS/MS and qRT-PCR. Drought stress reduced the dry weight and increased the content of malondialdehyde (MDA) and proline. Drought was beneficial to the accumulation of L-phenylalanine and 4-coumaric acid in leaves and promoted the accumulation of all target compounds in the roots, except calycosin. Overexpression of AmIOMT was observed in the leaves, but the content of formononetin which is the product of isoflavone O-methyltransferase (IOMT) catalysis was higher in stems than in leaves. This research aims to further understand the acclimation of abiotic stress and the regulation mechanism of flavonoid accumulation in A. mongholicus.
Collapse
|
19
|
Zhang J, Liang L, Xie Y, Zhao Z, Su L, Tang Y, Sun B, Lai Y, Li H. Transcriptome and Metabolome Analyses Reveal Molecular Responses of Two Pepper ( Capsicum annuum L.) Cultivars to Cold Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:819630. [PMID: 35392507 PMCID: PMC8981722 DOI: 10.3389/fpls.2022.819630] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Low temperature is a significant factor affecting field-grown pepper. The molecular mechanisms behind peppers' response to cold stress remain unknown. Transcriptomic and metabolomic analyses were used to investigate the responses of two pepper cultivars, XS (cold-sensitive) and GZ (cold-resistant), to cold stress; these were screened from 45 pepper materials. In this study, compared with the control group (0 h), we identified 10,931 differentially expressed genes (DEGs) in XS and GZ, 657 differentially expressed metabolites (DEMs) in the positive ion mode, and 390 DEMs in the negative ion mode. Most DEGs were involved in amino acid biosynthesis, plant hormone signal transduction, and the mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, metabolomic analysis revealed that the content of free polyamines (PAs), plant hormones, and osmolytes, mainly contained increased putrescine, spermine, spermidine, abscisic acid (ABA), jasmonic acid (JA), raffinose, and proline, in response to cold stress. Importantly, the regulation of the ICE (inducer of CBF expression)-CBF (C repeat binding factors)-COR (cold regulated) pathway by Ca2+ signaling, MAPK signaling, and reactive oxygen species (ROS) signaling plays a key role in regulating responses of peppers to cold stress. Above all, the results of the present study provide important insights into the response of peppers to cold stress, which will reveal the potential molecular mechanisms and contribute to pepper screening and breeding in the future.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yongdong Xie
- Institute for Processing and Storage of Agricultural Products, Chengdu Academy of Agricultural and Forest Sciences, Chengdu, China
| | - Zhao Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lihong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Liu J, Zhang X, Sheng J. Integrative Analysis of the Transcriptome and Metabolome Reveals the Mechanism of Saline–Alkali Stress Tolerance in Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge.) Hsiao. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Saline–alkali stress is a major abiotic stress affecting the quality and yield of crops. Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge.) Hsiao (A. mongholicus) is a well-known medicine food homology species with various pharmacological effects and health benefits that can grow well in saline–alkali soil. However, the molecular mechanisms underlying the adaptation of A. mongholicus plants to saline–alkali stress have not yet been clarified. Here, A. mongholicus plants were exposed to long-term saline–alkali stress (200 mmol·L -1 mixed saline–alkali solution), which limited the growth of A. mongholicus. The roots of A. mongholicus could resist long-term saline–alkali stress by increasing the activity of antioxidant enzymes and the content of osmolytes. Transcriptome analysis (via the Illumina platform) and metabolome analysis (via the Nexera UPLC Series QE Liquid Mass Coupling System) revealed that saline–alkali stress altered the activity of various metabolic pathways (e.g., amino acid metabolism, carbohydrate metabolism, lipid metabolism, and biosynthesis of other secondary metabolites). A total of 3,690 differentially expressed genes (DEGs) and 997 differentially accumulated metabolites (DAMs) were identified in A. mongholicus roots under saline–alkali stress, and flavonoid-related DEGs and DAMs were significantly up-regulated. Pearson correlation analysis revealed significant correlations between DEGs and DAMs related to flavonoid metabolism. MYB transcription factors might also contribute to the regulation of flavonoid biosynthesis. Overall, the results indicate that A. mongholicus plants adapt to saline–alkali stress by up-regulating the biosynthesis of flavonoids, which enhances the medicinal value of A. mongholicus.
Collapse
|
21
|
Zhang L, Yan S, Zhang S, Yan P, Wang J, Zhang H. Glutathione, carbohydrate and other metabolites of Larix olgensis A. Henry reponse to polyethylene glycol-simulated drought stress. PLoS One 2021; 16:e0253780. [PMID: 34788320 PMCID: PMC8598043 DOI: 10.1371/journal.pone.0253780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
Drought stress in trees limits their growth, survival, and productivity and it negatively affects the afforestation survival rate. Our study focused on the molecular responses to drought stress in a coniferous species Larix olgensis A. Henry. Drought stress was simulated in one-year-old seedlings using 25% polyethylene glycol 6000. The drought stress response in these seedlings was assessed by analyzing select biochemical parameters, along with gene expression and metabolite profiles. The soluble protein content, peroxidase activity, and malondialdehyde content of L. olgensis were significantly changed during drought stress. Quantitative gene expression analysis identified a total of 8172 differentially expressed genes in seedlings processed after 24 h, 48 h, and 96 h of drought stress treatment. Compared with the gene expression profile of the untreated control, the number of up-regulated genes was higher than that of down-regulated genes, indicating that L. olgensis mainly responded to drought stress through positive regulation. Metabolite analysis of the control and stress-treated samples showed that under drought stress, the increased abundance of linoleic acid was the highest among up-regulated metabolites, which also included some saccharides. A combined analysis of the transcriptome and metabolome revealed that genes dominating the differential expression profile were involved in glutathione metabolism, galactose metabolism, and starch and sucrose metabolism. Moreover, the relative abundance of specific metabolites of these pathways was also altered. Thus, our results indicated that L. olgensis prevented free radical-induced damage through glutathione metabolism and responded to drought through sugar accumulation.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shanshan Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Sufang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Pingyu Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- * E-mail:
| |
Collapse
|
22
|
Yin X, Liu S, Qin Y, Xing R, Li K, Yu C, Chen X, Li P. Metabonomics analysis of drought resistance of wheat seedlings induced by β-aminobutyric acid-modified chitooligosaccharide derivative. Carbohydr Polym 2021; 272:118437. [PMID: 34420706 DOI: 10.1016/j.carbpol.2021.118437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 01/17/2023]
Abstract
Chitooligosaccharide grafted with β-aminobutyric acid based on the idea of bioactive molecular splicing was prepared, and the differences in drought resistance activity before and after grafting were compared. The mechanism was investigated by comparing the differences of the derivative with the Control and Drought about metabolomes. The results showed that the expected derivative was successfully synthesized, named COS-BABA, and had better drought resistance-inducing activity than the raw materials. We suggest that COS-BABA induced drought resistance through second messenger-induced activation of signaling pathways related to traumatic acid and indol-3-lactic acid, which enhanced nucleic acid metabolism to accumulate nucleotides and decreased some amino acids to facilitate protein synthesis. These proteins are regulated to strengthen photosynthesis, resulting in the promotion of carbohydrate metabolism. The accumulation of unsaturated fatty acids stabilized the cell membrane structure and prevented nonstomatal water dissipation. This study provides ideas for the development of more effective drought resistance inducers.
