1
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Almohmadi NH. Brain-gut-brain axis, nutrition, and autism spectrum disorders: a review. Transl Pediatr 2024; 13:1652-1670. [PMID: 39399706 PMCID: PMC11467238 DOI: 10.21037/tp-24-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 10/15/2024] Open
Abstract
Autism is a neurological disorder that affects social skills and behavior. A significant number of children with autism spectrum disorders (ASDs) may not display noticeable symptoms until they reach the age of three or older. Several factors, including genetic and environmental issues, could affect the progression of ASD in children. Dietary behavior or administration may have a crucial role in the development of autism. Epidemiological investigations have demonstrated that environmental influences play a significant role in how changes in diet can affect behavior and physiology. However, exclusion diets have not been thoroughly studied in relation to this effect. Atypical food behaviors, altered nutritional profiles, and being overweight, obese, or underweight are all associated with autism in children. Overweight or underweight was common in children with autism, but it was not necessarily uncommon in children with normal growth. Moreover, deficiencies in certain vitamins (B12, B9, and D), minerals (calcium and iron), fatty acids (omega-3 and -6), energy, and protein have been documented in children with ASD. The deficiency of these nutrients may lead to gastrointestinal (GI) symptoms and change the microbiota in children with ASD. Some nutritional interventions could help individuals with ASD to improve their mental health. Recognizing dietary habits and nutrient requirements can help in planning the best overall treatment for autism. This review discusses GI symptoms and disorders related to nutrition and nutrient-dense diets for ASD.
Collapse
Affiliation(s)
- Najlaa Hamed Almohmadi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Pérez-Cabral ID, Bernal-Mercado AT, Islas-Rubio AR, Suárez-Jiménez GM, Robles-García MÁ, Puebla-Duarte AL, Del-Toro-Sánchez CL. Exploring Dietary Interventions in Autism Spectrum Disorder. Foods 2024; 13:3010. [PMID: 39335937 PMCID: PMC11431671 DOI: 10.3390/foods13183010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Autism spectrum disorder (ASD) involves social communication difficulties and repetitive behaviors, and it has a growing prevalence worldwide. Symptoms include cognitive impairments, gastrointestinal (GI) issues, feeding difficulties, and psychological problems. A significant concern in ASD is food selectivity, leading to nutrient deficiencies. Common GI issues in ASD, such as constipation and irritable bowel syndrome, stem from abnormal gut flora and immune system dysregulation. Sensory sensitivities and behavioral challenges exacerbate these problems, correlating with neurological symptom severity. Children with ASD also exhibit higher oxidative stress due to low antioxidant levels like glutathione. Therapeutic diets, including ketogenic, high-antioxidant, gluten-free and casein-free, and probiotic-rich diets, show potential in managing ASD symptoms like behavior, communication, GI issues, and oxidative stress, though the evidence is limited. Various studies have focused on different populations, but there is increasing concern about the impact among children. This review aims to highlight the food preferences of the ASD population, analyze the effect of the physicochemical and nutritional properties of foods on the selectivity in its consumption, GI problems, and antioxidant deficiencies in individuals with ASD, and evaluate the effectiveness of therapeutic diets, including diets rich in antioxidants, gluten-free and casein-free, ketogenic and essential fatty acids, and probiotic-rich diets in managing these challenges.
Collapse
Affiliation(s)
| | | | - Alma Rosa Islas-Rubio
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, SO, Mexico
| | | | - Miguel Ángel Robles-García
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, JA, Mexico
| | | | | |
Collapse
|
4
|
Carrazana R, Espinoza F, Ávila A. Mechanistic perspective on the actions of vitamin a in autism spectrum disorder etiology. Neuroscience 2024; 554:72-82. [PMID: 39002756 DOI: 10.1016/j.neuroscience.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Vitamin A (VA) has many functions in the body, some of which are key for the development and functioning of the nervous system, while some others might indirectly influence neural function. Both hypovitaminosis and hypervitaminosis A can lead to clinical manifestations of concern for individuals and for general global health. Scientific evidence on the link between VA and autism spectrum disorder (ASD) is growing, with some clinical studies and accumulating results obtained from basic research using cellular and animal models. Remarkably, it has been shown that VA deficiency can exacerbate autistic symptomatology. In turn, VA supplementation has been shown to be able to improve autistic symptomatology in selected groups of individuals with ASD. However, it is important to recognize that ASD is a highly heterogeneous condition. Therefore, it is important to clarify how and when VA supplementation can be of benefit for affected individuals. Here we delve into the relationship between VA and ASD, discussing clinical observations and mechanistic insights obtained from research on selected autistic syndromes and laboratory models to advance in defining how the VA signaling pathway can be exploited for treatment of ASD.
