1
|
Pak K, Santavirta S, Shin S, Nam HY, De Maeyer S, Nummenmaa L. Glucose metabolism and radiodensity of abdominal adipose tissue: A 5-year longitudinal study in a large PET cohort. Clin Endocrinol (Oxf) 2024; 101:623-630. [PMID: 39038172 DOI: 10.1111/cen.15121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) allows noninvasive assessment of glucose metabolism and radiodensity in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). We aimed to address the effects of ageing and metabolic factors on abdominal adipose tissue. DESIGN, PATIENTS AND MEASUREMENTS We retrospectively analyzed data from 435 healthy men (mean 42.8 years) who underwent a health check-up programme twice, at baseline and the 5-year follow-up. The mean standardized uptake value (SUV) was measured using SAT and VAT and divided by the liver SUV. The mean Hounsfield units (HU) of the SAT and VAT were measured from the CT scans. The effects of clinical variable clusters on SUVR were investigated using Bayesian hierarchical modelling; metabolic cluster (BMI, waist-to-hip ratio, fat percentage, muscle percentage*-1, HOMA-IR), blood pressure (systolic, diastolic), glucose (fasting plasma glucose level, HbA1c) and C-reactive protein. RESULTS All the clinical variables changed during the 5-year follow-up period. The SUVR and HU of the VAT increased during follow-up; however, those of the SAT did not change. SUVR and HU were positively correlated with both VAT and SAT. SAT and VAT SUVR were negatively associated with metabolic clusters. CONCLUSIONS Ageing led to increased glucose metabolism and radiodensity in VAT, but not in SAT. VAT may reflect the ageing process more directly than SAT. Glucose metabolism was higher and radiodensity was lower in VAT than in SAT, probably owing to differences in gene expression and lipid density. Both glucose metabolism and radiodensity of VAT and SAT reflect metabolic status.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Severi Santavirta
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Seunghyeon Shin
- Department of Nuclear Medicine, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan University, Changwon, Republic of Korea
| | - Hyun-Yeol Nam
- Department of Nuclear Medicine, Samsung Changwon Hospital, School of Medicine, Sungkyunkwan University, Changwon, Republic of Korea
| | - Sven De Maeyer
- Department of Training and Education Sciences, Faculty of Social Sciences, University of Antwerp, Antwerp, Belgium
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Chen Q, Ren Z, Dang L, Liu Z, Wang S, Chen X, Qiu G, Sun C. Hoxa5 alleviates adipose tissue metabolic distortions in high-fat diet mice associated with a reduction in MERC. BMC Biol 2024; 22:247. [PMID: 39468535 PMCID: PMC11520472 DOI: 10.1186/s12915-024-02047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Mitochondria-endoplasmic reticulum membrane contact (MERC) is an important mode of intercellular organelle communication and plays a crucial role in adipose tissue metabolism. Functionality of Hoxa5 is an important transcription factor involved in adipose tissue fate determination and metabolic regulation, but the relationship between Hoxa5 and MERC is not well understood. RESULTS In our study, we established an obesity model mouse by high-fat diet (HFD), induced the alteration of Hoxa5 expression by adenoviral transfection, and explored the effect of Hoxa5 on MERC dysfunction and metabolic distortions of adipose tissue with the help of transmission electron microscopy, calcium ion probe staining, and other detection means. The results showed Hoxa5 was able to reduce MERC production, alleviate endoplasmic reticulum stress (ERS) and calcium over-transport, and affect cGAS-STING-mediated innate immune response affecting adipose tissue energy metabolism, as well as affect the AKT-IP3R pathway to alleviate insulin resistance and ameliorate metabolic distortions in adipose tissue of mice. CONCLUSIONS Our results suggest that Hoxa5 can ameliorate high-fat diet-induced MERC overproduction and related functional abnormalities, in which finding is expected to provide new ideas for the improvement of obesity-related metabolic distortions.
Collapse
Affiliation(s)
- Qi Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Zeyu Ren
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Liping Dang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Simeng Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Xinhao Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Guiping Qiu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Shi L, Zhang P, Liu Q, Liu C, Cheng L, Yu B, Chen H. Genome-Wide Analysis of Genetic Diversity and Selection Signatures in Zaobei Beef Cattle. Animals (Basel) 2024; 14:2447. [PMID: 39199980 PMCID: PMC11350888 DOI: 10.3390/ani14162447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
This investigation provides a comprehensive analysis of genomic diversity and selection signatures in Zaobei beef cattle, an indigenous breed known for its adaptation to hot and humid climates and superior meat quality. Whole-genome resequencing was conducted on 23 Zaobei cattle, compared with 46 Simmental cattle to highlight genetic distinctions. Population structure analysis confirmed the genetic uniqueness of Zaobei cattle. Using methods such as DASDC v1.01, XPEHH, and θπ ratio, we identified 230, 232, and 221 genes through DASDC, including hard sweeps, soft sweeps, and linkage sweeps, respectively. Coincidentally, 109 genes were identified when using XPEHH and θπ ratio methods. Together, these analyses revealed eight positive selection genes (ARHGAP15, ZNF618, USH2A, PDZRN4, SPATA6, ROR2, KCNIP3, and VWA3B), which are linked to critical traits such as heat stress adaptation, fertility, and meat quality. Moreover, functional enrichment analyses showed pathways related to autophagy, immune response, energy metabolism, and muscle development. The comprehensive genomic insights gained from this study provide valuable knowledge for breeding programs aimed at enhancing the beneficial traits in Zaobei cattle.
Collapse
Affiliation(s)
- Liangyu Shi
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Pu Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Qing Liu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Chenhui Liu
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China; (C.L.); (L.C.)
| | - Lei Cheng
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China; (C.L.); (L.C.)
| | - Bo Yu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| |
Collapse
|
4
|
Ferrero R, Rainer PY, Rumpler M, Russeil J, Zachara M, Pezoldt J, van Mierlo G, Gardeux V, Saelens W, Alpern D, Favre L, Vionnet N, Mantziari S, Zingg T, Pitteloud N, Suter M, Matter M, Schlaudraff KU, Canto C, Deplancke B. A human omentum-specific mesothelial-like stromal population inhibits adipogenesis through IGFBP2 secretion. Cell Metab 2024; 36:1566-1585.e9. [PMID: 38729152 DOI: 10.1016/j.cmet.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Adipose tissue plasticity is orchestrated by molecularly and functionally diverse cells within the stromal vascular fraction (SVF). Although several mouse and human adipose SVF cellular subpopulations have by now been identified, we still lack an understanding of the cellular and functional variability of adipose stem and progenitor cell (ASPC) populations across human fat depots. To address this, we performed single-cell and bulk RNA sequencing (RNA-seq) analyses of >30 SVF/Lin- samples across four human adipose depots, revealing two ubiquitous human ASPC (hASPC) subpopulations with distinct proliferative and adipogenic properties but also depot- and BMI-dependent proportions. Furthermore, we identified an omental-specific, high IGFBP2-expressing stromal population that transitions between mesothelial and mesenchymal cell states and inhibits hASPC adipogenesis through IGFBP2 secretion. Our analyses highlight the molecular and cellular uniqueness of different adipose niches, while our discovery of an anti-adipogenic IGFBP2+ omental-specific population provides a new rationale for the biomedically relevant, limited adipogenic capacity of omental hASPCs.
Collapse
Affiliation(s)
- Radiana Ferrero
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Pernille Yde Rainer
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Marie Rumpler
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Julie Russeil
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Magda Zachara
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joern Pezoldt
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Guido van Mierlo
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Wouter Saelens
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Daniel Alpern
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Lucie Favre
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Nathalie Vionnet
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Styliani Mantziari
- Department of Visceral Surgery, University Hospital of Lausanne (CHUV), Lausanne 1011, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Tobias Zingg
- Department of Visceral Surgery, University Hospital of Lausanne (CHUV), Lausanne 1011, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Michel Suter
- Department of Visceral Surgery, University Hospital of Lausanne (CHUV), Lausanne 1011, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Maurice Matter
- Department of Visceral Surgery, University Hospital of Lausanne (CHUV), Lausanne 1011, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | | | - Carles Canto
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
Polkinghorne MD, West HW, Antoniades C. Adipose Tissue in Cardiovascular Disease: From Basic Science to Clinical Translation. Annu Rev Physiol 2024; 86:175-198. [PMID: 37931169 DOI: 10.1146/annurev-physiol-042222-021346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The perception of adipose tissue as a metabolically quiescent tissue, primarily responsible for lipid storage and energy balance (with some endocrine, thermogenic, and insulation functions), has changed. It is now accepted that adipose tissue is a crucial regulator of metabolic health, maintaining bidirectional communication with other organs including the cardiovascular system. Additionally, adipose tissue depots are functionally and morphologically heterogeneous, acting not only as sources of bioactive molecules that regulate the physiological functioning of the vasculature and myocardium but also as biosensors of the paracrine and endocrine signals arising from these tissues. In this way, adipose tissue undergoes phenotypic switching in response to vascular and/or myocardial signals (proinflammatory, profibrotic, prolipolytic), a process that novel imaging technologies are able to visualize and quantify with implications for clinical prognosis. Furthermore, a range of therapeutic modalities have emerged targeting adipose tissue metabolism and altering its secretome, potentially benefiting those at risk of cardiovascular disease.
Collapse
Affiliation(s)
- Murray D Polkinghorne
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
- Acute Multidisciplinary Imaging and Interventional Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Henry W West
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
- Acute Multidisciplinary Imaging and Interventional Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
- Acute Multidisciplinary Imaging and Interventional Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Garcia SM, Lau J, Diaz A, Chi H, Lizarraga M, Wague A, Montenegro C, Davies MR, Liu X, Feeley BT. Distinct human stem cell subpopulations drive adipogenesis and fibrosis in musculoskeletal injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.28.551038. [PMID: 38260367 PMCID: PMC10802239 DOI: 10.1101/2023.07.28.551038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Fibroadipogenic progenitors (FAPs) maintain healthy skeletal muscle in homeostasis but drive muscle degeneration in chronic injuries by promoting adipogenesis and fibrosis. To uncover how these stem cells switch from a pro-regenerative to pro-degenerative role we perform single-cell mRNA sequencing of human FAPs from healthy and injured human muscles across a spectrum of injury, focusing on rotator cuff tears. We identify multiple subpopulations with progenitor, adipogenic, or fibrogenic gene signatures. We utilize full spectrum flow cytometry to identify distinct FAP subpopulations based on highly multiplexed protein expression. Injury severity increases adipogenic commitment of FAP subpopulations and is driven by the downregulation of DLK1. Treatment of FAPs both in vitro and in vivo with DLK1 reduces adipogenesis and fatty infiltration, suggesting that during injury, reduced DLK1 within a subpopulation of FAPs may drive degeneration. This work highlights how stem cells perform varied functions depending on tissue context, by dynamically regulating subpopulation fate commitment, which can be targeted improve patient outcomes after injury.