Collapse
Affiliation(s)
- Xiujing Yin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xiaolin Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
23
|
Mehari TG, Xu Y, Umer MJ, Shiraku ML, Hou Y, Wang Y, Yu S, Zhang X, Wang K, Cai X, Zhou Z, Liu F. Multi-Omics-Based Identification and Functional Characterization of Gh_A06G1257 Proves Its Potential Role in Drought Stress Tolerance in Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:746771. [PMID: 34745180 PMCID: PMC8567990 DOI: 10.3389/fpls.2021.746771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/31/2021] [Indexed: 05/08/2023]
Abstract
Cotton is one of the most important fiber crops globally. Despite this, various abiotic stresses, including drought, cause yield losses. We used transcriptome profiles to investigate the co-expression patterns of gene networks associated with drought stress tolerance. We identified three gene modules containing 3,567 genes highly associated with drought stress tolerance. Within these modules, we identified 13 hub genes based on intramodular significance, for further validation. The yellow module has five hub genes (Gh_A07G0563, Gh_D05G0221, Gh_A05G3716, Gh_D12G1438, and Gh_D05G0697), the brown module contains three hub genes belonging to the aldehyde dehydrogenase (ALDH) gene family (Gh_A06G1257, Gh_A06G1256, and Gh_D06G1578), and the pink module has five hub genes (Gh_A02G1616, Gh_D12G2599, Gh_D07G2232, Gh_A02G0527, and Gh_D07G0629). Based on RT-qPCR results, the Gh_A06G1257 gene has the highest expression under drought stress in different plant tissues and it might be the true candidate gene linked to drought stress tolerance in cotton. Silencing of Gh_A06G1257 in cotton leaves conferred significant sensitivity in response to drought stress treatments. Overexpression of Gh_A06G1257 in Arabidopsis also confirms its role in drought stress tolerance. L-valine, Glutaric acid, L-proline, L-Glutamic acid, and L-Tryptophan were found to be the most significant metabolites playing roles in drought stress tolerance. These findings add significantly to existing knowledge of drought stress tolerance mechanisms in cotton.
Collapse
Affiliation(s)
- Teame Gereziher Mehari
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Margaret Linyerera Shiraku
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Li Y, Liu Y, Zhang H, Yang Y, Wei G, Li Z. The Composition of Root-Associated Bacteria and Fungi of Astragalus mongholicus and Their Relationship With the Bioactive Ingredients. Front Microbiol 2021; 12:642730. [PMID: 34046020 PMCID: PMC8147693 DOI: 10.3389/fmicb.2021.642730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Astragalus membranaceus (Fisch.) Bge. var. mongholicus, which is used in traditional Chinese medicine, contains several bioactive ingredients. The root-associated microbial communities play a crucial role in the production of secondary metabolites in plants. However, the correlation of root-associated bacteria and fungi with the bioactive ingredients production in A. mongholicus has not been elucidated. This study aimed to examine the changes in soil properties, root bioactive ingredients, and microbial communities in different cultivation years. The root-associated bacterial and fungal composition was analyzed using high-throughput sequencing. The correlation between root-associated bacteria and fungi, soil properties, and six major bioactive ingredients were examined using multivariate correlation analysis. Results showed that soil properties and bioactive ingredients were distinct across different cultivation years. The composition of the rhizosphere microbiome was different from that of the root endosphere microbiome. The bacterial community structure was affected by the cultivation year and exhibited a time-decay pattern. Soil properties affected the fungal community composition. It was found that 18 root-associated bacterial operational taxonomic units (OTUs) and four fungal OTUs were positively and negatively correlated with bioactive ingredient content, respectively. The abundance of Stenotrophomonas in the rhizosphere was positively correlated with astragaloside content. Phyllobacterium and Inquilinus in the endosphere were positively correlated with the calycosin content. In summary, this study provided a new opportunity and theoretical reference for improving the production and quality of in A. mongholicus, which thus increase the pharmacological value of A. mongholicus.