Collapse
Affiliation(s)
- Ramón Carrazana
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Francisca Espinoza
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| |
Collapse
|
5
|
Kacimi FE, Didou L, Ed Day S, Azzaoui FZ, Ramchoun M, Berrougui H, Khalki H, Boulbaroud S. Gut microbiota, vitamin A deficiency and autism spectrum disorder: an interconnected trio - a systematic review. Nutr Neurosci 2024:1-11. [PMID: 39137920 DOI: 10.1080/1028415x.2024.2389498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Accumulating evidence proves that children with autism have gastrointestinal problems. However, a significant difference in gut microbiota (GM) exists between autistic and non-autistic children. These changes in the GM may stem from several factors. Recently, researchers focused on nutritional factors, especially vitamin deficiency. Thus, our systematic review investigates the connections among autism, GM alterations, and vitamin A deficiency (VAD), by analyzing studies sourced from PubMed and Embase databases spanning from 2010 to 2022. Adhering to PRISMA guidelines, we meticulously selected 19 pertinent studies that established links between autism and GM changes or between autism and VAD. Our findings uniformly point to significant alterations in the GM of individuals with autism, indicating these changes as promising biomarkers for the disorder. Despite the consistent association of GM alterations with autism, our analysis revealed no notable differences in GM composition between individuals with autism and those experiencing VAD. This suggests that VAD, especially when encountered early in life, might play a role in the onset of autism. Furthermore, our review underscores a distinct correlation between reduced levels of retinoic acid in children with autism, a disparity that could relate to the severity of autism symptoms. The implications of our findings are twofold: they not only reinforce the significance of GM alterations as potential diagnostic markers but also spotlight the critical need for further research into nutritional interventions. Specifically, vitamin A supplementation emerges as a promising avenue for alleviating autism symptoms, warranting deeper investigation into its therapeutic potential.
Collapse
Affiliation(s)
- Fatima Ezzahra Kacimi
- Biotechnology and Sustainable Development of Natural Resources Unit, Multidisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Latifa Didou
- Unit of Neuroscience, Neuroimmunology and Behavior, Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Soumia Ed Day
- Unit of Neuroscience, Neuroimmunology and Behavior, Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Fatima Zahra Azzaoui
- Unit of Neuroscience, Neuroimmunology and Behavior, Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Mhamed Ramchoun
- Biotechnology and Sustainable Development of Natural Resources Unit, Multidisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hicham Berrougui
- Biotechnology and Sustainable Development of Natural Resources Unit, Multidisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hanane Khalki
- Biotechnology and Sustainable Development of Natural Resources Unit, Multidisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Samira Boulbaroud
- Biotechnology and Sustainable Development of Natural Resources Unit, Multidisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
6
|
Climent-Pérez P, Martínez-González AE, Andreo-Martínez P. Contributions of Artificial Intelligence to Analysis of Gut Microbiota in Autism Spectrum Disorder: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:931. [PMID: 39201866 PMCID: PMC11352523 DOI: 10.3390/children11080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder whose etiology is not known today, but everything indicates that it is multifactorial. For example, genetic and epigenetic factors seem to be involved in the etiology of ASD. In recent years, there has been an increase in studies on the implications of gut microbiota (GM) on the behavior of children with ASD given that dysbiosis in GM may trigger the onset, development and progression of ASD through the microbiota-gut-brain axis. At the same time, significant progress has occurred in the development of artificial intelligence (AI). METHODS The aim of the present study was to perform a systematic review of articles using AI to analyze GM in individuals with ASD. In line with the PRISMA model, 12 articles using AI to analyze GM in ASD were selected. RESULTS Outcomes reveal that the majority of relevant studies on this topic have been conducted in China (33.3%) and Italy (25%), followed by the Netherlands (16.6%), Mexico (16.6%) and South Korea (8.3%). CONCLUSIONS The bacteria Bifidobacterium is the most relevant biomarker with regard to ASD. Although AI provides a very promising approach to data analysis, caution is needed to avoid the over-interpretation of preliminary findings. A first step must be taken to analyze GM in a representative general population and ASD samples in order to obtain a GM standard according to age, sex and country. Thus, more work is required to bridge the gap between AI in mental health research and clinical care in ASD.
