1
|
Fleige L, Fillatreau S, Claus M, Capellino S. Additional use of α-IgM antibodies potentiates CpG ODN2006-induced B cell activation by targeting mainly naïve and marginal zone-like B cells. Cell Immunol 2024; 403-404:104846. [PMID: 38996539 DOI: 10.1016/j.cellimm.2024.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
CpG ODN2006 is widely used as a potent B cell stimulant in vitro and in vivo. However, it shows a deficit in targeting naïve B cells in vitro. In this study, we investigated whether α-IgM can support ODN2006-induced effects on B cells to obtain enhanced activation with focus on different B cell subsets. Our results delineated robust B cell activation, shown by increased activation marker expression and cytokine secretion by each agent alone, and further augmented when used in combination. Interestingly, α-IgM targeted mainly naïve and marginal zone-like B cells, thus complementing the pronounced effects of ODN2006 on memory B cells and achieving optimal activation for all B cell subsets. Taken together, combining ODN2006 and α-IgM is beneficial for in vitro activation including all B cell subsets. Furthermore, our results suggest that α-IgM could enhance efficacy of ODN2006 in vivo with further need of investigation.
Collapse
Affiliation(s)
- Leonie Fleige
- Department of Immunology, Research Group of Neuroimmunology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139 Dortmund, Germany.
| | - Simon Fillatreau
- Department of Immunology, Infectiology and Haematology, Research Group of Immunity in health and disease, Institut Necker Enfants Malades, Faculté de Médecine Necker, 160 rue de Vaugirard, 75015 Paris Cedex, France
| | - Maren Claus
- Department of Immunology, Research Group of Immunmodulation, IfADo-Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139 Dortmund, Germany
| | - Silvia Capellino
- Department of Immunology, Research Group of Neuroimmunology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139 Dortmund, Germany
| |
Collapse
|
2
|
Rossmanith R, Sauerwein K, Geier CB, Leiss-Piller A, Stemberger RF, Sharapova S, Gruber RW, Bergler H, Verbsky JW, Csomos K, Walter JE, Wolf HM. Impaired B-cell function in ERCC2 deficiency. Front Immunol 2024; 15:1423141. [PMID: 39055713 PMCID: PMC11269123 DOI: 10.3389/fimmu.2024.1423141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background Trichothiodystrophy-1 (TTD1) is an autosomal-recessive disease and caused by mutations in ERCC2, a gene coding for a subunit of the TFIIH transcription and nucleotide-excision repair (NER) factor. In almost half of these patients infectious susceptibility has been reported but the underlying molecular mechanism leading to immunodeficiency is largely unknown. Objective The aim of this study was to perform extended molecular and immunological phenotyping in patients suffering from TTD1. Methods Cellular immune phenotype was investigated using multicolor flow cytometry. DNA repair efficiency was evaluated in UV-irradiation assays. Furthermore, early BCR activation events and proliferation of TTD1 lymphocytes following DNA damage induction was tested. In addition, we performed differential gene expression analysis in peripheral lymphocytes of TTD1 patients. Results We investigated three unrelated TTD1 patients who presented with recurrent infections early in life of whom two harbored novel ERCC2 mutations and the third patient is a carrier of previously described pathogenic ERCC2 mutations. Hypogammaglobulinemia and decreased antibody responses following vaccination were found. TTD1 B-cells showed accumulation of γ-H2AX levels, decreased proliferation activity and reduced cell viability following UV-irradiation. mRNA sequencing analysis revealed significantly downregulated genes needed for B-cell development and activation. Analysis of B-cell subpopulations showed low numbers of naïve and transitional B-cells in TTD1 patients, indicating abnormal B-cell differentiation in vivo. Conclusion In summary, our analyses confirmed the pathogenicity of novel ERCC2 mutations and show that ERCC2 deficiency is associated with antibody deficiency most likely due to altered B-cell differentiation resulting from impaired BCR-mediated B-cell activation and activation-induced gene transcription.