Collapse
Affiliation(s)
- Yanmei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Yang Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Yan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Zhefei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| |
Collapse
|
25
|
Zhang D, Guo Y, Wang Y. Immunomodulatory Effect of a New Ingredients Group Extracted from Astragalus Through Membrane Separation Technique. Drug Des Devel Ther 2021; 15:1595-1607. [PMID: 33883882 PMCID: PMC8055285 DOI: 10.2147/dddt.s309422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Astragalus is a commonly used traditional Chinese medicine in China, which has been widely applied to enhance the immunomodulatory function of the body. The main bioactive components are complicated. To explore the role of the components, various techniques have been applied in Astragalus extraction. Membrane separation technique featured with green processing condition and high efficiency is of signification interest in the application of Astragalus treatment. Methods In this study, a new ingredients group A4 was separated from Astragalus using membrane separation technique. The quantification and identification of A4 were achieved by UV-vis spectrometry and UPLC-MS measurements. Pathological approaches along with serum metabolomics were utilized to study the immunoprotective effects of the extracts and explore the underlying mechanisms on metabolic activity. Results It was observed that A4 could promote the secretion of IL-2 and IFN-γ, stimulate the activated CD4+CD25+ and CD8+ CD25+ T lymphocytes in splenocytes and protect rat spleen to some extent. Seven crucial biomarkers that related to immunity regulations were screened out and identified through serum metabonomic analysis coupled with nuclear magnetic resonance. The enrichment analysis revealed that A4 alleviated the immune dysfunction by modulating amino acid metabolism and energy metabolism for the first time. Conclusion The new ingredients group A4 isolated from the Astragalus membrane can reduce the immune dysfunction by regulating the amino acid metabolism and energy metabolism of rats.
Collapse
Affiliation(s)
- Di Zhang
- Department of Basic Medicine, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yafei Guo
- Department of Traditional Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong, People's Republic of China
| | - Yingli Wang
- Department of Traditional Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong, People's Republic of China
| |
Collapse
|
26
|
Han M, Zhang C, Suglo P, Sun S, Wang M, Su T. l-Aspartate: An Essential Metabolite for Plant Growth and Stress Acclimation. Molecules 2021; 26:molecules26071887. [PMID: 33810495 PMCID: PMC8037285 DOI: 10.3390/molecules26071887] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/07/2023] Open
Abstract
L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Can Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Peter Suglo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Shuyue Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Mingyao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
- Correspondence:
| |
Collapse
|
27
|
Zhao M, Ren Y, Wei W, Yang J, Zhong Q, Li Z. Metabolite Analysis of Jerusalem Artichoke ( Helianthus tuberosus L.) Seedlings in Response to Polyethylene Glycol-Simulated Drought Stress. Int J Mol Sci 2021; 22:ijms22073294. [PMID: 33804948 PMCID: PMC8037225 DOI: 10.3390/ijms22073294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Jerusalem artichokes are a perennial crop with high drought tolerance and high value as a raw material to produce biofuels, functional feed, and food. However, there are few comprehensive metabolomic studies on Jerusalem artichokes under drought conditions. Methods: Ultra-performance liquid chromatography and tandem mass spectrometry were used to identify differential metabolites in Jerusalem artichoke seedling leaves under polyethylene glycol (PEG) 6000-simulated drought stress at 0, 18, 24, and 36 h. Results: A total of 661 metabolites and 236 differential metabolites were identified at 0 vs. 18, 18 vs. 24, and 24 vs. 36 h. 146 differential metabolites and 56 common were identified and at 0 vs. 18, 24, and 36 h. Kyoto Encyclopedia of Genes and Genomes enrichment identified 236 differential metabolites involved in the biosynthesis of secondary metabolites and amino acids. Metabolites involved in glycolysis, phenolic metabolism, tricarboxylic cycle, glutamate-mediated proline biosynthesis, urea cycle, amino acid metabolism, unsaturated fatty acid biosynthesis, and the met salvage pathway responded to drought stress. Conclusion: A metabolic network in the leaves of Jerusalem artichokes under drought stress is proposed. These results will improve understanding of the metabolite response to drought stress in Jerusalem artichokes and develop a foundation for breeding drought-resistant varieties.
Collapse
Affiliation(s)
- Mengliang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.Z.); (W.W.); (J.Y.)
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China;
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining 810016, China
| | - Yanjing Ren
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China;
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining 810016, China
| | - Wei Wei
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.Z.); (W.W.); (J.Y.)
| | - Jiaming Yang
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.Z.); (W.W.); (J.Y.)
| | - Qiwen Zhong
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China;
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining 810016, China
- Correspondence: (Q.Z.); (Z.L.); Tel.: +86-0971-5311167 (Q.Z.)
| | - Zheng Li
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.Z.); (W.W.); (J.Y.)
- Correspondence: (Q.Z.); (Z.L.); Tel.: +86-0971-5311167 (Q.Z.)
| |
Collapse
|
28
|
Fang Y, Coulter JA, Wu J, Liu L, Li X, Dong Y, Ma L, Pu Y, Sun B, Niu Z, Jin J, Zhao Y, Mi W, Xu Y, Sun W. Identification of differentially expressed genes involved in amino acid and lipid accumulation of winter turnip rape (Brassica rapa L.) in response to cold stress. PLoS One 2021; 16:e0245494. [PMID: 33556109 PMCID: PMC7870078 DOI: 10.1371/journal.pone.0245494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/03/2021] [Indexed: 11/24/2022] Open
Abstract
Winter turnip rape (Brassica rapa L.) is an important overwintering oil crop that is widely planted in northwestern China. It considered to be a good genetic resource for cold-tolerant research because its roots can survive harsh winter conditions. Here, we performed comparative transcriptomics analysis of the roots of two winter turnip rape varieties, Longyou7 (L7, strong cold tolerance) and Tianyou2 (T2, low cold tolerance), under normal condition (CK) and cold stress (CT) condition. A total of 8,366 differentially expressed genes (DEGs) were detected between the two L7 root groups (L7CK_VS_L7CT), and 8,106 DEGs were detected for T2CK_VS_T2CT. Among the DEGs, two ω-3 fatty acid desaturase (FAD3), two delta-9 acyl-lipid desaturase 2 (ADS2), one diacylglycerol kinase (DGK), and one 3-ketoacyl-CoA synthase 2 (KCS2) were differentially expressed in the two varieties and identified to be related to fatty acid synthesis. Four glutamine synthetase cytosolic isozymes (GLN), serine acetyltransferase 1 (SAT1), and serine acetyltransferase 3 (SAT3) were down-regulated under cold stress, while S-adenosylmethionine decarboxylase proenzyme 1 (AMD1) had an up-regulation tendency in response to cold stress in the two samples. Moreover, the delta-1-pyrroline-5-carboxylate synthase (P5CS), δ-ornithine aminotransferase (δ-OAT), alanine-glyoxylate transaminase (AGXT), branched-chain-amino-acid transaminase (ilvE), alpha-aminoadipic semialdehyde synthase (AASS), Tyrosine aminotransferase (TAT) and arginine decarboxylase related to amino acid metabolism were identified in two cultivars variously expressed under cold stress. The above DEGs related to amino acid metabolism were suspected to the reason for amino acids content change. The RNA-seq data were validated by real-time quantitative RT-PCR of 19 randomly selected genes. The findings of our study provide the gene expression profile between two varieties of winter turnip rape, which lay the foundation for a deeper understanding of the highly complex regulatory mechanisms in plants during cold treatment.