Collapse
|
7
|
Halasz L, Divoux A, Sandor K, Erdos E, Daniel B, Smith SR, Osborne TF. An Atlas of Promoter Chromatin Modifications and HiChIP Regulatory Interactions in Human Subcutaneous Adipose-Derived Stem Cells. Int J Mol Sci 2023; 25:437. [PMID: 38203607 PMCID: PMC10778978 DOI: 10.3390/ijms25010437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The genome of human adipose-derived stem cells (ADSCs) from abdominal and gluteofemoral adipose tissue depots are maintained in depot-specific stable epigenetic conformations that influence cell-autonomous gene expression patterns and drive unique depot-specific functions. The traditional approach to explore tissue-specific transcriptional regulation has been to correlate differential gene expression to the nearest-neighbor linear-distance regulatory region defined by associated chromatin features including open chromatin status, histone modifications, and DNA methylation. This has provided important information; nonetheless, the approach is limited because of the known organization of eukaryotic chromatin into a topologically constrained three-dimensional network. This network positions distal regulatory elements in spatial proximity with gene promoters which are not predictable based on linear genomic distance. In this work, we capture long-range chromatin interactions using HiChIP to identify remote genomic regions that influence the differential regulation of depot-specific genes in ADSCs isolated from different adipose depots. By integrating these data with RNA-seq results and histone modifications identified by ChIP-seq, we uncovered distal regulatory elements that influence depot-specific gene expression in ADSCs. Interestingly, a subset of the HiChIP-defined chromatin loops also provide previously unknown connections between waist-to-hip ratio GWAS variants with genes that are known to significantly influence ADSC differentiation and adipocyte function.
Collapse
Affiliation(s)
- Laszlo Halasz
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA;
| | - Katalin Sandor
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Edina Erdos
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Bence Daniel
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Steven R. Smith
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA;
| | - Timothy F. Osborne
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| |
Collapse
|
8
|
Parrillo L, Spinelli R, Longo M, Zatterale F, Santamaria G, Leone A, Campitelli M, Raciti GA, Beguinot F. The Transcription Factor HOXA5: Novel Insights into Metabolic Diseases and Adipose Tissue Dysfunction. Cells 2023; 12:2090. [PMID: 37626900 PMCID: PMC10453582 DOI: 10.3390/cells12162090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The transcription factor HOXA5, from the HOX gene family, has long been studied due to its critical role in physiological activities in normal cells, such as organ development and body patterning, and pathological activities in cancer cells. Nonetheless, recent evidence supports the hypothesis of a role for HOXA5 in metabolic diseases, particularly in obesity and type 2 diabetes (T2D). In line with the current opinion that adipocyte and adipose tissue (AT) dysfunction belong to the group of primary defects in obesity, linking this condition to an increased risk of insulin resistance (IR) and T2D, the HOXA5 gene has been shown to regulate adipocyte function and AT remodeling both in humans and mice. Epigenetics adds complexity to HOXA5 gene regulation in metabolic diseases. Indeed, epigenetic mechanisms, specifically DNA methylation, influence the dynamic HOXA5 expression profile. In human AT, the DNA methylation profile at the HOXA5 gene is associated with hypertrophic obesity and an increased risk of developing T2D. Thus, an inappropriate HOXA5 gene expression may be a mechanism causing or maintaining an impaired AT function in obesity and potentially linking obesity to its associated disorders. In this review, we integrate the current evidence about the involvement of HOXA5 in regulating AT function, as well as its association with the pathogenesis of obesity and T2D. We also summarize the current knowledge on the role of DNA methylation in controlling HOXA5 expression. Moreover, considering the susceptibility of epigenetic changes to reversal through targeted interventions, we discuss the potential therapeutic value of targeting HOXA5 DNA methylation changes in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Luca Parrillo
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Rosa Spinelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Michele Longo
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Federica Zatterale
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy;
| | - Alessia Leone
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Michele Campitelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Gregory Alexander Raciti
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Francesco Beguinot
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| |
Collapse
|
9
|
Song MK, Kim JE, Kim JT, Kang YE, Han SJ, Kim SH, Kim HJ, Ku BJ, Lee JH. GDF10 is related to obesity as an adipokine derived from subcutaneous adipose tissue. Front Endocrinol (Lausanne) 2023; 14:1159515. [PMID: 37529611 PMCID: PMC10390302 DOI: 10.3389/fendo.2023.1159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/04/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Adipokines are proteins that are secreted by the adipose tissue. Although they are associated with obesity-related metabolic disorders, most studies have focused on adipokines expressed by visceral adipose tissue (VAT). This study aimed to identify the adipokine potentially derived from subcutaneous adipose tissue (SAT) and its clinical significance. Methods Samples of SAT and VAT were obtained from six adult male patients who underwent laparoscopic surgery for benign gall bladder disease. Differentially expressed genes were analyzed by subjecting the samples to RNA sequencing. The serum concentration of selected proteins according to body mass index (BMI) was analyzed in 58 individuals. Results GDF10 showed significantly higher expression in the SAT, as per RNA sequencing (fold change = 5.8, adjusted P value = 0.009). Genes related to insulin response, glucose homeostasis, lipid homeostasis, and fatty acid metabolism were suppressed when GDF10 expression was high in SAT, as per genotype-tissue expression data. The serum GDF10 concentration was higher in participants with BMI ≥ 25 kg/m2 (n = 35, 2674 ± 441 pg/mL) than in those with BMI < 25 kg/m2 (n = 23, 2339 ± 639 pg/mL; P = 0.022). There was a positive correlation between BMI and serum GDF10 concentration (r = 0.308, P = 0.019). Conclusions GDF10 expression was higher in SAT than in VAT. Serum GDF10 concentration was high in patients with obesity. Therefore, GDF10 could be a SAT-derived protein related to obesity.
Collapse
Affiliation(s)
- Mi Kyung Song
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Ji Eun Kim
- Research Center for Endocrine and Metabolic Disease, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Disease, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Yea Eun Kang
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Research Center for Endocrine and Metabolic Disease, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sun Jong Han
- Department of General Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Seok Hwan Kim
- Department of General Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Research Center for Endocrine and Metabolic Disease, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Research Center for Endocrine and Metabolic Disease, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Research Center for Endocrine and Metabolic Disease, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Vitamin A: A Key Inhibitor of Adipocyte Differentiation. PPAR Res 2023; 2023:7405954. [PMID: 36776154 PMCID: PMC9908342 DOI: 10.1155/2023/7405954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
Inhibiting adipocyte differentiation, the conversion of preadipocytes to mature functional adipocytes, might represent a new approach to treating obesity and related metabolic disorders. Peroxisome proliferator-activated receptor γ and CCAAT-enhancer-binding protein α are two master coregulators controlling adipogenesis both in culture and in vivo. Many recent studies have confirmed the relationship between retinoic acid (RA) and the conversion of embryonic stem cells into adipocytes; however, these studies have shown that RA potently blocks the differentiation of preadipocytes into mature adipocytes. Nevertheless, the functional role of RA in early tissue development and stem cell differentiation, including in adipose tissue, remains unclear. This study highlights transcription factors that block adipocyte differentiation and maintain preadipocyte status, focusing on those controlled by RA. However, some of these novel adipogenesis inhibitors have not been validated in vivo, and their mechanisms of action require further clarification.
Collapse
|
11
|
Liu J, Yu X, Huang X, Lai Q, Chen J. Associations of muscle and adipose tissue parameters with long-term outcomes in middle and low rectal cancer: a retrospective cohort study. Cancer Imaging 2023; 23:5. [PMID: 36635737 PMCID: PMC9835251 DOI: 10.1186/s40644-022-00514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To investigate the role of preoperative body composition analysis for muscle and adipose tissue distribution on long-term oncological outcomes in patients with middle and low rectal cancer (RC) who received curative intent surgery. METHODS A total of 155 patients with middle and low rectal cancer who underwent curative intent surgery between January 2014 and December 2016 were included for the final analysis. Skeletal muscle area (SMA), skeletal muscle radiodensity (SMD), visceral fat area (VFA) and mesorectal fat area (MFA) were retrospectively measured using preoperative CT images. To standardize the area according to patient stature, SMA was divided by the square of the height (m2) and the skeletal muscle mass index (SMI, cm2/m2) was obtained. Each median values of the distribution in male and female served as cut-off point for SMI, SMD, VFA, and MFA, respectively. Univariate and multivariate analysis were performed to evaluate the association between body composition and long-term oncological outcomes. Overall survival (OS) measured in months from the day of primary surgery until death for any cause. Disease-free survival (DFS) was defined as the interval between surgery and tumor recurrence. The Kaplan-Meier method with log-rank testing was used to validate prognostic biomarkers. Intraclass correlation coefficient (ICC) was used to evaluate interobserver and intraobserver reproducibility for SMA, SMD, MFA,VFA. RESULTS During the follow-up period, 42 (27.1%) patients had tumor recurrence; 21 (13.5%) patients died. The sex-specific median value of SMI was 28.6 cm2/m2 for females and 48.2 cm2/m2 for males. The sex-specific median value of SMD was 34.7 HU for females and 37.4 HU for males. The sex-specific median value of VFA was 123.1 cm2 for females and 123.2 cm2 for males. The sex-specific median value of MFA was 13.8 cm2 for females and 16.0 cm2 for males. In the Cox regression multivariate analysis, SMI (P = 0.036), SMD (P = 0.022), and postoperative complications grades (P = 0.042) were significantly different between death group and non-death group; SMD (P = 0.011) and MFA (P = 0.022) were significantly different between recurrence group and non-recurrence group. VFA did not show any significant differences. By the Kaplan-Meier method with log-rank testing, DFS was significantly longer in patients with high-MFA (P = 0.028) and shorter in patients with low-SMD (P = 0.010), OS was significantly shorter in patients with low-SMI (P = 0.034) and low-SMD (P = 0.029). CONCLUSIONS Quantitative evaluation of skeletal muscle mass and adipose tissue distributions at initial diagnosis were important predictors for long-term oncologic outcomes in RC patients. SMD and SMI were independent factors for predicting OS in patients with middle and low rectal cancer who had radical surgery. SMD and MFA were independent factors for predicting DFS in patients with middle and low rectal cancer who had radical surgery.