Collapse
Affiliation(s)
- Pau Climent-Pérez
- Department of Computing Technology, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain;
| | | | - Pedro Andreo-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain;
| |
Collapse
|
7
|
Cui J, Wang S, Zhai Z, Song X, Qiu T, Yu L, Zhai Q, Zhang H. Induction of autism-related behavior in male mice by early-life vitamin D deficiency: association with disruption of the gut microbial composition and homeostasis. Food Funct 2024; 15:4338-4353. [PMID: 38533674 DOI: 10.1039/d4fo00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Vitamin D deficiency (VDD) during early life emerges as a potential risk factor for autism spectrum disorder (ASD). Individuals with autism commonly exhibit lower vitamin D (VD) levels compared to the general population, and VD deficiency is prevalent during pregnancy and lactation. Moreover, gastrointestinal comorbidity, prevalent in ASD patients, correlates closely with disruptions in the gut microbiota and altered intestinal permeability. Therefore, it is fascinating and significant to explore the effects of maternal VD deficiency during pregnancy and lactation on the maturation of the gut microbiota of the offspring and its relevance to autism spectrum disorders. In this study, we established maternal pregnancy and lactation VD-deficient mouse models, employed shotgun macrogenomic sequencing to unveil alterations in the gut microbiome of offspring mice, and observed autism-related behaviours. Furthermore, fecal microbial transplantation (FMT) reversed repetitive and anxious behaviours and alleviated social deficits in offspring mice by modulating the gut microbiota and increasing short-chain fatty acid levels in the cecum, along with influencing the concentrations of claudin-1 and occludin in the colon. Our findings confirm that VDD during pregnancy and lactation is a risk factor for autism in the offspring, with disturbances in the structure and function of the offspring's gut microbiota contributing at least part of the effect. The study emphasises the importance of nutrition and gut health early in life. Simultaneously, this study further demonstrates the effect of VDD on ASD and provides potential ideas for early prevention and intervention of ASD.
Collapse
Affiliation(s)
- Jingjing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Shumin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zidan Zhai
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China.
| | - Xiaoyue Song
- Department of Toxicology, School of Public Health, Anhui Medical University/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China.
| | - Ting Qiu
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China.
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Heng Zhang
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Department of Toxicology, School of Public Health, Anhui Medical University/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China.
| |
Collapse
|
8
|
Hung LY, Margolis KG. Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nat Rev Gastroenterol Hepatol 2024; 21:142-163. [PMID: 38114585 DOI: 10.1038/s41575-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorders (ASDs) are recognized as central neurodevelopmental disorders diagnosed by impairments in social interactions, communication and repetitive behaviours. The recognition of ASD as a central nervous system (CNS)-mediated neurobehavioural disorder has led most of the research in ASD to be focused on the CNS. However, gastrointestinal function is also likely to be affected owing to the neural mechanistic nature of ASD and the nervous system in the gastrointestinal tract (enteric nervous system). Thus, it is unsurprising that gastrointestinal disorders, particularly constipation, diarrhoea and abdominal pain, are highly comorbid in individuals with ASD. Gastrointestinal problems have also been repeatedly associated with increased severity of the core symptoms diagnostic of ASD and other centrally mediated comorbid conditions, including psychiatric issues, irritability, rigid-compulsive behaviours and aggression. Despite the high prevalence of gastrointestinal dysfunction in ASD and its associated behavioural comorbidities, the specific links between these two conditions have not been clearly delineated, and current data linking ASD to gastrointestinal dysfunction have not been extensively reviewed. This Review outlines the established and emerging clinical and preclinical evidence that emphasizes the gut as a novel mechanistic and potential therapeutic target for individuals with ASD.
Collapse
Affiliation(s)
- Lin Y Hung
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
- Department of Pediatrics, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
| |
Collapse
|
9
|
Cui J, Zhai Z, Wang S, Song X, Qiu T, Yu L, Zhai Q, Zhang H. The role and impact of abnormal vitamin levels in autism spectrum disorders. Food Funct 2024; 15:1099-1115. [PMID: 38221882 DOI: 10.1039/d3fo03735e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The prevalence of autism spectrum disorder (ASD), a neurodevelopmental disorder with a predominance of social behavioral disorders, has increased dramatically in various countries in recent decades. The interplay between genetic and environmental factors is believed to underlie ASD pathogenesis. Recent analyses have shown that abnormal vitamin levels in early life are associated with an increased risk of autism. As essential substances for growth and development, vitamins have been shown to have significant benefits for the nervous and immune systems. However, it is unknown whether certain vitamin types influence the emergence or manifestation of ASD symptoms. Several studies have focused on vitamin levels in children with autism, and neurotypical children have provided different insights into the types of vitamins and their intake. Here, we review the mechanisms and significance of several vitamins (A, B, C, D, E, and K) that are closely associated with the development of ASD in order to prevent, mitigate, and treat ASD. Efforts have been made to discover and develop new indicators for nutritional assessment of children with ASD to play a greater role in the early detection of ASD and therapeutic remission after diagnosis.