Collapse
Affiliation(s)
- Yan Fang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jeffrey A. Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States of America
| | - Junyan Wu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lijun Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xuecai Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Li Ma
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yuanyuan Pu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Bolin Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zaoxia Niu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jiaojiao Jin
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yuhong Zhao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wenbo Mi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yaozhao Xu
- College of Agronomy and Biotechnology, Hexi University, Zhangye, China
| | - Wancang Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
29
|
Szablińska-Piernik J, Lahuta LB. Metabolite profiling of semi-leafless pea (Pisum sativum L.) under progressive soil drought and subsequent re-watering. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153314. [PMID: 33197828 DOI: 10.1016/j.jplph.2020.153314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Four semi-leafless pea (Pisum sativum L.) cultivars at the vegetative stage of growth were exposed to progressive soil drought, which lasted for 18 days until the plants began to wilt, after which a 7-day period of the recovery from stress followed, when plant watering was resumed. The soil drought negatively affected plant growth, slowing down the rate of shoot elongation, decreasing the accumulation of fresh and dry weight, inhibiting the development of new leaves, and delaying the flowering of plants. Changes in the levels of 41 polar metabolites (identified by GC-MS) were established by the GC-FID method in the shoot tip, stem, stipules and tendrils, separately. Drought caused re-arrangement in the metabolism in all parts of the pea shoot, leading to a significant increase in the content of total polar metabolites. Although changes in most metabolites in the same parts of shoot were not identical among the pea cultivars studied, some metabolites were uniformly accumulated until 18th day of drought and decreased after recovery. They were i) proline and malate in all, while myo-inositol in most parts of shoot (of all the pea cultivars), ii) sucrose and glycine in the shoot tip, iii) homoserine in the stem and iv) GABA in stipules. These findings signify that the pea adjustment to progressive soil drought includes both accumulation of osmolytes and osmoprotectants and translocation of some of them (proline, sucrose, myo-inositol) to the shoot tip, thereby protecting the youngest tissues from damage caused by water deficit.
Collapse
Affiliation(s)
- Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A/103A, 10-719, Olsztyn, Poland
| | - Lesław B Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A/103A, 10-719, Olsztyn, Poland.
| |
Collapse
|
30
|
Cen W, Zhao W, Ma M, Lu S, Liu J, Cao Y, Zeng Z, Wei H, Wang S, Li R, Luo J. The Wild Rice Locus CTS-12 Mediates ABA-Dependent Stomatal Opening Modulation to Limit Water Loss Under Severe Chilling Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:575699. [PMID: 33193516 PMCID: PMC7661758 DOI: 10.3389/fpls.2020.575699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/12/2020] [Indexed: 05/30/2023]
Abstract
A near-isogenic line (NIL) DC90 which was generated by introgressing a wild rice (Oryza rufipogon Griff.) locus CTS-12 into the 9311(Oryza sativa L. ssp. indica) background confers chilling tolerance phenotype. Here, our pilot trials showed that chilling tolerance was positively correlated with abscisic acid (ABA) biosynthesis. To understand how CTS-12 mediated the ABA-dependent multi-levels of regulation, the integration of transcriptomic and metabolomic profiling using the two-way orthogonal projections to latent structures (O2PLS) and discriminant analysis (OPLS-DA) modeling was performed to investigate the mechanisms underlying chilling tolerance. Our results revealed that metabolic shifts, including the activation of stachyose biosynthesis, amino acid metabolism pathways, phenylpropanoid/flavonoid biosynthesis, ABA biosynthesis, and perturbation of glycolysis, occurred under chilling treatment; in the recovery period, glutamate-related pathways, β-alanine biosynthesis and degradation, and serotonin biosynthesis pathways were differentiated between 9311 and DC90. Particularly, the differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs), including galactinol, β-alanine, glutamate, naringenin, serotonin, ABA, and LOC_Os03g44380 (9-cis-epoxycarotenoid dioxygenase 3, OsNCED3), might be involved in the chilling tolerance variation of 9311 and DC90. CRISPR/Cas9-edited OsNCED3 resulted in chilling sensitive of japonica rice ZH11, demonstrating the involvement of ABA pathway in chilling stress response. In addition, chilling tolerance of rice was associated with the balance of water uptake and loss that was modulated by stomatal movement under chilling stress. Therefore, we speculated that the CTS-12-mediated ABA signaling pathway leads to transcriptional regulation of chilling-responsive genes and, in turn, triggers metabolic shifts to coordinately regulate the stomatal movement of guard cells. The results of this study improve our understanding of the multilevel regulation of wild rice in response to chilling stress.