Collapse
Affiliation(s)
- Jiyang Liu
- grid.256112.30000 0004 1797 9307Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 N, Dong Street, Quanzhou City, Fujian Province China
| | - Xiongfeng Yu
- grid.488542.70000 0004 1758 0435Department of Radiology, Second Affiliated Hospital of Fujian Medical University, 34 N, Zhong-Shan-Bei Street, Quanzhou City, Fujian Province China
| | - Xueqing Huang
- grid.256112.30000 0004 1797 9307Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 N, Dong Street, Quanzhou City, Fujian Province China
| | - Qingquan Lai
- grid.488542.70000 0004 1758 0435Department of Radiology, Second Affiliated Hospital of Fujian Medical University, 34 N, Zhong-Shan-Bei Street, Quanzhou City, Fujian Province China
| | - Jieyun Chen
- grid.256112.30000 0004 1797 9307Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 N, Dong Street, Quanzhou City, Fujian Province China
| |
Collapse
|
12
|
Luze H, Einsiedler J, Nischwitz SP, Winter R, Kolb D, Kamolz LP, Kotzbeck P, Rappl T. Quality and Vitality of Autologous Fat Grafts Harvested by Different Techniques: A Clinical Comparison Study. Aesthet Surg J 2022; 42:1416-1424. [PMID: 35882529 DOI: 10.1093/asj/sjac192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Unpredictable outcomes with autologous fat grafting due to reabsorption processes present a major challenge for healthcare providers and patients. A higher number of viable adipocytes is considered to result in a higher volume being retained. Although various adverse factors have been extensively researched, other potential parameters have been less investigated or even neglected. OBJECTIVE The aim of this study was to investigate the harvesting process of adipose tissue as the primary cause of cell damage and to determine the risk factors associated with low cell survival. METHODS Thirty-nine male and female subjects undergoing planned elective liposuction or abdominoplasty were enrolled. Forty-seven lipoaspirates harvested by different liposuction techniques were analyzed. RNA isolation and real-time polymerase chain reaction was performed to elucidate differences in the expression of various adipocyte markers. Furthermore, scanning electron microscopy was performed on various samples to determine the cell damage caused by the different techniques. RESULTS A statistically significant lower expression of peroxisome proliferator-activated receptor γ was detected in subjects with a higher BMI. A trend towards a lower expression of perilipin 1 in lipoaspirates harvested by a super wet + ultrasound technique, compared with dry and super wet techniques, was shown. The lowest level of cell damage determined from scanning electron microscopy images was in lipoaspirates harvested by the super wet + ultrasound technique, and this level was statistically significantly different from those obtained by the 2 other techniques. CONCLUSIONS Optimization of the outcome in autologous fat grafting may be feasible by targeting and optimizing the harvesting process as a main risk factor for impaired adipocyte viability. Ultrasound-assisted liposuction might be considered a suitable harvesting technique. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
- Hanna Luze
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Johanna Einsiedler
- COREMED-Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Sebastian Philipp Nischwitz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Raimund Winter
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Medical University of Graz, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Petra Kotzbeck
- COREMED-Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Thomas Rappl
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Kuo FC, Neville MJ, Sabaratnam R, Wesolowska-Andersen A, Phillips D, Wittemans LBL, van Dam AD, Loh NY, Todorčević M, Denton N, Kentistou KA, Joshi PK, Christodoulides C, Langenberg C, Collas P, Karpe F, Pinnick KE. HOTAIR interacts with PRC2 complex regulating the regional preadipocyte transcriptome and human fat distribution. Cell Rep 2022; 40:111136. [PMID: 35905723 PMCID: PMC10073411 DOI: 10.1016/j.celrep.2022.111136] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/06/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Mechanisms governing regional human adipose tissue (AT) development remain undefined. Here, we show that the long non-coding RNA HOTAIR (HOX transcript antisense RNA) is exclusively expressed in gluteofemoral AT, where it is essential for adipocyte development. We find that HOTAIR interacts with polycomb repressive complex 2 (PRC2) and we identify core HOTAIR-PRC2 target genes involved in adipocyte lineage determination. Repression of target genes coincides with PRC2 promoter occupancy and H3K27 trimethylation. HOTAIR is also involved in modifying the gluteal adipocyte transcriptome through alternative splicing. Gluteal-specific expression of HOTAIR is maintained by defined regions of open chromatin across the HOTAIR promoter. HOTAIR expression levels can be modified by hormonal (estrogen, glucocorticoids) and genetic variation (rs1443512 is a HOTAIR eQTL associated with reduced gynoid fat mass). These data identify HOTAIR as a dynamic regulator of the gluteal adipocyte transcriptome and epigenome with functional importance for human regional AT development.
Collapse
Affiliation(s)
- Feng-Chih Kuo
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK; Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Rugivan Sabaratnam
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK; Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark; Steno Diabetes Center Odense, Odense University Hospital, 5000 Odense C, Denmark
| | | | - Daniel Phillips
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Laura B L Wittemans
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Andrea D van Dam
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Nellie Y Loh
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Marijana Todorčević
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Nathan Denton
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK; Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Constantinos Christodoulides
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK.
| | - Katherine E Pinnick
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington OX3 7LE, UK.
| |
Collapse
|
14
|
D’Amuri A, Sanz JM, Lazzer S, Pišot R, Šimunič B, Biolo G, Zuliani G, Gasparini M, Narici M, Grassi B, Reggiani C, Dalla Nora E, Passaro A. Irisin Attenuates Muscle Impairment during Bed Rest through Muscle-Adipose Tissue Crosstalk. BIOLOGY 2022; 11:biology11070999. [PMID: 36101380 PMCID: PMC9311907 DOI: 10.3390/biology11070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
The detrimental effect of physical inactivity on muscle characteristics are well known. Irisin, an exercise-induced myokine cleaved from membrane protein fibronectin type III domain-containing protein-5 (FNDC5), mediates at least partially the metabolic benefits of exercise. This study aimed to assess the interplay between prolonged inactivity, circulating irisin, muscle performance, muscle fibers characteristics, as well as the FNDC5 gene expression (FNDC5ge) in muscle and adipose tissue among healthy subjects. Twenty-three healthy volunteers were tested before and after 14 days of Bed Rest, (BR). Post-BR circulating levels of irisin significantly increased, whereas body composition, muscle performance, and muscle fiber characteristics deteriorated. Among the subjects achieving the highest post-BR increase of irisin, the lowest reduction in maximal voluntary contraction and specific force of Fiber Slow/1, the highest increase of FNDC5ge in adipose tissue, and no variation of FNDC5ge in skeletal muscle were recorded. Subjects who had the highest FNDC5ge in adipose tissue but not in muscle tissue showed the highest circulating irisin levels and could better withstand the harmful effect of BR.
Collapse
Affiliation(s)
- Andrea D’Amuri
- Medical Department, University Hospital of Ferrara Arcispedale Sant’Anna, Via A. Moro 8, I-44124 Ferrara, Italy; (A.D.); (G.Z.)
| | - Juana Maria Sanz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, I-44121 Ferrara, Italy;
| | - Stefano Lazzer
- Department of Medicine, University of Udine, Piazzale M. Kolbe 4, I-33100 Udine, Italy; (S.L.); (B.G.)
| | - Rado Pišot
- Institute for Kinesiology Research, Science and Research Centre Koper, Garibaldijeva 1, SI-6000 Koper, Slovenia; (R.P.); (B.Š.); (C.R.)
| | - Bostjan Šimunič
- Institute for Kinesiology Research, Science and Research Centre Koper, Garibaldijeva 1, SI-6000 Koper, Slovenia; (R.P.); (B.Š.); (C.R.)
| | - Gianni Biolo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, I-340149 Trieste, Italy;
| | - Giovanni Zuliani
- Medical Department, University Hospital of Ferrara Arcispedale Sant’Anna, Via A. Moro 8, I-44124 Ferrara, Italy; (A.D.); (G.Z.)
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, 46, I-44121 Ferrara, Italy
| | - Mladen Gasparini
- Department of Vascular Surgery, Izola General Hospital, Polje 40, SI-6310 Izola-Isola, Slovenia;
| | - Marco Narici
- Department of Biomedical Sciences, University of Padua, Via Marzolo 3, I-35131 Padua, Italy;
| | - Bruno Grassi
- Department of Medicine, University of Udine, Piazzale M. Kolbe 4, I-33100 Udine, Italy; (S.L.); (B.G.)
| | - Carlo Reggiani
- Institute for Kinesiology Research, Science and Research Centre Koper, Garibaldijeva 1, SI-6000 Koper, Slovenia; (R.P.); (B.Š.); (C.R.)
| | - Edoardo Dalla Nora
- Medical Department, University Hospital of Ferrara Arcispedale Sant’Anna, Via A. Moro 8, I-44124 Ferrara, Italy; (A.D.); (G.Z.)
- Correspondence: (E.D.N.); (A.P.)
| | - Angelina Passaro
- Medical Department, University Hospital of Ferrara Arcispedale Sant’Anna, Via A. Moro 8, I-44124 Ferrara, Italy; (A.D.); (G.Z.)
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, 46, I-44121 Ferrara, Italy
- Research and Innovation Section, University Hospital of Ferrara Arcispedale Sant’Anna, Via A. Moro 8, I-44124 Ferrara, Italy
- Correspondence: (E.D.N.); (A.P.)
| |
Collapse
|
15
|
Distinct Effects of Cannabidiol on Sphingolipid Metabolism in Subcutaneous and Visceral Adipose Tissues Derived from High-Fat-Diet-Fed Male Wistar Rats. Int J Mol Sci 2022; 23:ijms23105382. [PMID: 35628194 PMCID: PMC9142011 DOI: 10.3390/ijms23105382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Available data suggest that cannabidiol (CBD) may ameliorate symptoms of insulin resistance by modulating the sphingolipid concentrations in particular organs. However, it is not entirely clear whether its beneficial actions also involve adipose tissues in a state of overnutrition. The aim of the study was to evaluate the effect of CBD on sphingolipid metabolism pathways and, as a result, on the development of insulin resistance in subcutaneous (SAT) and visceral (VAT) adipose tissues of an animal model of HFD-induced insulin resistance. Our experiment was performed on Wistar rats that were fed with a high-fat diet and/or received intraperitoneal CBD injections. We showed that CBD significantly lowered the ceramide content in VAT by reducing its de novo synthesis and increasing its catabolism. However, in SAT, CBD decreased the ceramide level through the inhibition of salvage and de novo synthesis pathways. All of these changes restored adipose tissues’ sensitivity to insulin. Our study showed that CBD sensitized adipose tissue to insulin by influencing the metabolism of sphingolipids under the conditions of increased availability of fatty acids in the diet. Therefore, we believe that CBD use may be considered as a potential therapeutic strategy for treating or reducing insulin resistance, T2DM, and metabolic syndrome.
Collapse
|
16
|
Erdos E, Divoux A, Sandor K, Halasz L, Smith SR, Osborne TF. Unique role for lncRNA HOTAIR in defining depot-specific gene expression patterns in human adipose-derived stem cells. Genes Dev 2022; 36:566-581. [PMID: 35618313 PMCID: PMC9186385 DOI: 10.1101/gad.349393.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023]
Abstract
In this study, Erdos et al. investigated the role of HOX transcript antisense intergenic RNA (HOTAIR) in adipose tissue biology. Using three different approaches (silencing of HOTAIR in GF human adipose-derived stem cells [GF hASCs], overexpression of HOTAIR in ABD hASCs, and ChIRP-seq) to localize HOTAIR binding in GF hASC chromatin, they found that HOTAIR binds and modulates expression, both positively and negatively, of genes involved in adipose tissue-specific pathways, including adipogenesis, and demonstrate a unique function for HOTAIR in hASC depot-specific regulation of gene expression. Accumulation of fat above the waist is an important risk factor in developing obesity-related comorbidities independently of BMI or total fat mass. Deciphering the gene regulatory programs of the adipose tissue precursor cells within upper body or abdominal (ABD) and lower body or gluteofemoral (GF) depots is important to understand their differential capacity for lipid accumulation, maturation, and disease risk. Previous studies identified the HOX transcript antisense intergenic RNA (HOTAIR) as a GF-specific lncRNA; however, its role in adipose tissue biology is still unclear. Using three different approaches (silencing of HOTAIR in GF human adipose-derived stem cells [GF hASCs], overexpression of HOTAIR in ABD hASCs, and ChIRP-seq) to localize HOTAIR binding in GF hASC chromatin, we found that HOTAIR binds and modulates expression, both positively and negatively, of genes involved in adipose tissue-specific pathways, including adipogenesis. We further demonstrate a direct interaction between HOTAIR and genes with high RNAPII binding in their gene bodies, especially at their 3′ ends or transcription end sites. Computational analysis suggests HOTAIR binds preferentially to the 3′ ends of genes containing predicted strong RNA–RNA interactions with HOTAIR. Together, these results reveal a unique function for HOTAIR in hASC depot-specific regulation of gene expression.