Collapse
Affiliation(s)
- Jingjing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zidan Zhai
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
| | - Shumin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoyue Song
- Department of Toxicology, School of Public Health, Anhui Medical University/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China.
| | - Ting Qiu
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Heng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of Toxicology, School of Public Health, Anhui Medical University/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China.
| |
Collapse
|
10
|
Önal S, Sachadyn-Król M, Kostecka M. A Review of the Nutritional Approach and the Role of Dietary Components in Children with Autism Spectrum Disorders in Light of the Latest Scientific Research. Nutrients 2023; 15:4852. [PMID: 38068711 PMCID: PMC10708497 DOI: 10.3390/nu15234852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects several areas of mental development. The onset of ASD occurs in the first few years of life, usually before the age of 3 years. Proper nutrition is important to ensure that an individual's nutrient and energy requirements are met, and it can also have a moderating effect on the progression of the disorder. A systematic database search was conducted as a narrative review to determine whether nutrition and specific diets can potentially alter gastrointestinal symptoms and neurobehavioral disorders. Databases such as Science Direct, PubMed, Scopus, Web of Science (WoS), and Google Scholar were searched to find studies published between 2000 and September 2023 on the relationship between ASD, dietary approaches, and the role of dietary components. The review may indicate that despite extensive research into dietary interventions, there is a general lack of conclusive scientific data about the effect of therapeutic diets on ASD; therefore, no definitive recommendation can be made for any specific nutritional therapy as a standard treatment for ASD. An individualized dietary approach and the dietician's role in the therapeutic team are very important elements of every therapy. Parents and caregivers should work with nutrition specialists, such as registered dietitians or healthcare providers, to design meal plans for autistic individuals, especially those who would like to implement an elimination diet.
Collapse
Affiliation(s)
- Seda Önal
- Department of Nutrition and Dietetics, Health Sciences Institute, Ankara University, 06110 Ankara, Turkey;
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Fırat University, 23200 Elazığ, Turkey
| | - Monika Sachadyn-Król
- Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Małgorzata Kostecka
- Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
11
|
Aljuraiban GS, Algabsani SS, Sabico S, AlShammari S, Aljazairy EA, AL-Musharaf S. Types of fiber and gut microbiota composition and diversity among arab females. Saudi J Biol Sci 2023; 30:103767. [PMID: 37609544 PMCID: PMC10440561 DOI: 10.1016/j.sjbs.2023.103767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/24/2023] Open
Abstract
Objectives Dietary fiber is recognized as an important nutrient for gut health. However, research on the relations of different types of fibers (soluble and insoluble) to the human microbiota health is limited. This study aimed to identify whether higher habitual intake of soluble and/or insoluble fiber have a different influence on the composition, diversity, and abundance of microbiota. Methods We examined the fecal microbial composition of 92 healthy females aged 18 and above using the novel shotgun metagenomics sequencing technique. The habitual fiber intake was determined using the Saudi food frequency questionnaire. Pearson's correlation was used for the correlations between total, soluble, and insoluble fiber and gut microbiota. α- and β-diversities were applied to acquire the distinctions in the relative abundances of bacterial taxa. Results Our findings show that higher dietary fiber, particularly insoluble fiber, was significantly correlated with the abundances of Bacteroides_u_s, Bacteroides uniformis, and Lactobacillus acidophilus (r = 0.26, 0.29, 0.26, p-value < 0.05, respectively). Non-significant difference was noted in the microbial α-diversity and β-diversity in low and high soluble/insoluble dietary fiber. Conclusions Current findings suggest that insoluble dietary-fiber intake is favorably correlated with the health of the human gut microbiota. However, further investigations are necessary to identify the effect of types of fiber on the specific species identified in this study.