Collapse
Affiliation(s)
- Weijian Cen
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Wenlong Zhao
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Mingqing Ma
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Siyuan Lu
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jianbin Liu
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yaqi Cao
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Zhenhua Zeng
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Hanxing Wei
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Shaokui Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Rongbai Li
- College of Agriculture, Guangxi University, Nanning, China
| | - Jijing Luo
- College of Life Science and Technology State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
31
|
Ambrosino L, Colantuono C, Diretto G, Fiore A, Chiusano ML. Bioinformatics Resources for Plant Abiotic Stress Responses: State of the Art and Opportunities in the Fast Evolving -Omics Era. PLANTS 2020; 9:plants9050591. [PMID: 32384671 PMCID: PMC7285221 DOI: 10.3390/plants9050591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Abiotic stresses are among the principal limiting factors for productivity in agriculture. In the current era of continuous climate changes, the understanding of the molecular aspects involved in abiotic stress response in plants is a priority. The rise of -omics approaches provides key strategies to promote effective research in the field, facilitating the investigations from reference models to an increasing number of species, tolerant and sensitive genotypes. Integrated multilevel approaches, based on molecular investigations at genomics, transcriptomics, proteomics and metabolomics levels, are now feasible, expanding the opportunities to clarify key molecular aspects involved in responses to abiotic stresses. To this aim, bioinformatics has become fundamental for data production, mining and integration, and necessary for extracting valuable information and for comparative efforts, paving the way to the modeling of the involved processes. We provide here an overview of bioinformatics resources for research on plant abiotic stresses, describing collections from -omics efforts in the field, ranging from raw data to complete databases or platforms, highlighting opportunities and still open challenges in abiotic stress research based on -omics technologies.
Collapse
Affiliation(s)
- Luca Ambrosino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.D.); (A.F.)
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.D.); (A.F.)
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
- Correspondence: ; Tel.: +39-081-253-9492
| |
Collapse
|
32
|
Xu J, Chen Z, Wang F, Jia W, Xu Z. Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation. Sci Rep 2020; 10:5242. [PMID: 32251321 PMCID: PMC7090041 DOI: 10.1038/s41598-020-62111-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/04/2020] [Indexed: 11/12/2022] Open
Abstract
Cold temperatures often severely restrict the growth, distribution and productivity of plants. The freezing tolerance of plants from temperate climates can be improved by undergoing periods of cold acclimation (CA). Tobacco is an important economic plant and is sensitive to cold stress. However, the dynamic changes and regulatory mechanisms of gene expression and metabolic processes during CA remain largely unknown. In this study, we performed RNA sequencing and metabolomic profiling analyses to identify the genes and metabolites specifically expressed during CA. Our transcriptomic data revealed 6905 differentially expressed genes (DEGs) during CA. Functional annotation and enrichment analyses revealed that the DEGs were involved mainly in signal transduction, carbohydrate metabolism and phenylpropanoid biosynthesis. Moreover, a total of 35 significantly changed metabolites were identified during CA via an LC-MS platform. Many protective metabolites, such as amino acids, carbohydrates, tricarboxylic acid (TCA) cycle intermediates and phenylpropanoid-related substances, were identified during CA. The gene-metabolite network extensively outlined the biological processes associated with the utilization of sugars, activation of amino acid metabolism, TCA cycle and phenylpropanoid biosynthesis in tobacco under CA. The results of our present study provide a comprehensive view of signal transduction and regulation, gene expression and dynamic changes in metabolites during CA.
Collapse
Affiliation(s)
- Jiayang Xu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Zheng Chen
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Fazhan Wang
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Wei Jia
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| | - Zicheng Xu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
33
|
Bielsa B, Sanz MÁ, Rubio-Cabetas MJ. Uncovering early response to drought by proteomic, physiological and biochemical changes in the almond × peach rootstock 'Garnem'. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:994-1008. [PMID: 31526467 DOI: 10.1071/fp19050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/15/2019] [Indexed: 06/10/2023]
Abstract
Drought affects growth and metabolism in plants. To investigate the changes in root protein function involved in the early response to drought stress, a proteomic analysis in combination to a physiological and biochemical analysis was performed in plants of 'Garnem', an almond × peach hybrid rootstock, subjected to short-term drought stress. Abscisic acid (ABA) accumulation levels increased during the drought exposure, which induced stomatal closure, and thus, minimised water losses. These effects were reflected in stomatal conductance and leaf water potential levels. However, 'Garnem' was able to balance water content and maintain an osmotic adjustment in cell membranes, suggesting a dehydration avoidance strategy. The proteomic analysis revealed significant abundance changes in 29 and 24 spots after 2 and 24 h of drought stress respectively. Out of these, 15 proteins were identified by LC-ESI-MS/MS. The abundance changes of these proteins suggest the influence in drought-responsive mechanisms present in 'Garnem', allowing its adaptation to drought conditions. Overall, our study improves existing knowledge on the root proteomic changes in the early response to drought. This will lead to a better understanding of dehydration avoidance and tolerance strategies, and finally, help in new drought-tolerance breeding approaches.
Collapse
Affiliation(s)
- Beatriz Bielsa
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA) - IA2 (CITA-Universidad de Zaragoza), Av. Montañana 930, 50059, Zaragoza, Spain
| | - María Á Sanz
- Área de Laboratorios de Análisis y Asistencia Tecnológica, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Av. Montañana 930, 50059, Zaragoza, Spain
| | - María J Rubio-Cabetas
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA) - IA2 (CITA-Universidad de Zaragoza), Av. Montañana 930, 50059, Zaragoza, Spain; and Corresponding author.
| |
Collapse
|
34
|
Rahnamaie-Tajadod R, Goh HH, Mohd Noor N. Methyl jasmonate-induced compositional changes of volatile organic compounds in Polygonum minus leaves. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:152994. [PMID: 31226543 DOI: 10.1016/j.jplph.2019.152994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 05/19/2023]
Abstract
Polygonum minus Huds. is a medicinal aromatic plant rich in terpenes, aldehydes, and phenolic compounds. Methyl jasmonate (MeJA) is a plant signaling molecule commonly applied to elicit stress responses to produce plant secondary metabolites. In this study, the effects of exogenous MeJA treatment on the composition of volatile organic compounds (VOCs) in P. minus leaves were investigated by using a metabolomic approach. Time-course changes in the leaf composition of VOCs on days 1, 3, and 5 after MeJA treatment were analyzed through solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The VOCs found in MeJA-elicited leaves were similar to those found in mock-treated leaves but varied in quantity at different time points. We focused our analysis on the content and composition of monoterpenes, sesquiterpenes, and green leaf volatiles (GLVs) within the leaf samples. Our results suggest that MeJA enhances the activity of biosynthetic pathways for aldehydes and terpenes in P. minus. Hence, the production of aromatic compounds in this medicinal herb can be increased by MeJA elicitation. Furthermore, the relationship between MeJA elicitation and terpene biosynthesis in P. minus was shown through SPME-GC-MS analysis of VOCs combined with transcriptomic analysis of MeJA-elicited P. minus leaves from our previous study.