Collapse
Affiliation(s)
- Edina Erdos
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Katalin Sandor
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Laszlo Halasz
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Timothy F Osborne
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| |
Collapse
|
17
|
Lee JH, Ealey KN, Patel Y, Verma N, Thakkar N, Park SY, Kim JR, Sung HK. Characterization of adipose depot-specific stromal cell populations by single-cell mass cytometry. iScience 2022; 25:104166. [PMID: 35434565 PMCID: PMC9010757 DOI: 10.1016/j.isci.2022.104166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
The increased prevalence of obesity and metabolic diseases has heightened interest in adipose tissue biology and its potential as a therapeutic target. To better understand cellular heterogeneity and complexity of white adipose tissue (WAT), we employed cytometry by time-of-flight (CyTOF) to characterize immune and stromal cells in visceral and subcutaneous WAT depots under normal and high-fat diet feeding, by quantifying the expression levels of 32 surface marker proteins. We observed comparable proportions of immune cells in two WAT depots under steady state, but depot-distinct subtypes of adipose precursor cells (APC), suggesting differences in their adipogenic and fibrogenic potential. Furthermore, in addition to pro-inflammatory immune cell shifts, significant pro-fibrotic changes were observed in APCs under high-fat diet, suggesting that APCs are early responders to dietary challenges. We propose CyTOF as a complementary and alternative tool to current high-throughput single-cell transcriptomic analyses to better understand the function and plasticity of adipose tissue. Application of CyTOF for cellular characterization in two adipose depots Adipose depot-distinct APC subpopulations APCs are early responders under obesogenic conditions to regulate WAT fibrosis
Collapse
Affiliation(s)
- Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Kafi N. Ealey
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yash Patel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Navkiran Verma
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Nikita Thakkar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - So Young Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Jae-Ryong Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
- Corresponding author
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Corresponding author
| |
Collapse
|
18
|
Zhang H, Ding Y, Zeng Q, Wang D, Liu G, Hussain Z, Xiao B, Liu W, Deng T. Characteristics of mesenteric adipose tissue attached to different intestinal segments and their roles in immune regulation. Am J Physiol Gastrointest Liver Physiol 2022; 322:G310-G326. [PMID: 34984923 DOI: 10.1152/ajpgi.00256.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesenteric adipose tissue (MAT) plays a critical role in the intestinal physiological ecosystems. Small and large intestines have evidently intrinsic and distinct characteristics. However, whether there exist any mesenteric differences adjacent to the small and large intestines (SMAT and LMAT) has not been properly characterized. We studied the important facets of these differences, such as morphology, gene expression, cell components, and immune regulation of MATs, to characterize the mesenteric differences. The SMAT and LMAT of mice were used for comparison of tissue morphology. Paired mesenteric samples were analyzed by RNA-seq to clarify gene expression profiles. MAT partial excision models were constructed to illustrate the immune regulation roles of MATs, and 16S-seq was applied to detect the subsequent effect on microbiota. Our data show that different segments of mesenteries have different morphological structures. SMAT not only has smaller adipocytes but also contains more fat-associated lymphoid clusters than LMAT. The gene expression profile is also discrepant between these two MATs in mice. B-cell markers were abundantly expressed in SMAT, whereas development-related genes were highly expressed in LMAT. Adipose-derived stem cells of LMAT exhibited higher adipogenic potential and lower proliferation rates than those of SMAT. In addition, SMAT and LMAT play different roles in immune regulation and subsequently affect microbiota components. Finally, our data clarified the described differences between SMAT and LMAT in humans. There were significant differences in cell morphology, gene expression profiles, cell components, biological characteristics, and immune and microbiota regulation roles between regional MATs.NEW & NOTEWORTHY Our results change the paradigm of how we regard MAT as a contiguous and homogeneous tissue to an intensely heterogeneous tissue. Appreciation of the differences between regional MATs will guide future research to investigate the specialized roles of different MATs in intestinal health and disease.
Collapse
Affiliation(s)
- Haowei Zhang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ganglei Liu
- Department of Geriatric Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zain Hussain
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Boen Xiao
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
19
|
Kuo FC, Huang YC, Yen MR, Lee CH, Hsu KF, Yang HY, Wu LW, Lu CH, Hsu YJ, Chen PY. Aberrant overexpression of HOTAIR inhibits abdominal adipogenesis through remodelling of genome-wide DNA methylation and transcription. Mol Metab 2022; 60:101473. [PMID: 35292404 PMCID: PMC9034304 DOI: 10.1016/j.molmet.2022.101473] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Abdominal adiposity is strongly associated with diabetic and cardiovascular comorbidities. The long noncoding RNA HOTAIR (HOX Transcript Antisense Intergenic RNA) is an important epigenetic regulator with fat depot-specific expression. Its functional roles and epigenetic regulation in abdominal adipogenesis remain uncertain. Methods We collected different fat depots from healthy, severely obese, and uraemic subjects to measure fat-depot specific gene expression and quantify regional adiposity via dual-energy X-ray absorptiometry (DXA). HOTAIR was overexpressed to evaluate its functional roles. Reduced representation bisulfite sequencing (RRBS), RNA-sequencing, real-time qPCR and RNA/chromatin immunoprecipitation were performed to analyse HOTAIR-mediated epigenetic regulation. Results A negative correlation between adipose tissue HOTAIR expression (arm or abdominal subcutaneous fat depots) and regional adiposity under the status of severe obesity or uraemia was observed. HOTAIR overexpression using human immortalized abdominal preadipocytes further revealed its anti-adipogenic effects. Integrative analysis of genome-wide DNA methylation by reduced representation bisulfite sequencing (RRBS) and gene expression was performed. Overall, the differentially methylated genes were functionally enriched for nervous system development, suggesting that HOTAIR may be epigenetically associated with cell lineage commitment. We specifically found that HOTAIR-mediated genes showed strong changes in both DNA methylation and gene expression during abdominal adipogenesis. We observed that two HOTAIR-repressed genes, SLITRK4 and PITPNC1, present an obesity-driven fat-depot specific expression pattern that is positively correlated with the central body fat distribution. Conclusions Our study indicated that HOTAIR is a key regulator of abdominal adipogenesis via intricate DNA methylation and is likely to be associated with the transcriptional regulation of genes involved in nervous system development and lipid metabolism, such as SLITRK4 and PITPNC1. HOTAIR was lowly expressed in abdominal and arm fats compared to the gluteal fat. Fat-depot-specific HOTAIR expression could be altered in the obese or uraemic status. HOTAIR overexpression suppressed abdominal adipogenesis and modulated methylome. HOTAIR-suppressed genes were associated with neural development and lipid metabolism.
Collapse
|
20
|
Epigenetic Dysregulation of the Homeobox A5 ( HOXA5) Gene Associates with Subcutaneous Adipocyte Hypertrophy in Human Obesity. Cells 2022; 11:cells11040728. [PMID: 35203377 PMCID: PMC8870634 DOI: 10.3390/cells11040728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Along with insulin resistance and increased risk of type 2 diabetes (T2D), lean first-degree relatives of T2D subjects (FDR) feature impaired adipogenesis in subcutaneous adipose tissue (SAT) and subcutaneous adipocyte hypertrophy well before diabetes onset. The molecular mechanisms linking these events have only partially been clarified. In the present report, we show that silencing of the transcription factor Homeobox A5 (HOXA5) in human preadipocytes impaired differentiation in mature adipose cells in vitro. The reduced adipogenesis was accompanied by inappropriate WNT-signaling activation. Importantly, in preadipocytes from FDR individuals, HOXA5 expression was attenuated, with hypermethylation of the HOXA5 promoter region found responsible for its downregulation, as revealed by luciferase assay. Both HOXA5 gene expression and DNA methylation were significantly correlated with SAT adipose cell hypertrophy in FDR, whose increased adipocyte size marks impaired adipogenesis. In preadipocytes from FDR, the low HOXA5 expression negatively correlated with enhanced transcription of the WNT signaling downstream genes NFATC1 and WNT2B. In silico evidence indicated that NFATC1 and WNT2B were directly controlled by HOXA5. The HOXA5 promoter region also was hypermethylated in peripheral blood leukocytes from these same FDR individuals, which was further revealed in peripheral blood leukocytes from an independent group of obese subjects. Thus, HOXA5 controlled adipogenesis in humans by suppressing WNT signaling. Altered DNA methylation of the HOXA5 promoter contributed to restricted adipogenesis in the SAT of lean subjects who were FDR of type 2 diabetics and in obese individuals.
Collapse
|
21
|
Wang BB, Hou LM, Zhou WD, Liu H, Tao W, Wu WJ, Niu PP, Zhang ZP, Zhou J, Li Q, Huang RH, Li PH. Genome-wide association study reveals a quantitative trait locus and two candidate genes on Sus scrofa chromosome 5 affecting intramuscular fat content in Suhuai pigs. Animal 2021; 15:100341. [PMID: 34425484 DOI: 10.1016/j.animal.2021.100341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Intramuscular fat content (IFC) is an essential quantitative trait of meat, affecting multiple meat quality indicators. A certain amount of IFC could not only improve the sensory score of pork but also increase the flavour, tenderness, juiciness and shelf-life. To dissect the genetic determinants of IFC, two methods, including genome-wide efficient mixed-model analysis (GEMMA) and linkage disequilibrium adjusted kinships (LDAKs), were used to carry out genome-wide association studies for IFC in Suhuai pig population. A total of 14 and 18 significant single nucleotide polymorphisms (SNPs) were identified by GEMMA and LDAK, respectively. The results of these two methods were highly consistent and all 14 significant SNPs in GEMMA were detected by LDAK. Seven of the 18 SNPs reached the genome-wide significance level (P < 9.85E-07) while 11 cases reached the suggestive significance level (P < 1.77E-05). These significant SNPs were mainly distributed on Sus scrofa chromosome (SSC) 5, 3, and 7. Moreover, one locus resides in a 2.27 Mb (71.37-73.64 Mb) region on SSC5 harbouring 13 significant SNPs associated with IFC, and the lead SNP (rs81302978) also locates in this region. Linkage disequilibrium (LD) analysis showed that there were four pairs of complete LD (r2 = 1) among these 13 SNPs, and the remaining 9 SNPs with incomplete LD (r2 ≠ 1) were selected for subsequent analyses of IFC. Association analyses showed that 7 out of 9 SNPs were significantly associated with IFC (P < 0.05) in 330 Suhuai pigs, and the other 2 SNPs tended to reach a significant association level with IFC (P < 0.1). The phenotypic variance explained (PVE) range of these 9 SNPs was 0.92-3.55%. Meanwhile, the lead SNP was also significantly associated (rs81302978) with IFC (P < 0.05) in 378 commercial hybrid pigs (Pietrain × Duroc) × (Landrace × Yorkshire) (PDLY), and the PVE was 1.38%. Besides, two lipid metabolism-relevant candidate genes, the leucine rich repeat kinase 2 (LRRK2) and PDZ domain containing ring finger 4 (PDZRN4) were identified in the 2.27 Mb region on SSC5. In conclusion, our results may provide a set of markers useful for genetic improvement of IFC in pigs and will advance the genome selection process of IFC on pig breeding programmes.