Collapse
Affiliation(s)
- Ghadeer S. Aljuraiban
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Sarah S. Algabsani
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Shaun Sabico
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Salem AlShammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Esra'a A. Aljazairy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Sara AL-Musharaf
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| |
Collapse
|
12
|
Park SY, Lee SP, Kim D, Kim WJ. Gut Dysbiosis: A New Avenue for Stroke Prevention and Therapeutics. Biomedicines 2023; 11:2352. [PMID: 37760793 PMCID: PMC10525294 DOI: 10.3390/biomedicines11092352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
A stroke is a serious life-threatening condition and a leading cause of death and disability that happens when the blood vessels to part of the brain are blocked or burst. While major advances in the understanding of the ischemic cascade in stroke was made over several decades, limited therapeutic options and high mortality and disability have caused researchers to extend the focus toward peripheral changes beyond brain. The largest proportion of microbes in human body reside in the gut and the interaction between host and microbiota in health and disease is well known. Our study aimed to explore the gut microbiota in patients with stroke with comparison to control group. Fecal samples were obtained from 51 subjects: 25 stroke patients (18 hemorrhagic, 7 ischemic) and 26 healthy control subjects. The variable region V3-V4 of the 16S rRNA gene was sequenced using the Illumina MiSeq platform. PICRUSt2 was used for prediction of metagenomics functions. Our results show taxonomic dysbiosis in stroke patients in parallel with functional dysbiosis. Here, we show that stroke patients have (1) increased Parabacteroides and Escherichia_Shigella, but decreased Prevotella and Fecalibacterium; (2) higher transposase and peptide/nickel transport system substrate-binding protein, but lower RNA polymerase sigma-70 factor and methyl-accepting chemotaxis protein, which are suggestive of malnutrition. Nutrients are essential regulators of both host and microbial physiology and function as key coordinators of host-microbe interactions. Manipulation of nutrition is expected to alleviate gut dysbiosis and prognosis and improve disability and mortality in the management of stroke.
Collapse
Affiliation(s)
- Shin Young Park
- Department of Clinical Laboratory Science, Cheju Halla University, 38 Halladaehak-ro, Jeju-si 63092, Republic of Korea;
| | - Sang Pyung Lee
- Department of Neurosurgery, Brain-Neuro Center, Cheju Halla General Hospital, 65 Doryeong-ro, Jeju-si 63127, Republic of Korea;
| | - Dongin Kim
- Department of Laboratory Medicine, EONE Laboratories, 291 Harmony-ro, Incheon 22014, Republic of Korea;
| | - Woo Jin Kim
- Department of Laboratory Medicine, EONE Laboratories, 291 Harmony-ro, Incheon 22014, Republic of Korea;
| |
Collapse
|
13
|
Zarezadeh M, Mahmoudinezhad M, Hosseini B, Khorraminezhad L, Razaghi M, Alvandi E, Saedisomeolia A. Dietary pattern in autism increases the need for probiotic supplementation: A comprehensive narrative and systematic review on oxidative stress hypothesis. Clin Nutr 2023; 42:1330-1358. [PMID: 37418842 DOI: 10.1016/j.clnu.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/09/2023]
Abstract
Autism spectrum disorders (ASDs) are associated with specific dietary habits, including limited food selection and gastrointestinal problems, resulting in an altered gut microbiota. Autistic patients have an elevated abundance of certain gut bacteria associated with increased oxidative stress in the gastrointestinal tract. Probiotic supplementation has been shown to decrease oxidative stress in a simulated gut model, but the antioxidant effects of probiotics on the oxidative stress of the gut in autistic patients have not been directly studied. However, it is speculated that probiotic supplementation may help decrease oxidative stress in the gastrointestinal tract of autistic patients due to their specific dietary habits altering the microbiota. PubMed, Scopus and Web of Science databases and Google Scholar were searched up to May 2023. This systematic-narrative review aims to present the latest evidence regarding the changes in eating habits of autistic children which may further increase the gut microbiota induced oxidative stress. Additionally, this review will assess the available literature on the effects of probiotic supplementation on oxidative stress parameters.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Banafshe Hosseini
- Clinical Research and Knowledge Transfer Unit on Childhood Asthma, Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada
| | - Leila Khorraminezhad
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | - Maryam Razaghi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ehsan Alvandi
- School of Medicine, Western Sydney University, NSW, Australia
| | - Ahmad Saedisomeolia
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Québec, Canada.