Collapse
Affiliation(s)
- Raphael Rossmanith
- Immunology Outpatient Clinic, Vienna, Austria
- Doctoral School Molecular Biology and Biochemistry, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Institute for Medical-Chemical Laboratory Diagnostics, Mistelbach-Gänserndorf State Clinic, Mistelbach, Austria
| | - Kai Sauerwein
- Immunology Outpatient Clinic, Vienna, Austria
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Krems an der Donau, Austria
| | - Christoph B. Geier
- Immunology Outpatient Clinic, Vienna, Austria
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Svetlana Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Robert W. Gruber
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Bergler
- Doctoral School Molecular Biology and Biochemistry, Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - James W. Verbsky
- Departments of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Krisztian Csomos
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy/Immunology, Department of Pediatrics, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy/Immunology, Department of Pediatrics, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Hermann M. Wolf
- Immunology Outpatient Clinic, Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
3
|
Guisado D, Talware S, Wang X, Davis A, Fozilov E, Etra A, Colombel JF, Schaniel C, Tastad C, Levine JE, Ferrara JLM, Chuang LS, Sabic K, Singh S, Marcellino BK, Hoffman R, Cho J, Cohen LJ. The reparative immunologic consequences of stem cell transplantation as a cellular therapy for refractory Crohn's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596699. [PMID: 38895305 PMCID: PMC11185544 DOI: 10.1101/2024.05.30.596699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background Treatment strategies for Crohn's disease (CD) suppress diverse inflammatory pathways but many patients remain refractory to treatment. Autologous hematopoietic stem cell transplantation (SCT) has emerged as a therapy for medically refractory CD. SCT was developed to rescue cancer patients from myelosuppressive chemotherapy but its use for CD and other immune diseases necessitates reimagining SCT as a cellular therapy that restores appropriately responsive immune cell populations from hematopoietic progenitors in the stem cell autograft (i.e. immune "reset"). Here we present a paradigm to understand SCT as a cellular therapy for immune diseases and reveal how SCT re-establishes cellular immunity utilizing high-dimensional cellular phenotyping and functional studies of the stem cell grafts. Methods Immunophenotyping using CyTOF, single cell RNA sequencing (scRNA-seq) and T cell receptor (TCR) sequencing was performed on peripheral blood and intestinal tissue samples from refractory CD patients who underwent SCT. The stem cell graft from these patients was analyzed using flow cytometry and functionally interrogated using a murine model for engraftment. Results Our study revealed a remodeling of intestinal macrophages capable of supporting mucosal healing that was independently validated using multimodal studies of immune reconstitution events including CyTOF and scRNA-seq. Functional interrogation of hematopoietic stem cells (HSCs) using a xenograft model demonstrated that HSCs shape the timing of immune reconstitution, the selected reconstitution of specific cell lineages and potentially the clinical efficacy of SCT. Conclusions These studies indicate that SCT serves as a myeloid-directed cellular therapy re-establishing homeostatic intestinal macrophages that support intestinal healing and suggest refractory CD evolves from impairment of restorative functions in myeloid cells. Furthermore, we report heterogeneity among HSCs from CD patients which may drive SCT outcomes and suggests an unrecognized impact of CD pathophysiology on HSC in the marrow niche.
Collapse
|
4
|
Smit V, de Mol J, Kleijn MNAB, Depuydt MAC, de Winther MPJ, Bot I, Kuiper J, Foks AC. Sexual dimorphism in atherosclerotic plaques of aged Ldlr -/- mice. Immun Ageing 2024; 21:27. [PMID: 38698438 PMCID: PMC11064395 DOI: 10.1186/s12979-024-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Atherosclerosis, the main underlying pathology of cardiovascular disease, is a chronic inflammatory disease characterized by lipid accumulation and immune cell responses in the vascular wall, resulting in plaque formation. It is well-known that atherosclerosis prevalence and manifestation vary by sex. However, sexual dimorphism in the immune landscape of atherosclerotic plaques has up to date not been studied at high-resolution. In this study, we investigated sex-specific differences in atherosclerosis development and the immunological landscape of aortas at single-cell level in aged Ldlr-/- mice. METHODS We compared plaque morphology between aged male and female chow diet-fed Ldlr-/- mice (22 months old) with histological analysis. Using single-cell RNA-sequencing and flow cytometry on CD45+ immune cells from aortas of aged Ldlr-/- mice, we explored the immune landscape in the atherosclerotic environment in males and females. RESULTS We show that plaque volume is comparable in aged male and female mice, and that plaques in aged female mice contain more collagen and cholesterol crystals, but less necrotic core and macrophage content compared to males. We reveal increased immune cell infiltration in female aortas and found that expression of pro-atherogenic markers and inflammatory signaling pathways was enriched in plaque immune cells of female mice. Particularly, female aortas show enhanced activation of B cells (Egr1, Cd83, Cd180), including age-associated B cells, in addition to an increased M1/M2 macrophage ratio, where Il1b+ M1-like macrophages display a more pro-inflammatory phenotype (Nlrp3, Cxcl2, Mmp9) compared to males. In contrast, increased numbers of age-associated Gzmk+CD8+ T cells, dendritic cells, and Trem2+ macrophages were observed in male aortas. CONCLUSIONS Altogether, our findings highlight that sex is a variable that contributes to immunological differences in the atherosclerotic plaque environment in mice and provide valuable insights for further preclinical studies into the impact of sex on the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Virginia Smit
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Jill de Mol
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Mireia N A Bernabé Kleijn
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Marie A C Depuydt
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers - location AMC, University of Amsterdam, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ilze Bot
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Johan Kuiper
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Amanda C Foks
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
5
|
Wilkinson AN, Chen R, Coleborn E, Neilson T, Le K, Bhavsar C, Wang Y, Atluri S, Irgam G, Wong K, Yang D, Steptoe R, Wu SY. Let-7i enhances anti-tumour immunity and suppresses ovarian tumour growth. Cancer Immunol Immunother 2024; 73:80. [PMID: 38554167 PMCID: PMC10981620 DOI: 10.1007/s00262-024-03674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024]
Abstract
Cancer immunotherapy has seen significant success in the last decade for cancer management by enhancing endogenous cancer immunity. However, immunotherapies developed thus far have seen limited success in the majority of high-grade serous carcinoma (HGSC) ovarian cancer patients. This is largely due to the highly immunosuppressive tumour microenvironment of HGSC and late-stage identification. Thus, novel treatment interventions are needed to overcome this immunosuppression and complement existing immunotherapies. Here, we have identified through analysis of > 600 human HGSC tumours a critical role for Let-7i in modulating the tumoural immune network. Tumoural expression of Let-7i had high positive correlation with anti-cancer immune signatures in HGSC patients. Confirming this role, enforced Let-7i expression in murine HGSC tumours resulted in a significant decrease in tumour burden with a significant increase in tumour T cell numbers in tumours. In concert with the improved tumoural immunity, Let-7i treatment also significantly increased CD86 expression in antigen presenting cells (APCs) in the draining lymph nodes, indicating enhanced APC activity. Collectively, our findings highlight an important role of Let-7i in anti-tumour immunity and its potential use for inducing an anti-tumour effect in HGSC.