Collapse
Affiliation(s)
- B B Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - L M Hou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - W D Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - H Liu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - W Tao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - W J Wu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - P P Niu
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Z P Zhang
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - J Zhou
- Huaiyin Pig Breeding Farm of Huaian City, Huaian 223322, China
| | - Q Li
- Huaiyin Pig Breeding Farm of Huaian City, Huaian 223322, China
| | - R H Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - P H Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China.
| |
Collapse
|
22
|
Divoux A, Eroshkin A, Erdos E, Sandor K, Osborne TF, Smith SR. DNA Methylation as a Marker of Body Shape in Premenopausal Women. Front Genet 2021; 12:709342. [PMID: 34394195 PMCID: PMC8358448 DOI: 10.3389/fgene.2021.709342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Preferential accumulation of fat in the gluteo-femoral (GF) depot (pear shape) rather than in the abdominal (A) depot (apple shape), protects against the development of metabolic diseases but the underlying molecular mechanism is still unknown. Recent data, including our work, suggest that differential epigenetic marking is associated with regulation of genes attributed to distinct fat distribution. Here, we aimed to compare the genomic DNA methylation signatures between apple and pear-shaped premenopausal women. To investigate the contribution of upper and lower body fat, we used paired samples of A-FAT and GF-FAT, analyzed on the BeadChip Methylation Array and quantified the differentially methylated sites between the 2 groups of women. We found unique DNA methylation patterns within both fat depots that are significantly different depending on the body fat distribution. Around 60% of the body shape specific DNA methylation sites identified in adipose tissue are maintained ex vivo in cultured preadipocytes. As it has been reported before in other cell types, we found only a hand full of genes showing coordinated differential methylation and expression levels. Finally, we determined that more than 50% of the body shape specific DNA methylation sites could also be detected in whole blood derived DNA. These data reveal a strong DNA methylation program associated with adipose tissue distribution with the possibility that a simple blood test could be used as a predictive diagnostic indicator of young women who are at increased risk for progressing to the apple body shape with a higher risk of developing obesity related complications. Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT02728635 and https://clinicaltrials.gov/ct2/show/NCT02226640, identifiers NCT02728635 and NCT02226640.
Collapse
Affiliation(s)
- Adeline Divoux
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, United States
| | | | - Edina Erdos
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Katalin Sandor
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Timothy F. Osborne
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, United States
| |
Collapse
|
23
|
Raajendiran A, Krisp C, Souza DPD, Ooi G, Burton PR, Taylor RA, Molloy MP, Watt MJ. Proteome analysis of human adipocytes identifies depot-specific heterogeneity at metabolic control points. Am J Physiol Endocrinol Metab 2021; 320:E1068-E1084. [PMID: 33843278 DOI: 10.1152/ajpendo.00473.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adipose tissue is a primary regulator of energy balance and metabolism. The distribution of adipose tissue depots is of clinical interest because the accumulation of upper-body subcutaneous (ASAT) and visceral adipose tissue (VAT) is associated with cardiometabolic diseases, whereas lower-body glutealfemoral adipose tissue (GFAT) appears to be protective. There is heterogeneity in morphology and metabolism of adipocytes obtained from different regions of the body, but detailed knowledge of the constituent proteins in each depot is lacking. Here, we determined the human adipocyte proteome from ASAT, VAT, and GFAT using high-resolution Sequential Window Acquisition of all Theoretical (SWATH) mass spectrometry proteomics. We quantified 4,220 proteins in adipocytes, and 2,329 proteins were expressed in all three adipose depots. Comparative analysis revealed significant differences between adipocytes from different regions (6% and 8% when comparing VAT vs. ASAT and GFAT, 3% when comparing the subcutaneous adipose tissue depots, ASAT and GFAT), with marked differences in proteins that regulate metabolic functions. The VAT adipocyte proteome was overrepresented with proteins of glycolysis, lipogenesis, oxidative stress, and mitochondrial dysfunction. The GFAT adipocyte proteome predicted the activation of peroxisome proliferator-activated receptor α (PPARα), fatty acid, and branched-chain amino acid (BCAA) oxidation, enhanced tricarboxylic acid (TCA) cycle flux, and oxidative phosphorylation, which was supported by metabolomic data obtained from adipocytes. Together, this proteomic analysis provides an important resource and novel insights that enhance the understanding of metabolic heterogeneity in the regional adipocytes of humans.NEW & NOTEWORTHY Adipocyte metabolism varies depending on anatomical location and the adipocyte protein composition may orchestrate this heterogeneity. We used SWATH proteomics in patient-matched human upper- (visceral and subcutaneous) and lower-body (glutealfemoral) adipocytes and detected 4,220 proteins and distinguishable regional proteomes. Upper-body adipocyte proteins were associated with glycolysis, de novo lipogenesis, mitochondrial dysfunction, and oxidative stress, whereas lower-body adipocyte proteins were associated with enhanced PPARα activation, fatty acid, and BCAA oxidation, TCA cycle flux, and oxidative phosphorylation.
Collapse
Affiliation(s)
- Arthe Raajendiran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility, Macquarie University, New South Wales, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Geraldine Ooi
- Faculty of Medicine, Nursing and Health Sciences, Centre for Obesity Research and Education, Monash University, Melbourne, Victoria, Australia
| | - Paul R Burton
- Faculty of Medicine, Nursing and Health Sciences, Centre for Obesity Research and Education, Monash University, Melbourne, Victoria, Australia
| | - Renea A Taylor
- Department of Physiology, Monash University, Clayton, Victoria, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, New South Wales, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Lee SG, Kim JS, Kim HJ, Schlaepfer DD, Kim IS, Nam JO. Endothelial angiogenic activity and adipose angiogenesis is controlled by extracellular matrix protein TGFBI. Sci Rep 2021; 11:9644. [PMID: 33958649 PMCID: PMC8102489 DOI: 10.1038/s41598-021-88959-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Several studies have suggested that extracellular matrix (ECM) remodeling and the microenvironment are tightly associated with adipogenesis and adipose angiogenesis. In the present study, we demonstrated that transforming growth factor-beta induced (TGFBI) suppresses angiogenesis stimulated by adipocyte-conditioned medium (Ad-CM), both in vitro and in vivo. TGFBI knockout (KO) mice exhibited increased numbers of blood vessels in adipose tissue, and blood vessels from these mice showed enhanced infiltration into Matrigel containing Ad-CM. The treatment of Ad-CM-stimulated SVEC-10 endothelial cells with TGFBI protein reduced migration and tube-forming activity. TGFBI protein suppressed the activation of the Src and extracellular signaling-related kinase signaling pathways of these SVEC-10 endothelial cells. Our findings indicated that TGFBI inhibited adipose angiogenesis by suppressing the activation of Src and ERK signaling pathways, possibly because of the stimulation of the angiogenic activity of endothelial cells.
Collapse
Affiliation(s)
- Seul Gi Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jin Soo Kim
- National Institute for Korean Medicine Development, Kyeongsan, 38540, Republic of Korea
| | - Ha-Jeong Kim
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - David D Schlaepfer
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
25
|
Long X, You G, Wu Q, Zhou Y, Xiao Y, Yu F, Deng S, Mo R, Song F, Huang J, Tian M. HomeoboxC6 affects the apoptosis of human vascular endothelial cells and is involved in atherosclerosis. J Cell Physiol 2021; 236:1913-1925. [PMID: 32740941 DOI: 10.1002/jcp.29974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
Apoptosis of vascular endothelial cells (VECs) is highly important in the occurrence and development of atherosclerosis (AS). HomeboxC6 (HOXC6) is expressed in higher levels in multiple malignant tissues, and it influences the malignant biological behavior of the cancer cells. However, the effects of HOXC6 on AS and the apoptosis of VECs have not been fully elucidated. In this study, we demonstrated that HOXC6 expression was increased in aortic wall of AS rats and peripheral blood monocytes of patients with coronary heart disease. Furthermore, it was uncovered that BAX expression was upregulated, while BCL-2 expression was downregulated in the aortic wall of AS rats. The apoptosis of human VECs (HVECs) cultured normally or treated with oxidized low-density lipoprotein in vitro was decreased after transfection with HOXC6-siRNA. Moreover, the results of Western blot analysis unveiled that the expressions of proapoptotic proteins, such as BAX, caspase-3, cleaved-caspase-3, and caspase-9 were reduced, while the expression of antiapoptotic protein, BCL-2, was elevated. Meanwhile, mRNA and protein expressions of phospholipase C beta (PLCβ) were decreased, the phosphorylation levels of protein kinase C zeta (PKCζ) and nuclear transcription factor-κB-p65 (NF-κBp65) and the membrane translocation of PKCζ were reduced as well. Besides, the expression of interleukin-18 (IL-18) protein was downregulated. However, after overexpression of HOXC6, the opposite trends of the abovementioned indices were observed. Furthermore, the inhibition of apoptosis induced by HOXC6-siRNA was reversed by lysophosphatidylcholine, an activator of PKCζ. Taken together, our results indicated that HOXC6 can promote the apoptosis of HVECs and may be involved in the occurrence and development of AS, which may be partially associated with the activation of PLCβ/PKCζ/NF-κBp65/IL-18 signaling pathway.
Collapse
Affiliation(s)
- Xiangshu Long
- Medical College, Guizhou University, Guiyang, Guizhou, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
- People's Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Ganhua You
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
- People's Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
- People's Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Yu Zhou
- Medical College, Guizhou University, Guiyang, Guizhou, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yan Xiao
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Fuxun Yu
- Department of Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Shiyan Deng
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Rui Mo
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Fang Song
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Maobo Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
26
|
Distinct Shades of Adipocytes Control the Metabolic Roles of Adipose Tissues: From Their Origins to Their Relevance for Medical Applications. Biomedicines 2021; 9:biomedicines9010040. [PMID: 33466493 PMCID: PMC7824911 DOI: 10.3390/biomedicines9010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue resides in specific depots scattered in peripheral or deeper locations all over the body and it enwraps most of the organs. This tissue is always in a dynamic evolution as it must adapt to the metabolic demand and constraints. It exhibits also endocrine functions important to regulate energy homeostasis. This complex organ is composed of depots able to produce opposite functions to monitor energy: the so called white adipose tissue acts to store energy as triglycerides preventing ectopic fat deposition while the brown adipose depots dissipate it. It is composed of many cell types. Different types of adipocytes constitute the mature cells specialized to store or burn energy. Immature adipose progenitors (AP) presenting stem cells properties contribute not only to the maintenance but also to the expansion of this tissue as observed in overweight or obese individuals. They display a high regeneration potential offering a great interest for cell therapy. In this review, we will depict the attributes of the distinct types of adipocytes and their contribution to the function and metabolic features of adipose tissue. We will examine the specific role and properties of distinct depots according to their location. We will consider their cellular heterogeneity to present an updated picture of this sophisticated tissue. We will also introduce new trends pointing out a rational targeting of adipose tissue for medical applications.