| |
Collapse
|
14
|
Dje Kouadio DK, Wieringa F, Greffeuille V, Humblot C. Bacteria from the gut influence the host micronutrient status. Crit Rev Food Sci Nutr 2023; 64:10714-10729. [PMID: 37366286 DOI: 10.1080/10408398.2023.2227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Micronutrient deficiencies or "hidden hunger" remains a serious public health problem in most low- and middle-income countries, with severe consequences for child development. Traditional methods of treatment and prevention, such as supplementation and fortification, have not always proven to be effective and may have undesirable side-effects (i.e., digestive troubles with iron supplementation). Commensal bacteria in the gut may increase bioavailability of specific micronutrients (i.e., minerals), notably by removing anti-nutritional compounds, such as phytates and polyphenols, or by the synthesis of vitamins. Together with the gastrointestinal mucosa, gut microbiota is also the first line of protection against pathogens. It contributes to the reinforcement of the integrity of the intestinal epithelium and to a better absorption of micronutrients. However, its role in micronutrient malnutrition is still poorly understood. Moreover, the bacterial metabolism is also dependent of micronutrients acquired from the gut environment and resident bacteria may compete or collaborate to maintain micronutrient homeostasis. Gut microbiota composition can therefore be modulated by micronutrient availability. This review brings together current knowledge on this two-way relationship between micronutrients and gut microbiota bacteria, with a focus on iron, zinc, vitamin A and folate (vitamin B9), as these deficiencies are public health concerns in a global context.
Collapse
Affiliation(s)
- Dorgeles Kouakou Dje Kouadio
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Frank Wieringa
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Valérie Greffeuille
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Christèle Humblot
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| |
Collapse
|
15
|
Wang C, Shan H, Chen H, Bai X, Ding J, Ye D, Adam FEA, Yang Y, Wang J, Yang Z. Probiotics and vitamins modulate the cecal microbiota of laying hens submitted to induced molting. Front Microbiol 2023; 14:1180838. [PMID: 37228378 PMCID: PMC10203222 DOI: 10.3389/fmicb.2023.1180838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Induced molting enables laying hens to relax, restore energy and prolong the laying hen cycle, resolving problems such as poor egg quality and minimizing economic losses caused by rising global feeding costs. However, traditional molting methods may disrupt gut microflora and promote potential pathogens infections. This study used a customized additive with a mixture of probiotics and vitamins to induce molting and examine the cecal microbiota post molting. A total of two hundred 377 day-of-ISA Brown laying hens were randomly assigned to four groups: non-molt with basal diet (C), 12-day feeding restriction (FR) in earlier-molting (B), feed again to 27.12% egg production in middle-molting (A) and reach second peak of egg production over 81.36% in post-molting (D). Sequencing 16S rRNA to analyze cecal microbial composition revealed that there is no significant change in bacterial community abundance post-molting. In contrast to group C, the number of potentially harmful bacteria such as E. coli and Enterococcus was not found to increase in groups B, A, or D. This additive keeps cecal microbiota diversity and community richness steady. In cecal contents, hens in group B had lower Lactobacillus, Lachnospiraceae and Prevotellaceae (vsC, A, and D), no significant differences were found between post-molting and the non-molting. Furthermore, cecal microbiota and other chemicals (antibodies, hormones, and enzymes, etc.) strongly affect immunological function and health. Most biochemical indicators are significantly positively correlated with Prevotellaceae, Ruminococcaceae and Subdoligranulum, while negatively with Phascolarctobacterium and Desulfovibrio. In conclusion, the additive of probiotics and vitamins improved the cecal microbiota composition, no increase in the associated pathogenic microbial community due to traditional molting methods, and enhances hepatic lipid metabolism and adaptive immunological function, supporting their application and induced molting technology in the poultry breeding industry.
Collapse
Affiliation(s)
- Chunyang Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Honghu Shan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Hui Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Xindong Bai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Jingru Ding
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Dongyang Ye
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | | | - Yawei Yang
- Hongyan Molting Research Institute, Xianyang, Shanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| |
Collapse
|
16
|
Kacimi FE, Ed-Day S, Didou L, Azzaoui FZ, Ramchoun M, Arfaoui A, Boulbaroud S. Narrative Review: The Effect of Vitamin A Deficiency on Gut Microbiota and Their Link with Autism Spectrum Disorder. J Diet Suppl 2023; 21:116-134. [PMID: 36905650 DOI: 10.1080/19390211.2023.2179154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders defined by a lack of social behaviors, repetitive behaviors and nonverbal interactions, such as limited eye contact, facial expression, and body gesturing. It is not a single condition, but rather a multi-factorial disorder caused by hereditary and non-genetic risk factors, as well as their interaction. According to several studies, the gut microbiota may have a role in the pathophysiology of autism spectrum disorder. Various studies have found differences in the composition of the gastrointestinal (GI) microbiota in children with ASD compared to unaffected siblings and/or healthy unrelated controls. The processes that relate the gut microbiota to brain dysfunctions (the gut-brain axis) in ASD are yet to be fully understood. However, the differences in the gastrointestinal composition might be due to vitamin A deficiency because vitamin A (VA) plays a role in the regulation of the intestinal microbiota. This narrative review discusses the impact of vitamin A deficiency on the gut microbiota composition and tries to understand how this may contribute for the development and severity of ASD.