Collapse
Affiliation(s)
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
35
|
Neji M, Gorel A, Ojeda DI, Duminil J, Kastally C, Steppe K, Fayolle A, Hardy OJ. Comparative analysis of two sister Erythrophleum species (Leguminosae) reveal contrasting transcriptome-wide responses to early drought stress. Gene 2019; 694:50-62. [PMID: 30716444 DOI: 10.1016/j.gene.2019.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/11/2018] [Accepted: 01/22/2019] [Indexed: 02/01/2023]
Abstract
With the ongoing climate change, African rainforests are expected to experience severe drought events in the future. In Africa, the tropical genus Erythrophleum (Fabaceae) includes two forest sister timber tree species displaying contrasting geographical distributions. Erythrophleum ivorense is adapted to wet evergreen Guineo-Congolian forests, whereas E. suaveolens occurs in a wider range of climates, being found in moist dense forests but also in gallery forests under a relatively drier climate. This geographical distribution pattern suggests that the two species might cope differently to drought at the genomic level. Yet, the genetic basis of tolerance response to drought stress in both species is still uncharacterized. To bridge this gap, we performed an RNA-seq approach on seedlings from each species to monitor their transcriptional responses at different levels of drought stress (0, 2 and 6 weeks after stopping watering seedlings). Monitoring of wilting symptoms revealed that E. suaveolens displayed an earlier phenotypic response to drought stress than E. ivorense. At the transcriptomic level, results revealed 2020 (1204 down-regulated/816 up-regulated) and 1495 differentially expressed genes (DEGs) in response to drought stress from a total of 67,432 and 66,605 contigs assembled in E. ivorense and E. suaveolens, respectively. After identifying 30,374 orthologs between species, we found that only 7 of them were DEGs shared between species, while 587 and 458 were differentially expressed only in E. ivorense or E. suaveolens, respectively. GO and KEGG enrichment analysis revealed that the two species differ in terms of significantly regulated pathways as well as the number and expression profile of DEGs (Up/Down) associated with each pathway in the two stress stages. Our results suggested that the two studied species react differently to drought. E. suaveolens seems displaying a prompt response to drought at its early stage strengthened by the down-regulation of many DEGs encoding for signaling and metabolism-related pathways. A considerable up-regulation of these pathways was also found in E. ivorense at the late stage of drought, suggesting this species may be a late responder. Overall, our data may serve as basis for further understanding the genetic control of drought tolerance in tropical trees and favor the selection of crucial genes for genetically enhancing drought resistance.
Collapse
Affiliation(s)
- Mohamed Neji
- Unit of Evolutionary Biology & Ecology, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt, 50, CP 160/12, B-1050 Brussels, Belgium; Department of Life Sciences, Faculty of Sciences of Gabès, University of Gabès, Tunisia; Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia.
| | - Anais Gorel
- Department Biosystem Engineering (BIOSE), Gembloux Agro-Bio Tech, University of Liege, Belgium
| | - Dario I Ojeda
- Unit of Evolutionary Biology & Ecology, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt, 50, CP 160/12, B-1050 Brussels, Belgium; Unit of Ecology and Genetics, Department of Biology, Oulu University, Finland; Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jérôme Duminil
- Unit of Evolutionary Biology & Ecology, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt, 50, CP 160/12, B-1050 Brussels, Belgium; UMR-DIADE, Institut de Recherche pour le Développement, Univ. Montpellier, Montpellier, France
| | - Chedly Kastally
- Unit of Evolutionary Biology & Ecology, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt, 50, CP 160/12, B-1050 Brussels, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Adeline Fayolle
- Department Biosystem Engineering (BIOSE), Gembloux Agro-Bio Tech, University of Liege, Belgium
| | - Olivier J Hardy
- Unit of Evolutionary Biology & Ecology, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt, 50, CP 160/12, B-1050 Brussels, Belgium
| |
Collapse
|
36
|
Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep 2018; 8:5710. [PMID: 29632386 PMCID: PMC5890255 DOI: 10.1038/s41598-018-24012-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
To reveal the integrative biochemical networks of wheat leaves in response to water deficient conditions, proteomics and metabolomics were applied to two spring-wheat cultivars (Bahar, drought-susceptible; Kavir, drought-tolerant). Drought stress induced detrimental effects on Bahar leaf proteome, resulting in a severe decrease of total protein content, with impairments mainly in photosynthetic proteins and in enzymes involved in sugar and nitrogen metabolism, as well as in the capacity of detoxifying harmful molecules. On the contrary, only minor perturbations were observed at the protein level in Kavir stressed leaves. Metabolome analysis indicated amino acids, organic acids, and sugars as the main metabolites changed in abundance upon water deficiency. In particular, Bahar cv showed increased levels in proline, methionine, arginine, lysine, aromatic and branched chain amino acids. Tryptophan accumulation via shikimate pathway seems to sustain auxin production (indoleacrylic acid), whereas glutamate reduction is reasonably linked to polyamine (spermine) synthesis. Kavir metabolome was affected by drought stress to a less extent with only two pathways significantly changed, one of them being purine metabolism. These results comprehensively provide a framework for better understanding the mechanisms that govern plant cell response to drought stress, with insights into molecules that can be used for crop improvement projects.