Collapse
|
27
|
Xiao Y, Liu D, Cline MA, Gilbert ER. Chronic stress, epigenetics, and adipose tissue metabolism in the obese state. Nutr Metab (Lond) 2020; 17:88. [PMID: 33088334 PMCID: PMC7574417 DOI: 10.1186/s12986-020-00513-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In obesity, endocrine and metabolic perturbations, including those induced by chronic activation of the hypothalamus-pituitary-adrenal axis, are associated with the accumulation of adipose tissue and inflammation. Such changes are attributable to a combination of genetic and epigenetic factors that are influenced by the environment and exacerbated by chronic activation of the hypothalamus-pituitary-adrenal axis. Stress exposure at different life stages can alter adipose tissue metabolism directly through epigenetic modification or indirectly through the manipulation of hypothalamic appetite regulation, and thereby contribute to endocrine changes that further disrupt whole-body energy balance. This review synthesizes current knowledge, with an emphasis on human clinical trials, to describe metabolic changes in adipose tissue and associated endocrine, genetic and epigenetic changes in the obese state. In particular, we discuss epigenetic changes induced by stress exposure and their contribution to appetite and adipocyte dysfunction, which collectively promote the pathogenesis of obesity. Such knowledge is critical for providing future directions of metabolism research and targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| |
Collapse
|
28
|
Hernandez JD, Tew BY, Li T, Gooden GC, Ghannam H, Masuda M, Madura J, Salhia B, Jacobsen EA, De Filippis E. A FACS-based approach to obtain viable eosinophils from human adipose tissue. Sci Rep 2020; 10:13210. [PMID: 32764552 PMCID: PMC7413382 DOI: 10.1038/s41598-020-70093-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
Eosinophils have been widely investigated in asthma and allergic diseases. More recently, new insights into the biology of these cells has illustrated eosinophils contribute to homeostatic functions in health such as regulation of adipose tissue glucose metabolism. Human translational studies are limited by the difficulty of obtaining cells taken directly from their tissue environment, relying instead on eosinophils isolated from peripheral blood. Isolation techniques for tissue-derived eosinophils can result in unwanted cell or ribonuclease activation, leading to poor cell viability or RNA quality, which may impair analysis of effector activities of these cells. Here we demonstrate a technique to obtain eosinophils from human adipose tissue samples for the purpose of downstream molecular analysis. From as little as 2 g of intact human adipose tissue, greater than 104 eosinophils were purified by fluorescence-activated cell sorting (FACS) protocol resulting in ≥ 99% purity and ≥ 95% viable eosinophils. We demonstrated that the isolated eosinophils could undergo epigenetic analysis to determine differences in DNA methylation in various settings. Here we focused on comparing eosinophils isolated from human peripheral blood vs human adipose tissue. Our results open the door to future mechanistic investigations to better understand the role of tissue resident eosinophils in different context.
Collapse
Affiliation(s)
- James D Hernandez
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ting Li
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Gerald C Gooden
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hamza Ghannam
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Mia Masuda
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - James Madura
- Division of General Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Eleanna De Filippis
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
29
|
Lee K, Moon S, Park MJ, Koh IU, Choi NH, Yu HY, Kim YJ, Kong J, Kang HG, Kim SC, Kim BJ. Integrated Analysis of Tissue-Specific Promoter Methylation and Gene Expression Profile in Complex Diseases. Int J Mol Sci 2020; 21:E5056. [PMID: 32709145 PMCID: PMC7404266 DOI: 10.3390/ijms21145056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
This study investigated whether the promoter region of DNA methylation positively or negatively regulates tissue-specific genes (TSGs) and if it correlates with disease pathophysiology. We assessed tissue specificity metrics in five human tissues, using sequencing-based approaches, including 52 whole genome bisulfite sequencing (WGBS), 52 RNA-seq, and 144 chromatin immunoprecipitation sequencing (ChIP-seq) data. A correlation analysis was performed between the gene expression and DNA methylation levels of the TSG promoter region. The TSG enrichment analyses were conducted in the gene-disease association network (DisGeNET). The epigenomic association analyses of CpGs in enriched TSG promoters were performed using 1986 Infinium MethylationEPIC array data. A correlation analysis showed significant associations between the promoter methylation and 449 TSGs' expression. A disease enrichment analysis showed that diabetes- and obesity-related diseases were high-ranked. In an epigenomic association analysis based on obesity, 62 CpGs showed statistical significance. Among them, three obesity-related CpGs were newly identified and replicated with statistical significance in independent data. In particular, a CpG (cg17075888 of PDK4), considered as potential therapeutic targets, were associated with complex diseases, including obesity and type 2 diabetes. The methylation changes in a substantial number of the TSG promoters showed a significant association with metabolic diseases. Collectively, our findings provided strong evidence of the relationship between tissue-specific patterns of epigenetic changes and metabolic diseases.
Collapse
Affiliation(s)
- Kibaick Lee
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Sanghoon Moon
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Mi-Jin Park
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - In-Uk Koh
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Nak-Hyeon Choi
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Ho-Yeong Yu
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Young Jin Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Jinhwa Kong
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| |
Collapse
|
30
|
Nono Nankam PA, Blüher M, Kehr S, Klöting N, Krohn K, Adams K, Stadler PF, Mendham AE, Goedecke JH. Distinct abdominal and gluteal adipose tissue transcriptome signatures are altered by exercise training in African women with obesity. Sci Rep 2020; 10:10240. [PMID: 32581226 PMCID: PMC7314771 DOI: 10.1038/s41598-020-66868-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
The differential associations of adipose depots with metabolic risk during obesity have been proposed to be controlled by environmental and genetic factors. We evaluated the regional differences in transcriptome signatures between abdominal (aSAT) and gluteal subcutaneous adipose tissue (gSAT) in obese black South African women and tested the hypothesis that 12-week exercise training alters gene expression patterns in a depot-specific manner. Twelve young women performed 12-weeks of supervised aerobic and resistance training. Pre- and post-intervention measurements included peak oxygen consumption (VO2peak), whole-body composition and unbiased gene expression analysis of SAT depots. VO2peak increased, body weight decreased, and body fat distribution improved with exercise training (p < 0.05). The expression of 15 genes, mainly associated with embryonic development, differed between SAT depots at baseline, whereas 318 genes were differentially expressed post-training (p < 0.05). Four developmental genes were differentially expressed between these depots at both time points (HOXA5, DMRT2, DMRT3 and CSN1S1). Exercise training induced changes in the expression of genes associated with immune and inflammatory responses, and lipid metabolism in gSAT, and muscle-associated processes in aSAT. This study showed differences in developmental processes regulating SAT distribution and expandability of distinct depots, and depot-specific adaptation to exercise training in black South African women with obesity.
Collapse
Affiliation(s)
- Pamela A Nono Nankam
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa. .,Department of Endocrinology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | - Matthias Blüher
- Department of Endocrinology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- Department of Endocrinology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Knut Krohn
- Core Unit DNA-Technologies, Medical Faculty, University Leipzig, Leipzig, Germany
| | - Kevin Adams
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Amy E Mendham
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Non-communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Julia H Goedecke
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Non-communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, Cape Town, South Africa
| |
Collapse
|
31
|
Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab 2020; 34:27-42. [PMID: 32180558 PMCID: PMC6997501 DOI: 10.1016/j.molmet.2019.12.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The diminished glucose lowering effect of insulin in obesity, called "insulin resistance," is associated with glucose intolerance, type 2 diabetes, and other serious maladies. Many publications on this topic have suggested numerous hypotheses on the molecular and cellular disruptions that contribute to the syndrome. However, significant uncertainty remains on the mechanisms of its initiation and long-term maintenance. SCOPE OF REVIEW To simplify insulin resistance analysis, this review focuses on the unifying concept that adipose tissue is a central regulator of systemic glucose homeostasis by controlling liver and skeletal muscle metabolism. Key aspects of adipose function related to insulin resistance reviewed are: 1) the modes by which specific adipose tissues control hepatic glucose output and systemic glucose disposal, 2) recently acquired understanding of the underlying mechanisms of these modes of regulation, and 3) the steps in these pathways adversely affected by obesity that cause insulin resistance. MAJOR CONCLUSIONS Adipocyte heterogeneity is required to mediate the multiple pathways that control systemic glucose tolerance. White adipocytes specialize in sequestering triglycerides away from the liver, muscle, and other tissues to limit toxicity. In contrast, brown/beige adipocytes are very active in directly taking up glucose in response to β adrenergic signaling and insulin and enhancing energy expenditure. Nonetheless, white, beige, and brown adipocytes all share the common feature of secreting factors and possibly exosomes that act on distant tissues to control glucose homeostasis. Obesity exerts deleterious effects on each of these adipocyte functions to cause insulin resistance.
Collapse
Affiliation(s)
- Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
32
|
Ronquillo MD, Mellnyk A, Cárdenas-Rodríguez N, Martínez E, Comoto DA, Carmona-Aparicio L, Herrera NE, Lara E, Pereyra A, Floriano-Sánchez E. Different gene expression profiles in subcutaneous & visceral adipose tissues from Mexican patients with obesity. Indian J Med Res 2020; 149:616-626. [PMID: 31417029 PMCID: PMC6702687 DOI: 10.4103/ijmr.ijmr_1165_17] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background & objectives Obesity is a health problem that requires substantial efforts to understand the physiopathology of its various types and to determine therapeutic strategies for its treatment. The objective of this study was to characterize differences in the global gene expression profiles of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) between control patients (normal weight) and patients with obesity (IMC≥30) using microarrays. Methods Employing RNA isolated from SAT and VAT samples obtained from eight control and eight class I, II and III patients with obesity, the gene expression profiles were compared between SAT and VAT using microarrays and the findings were validated via real-time quantitative polymerase chain reaction. Results A total of 327 and 488 genes were found to be differentially expressed in SAT and VAT, respectively (P≤0.05). Upregulation of PPAP2C, CYP4A11 and CYP17A1 genes was seen in the VAT of obese individuals. Interpretation & conclusions SAT and VAT exhibited significant differences in terms of the expression of specific genes. These genes might be related to obesity. These findings may be used to improve the clinical diagnosis of obesity and could be a tool leading to the proposal of new therapeutic strategies for the treatment of obesity.
Collapse
Affiliation(s)
- María D Ronquillo
- Laboratory of Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alla Mellnyk
- Laboratory of Molecular Oncology and Oxidative Stress, Section of Research & Graduate Studies, Superior School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Noemí Cárdenas-Rodríguez
- Subdirection of Experimental Medicine, Laboratory of Neurosciences, National Institute of Pediatrics, Mexico City, Mexico
| | - Emmanuel Martínez
- Research Subdirection, Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| | - David A Comoto
- Research Subdirection, Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| | - Liliana Carmona-Aparicio
- Subdirection of Experimental Medicine, Laboratory of Neurosciences, National Institute of Pediatrics, Mexico City, Mexico
| | - Norma E Herrera
- Laboratory of Molecular Oncology and Oxidative Stress, Section of Research & Graduate Studies, Superior School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Eleazar Lara
- Laboratory of Molecular Oncology and Oxidative Stress, Section of Research & Graduate Studies, Superior School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Armando Pereyra
- Department of Surgery, Military Central Hospital, SEDENA, Mexico City, Mexico
| | - Esaú Floriano-Sánchez
- Research Subdirection, Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| |
Collapse
|
33
|
Abstract
Accumulating knowledge on the biology and function of the adipose tissue has led to a major shift in our understanding of its role in health and disease. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, including adipocytokines, microvesicles and gaseous messengers, with a wide range of endocrine and paracrine effects on the cardiovascular system. The adipose tissue function and secretome are tightly controlled by complex homeostatic mechanisms and local cell-cell interactions, which can become dysregulated in obesity. Systemic or local inflammation and insulin resistance lead to a shift in the adipose tissue secretome from anti-inflammatory and anti-atherogenic towards a pro-inflammatory and pro-atherogenic profile. Moreover, the interplay between the adipose tissue and the cardiovascular system is bidirectional, with vascular-derived and heart-derived signals directly affecting adipose tissue biology. In this Review, we summarize the current knowledge of the biology and regional variability of adipose tissue in humans, deciphering the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation. In addition, we highlight the latest developments in adipose tissue imaging for cardiovascular risk stratification and discuss how therapeutic targeting of the adipose tissue can improve prevention and treatment of cardiovascular disease.