Collapse
Affiliation(s)
- Andrew N Wilkinson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rui Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Elaina Coleborn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Trent Neilson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Khang Le
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chintan Bhavsar
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sharat Atluri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gowri Irgam
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kiefer Wong
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Da Yang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Raymond Steptoe
- Frazer Institute, University of Queensland, Brisbane, QLD, 4102, Australia
| | - Sherry Y Wu
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
6
|
Ntsethe A, Mkhwanazi ZA, Dludla PV, Nkambule BB. B Cell Subsets and Immune Checkpoint Expression in Patients with Chronic Lymphocytic Leukemia. Curr Issues Mol Biol 2024; 46:1731-1740. [PMID: 38534728 DOI: 10.3390/cimb46030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by dysfunctional B cells. Immune checkpoint molecules such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death-1 (PD-1) are upregulated in patients with CLL and may correlate with prognostic markers such as beta-2 microglobulin (B2M). The aim of this study was to evaluate the levels of immune checkpoints on B cell subsets and to further correlate them with B2M levels in patients with CLL. We recruited 21 patients with CLL and 12 controls. B cell subsets and the levels of immune checkpoint expression were determined using conventional multi-color flow cytometry. Basal levels of B2M in patients with CLL were measured using an enzyme-linked immunosorbent assay. Patients with CLL had increased levels of activated B cells when compared to the control group, p < 0.001. The expression of PD-1 and CTLA-4 were increased on activated B cells and memory B cells, p < 0.05. There were no associations between B2M levels and the measured immune checkpoints on B cell subsets, after adjusting for sex and age. In our cohort, the patients with CLL expressed elevated levels of PD-1 and CTLA-4 immune checkpoints on activated and memory B cell subsets. However, there was no correlation between these immune checkpoint expressions and B2M levels.
Collapse
Affiliation(s)
- Aviwe Ntsethe
- School of Laboratory Medicine and Medical Sciences (SLMMS), University of KwaZulu-Natal, Durban 4000, South Africa
| | - Zekhethelo Alondwe Mkhwanazi
- School of Laboratory Medicine and Medical Sciences (SLMMS), University of KwaZulu-Natal, Durban 4000, South Africa
| | - Phiwayinkosi Vusi Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Bongani Brian Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
7
|
Andrzejczak A, Karabon L. BTLA biology in cancer: from bench discoveries to clinical potentials. Biomark Res 2024; 12:8. [PMID: 38233898 PMCID: PMC10795259 DOI: 10.1186/s40364-024-00556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024] Open
Abstract
Immune checkpoints play a critical role in maintaining the delicate balance of immune activation in order to prevent potential harm caused by excessive activation, autoimmunity, or tissue damage. B and T lymphocyte attenuator (BTLA) is one of crucial checkpoint, regulating stimulatory and inhibitory signals in immune responses. Its interaction with the herpes virus entry mediator (HVEM) plays an essential role in negatively regulating immune responses, thereby preserving immune homeostasis. In cancer, abnormal cells evade immune surveillance by exploiting checkpoints like BTLA. Upregulated BTLA expression is linked to impaired anti-tumor immunity and unfavorable disease outcomes. In preclinical studies, BTLA-targeted therapies have shown improved treatment outcomes and enhanced antitumor immunity. This review aims to provide an in-depth understanding of BTLA's biology, its role in various cancers, and its potential as a prognostic factor. Additionally, it explores the latest research on BTLA blockade in cancer immunotherapy, offering hope for more effective cancer treatments.