Collapse
Affiliation(s)
- Anna Michaletti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | | | - Mahmoud Toorchi
- Department of Biotechnology and Plant Breeding, University of Tabriz, Tabriz, Iran
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy.
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy.
| |
Collapse
|
37
|
Liu Y, Liu J, Wu KX, Guo XR, Tang ZH. A rapid method for sensitive profiling of bioactive triterpene and flavonoid from Astragalus mongholicus and Astragalus membranaceus by ultra-pressure liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1085:110-118. [PMID: 29649754 DOI: 10.1016/j.jchromb.2018.03.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 11/18/2022]
Abstract
Astragalus is one of the most popular Chinese herbal. Control of Astragalus quantity is most important, since that various varieties and ages largely affect bioactive metabolites and different pharmacological effects. Astragalus mongholicus and Astragalus membranaceus are both major sources of Astragalus according to the provisions in the Chinese Pharmacopoeia. Thus, a sensitive and rapid UPLC-MS/MS method for the simultaneous determination of l-Phenylalanine, Isoliquiritigenin, Liquiritigenin, Daidzein, Formononetin, Ononin, Calycosin, Calycosin-7-glucoside, Cycloastragenol, Astragaloside I, Astragaloside II, Astragaloside III and Astragaloside IV was established in this study. The detection was accomplished by MRM scanning in the positive ionization mode. Calibration curves offered linear ranges with r2 > 0.999. The method was successfully validated for the linearity, intra-day and inter day precisions, accuracy, recovery, matrix effect and stability. Then this method was successfully applied to detect the contents of 13 target flavonoids and triterpenoids metabolites in different organs and ages of A. mongholicus and A. membranaceus. Significant organs-, ages- and varieties- specificity of the 13 target metabolites were observed and discussed. The results provided basis and support for further exploration of the distribution of bioactive metabolites, namely flavonoids and triterpenoids, in different organs and ages of two Astragalus varieties. This method should be applicable to various Astragalus matrices for the quantitative analysis of the target flavonoids and triterpenoids.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Jia Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Ke-Xin Wu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Xiao-Rui Guo
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China.
| | - Zhong-Hua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
38
|
The Importance of Experimental Design, Quality Assurance, and Control in Plant Metabolomics Experiments. Methods Mol Biol 2018; 1778:3-17. [PMID: 29761427 DOI: 10.1007/978-1-4939-7819-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The output of metabolomics relies to a great extent upon the methods and instrumentation to identify, quantify, and access spatial information on as many metabolites as possible. However, the most modern machines and sophisticated tools for data analysis cannot compensate for inappropriate harvesting and/or sample preparation procedures that modify metabolic composition and can lead to erroneous interpretation of results. In addition, plant metabolism has a remarkable degree of complexity, and the number of identified compounds easily surpasses the number of samples in metabolomics analyses, increasing false discovery risk. These aspects pose a large challenge when carrying out plant metabolomics experiments. In this chapter, we address the importance of a proper experimental design taking into consideration preventable complications and unavoidable factors to achieve success in metabolomics analysis. We also focus on quality control and standardized procedures during the metabolomics workflow.
Collapse
|
39
|
Transcriptome Analysis of Two Species of Jute in Response to Polyethylene Glycol (PEG)- induced Drought Stress. Sci Rep 2017; 7:16565. [PMID: 29185475 PMCID: PMC5707433 DOI: 10.1038/s41598-017-16812-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/16/2017] [Indexed: 11/08/2022] Open
Abstract
Drought stress results in significant crop yield losses. Comparative transcriptome analysis between tolerant and sensitive species can provide insights into drought tolerance mechanisms in jute. We present a comprehensive study on drought tolerance in two jute species-a drought tolerant species (Corchorus olitorius L., GF) and a drought sensitive species (Corchorus capsularis L., YY). In total, 45,831 non-redundant unigenes with average sequence length of 1421 bp were identified. Higher numbers of differentially expressed genes (DEGs) were discovered in YY (794) than in GF (39), implying that YY was relatively more vulnerable or hyper-responsive to drought stress at the molecular level; the two main pathways, phenylpropanoid biosynthesis and peroxisome pathway, significantly involved in scavenging of reactive oxygen species (ROS) and 14 unigenes in the two pathways presented a significant differential expression in response to increase of superoxide. Our classification analysis showed that 1769 transcription factors can be grouped into 81 families and 948 protein kinases (PKs) into 122 families. In YY, we identified 34 TF DEGs from and 23 PK DEGs, including 19 receptor-like kinases (RLKs). Most of these RLKs were downregulated during drought stress, implying their role as negative regulators of the drought tolerance mechanism in jute.
Collapse
|
40
|
Deborde C, Moing A, Roch L, Jacob D, Rolin D, Giraudeau P. Plant metabolism as studied by NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:61-97. [PMID: 29157494 DOI: 10.1016/j.pnmrs.2017.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 05/07/2023]
Abstract
The study of plant metabolism impacts a broad range of domains such as plant cultural practices, plant breeding, human or animal nutrition, phytochemistry and green biotechnologies. Plant metabolites are extremely diverse in terms of structure or compound families as well as concentrations. This review attempts to illustrate how NMR spectroscopy, with its broad variety of experimental approaches, has contributed widely to the study of plant primary or specialized metabolism in very diverse ways. The review presents recent developments of one-dimensional and multi-dimensional NMR methods to study various aspects of plant metabolism. Through recent examples, it highlights how NMR has proved to be an invaluable tool for the global characterization of sample composition within metabolomic studies, and shows some examples of use for targeted phytochemistry, with a special focus on compound identification and quantitation. In such cases, NMR approaches are often used to provide snapshots of the plant sample composition. The review also covers dynamic aspects of metabolism, with a description of NMR techniques to measure metabolic fluxes - in most cases after stable isotope labelling. It is mainly intended for NMR specialists who would be interested to learn more about the potential of their favourite technique in plant sciences and about specific details of NMR approaches in this field. Therefore, as a practical guide, a paragraph on the specific precautions that should be taken for sample preparation is also included. In addition, since the quality of NMR metabolic studies is highly dependent on approaches to data processing and data sharing, a specific part is dedicated to these aspects. The review concludes with perspectives on the emerging methods that could change significantly the role of NMR in the field of plant metabolism by boosting its sensitivity. The review is illustrated throughout with examples of studies selected to represent diverse applications of liquid-state or HR-MAS NMR.