Collapse
|
34
|
Miranda RA, Pietrobon CB, Bertasso IM, Rodrigues VST, Lopes BP, Calvino C, de Oliveira E, de Moura EG, Lisboa PC. Early weaning leads to specific glucocorticoid signalling in fat depots of adult rats. Endocrine 2020; 67:180-189. [PMID: 31494802 DOI: 10.1007/s12020-019-02080-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Early weaning (EW) is a stressful condition that programmes a child to be overweight in adult life. Fat mass depends on glucocorticoids (GC) to regulate adipogenesis and lipogenesis. We hypothesised that the increased adiposity in models of EW was due to a disturbed HPA axis and/or disrupted GC function. METHODS We used two experimental models, pharmacological early weaning (PEW, dams were bromocriptine-treated) and non-pharmacological early weaning (NPEW, dams' teats were wrapped with a bandage), which were initiated during the last 3 days of lactation. Offspring from both genders was analysed on postnatal day 180. RESULTS Offspring in both models were overweight with increased visceral fat mass, but plasma corticosterone was increased in both genders in the PEW group but not the NPEW group. NPEW males had increased GRα expression in visceral adipose tissue (VAT), and GRα expression decreased in PEW males in subcutaneous adipose tissue (SAT). Females in both EW groups had increased 11βHSD1 expression in SAT. PEW males had increased C/EBPβ expression in SAT. PEW females had lower PPARy and FAS expression in VAT than the NPEW females. We detected a sex dimorphism in VAT and SAT in the EW groups regarding 11βHSD1, GRα and C/EBPβ expression. CONCLUSIONS The accumulated adiposity induced by EW exhibited distinct mechanisms depending on gender, specific fat deposition and GC metabolism and action. The higher proportion of VAT/SAT in both sets of EW males may be related to the action of GC in these tissues, and the higher conversion of GC in SAT in females may explain the differences in the fat distribution.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Vanessa S Tavares Rodrigues
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Bruna Pereira Lopes
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Camila Calvino
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Elaine de Oliveira
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Patrícia C Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
35
|
Yuan Z, Xiang R, Li W, Li F, Yue X. Transcriptomic analyses revealed common tailed and perirenal adipose differentially expressed genes in four Chinese indigenous sheep breeds. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.103832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Abstract
Adipose stem cells (ASCs) are the basis of procedures intended for tissue regeneration. These cells are heterogeneous, owing to various factors, including the donor age, sex, body mass index, and clinical condition; the isolation procedure (liposuction or fat excision); the place from where the cells were sampled (body site and depth of each adipose depot); culture surface; type of medium (whether supplemented with fetal bovine serum or xeno-free), that affect the principal phenotypic features of ASCs. The features related to ASCs heterogeneity are relevant for the success of therapeutic procedures; these features include proliferation capacity, differentiation potential, immunophenotype, and the secretome. These are important characteristics for the success of regenerative tissue engineering, not only because of their effects upon the reconstruction and healing exerted by ASCs themselves, but also because of the paracrine signaling of ASCs and its impact on recipient tissues. Knowledge of sources of heterogeneity will be helpful in the standardization of ASCs-based procedures. New avenues of research could include evaluation of the effects of the use of more homo1geneous ASCs for specific purposes, the study of ASCs-recipient interactions in heterologous cell transplantation, and the characterization of epigenetic changes in ASCs, as well as investigations of the effect of the metabolome upon ASCs behavior in culture.
Collapse
|
37
|
Chechi K, Vijay J, Voisine P, Mathieu P, Bossé Y, Tchernof A, Grundberg E, Richard D. UCP1 expression-associated gene signatures of human epicardial adipose tissue. JCI Insight 2019; 4:123618. [PMID: 30996144 DOI: 10.1172/jci.insight.123618] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple reports of uncoupling protein 1 (UCP1) expression have established its presence in human epicardial adipose tissue (eAT). Its functional relevance to eAT, however, remains largely unknown. In a recent study, we reported that adrenergic stimulation of eAT was associated with downregulation of secreted proteins involved in oxidative stress-related and immune-related pathways. Here, we explored the UCP1-associated features of human eAT using next-generation deep sequencing. Paired biopsies of eAT, mediastinal adipose tissue (mAT), and subcutaneous adipose tissue (sAT) obtained from cardiac surgery patients, with specific criteria of high and low expression of UCP1 in eAT, were subjected to RNA sequencing. Although eAT exhibited a depot-specific upregulation in the immune-related pathways relative to mAT and sAT, high UCP1 expression in eAT was specifically associated with differential gene expression that functionally corresponded with downregulation in the production of reactive oxygen species and immune responses, including T cell homeostasis. Our data indicate that UCP1 and adaptive immunity share a reciprocal relationship at the whole-transcriptome level, thereby supporting a plausible role for UCP1 in maintaining tissue homeostasis in human eAT.
Collapse
Affiliation(s)
- Kanta Chechi
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada.,Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Chemin Sainte-Foy, Québec, Canada
| | - Jinchu Vijay
- Department of Human Genetics, McGill University, and Genome Québec Innovation Centre, Montreal, Québec, Canada
| | - Pierre Voisine
- Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Chemin Sainte-Foy, Québec, Canada.,Department of Cardiovascular Surgery
| | - Patrick Mathieu
- Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Chemin Sainte-Foy, Québec, Canada.,Laboratory of Cardiovascular Pathobiology, Department of Surgery, Faculty of Medicine, and
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Chemin Sainte-Foy, Québec, Canada.,Department of Molecular Medicine, Université Laval, Québec, Québec, Canada
| | - Andre Tchernof
- Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Chemin Sainte-Foy, Québec, Canada.,School of Nutrition, Université Laval, Québec, Québec, Canada
| | - Elin Grundberg
- Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Denis Richard
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada.,Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Chemin Sainte-Foy, Québec, Canada
| |
Collapse
|
38
|
Otero-Díaz B, Rodríguez-Flores M, Sánchez-Muñoz V, Monraz-Preciado F, Ordoñez-Ortega S, Becerril-Elias V, Baay-Guzmán G, Obando-Monge R, García-García E, Palacios-González B, Villarreal-Molina MT, Sierra-Salazar M, Antuna-Puente B. Exercise Induces White Adipose Tissue Browning Across the Weight Spectrum in Humans. Front Physiol 2018; 9:1781. [PMID: 30618796 PMCID: PMC6297830 DOI: 10.3389/fphys.2018.01781] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 01/02/2023] Open
Abstract
While the effect of exercise on white adipose tissue browning and metabolic improvement in rodents is clear, there are few studies in humans with inconclusive results. Thus, the aim of the study was to assess whether an exercise intervention promotes subcutaneous adipose tissue browning in humans, and whether this response is associated with metabolic improvement in three groups of individuals defined by body mass index (BMI) (kg/m2). Sedentary adult subjects with different BMI were enrolled in a 12-week bicycle-training program (3 times per week, intensity 70-80% HRmax). Brown and beige gene expression in subcutaneous adipose tissue (scWAT) biopsies, and serum glucose, insulin, lipid, adipokine, and myokine levels were compared before and after the exercise intervention. Thirty-three non-diabetic subjects (mean age 30.4 ± 4.6 years; 57.57% female; 13 normal weight, 10 overweight and 10 with obesity) completed the exercise intervention. Without any significant change in body composition, exercise improved several metabolic parameters, most notably insulin resistance and particularly in the overweight group. Circulating adiponectin, apelin, and irisin exercise-induced changes predicted 60% of the insulin sensitivity improvement. After exercise UCP1, TBX1, CPT1B scWAT expression significantly increased, along with P2RX5 significant positive staining. These changes are compatible with scWAT browning, however, they were not associated with glucose metabolism improvement. In conclusion, 12-weeks of exercise training produced brown/beige gene expression changes in abdominal scWAT of non-diabetic individuals with different BMI, which did not contribute to the metabolic improvement. However, this result should not be interpreted as a lack of effect of browning on metabolic parameters. These findings suggest that a bigger effect is needed and should not preclude the development of more effective strategies of browning. Furthermore, exercise-induced changes in adiponectin, apelin, and irisin predicted insulin sensitivity improvement, supporting the important role of adipokines and myokines in metabolism homeostasis.
Collapse
Affiliation(s)
- Berenice Otero-Díaz
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marcela Rodríguez-Flores
- Departamento de Endocrinología, Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Verónica Sánchez-Muñoz
- Centro de Nutrición y Obesidad, The American British Cowdray (ABC) Medical Center, Mexico City, Mexico
| | - Fernando Monraz-Preciado
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Samuel Ordoñez-Ortega
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Vicente Becerril-Elias
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Guillermina Baay-Guzmán
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Rodolfo Obando-Monge
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Eduardo García-García
- Departamento de Endocrinología, Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | | | | | - Mauricio Sierra-Salazar
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Barbara Antuna-Puente
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
39
|
Xie T, Ding H, Xia M, Zhang X, Sun W, Liu T, Gu Y, Sun C, Hu F. Dynamic changes in the distribution of facial and abdominal adipose tissue correlated with surgical treatment in acromegaly. Endocrine 2018; 62:552-559. [PMID: 30203120 DOI: 10.1007/s12020-018-1742-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Acromegaly is a systemic metabolic disease. Growth hormone (GH) have a significant impact on adipose tissue (AT). A huge reduction of serum GH after surgical treatment may cause substantial AT redistribution. The objective of this study was to illustrate the dynamic changes in distribution of facial and abdominal AT correlated with surgical treatment in patients with acromegaly. METHODS Abdominal AT in 17 acromegaly patients (group 1) was studied longitudinally preoperatively and 1 month to 1 year postoperatively. The facial and abdominal subcutaneous AT (fSAT and aSAT) of another 17 acromegaly patients (group 2) were compared with 7 nonfunctional pituitary adenoma (NFPA) controls. The areas of fSAT, aSAT, and visceral adipose tissue (VAT) were obtained by MRI and quantified by image analysis software, and intrahepatic lipid (IHL) was assessed by 1H magnetic resonance spectroscopy (MRS). RESULTS Abdominal adipose tissue (aSAT, VAT, and IHL) increased overall after surgical treatment. However, IHL first decreased and then continuously increased during the follow-up. Compared with the increased amount of aSAT, the fSAT amount decreased after surgical treatment. The inconsistency of this phenomenon did not appear in the NFPA control subjects. CONCLUSION The perioperative dynamic distribution of the facial and abdominal fat in acromegaly revealed regional differences in the intricate effect of GH on adipose tissue. Reduction of serum GH after surgical treatment of acromegaly was associated with dynamic increases of IHL, abdominal visceral, and subcutaneous fat, but a reduction of facial subcutaneous fat.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hailin Ding
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Digital Medical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Medical Image Computing and Computer-Assisted Intervention, Shanghai, China.