Collapse
Affiliation(s)
- Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
8
|
Chen R, Coleborn E, Bhavsar C, Wang Y, Alim L, Wilkinson AN, Tran MA, Irgam G, Atluri S, Wong K, Shim JJ, Adityan S, Lee JS, Overwijk WW, Steptoe R, Yang D, Wu SY. miR-146a inhibits ovarian tumor growth in vivo via targeting immunosuppressive neutrophils and enhancing CD8 + T cell infiltration. Mol Ther Oncolytics 2023; 31:100725. [PMID: 37781339 PMCID: PMC10539880 DOI: 10.1016/j.omto.2023.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023] Open
Abstract
Immunotherapies have emerged as promising strategies for cancer treatment. However, existing immunotherapies have poor activity in high-grade serous ovarian cancer (HGSC) due to the immunosuppressive tumor microenvironment and the associated low tumoral CD8+ T cell (CTL) infiltration. Through multiple lines of evidence, including integrative analyses of human HGSC tumors, we have identified miR-146a as a master regulator of CTL infiltration in HGSC. Tumoral miR-146a expression is positively correlated with anti-cancer immune signatures in human HGSC tumors, and delivery of miR-146a to tumors resulted in significant reduction in tumor growth in both ID8-p53-/- and IG10 murine HGSC models. Increasing miR-146a expression in tumors improved anti-tumor immune responses by decreasing immune suppressive neutrophils and increasing CTL infiltration. Mechanistically, miR-146a targets IL-1 receptor-associated kinase 1 and tumor necrosis factor receptor-associated factor 6 adaptor molecules of the transcription factor nuclear factor κB signaling pathway in ID8-p53-/- cells and decreases production of the downstream neutrophil chemoattractant, C-X-C motif chemokine ligand 1. In addition to HGSC, tumoral miR-146a expression also correlates strongly with CTL infiltration in other cancer types including thyroid, prostate, breast, and adrenocortical cancers. Altogether, our findings highlight the ability of miR-146a to overcome immune suppression and improve CTL infiltration in tumors.
Collapse
Affiliation(s)
- Rui Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elaina Coleborn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chintan Bhavsar
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yue Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Louisa Alim
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew N. Wilkinson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Gowri Irgam
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sharat Atluri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kiefer Wong
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jae-Jun Shim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siddharth Adityan
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Willem W. Overwijk
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Raymond Steptoe
- Frazer Institute, University of Queensland, Brisbane, QLD 4102, Australia
| | - Da Yang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sherry Y. Wu
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
10
|
Leca J, Lemonnier F, Meydan C, Foox J, El Ghamrasni S, Mboumba DL, Duncan GS, Fortin J, Sakamoto T, Tobin C, Hodgson K, Haight J, Smith LK, Elia AJ, Butler D, Berger T, de Leval L, Mason CE, Melnick A, Gaulard P, Mak TW. IDH2 and TET2 mutations synergize to modulate T Follicular Helper cell functional interaction with the AITL microenvironment. Cancer Cell 2023; 41:323-339.e10. [PMID: 36736318 DOI: 10.1016/j.ccell.2023.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Angioimmunoblastic T cell lymphoma (AITL) is a peripheral T cell lymphoma that originates from T follicular helper (Tfh) cells and exhibits a prominent tumor microenvironment (TME). IDH2 and TET2 mutations co-occur frequently in AITL, but their contribution to tumorigenesis is poorly understood. We developed an AITL mouse model that is driven by Idh2 and Tet2 mutations. Malignant Tfh cells display aberrant transcriptomic and epigenetic programs that impair TCR signaling. Neoplastic Tfh cells bearing combined Idh2 and Tet2 mutations show altered cross-talk with germinal center B cells that promotes B cell clonal expansion while decreasing Fas-FasL interaction and reducing B cell apoptosis. The plasma cell count and angiogenesis are also increased in the Idh2-mutated tumors, implying a major relationship between Idh2 mutation and the characteristic AITL TME. Our mouse model recapitulates several features of human IDH2-mutated AITL and provides a rationale for exploring therapeutic targeting of Tfh-TME cross-talk for AITL patients.
Collapse
Affiliation(s)
- Julie Leca
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada.