Collapse
Affiliation(s)
- Catherine Deborde
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France
| | - Annick Moing
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France
| | - Léa Roch
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France
| | - Daniel Jacob
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France
| | - Dominique Rolin
- Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Univ. Bordeaux, UMR1332, Biologie du Fruit et Pathologie, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Patrick Giraudeau
- Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, CNRS, Université de Nantes, Faculté des Sciences, BP 92208, 2 rue de la Houssinière, F-44322 Nantes Cedex 03, France; Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France.
| |
Collapse
|
41
|
Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. FRONTIERS IN PLANT SCIENCE 2017; 8:172. [PMID: 28232845 PMCID: PMC5299014 DOI: 10.3389/fpls.2017.00172] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/27/2017] [Indexed: 05/19/2023]
Abstract
Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding of plant-microbe interactions that modulate cellular mechanisms in plants under extreme external conditions and help to optimize abiotic stresses. Vigilant amalgamation of these high-throughput approaches supports a higher level of knowledge generation about root-level mechanisms involved in the alleviation of abiotic stresses in organisms.
Collapse
Affiliation(s)
- Kamlesh K. Meena
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Ajay M. Sorty
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Utkarsh M. Bitla
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Khushboo Choudhary
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Priyanka Gupta
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Dhananjaya P. Singh
- Department of Biotechnology, National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural ResearchKushmaur, India
| | - Ratna Prabha
- Department of Biotechnology, National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural ResearchKushmaur, India
| | - Pramod K. Sahu
- Department of Biotechnology, National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural ResearchKushmaur, India
| | - Vijai K. Gupta
- Molecular Glyco-Biotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland GalwayGalway, Ireland
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of TechnologyTallinn, Estonia
| | - Harikesh B. Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu UniversityVaranasi, India
| | - Kishor K. Krishanani
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Paramjit S. Minhas
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| |
Collapse
|
42
|
Scott Chialvo CH, Che R, Reif D, Motsinger-Reif A, Reed LK. Eigenvector metabolite analysis reveals dietary effects on the association among metabolite correlation patterns, gene expression, and phenotypes. Metabolomics 2016; 12:167. [PMID: 28845148 PMCID: PMC5568542 DOI: 10.1007/s11306-016-1117-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/06/2016] [Indexed: 01/29/2023]
Abstract
INTRODUCTION 'Multi-omics' datasets obtained from an organism of interest reared under different environmental treatments are increasingly common. Identifying the links among metabolites and transcripts can help to elucidate our understanding of the impact of environment at different levels within the organism. However, many methods for characterizing physiological connections cannot address unidentified metabolites. OBJECTIVES Here, we use Eigenvector Metabolite Analysis (EvMA) to examine links between metabolomic, transcriptomic, and phenotypic variation data and to assess the impact of environmental factors on these associations. Unlike other methods, EvMA can be used to analyze datasets that include unidentified metabolites and unannotated transcripts. METHODS To demonstrate the utility of EvMA, we analyzed metabolomic, transcriptomic, and phenotypic datasets produced from 20 Drosophila melanogaster genotypes reared on four dietary treatments. We used a hierarchical distance-based method to cluster the metabolites. The links between metabolite clusters, gene expression, and overt phenotypes were characterized using the eigenmetabolite (first principal component) of each cluster. RESULTS EvMA recovered chemically related groups of metabolites within the clusters. Using the eigenmetabolite, we identified genes and phenotypes that significantly correlated with each cluster. EvMA identifies new connections between the phenotypes, metabolites, and gene transcripts. Conclusion EvMA provides a simple method to identify correlations between metabolites, gene expression, and phenotypes, which can allow us to partition multivariate datasets into meaningful biological modules and identify under-studied metabolites and unannotated gene transcripts that may be central to important biological processes. This can be used to inform our understanding of the effect of environmental mechanisms underlying physiological states of interest.
Collapse
Affiliation(s)
- Clare H Scott Chialvo
- Department of Biological Sciences, University of Alabama, Box 870344, Tuscaloosa, AL 35487, USA
| | - Ronglin Che
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - David Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Laura K Reed
- Department of Biological Sciences, University of Alabama, Box 870344, Tuscaloosa, AL 35487, USA
| |
Collapse
|
43
|
Zhang Y, Nan J, Yu B. OMICS Technologies and Applications in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2016; 7:900. [PMID: 27446130 PMCID: PMC4916227 DOI: 10.3389/fpls.2016.00900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 05/08/2023]
Abstract
Sugar beet is a species of the Chenopodiaceae family. It is an important sugar crop that supplies approximately 35% of the sugar in the world. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss. And exhibits tolerance to salt stress. In this review, we have summarized OMICS technologies and applications in sugar beet including M14 for identification of novel genes, proteins related to biotic and abiotic stresses, apomixes and metabolites related to energy and food. An OMICS overview for the discovery of novel genes, proteins and metabolites in sugar beet has helped us understand the complex mechanisms underlying many processes such as apomixes, tolerance to biotic and abiotic stresses. The knowledge gained is valuable for improving the tolerance of sugar beet and other crops to biotic and abiotic stresses as well as for enhancing the yield of sugar beet for energy and food production.
Collapse
Affiliation(s)
- Yongxue Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Jingdong Nan
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Bing Yu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
- *Correspondence: Bing Yu
| |
Collapse
|