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tengfei Liu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ye Gu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chongjing Sun
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Hu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Bederman I, DiScenna A, Henderson L, Perez A, Klavanian J, Kovtun D, Collins O, Dunn J, Erokwu B, Flask CA, Drumm ML. Small adipose stores in cystic fibrosis mice are characterized by reduced cell volume, not cell number. Am J Physiol Gastrointest Liver Physiol 2018; 315:G943-G953. [PMID: 30188751 PMCID: PMC6336944 DOI: 10.1152/ajpgi.00096.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cystic fibrosis (CF) is a lethal genetic disorder that affects many organ systems of the body, including various endocrine and exocrine tissues. Health and survival positively associate with body mass, and as a consequence, CF clinical care includes high-fat, high-calorie diets to maintain and increase adipose tissue stores. Such strategies have been implemented without a clear understanding of the cause and effect relationship between body mass and patients' health. Here, we used CF mouse models, which display small adipose stores, to begin examining body fat as a prelude into mechanistic studies of low body growth in CF, so that optimal therapeutic strategies could be developed. We reasoned that low adiposity must result from reduced number and/or volume of adipocytes. To determine relative contribution of either mechanism, we quantified volume of intraperitoneal and subcutaneous adipocytes. We found smaller, but not fewer, adipocytes in CF compared with wild-type (WT) animals. Specifically, intraperitoneal CF adipocytes were one-half the volume of WT cells, whereas subcutaneous cells were less affected by the Cftr genotype. No differences were found in cell types between CF and WT adipose tissues. Adipose tissue CFTR mRNA was detected, and we found greater CFTR expression in intraperitoneal depots as compared with subcutaneous samples. RNA sequencing revealed that CF adipose tissue exhibited lower expression of several key genes of adipocyte function ( Lep, Pck1, Fas, Jun), consistent with low triglyceride storage. The data indicate that CF adipocytes contain fewer triglycerides than WT cells, and a role for CFTR in these cells is proposed. NEW & NOTEWORTHY Adipocytes in cystic fibrosis mice exhibit smaller size due to low triglyceride storage. Adipocyte cell number per fat pad is similar, implying triglyceride storage problem. The absence of CFTR function in adipose tissue has been proposed as a direct link to low triglyceride storage in cystic fibrosis.
Collapse
Affiliation(s)
- Ilya Bederman
- 1Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Alex DiScenna
- 1Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Leigh Henderson
- 2Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Aura Perez
- 1Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Jeannie Klavanian
- 2Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Daniel Kovtun
- 1Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Olivia Collins
- 1Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - John Dunn
- 1Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Bernadette Erokwu
- 3Department of Radiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Christopher A. Flask
- 3Department of Radiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio,4Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Mitchell L. Drumm
- 1Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio,2Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
41
|
Divoux A, Sandor K, Bojcsuk D, Talukder A, Li X, Balint BL, Osborne TF, Smith SR. Differential open chromatin profile and transcriptomic signature define depot-specific human subcutaneous preadipocytes: primary outcomes. Clin Epigenetics 2018; 10:148. [PMID: 30477572 PMCID: PMC6258289 DOI: 10.1186/s13148-018-0582-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
Background Increased lower body fat is associated with reduced cardiometabolic risk. The molecular basis for depot-specific differences in gluteofemoral (GF) compared with abdominal (A) subcutaneous adipocyte function is poorly understood. In the current report, we used a combination of Assay for Transposase-Accessible Chromatin followed by sequencing (ATAC-seq), RNA-seq, and chromatin immunoprecipitation (ChIP)-qPCR analyses that provide evidence that depot-specific gene expression patterns are associated with differential epigenetic chromatin signatures. Methods Preadipocytes cultured from A and GF adipose tissue obtained from premenopausal apple-shaped women were used to perform transcriptome analysis by RNA-seq and assess accessible chromatin regions by ATAC-seq. We measured mRNA expression and performed ChIP-qPCR experiments for histone modifications of active (H3K4me3) and repressed chromatin (H3K27me3) regions respectively on the promoter regions of differentially expressed genes. Results RNA-seq experiments revealed an A-fat and GF-fat selective gene expression signature, with 126 genes upregulated in abdominal preadipocytes and 90 genes upregulated in GF cells. ATAC-seq identified almost 10-times more A-specific chromatin-accessible regions. Using a combined analysis of ATAC-seq and global gene expression data, we identified 74 of the 126 abdominal-specific genes (59%) with A-specific accessible chromatin sites within 200 kb of the transcription start site (TSS), including HOXA3, HOXA5, IL8, IL1b, and IL6. Interestingly, only 14 of the 90 GF-specific genes (15%) had GF-specific accessible chromatin sites within 200 kb of the corresponding TSS, including HOXC13 and HOTAIR, whereas 25 of them (28%) had abdominal-specific accessible chromatin sites. ChIP-qPCR experiments confirmed that the active H3K4me3 chromatin mark was significantly enriched at the promoter regions of HOXA5 and HOXA3 genes in abdominal preadipocytes, while H3K27me3 was less abundant relative to chromatin from GF. This is consistent with their A-fat specific gene expression pattern. Conversely, analysis of the promoter regions of the GF specific HOTAIR and HOXC13 genes exhibited high H3K4me3 and low H3K27me3 levels in GF chromatin compared to A chromatin. Conclusions Global transcriptome and open chromatin analyses of depot-specific preadipocytes identified their gene expression signature and differential open chromatin profile. Interestingly, A-fat-specific open chromatin regions can be observed in the proximity of GF-fat genes, but not vice versa. Trial registration Clinicaltrials.gov, NCT01745471. Registered 5 December 2012. Electronic supplementary material The online version of this article (10.1186/s13148-018-0582-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adeline Divoux
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 E. Princeton Street, Orlando, FL, 32804, USA. .,Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.
| | - Katalin Sandor
- Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.,Present address: Department of Medicine, Johns Hopkins All Children's Hospital, Johns Hopkins University School of Medicine, St. Petersburg, FL, 33701, USA
| | - Dora Bojcsuk
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4032, Hungary
| | - Amlan Talukder
- Department of Computer Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, 32816, USA
| | - Xiaoman Li
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, USA
| | - Balint L Balint
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4032, Hungary
| | - Timothy F Osborne
- Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.,Present address: Department of Medicine, Johns Hopkins All Children's Hospital, Johns Hopkins University School of Medicine, St. Petersburg, FL, 33701, USA
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 E. Princeton Street, Orlando, FL, 32804, USA.,Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| |
Collapse
|
42
|
An SM, Seong KY, Yim SG, Hwang YJ, Bae SH, Yang SY, An BS. Intracutaneous delivery of gelatins induces lipolysis and suppresses lipogenesis of adipocytes. Acta Biomater 2018; 67:238-247. [PMID: 29208554 DOI: 10.1016/j.actbio.2017.11.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
Due to growing interest in cosmetics and medical applications, therapeutic medications that reduce the amount of local subcutaneous adipose tissue have potential for obesity treatment. However, conventional methods such as surgical operation are restricted due to risk of complications. Here, we report a simple and effective method for local reduction of subcutaneous adipose tissue (AT) by using microneedle-assisted transdermal delivery of natural polymers. After in vitro screening tests, gelatin was selected as a therapeutic polymer to reduce accumulation of AT. An in vitro study showed that the level of released glycerol as an indicator of lipolysis was elevated in isolated adipocytes after gelatin treatment. In addition, gelatins suppressed expression levels of lipogenesis-associated genes. Following application of gelatin microneedle (GMN) patches to high-fat diet (HD)-induced obese rats, the amount of subcutaneous AT at the site of GMN application was significantly reduced, which was also confirmed by histological analysis and micro-computed tomography scanning. In addition, lipogenesis-associated genes were down-regulated in GMN-treated subcutaneous AT. These findings suggest that GMN patches induce lipolysis and simultaneously inhibit lipogenesis, thereby reducing deposition of subcutaneous AT. This platform using GMNs may provide a new strategy to treat excess subcutaneous AT with minimal complications. STATEMENT OF SIGNIFICANCE: (1) Significance This work reports a new approach for the local reduction of subcutaneous adipose tissue using a dissolving microneedle patch prepared using gelatin to enable suppression of lipogenesis and acceleration of lipolysis in adipocytes. The gelatin microneedle patch exhibited a significant reduction of local subcutaneous fat up to 60% compared to control groups without any change in total weight. (2) Scientific impact This is the first report demonstrating the direct anti-obesity effects of gelatin administrated in a transdermal route and the feasibility of natural polymer therapeutics for regional reduction of subcutaneous fat. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and obesity.
Collapse
Affiliation(s)
- Sung-Min An
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sang-Gu Yim
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Young Jun Hwang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Seong Hwan Bae
- Department of Plastic and Reconstructive Surgery, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea.
| | - Beum-Soo An
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
43
|
Hodges WM, O'Brien F, Fulzele S, Hamrick MW. Function of microRNAs in the Osteogenic Differentiation and Therapeutic Application of Adipose-Derived Stem Cells (ASCs). Int J Mol Sci 2017; 18:ijms18122597. [PMID: 29207475 PMCID: PMC5751200 DOI: 10.3390/ijms18122597] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023] Open
Abstract
Traumatic wounds with segmental bone defects represent substantial reconstructive challenges. Autologous bone grafting is considered the gold standard for surgical treatment in many cases, but donor site morbidity and associated post-operative complications remain a concern. Advances in regenerative techniques utilizing mesenchymal stem cell populations from bone and adipose tissue have opened the door to improving bone repair in the limbs, spine, and craniofacial skeleton. The widespread availability, ease of extraction, and lack of immunogenicity have made adipose-derived stem cells (ASCs) particularly attractive as a stem cell source for regenerative strategies. Recently it has been shown that small, non-coding miRNAs are involved in the osteogenic differentiation of ASCs. Specifically, microRNAs such as miR-17, miR-23a, and miR-31 are expressed during the osteogenic differentiation of ASCs, and appear to play a role in inhibiting various steps in bone morphogenetic protein-2 (BMP2) mediated osteogenesis. Importantly, a number of microRNAs including miR-17 and miR-31 that act to attenuate the osteogenic differentiation of ASCs are themselves stimulated by transforming growth factor β-1 (TGFβ-1). In addition, transforming growth factor β-1 is also known to suppress the expression of microRNAs involved in myogenic differentiation. These data suggest that preconditioning strategies to reduce TGFβ-1 activity in ASCs may improve the therapeutic potential of ASCs for musculoskeletal application. Moreover, these findings support the isolation of ASCs from subcutaneous fat depots that tend to have low endogenous levels of TGFβ-1 expression.
Collapse
Affiliation(s)
- Walter M Hodges
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Frederick O'Brien
- Dwight D. Eisenhower Army Medical Center, Fort Gordon, Augusta, GA 30912, USA.
| | - Sadanand Fulzele
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Mark W Hamrick
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
44
|
Jeppesen TD, Al-Hashimi N, Duno M, Wibrand F, Andersen G, Vissing J. Mitochondrial DNA mutation load in a family with the m.8344A>G point mutation and lipomas: a case study. Clin Case Rep 2017; 5:2034-2039. [PMID: 29225851 PMCID: PMC5715413 DOI: 10.1002/ccr3.1096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 11/12/2022] Open
Abstract
Studies have shown that difference in mtDNA mutation load among tissues is a result of postnatal modification. We present five family members with the m.8344A>G with variable phenotypes but uniform intrapersonal distribution of mutation load, indicating that there is no postnatal modification of mtDNA mutation load in this genotype.
Collapse
Affiliation(s)
- Tina Dysgaard Jeppesen
- Copenhagen Neuromuscular Clinic Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Noor Al-Hashimi
- Copenhagen Neuromuscular Clinic Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Morten Duno
- Department of Clinical Genetics Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Flemming Wibrand
- Department of Clinical Genetics Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Grete Andersen
- Copenhagen Neuromuscular Clinic Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - John Vissing
- Copenhagen Neuromuscular Clinic Rigshospitalet University of Copenhagen Copenhagen Denmark
| |
Collapse
|