| | - Franҫois Lemonnier
- University Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, 94010 Créteil, France; AP-HP, Lymphoid Malignancies Unit, Henri Mondor Hospital, 94010 Créteil, France
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Samah El Ghamrasni
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Diana-Laure Mboumba
- University Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, 94010 Créteil, France
| | - Gordon S Duncan
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Jerome Fortin
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Takashi Sakamoto
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Chantal Tobin
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Kelsey Hodgson
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Jillian Haight
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Logan K Smith
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Andrew J Elia
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Thorsten Berger
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne 1011, Switzerland; Lausanne University, Lausanne 1011, Switzerland
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ari Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Philippe Gaulard
- University Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, 94010 Créteil, France; AP-HP, Pathology Department, Henri Mondor Hosital, 94010 Créteil, France
| | - Tak W Mak
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada; Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
11
|
Heubeck A, Savage A, Henderson K, Roll C, Hernandez V, Torgerson T, Bumol T, Reading J. Cross-platform immunophenotyping of human peripheral blood mononuclear cells with four high-dimensional flow cytometry panels. Cytometry A 2022. [PMID: 36571245 DOI: 10.1002/cyto.a.24715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Immunophenotyping using high dimensional flow cytometry is a central component of human immune system multi-omic studies. We present four high parameter flow cytometry panels for deep immunophenotyping of human peripheral blood mononuclear cells (PBMC). This set of four 25+ color panels include 64 cell surface markers to resolve broad immune compartment populations, as well as activation and memory of specific T, B, natural killer (NK), and myeloid lineages. Common lineage bridging markers are integrated into each panel to allow for inter-panel quality control through major lineage frequency verification. These panels were developed using a five laser BD Symphony A5 conventional cytometer and successfully transferred to a five laser Cytek Aurora spectral cytometer capable of acquiring the panels. Nine representative PBMC samples were stained with the four phenotyping panels and acquired on both instruments to evaluate population frequency and visual staining patterns for gating between the systems. Both instruments produced comparable high quality flow cytometry data and supported our decision to acquire samples on the spectral cytometer moving forward. This modular set of panels and instrument performance metrics provide guidelines for designing flow cytometry experiments suitable for longitudinal or cross-sectional immune profiling.
Collapse
Affiliation(s)
| | - Adam Savage
- Allen Institute for Immunology, Seattle, Washington, USA
| | | | - Charles Roll
- Allen Institute for Immunology, Seattle, Washington, USA
| | | | - Troy Torgerson
- Allen Institute for Immunology, Seattle, Washington, USA
| | - Thomas Bumol
- Allen Institute for Immunology, Seattle, Washington, USA
| | - Julian Reading
- Allen Institute for Immunology, Seattle, Washington, USA
| |
Collapse
|
12
|
Xu F, Bian K, Wang S, Yao F, Chen J, Cao Y, Qin Y. B and T lymphocyte attenuator as a C-reactive protein and IgA associated auxiliary diagnostic marker for pulmonary tuberculosis: a case-control study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1370. [PMID: 36660715 PMCID: PMC9843424 DOI: 10.21037/atm-22-6060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Background Screening and identification of hematologic molecular indicators of pulmonary tuberculosis (PTB) is crucial for its diagnose and therapy. Therefore, our work aims to detect the diagnostic value of blood marker B and T lymphocyte attenuator (BTLA) in PTB, and provide a certain theoretical basis for the auxiliary diagnosis of PTB. Methods Based on the inclusion criteria, 56 Patients with clinically confirmed pulmonary TB by clinical between January 2020 and December 2021 at our hospital were selected as the research objects of this study. Fifty-two matched healthy population at our hospital was used as the control group. Clinical characteristics were got from clinical laboratory. Real-time polymerase chain reaction (RT-PCR) was used to analyze changes in BTLA along with its ligand in peripheral blood. Changes in BTLA on the surface of different cells were analyzed by flow cytometry. The correlation test was used to determine the associations between BTLA and clinical indicators. Receiver operating characteristic (ROC) curve analysis was used to evaluate the auxiliary diagnostic value in PTB of BTLA expression from different sources. Results Compared with the control, changes in peripheral blood BTLA in the PTB group were significantly increased (P=0.0187) rather than its ligand. Changes in BTLA on the surface of CD68 and antigen-presenting cell (APC) CD11c were significantly increased in the PTB group (P=0.0004, P<0.0001), while changes in BTLA on the surface of CD4+ T and CD8+ T cells were not significantly different (P=0.0792, P=0.8706). The expression of BTLA+CD11c+ was negatively correlated with the expression of immunoglobulin A (IgA) (r=-0.2934, P=0.0282) and positively related to C-reactive protein (r=0.3277, P=0.0137). ROC curve analysis suggested that the area under the curve (AUC), sensitivity and specificity of BTLA RT-PCR detection were 0.6315, 53.57%, 57.69% while for BTLA+CD11c+ detection were 0.8039, 88.46% and 73.21% and for BTLA+CD68+ detection were 0.6973, 60.71% and 61.54%. Conclusions BTLA is highly expressed in peripheral blood and specific cell types of patients with PTB and is correlated with specific clinical indicators, which may be an important molecular marker for the auxiliary diagnosis of PTB.