Collapse
Affiliation(s)
- Fatima Ezzahra Kacimi
- Biotechnology and Sustainable Development of Natural Resources Unit, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Soumia Ed-Day
- Equip of Clinic and Cognitive Neurosciences and Health, Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Latifa Didou
- Equip of Clinic and Cognitive Neurosciences and Health, Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Fatima Zahra Azzaoui
- Equip of Clinic and Cognitive Neurosciences and Health, Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Mhamed Ramchoun
- Biotechnology and Sustainable Development of Natural Resources Unit, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Asma Arfaoui
- Biotechnology and Sustainable Development of Natural Resources Unit, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Samira Boulbaroud
- Biotechnology and Sustainable Development of Natural Resources Unit, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
17
|
Fuke N, Yamashita T, Shimizu S, Matsumoto M, Sawada K, Jung S, Tokuda I, Misawa M, Suzuki S, Ushida Y, Mikami T, Itoh K, Suganuma H. Association of Plasma Lipopolysaccharide-Binding Protein Concentration with Dietary Factors, Gut Microbiota, and Health Status in the Japanese General Adult Population: A Cross-Sectional Study. Metabolites 2023; 13:metabo13020250. [PMID: 36837869 PMCID: PMC9965710 DOI: 10.3390/metabo13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The influx of intestinal bacteria-derived lipopolysaccharide (LPS) into the blood has attracted attention as a cause of diseases. The aim of this study is investigating the associations between the influx of LPS, dietary factors, gut microbiota, and health status in the general adult population. Food/nutrient intake, gut microbiota, health status and plasma LPS-binding protein (LBP; LPS exposure indicator) were measured in 896 residents (58.1% female, mean age 54.7 years) of the rural Iwaki district of Japan, and each correlation was analyzed. As the results, plasma LBP concentration correlated with physical (right/left arms' muscle mass [β = -0.02, -0.03]), renal (plasma renin activity [β = 0.27], urine albumin creatinine ratio [β = 0.50]), adrenal cortical (cortisol [β = 0.14]), and thyroid function (free thyroxine [β = 0.05]), iron metabolism (serum iron [β = -0.14]), and markers of lifestyle-related diseases (all Qs < 0.20). Plasma LBP concentration were mainly negatively correlated with vegetables/their nutrients intake (all βs ≤ -0.004, Qs < 0.20). Plasma LBP concentration was positively correlated with the proportion of Prevotella (β = 0.32), Megamonas (β = 0.56), and Streptococcus (β = 0.65); and negatively correlated with Roseburia (β = -0.57) (all Qs < 0.20). Dietary factors correlated with plasma LBP concentration correlated with positively (all βs ≥ 0.07) or negatively (all βs ≤ -0.07) the proportion of these bacteria (all Qs < 0.20). Our results suggested that plasma LBP concentration in the Japanese general adult population was associated with various health issues, and that dietary habit was associated with plasma LBP concentration in relation to the intestinal bacteria.