Collapse
Affiliation(s)
- Feifan Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China;,Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Keyun Bian
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China;,Department of Microbiology Laboratory, Disease Control and Prevention Center of Rugao, Nantong, China
| | - Shouwei Wang
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Fan Yao
- Department of Tuberculosis, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Yali Cao
- Department of Preventive Health Care, The Third People’s Hospital of Nantong, Nantong, China
| | - Yongwei Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
13
|
Pogostin BH, Yu MH, Azares AR, Euliano EM, Lai CSE, Saenz G, Wu SX, Farsheed AC, Melhorn SM, Graf TP, Woodside DG, Hartgerink JD, McHugh KJ. Multidomain peptide hydrogel adjuvants elicit strong bias towards humoral immunity. Biomater Sci 2022; 10:6217-6229. [PMID: 36102692 PMCID: PMC9717470 DOI: 10.1039/d2bm01242a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adjuvants play a critical role in enhancing vaccine efficacy; however, there is a need to develop new immunomodulatory compounds to address emerging pathogens and to expand the use of immunotherapies. Multidomain peptides (MDPs) are materials composed of canonical amino acids that form injectable supramolecular hydrogels under physiological salt and pH conditions. MDP hydrogels are rapidly infiltrated by immune cells in vivo and have previously been shown to influence cytokine production. Therefore, we hypothesized that these immunostimulatory characteristics would allow MDPs to function as vaccine adjuvants. Herein, we demonstrate that loading antigen into MDP hydrogels does not interfere with their rheological properties and that positively charged MDPs can act as antigen depots, as demonstrated by their ability to release ovalbumin (OVA) over a period of 7-9 days in vivo. Mice vaccinated with MDP-adjuvanted antigen generated significantly higher IgG titers than mice treated with the unadjuvanted control, suggesting that these hydrogels potentiate humoral immunity. Interestingly, MDP hydrogels did not elicit a robust cellular immune response, as indicated by the lower production of IgG2c and smaller populations of tetramer-positive CD8+ T splenocytes compared to mice vaccinated alum-adjuvanted OVA. Together, the data suggest that MDP hydrogel adjuvants strongly bias the immune response towards humoral immunity while evoking a very limited cellular immune response. As a result, MDPs may have the potential to serve as adjuvants for applications that benefit exclusively from humoral immunity.
Collapse
Affiliation(s)
- Brett H Pogostin
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| | - Marina H Yu
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| | - Alon R Azares
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, 77030, USA
| | - Erin M Euliano
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| | | | - Gabriel Saenz
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Samuel X Wu
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| | - Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| | - Sarah M Melhorn
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| | - Tyler P Graf
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| | - Darren G Woodside
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, 77030, USA
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
14
|
Takács F, Kotmayer L, Czeti Á, Szalóki G, László T, Mikala G, Márk Á, Masszi A, Farkas P, Plander M, Weisinger J, Demeter J, Fekete S, Szerafin L, Deák BM, Szaleczky E, Sulák A, Borbényi Z, Barna G. Revealing a Phenotypical Appearance of Ibrutinib Resistance in Patients With Chronic Lymphocytic Leukaemia by Flow Cytometry. Pathol Oncol Res 2022; 28:1610659. [PMID: 36213161 PMCID: PMC9532522 DOI: 10.3389/pore.2022.1610659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Background: Ibrutinib is widely known as an effective and well-tolerated therapeutical choice of the chronic lymphocytic leukaemia (CLL). However, acquired resistance may occur during the treatment, causing relapse. Early detection of ibrutinib resistance is an important issue, therefore we aimed to find phenotypic markers on CLL cells the expression of which may correlate with the appearance of ibrutinib resistance. Methods: We examined 28 patients’ peripheral blood (PB) samples (treatment naïve, ibrutinib sensitive, clinically ibrutinib resistant). The surface markers’ expression (CD27, CD69, CD86, CD184, CD185) were measured by flow cytometry. Furthermore, the BTKC481S resistance mutation was assessed by digital droplet PCR. Moreover, the CLL cells’ phenotype of a patient with acquired ibrutinib resistance was observed during the ibrutinib treatment. Results: The expression of CD27 (p = 0.030) and CD86 (p = 0.031) became higher in the clinically resistant cohort than in the ibrutinib sensitive cohort. Besides, we found that high CD86 and CD27 expressions were accompanied by BTKC481S mutation. Our prospective study showed that the increase of the expression of CD27, CD69 and CD86 was noticed ahead of the clinical resistance with 3 months. Conclusion: Our study suggests that the changes of the expression of these markers could indicate ibrutinib resistance and the examination of these phenotypic changes may become a part of the patients’ follow-up in the future.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Drug Resistance, Neoplasm/genetics
- Flow Cytometry
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Piperidines
- Prospective Studies
- Protein Kinase Inhibitors/therapeutic use
- Pyrazoles/therapeutic use
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Ferenc Takács
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
- Center for Pathology, University Medical Center—University of Freiburg, Freiburg, Germany
| | - Lili Kotmayer
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Ágnes Czeti
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Gábor Szalóki
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Tamás László
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Gábor Mikala
- South-Pest Central Hospital—National Institute for Hematology and Infectious Diseases, Budapest, Hungary
| | - Ágnes Márk
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - András Masszi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Péter Farkas
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Márk Plander
- Department of Hematology, Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Júlia Weisinger
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Judit Demeter
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Sándor Fekete
- South-Pest Central Hospital—National Institute for Hematology and Infectious Diseases, Budapest, Hungary
| | - László Szerafin
- Hospitals of Szabolcs-Szatmár-Bereg County and University Teaching Hospital, Nyíregyháza, Hungary
| | | | | | - Adrienn Sulák
- 2nd Department of Internal Medicine and Cardiology Center, University of Szeged, Szeged, Hungary
| | - Zita Borbényi
- 2nd Department of Internal Medicine and Cardiology Center, University of Szeged, Szeged, Hungary
| | - Gábor Barna
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
- *Correspondence: Gábor Barna,
| |
Collapse
|
15
|
Fosdick MG, Loftus S, Phillips I, Zacharias ZR, Houtman JCD. Glycerol monolaurate inhibition of human B cell activation. Sci Rep 2022; 12:13506. [PMID: 35931746 PMCID: PMC9355977 DOI: 10.1038/s41598-022-17432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Glycerol monolaurate (GML) is a naturally occurring antimicrobial agent used commercially in numerous products and food items. GML is also used as a homeopathic agent and is being clinically tested to treat several human diseases. In addition to its anti-microbial function, GML suppresses immune cell proliferation and inhibits primary human T cell activation. GML suppresses T cell activation by altering membrane dynamics and disrupting the formation of protein clusters necessary for intracellular signaling. The ability of GML to disrupt cellular membranes suggests it may alter other cell types. To explore this possibility, we tested how GML affects human B cells. We found that GML inhibits BCR-induced cytokine production, phosphorylation of signaling proteins, and protein clustering, while also changing cellular membrane dynamics and dysregulating cytoskeleton rearrangement. Although similar, there are also differences between how B cells and T cells respond to GML. These differences suggest that unique intrinsic features of a cell may result in differential responses to GML treatment. Overall, this study expands our understanding of how GML impacts the adaptive immune response and contributes to a broader knowledge of immune modulating monoglycerides.
Collapse
Affiliation(s)
- Micaela G Fosdick
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA
| | - Shannon Loftus
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Isabella Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Zeb R Zacharias
- Human Immunology Core, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Jon C D Houtman
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA.
- Human Immunology Core, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
16
|
Ketogenic diet inhibits tumor growth by enhancing immune response, attenuating immunosuppression, inhibiting angiogenesis and EMT in CT26 colon tumor allografts mouse model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Wang P, Luo M, Zhou W, Jin X, Xu Z, Yan S, Li Y, Xu C, Cheng R, Huang Y, Lin X, Yao L, Nie H, Jiang Q. Global Characterization of Peripheral B Cells in Parkinson's Disease by Single-Cell RNA and BCR Sequencing. Front Immunol 2022; 13:814239. [PMID: 35250991 PMCID: PMC8888848 DOI: 10.3389/fimmu.2022.814239] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Immune system plays important roles in the pathogenesis of Parkinson’s disease (PD). However, the role of B cells in this complex disease are still not fully understood. B cells produce antibodies but can also regulate immune responses. In order to decode the relative contribution of peripheral B cell subtypes to the etiology of PD, we performed single cell RNA and BCR sequencing for 10,466 B cells from 8 PD patients and 6 age-matched healthy controls. We observed significant increased memory B cells and significant decreased naïve B cells in PD patients compared to healthy controls. Notably, we also discovered increased IgG and IgA isotypes and more frequent class switch recombination events in PD patients. Moreover, we identified preferential V and J gene segments of B cell receptors in PD patients as the evidence of convergent selection in PD. Finally, we found a marked clonal expanded memory B cell population in PD patients, up-regulating both MHC II genes (HLA-DRB5, HLA-DQA2 and HLA-DPB1) and transcription factor activator protein 1 (AP-1), suggesting that the antigen presentation capacity of B cells was enhanced and B cells were activated in PD patients. Overall, this study conducted a comprehensive analysis of peripheral B cell characteristics of PD patients, which provided novel insights into the humoral immune response in the pathogenesis of PD.
Collapse
Affiliation(s)
- Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shi Yan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaoyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lifen Yao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.,Key Laboratory of Biological Big Data (Harbin Institute of Technology), Ministry of Education, Harbin, China
| |
Collapse
|
18
|
Dugan HL, Stamper CT, Li L, Changrob S, Asby NW, Halfmann PJ, Zheng NY, Huang M, Shaw DG, Cobb MS, Erickson SA, Guthmiller JJ, Stovicek O, Wang J, Winkler ES, Madariaga ML, Shanmugarajah K, Jansen MO, Amanat F, Stewart I, Utset HA, Huang J, Nelson CA, Dai YN, Hall PD, Jedrzejczak RP, Joachimiak A, Krammer F, Diamond MS, Fremont DH, Kawaoka Y, Wilson PC. Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity 2021; 54:1290-1303.e7. [PMID: 34022127 PMCID: PMC8101792 DOI: 10.1016/j.immuni.2021.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/06/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Dissecting the evolution of memory B cells (MBCs) against SARS-CoV-2 is critical for understanding antibody recall upon secondary exposure. Here, we used single-cell sequencing to profile SARS-CoV-2-reactive B cells in 38 COVID-19 patients. Using oligo-tagged antigen baits, we isolated B cells specific to the SARS-CoV-2 spike, nucleoprotein (NP), open reading frame 8 (ORF8), and endemic human coronavirus (HCoV) spike proteins. SARS-CoV-2 spike-specific cells were enriched in the memory compartment of acutely infected and convalescent patients several months post symptom onset. With severe acute infection, substantial populations of endemic HCoV-reactive antibody-secreting cells were identified and possessed highly mutated variable genes, signifying preexisting immunity. Finally, MBCs exhibited pronounced maturation to NP and ORF8 over time, especially in older patients. Monoclonal antibodies against these targets were non-neutralizing and non-protective in vivo. These findings reveal antibody adaptation to non-neutralizing intracellular antigens during infection, emphasizing the importance of vaccination for inducing neutralizing spike-specific MBCs.
Collapse
Affiliation(s)
- Haley L Dugan
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | | | - Lei Li
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Siriruk Changrob
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Nicholas W Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Nai-Ying Zheng
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Min Huang
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Dustin G Shaw
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Mari S Cobb
- Section of Genetic Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Steven A Erickson
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Jenna J Guthmiller
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Olivia Stovicek
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Jiaolong Wang
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63130, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63130, USA
| | | | | | - Maud O Jansen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Isabelle Stewart
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Henry A Utset
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Jun Huang
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Christopher A Nelson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63130, USA
| | - Ya-Nan Dai
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63130, USA
| | - Paige D Hall
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63130, USA
| | - Robert P Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63130, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63130, USA; Department of Molecular Immunology, Washington University School of Medicine, St Louis, MO 63130, USA
| | - Daved H Fremont
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63130, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 108-8639 Tokyo, Japan
| | - Patrick C Wilson
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA.
| |
Collapse
|
19
|
Wiedemann A, Lettau M, Weißenberg SY, Stefanski AL, Schrezenmeier EV, Rincon-Arevalo H, Reiter K, Alexander T, Hiepe F, Lino AC, Dörner T. BTLA Expression and Function Are Impaired on SLE B Cells. Front Immunol 2021; 12:667991. [PMID: 33968071 PMCID: PMC8100666 DOI: 10.3389/fimmu.2021.667991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
B- and T-lymphocyte attenuator (BTLA/CD272) is an inhibitory checkpoint molecule expressed on T and B cells. Prior studies reported defective function of BTLA by T cells in patients with systemic lupus erythematosus (SLE), whereas nothing is known about its role on B cells in SLE, a disease with various B cell abnormalities. Peripheral blood mononuclear cells (PBMCs) from 23 healthy donors (HD) and 34 SLE patients were stained for BTLA and its expression on B cells was assessed. PBMCs or CD27-IgD+ naive B cells were stimulated together with an activating anti-BTLA antibody or an inhibitor of spleen tyrosine kinase (SYK) and differentiation as well as the expression of activation markers CD71, PD-1 and CD86 were analyzed. Our phenotypic and functional studies revealed reduced BTLA expression on CD27-IgD+ naïve B cells from SLE patients (p=0.0017) related to anti-dsDNA antibody titers (p=0.0394) and SIGLEC-1/CD169 expression on monocytes (p=0.0196), a type I interferon marker related to disease activity. BTLA engagement was found to control CpG/TLR9 activation limiting plasmablast (p=0.0156) and B cell memory induction (p=0.0078) in normal B cells in contrast to other B cell activation pathways (CD40, BCR). These BTLA functions were impaired in SLE B cells. Inhibition of SYK was found to mimic the effects of BTLA activity in vitro. Thus, is it possible that reduced BTLA expression and function of CD27-IgD+ antigen- and T cell-inexperienced SLE B cells could be overcome by SYK inhibition which should be tested in future studies as potential therapeutic principle.
Collapse
Affiliation(s)
- Annika Wiedemann
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Marie Lettau
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sarah Y Weißenberg
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Ana-Luisa Stefanski
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Eva-Vanessa Schrezenmeier
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany.,Department of Nephrology and Intensive Medical Care, BIH Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Hector Rincon-Arevalo
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany.,Department of Nephrology and Intensive Medical Care, BIH Charité- Universitätsmedizin Berlin, Berlin, Germany.,Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Karin Reiter
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Andreia C Lino
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| |
Collapse
|
20
|
Johnson SN, Griffin JD, Hulbert C, DeKosky BJ, Thomas JW, Berkland CJ. Multimeric Insulin Desensitizes Insulin-Specific B Cells. ACS APPLIED BIO MATERIALS 2020; 3:6319-6330. [DOI: 10.1021/acsabm.0c00782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Stephanie N. Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - J. Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
| | - Chrys Hulbert
- Department of Medicine, Division of Rheumatology, and Immunology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - James W. Thomas
- Department of Medicine, Division of Rheumatology, and Immunology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Cory J. Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|