Collapse
Affiliation(s)
- Nobuo Fuke
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Correspondence: ; Tel.: +81-80-1573-5815
| | - Takahiro Yamashita
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Sunao Shimizu
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mai Matsumoto
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Kaori Sawada
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Songee Jung
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Digital Nutrition and Health Sciences, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Itoyo Tokuda
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mina Misawa
- Center of Innovation Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shigenori Suzuki
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Hiroyuki Suganuma
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| |
Collapse
|
18
|
Interactions between Dietary Micronutrients, Composition of the Microbiome and Efficacy of Immunotherapy in Cancer Patients. Cancers (Basel) 2022; 14:cancers14225577. [PMID: 36428677 PMCID: PMC9688200 DOI: 10.3390/cancers14225577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of immunotherapy in cancer patients depends on the activity of the host's immune system. The intestinal microbiome is a proven immune system modulator, which plays an important role in the development of many cancers and may affect the effectiveness of anti-cancer therapy. The richness of certain bacteria in the gut microbiome (e.g., Bifidobacterium spp., Akkermanisa muciniphila and Enterococcus hire) improves anti-tumor specific immunity and the response to anti-PD-1 or anti-PD-L1 immunotherapy by activating antigen-presenting cells and cytotoxic T cells within the tumor. Moreover, micronutrients affect directly the activities of the immune system or regulate their function by influencing the composition of the microbiome. Therefore, micronutrients can significantly influence the effectiveness of immunotherapy and the development of immunorelated adverse events. In this review, we describe the relationship between the supply of microelements and the abundance of various bacteria in the intestinal microbiome and the effectiveness of immunotherapy in cancer patients. We also point to the function of the immune system in the case of shifts in the composition of the microbiome and disturbances in the supply of microelements. This may in the future become a therapeutic target supporting the effects of immunotherapy in cancer patients.
Collapse
|
19
|
Abraham DA, Udayakumar N, Rajendran L, Rajendran R, Rajanandh MG. Herbal medicine as a first-line choice of complementary medicine for South Indian parents/caregivers in the management of ASD children. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Lu C, Rong J, Fu C, Wang W, Xu J, Ju XD. Overall Rebalancing of Gut Microbiota Is Key to Autism Intervention. Front Psychol 2022; 13:862719. [PMID: 35712154 PMCID: PMC9196865 DOI: 10.3389/fpsyg.2022.862719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with unclear etiology, and due to the lack of effective treatment, ASD patients bring enormous economic and psychological burden to families and society. In recent years, many studies have found that children with ASD are associated with gastrointestinal diseases, and the composition of intestinal microbiota (GM) is different from that of typical developing children. Thus, many researchers believe that the gut-brain axis may play an important role in the occurrence and development of ASD. Indeed, some clinical trials and animal studies have reported changes in neurological function, behavior, and comorbid symptoms of autistic children after rebalancing the composition of the GM through the use of antibiotics, prebiotics, and probiotics or microbiota transfer therapy (MMT). In view of the emergence of new therapies based on the modulation of GM, characterizing the individual gut bacterial profile evaluating the effectiveness of intervention therapies could help provide a better quality of life for subjects with ASD. This article reviews current studies on interventions to rebalance the GM in children with ASD. The results showed that Lactobacillus plantarum may be an effective strain for the probiotic treatment of ASD. However, the greater effectiveness of MMT treatment suggests that it may be more important to pay attention to the overall balance of the patient's GM. Based on these findings, a more thorough assessment of the GM is expected to contribute to personalized microbial intervention, which can be used as a supplementary treatment for ASD.
Collapse
Affiliation(s)
- Chang Lu
- School of Psychology, Northeast Normal University, Changchun, China
| | - Jiaqi Rong
- School of Psychology, Northeast Normal University, Changchun, China
| | - Changxing Fu
- School of Psychology, Northeast Normal University, Changchun, China
| | - Wenshi Wang
- School of Psychology, Northeast Normal University, Changchun, China
| | - Jing Xu
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xing-Da Ju
- School of Psychology, Northeast Normal University, Changchun, China
| |
Collapse
|
21
|
Yang T, Chen L, Dai Y, Jia F, Hao Y, Li L, Zhang J, Wu L, Ke X, Yi M, Hong Q, Chen J, Fang S, Wang Y, Wang Q, Jin C, Chen J, Li T. Vitamin A Status Is More Commonly Associated With Symptoms and Neurodevelopment in Boys With Autism Spectrum Disorders-A Multicenter Study in China. Front Nutr 2022; 9:851980. [PMID: 35495950 PMCID: PMC9038535 DOI: 10.3389/fnut.2022.851980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder, and show a striking male bias in prevalence. Vitamin A (VA) is essential for brain development, and abnormalities in its metabolite retinoic acid are associated with the pathophysiology of ASD. This national multicenter study was conducted to investigate the relationship between serum VA level and core symptoms in ASD children and whether there are still sex differences. Method A total of 1,300 children with ASD and 1,252 typically-developing (TD) controls aged 2-7 years old from 13 cities in China were enrolled in this study. The symptoms of children with ASD were evaluated by the Autism Behavior Checklist (ABC), Social Responsiveness Scale (SRS), and Childhood autism rating scale (CARS). The neurodevelopmental level of the children was evaluated with the revised Children Neuropsychological and Behavior Scale (CNBS-R2016). The serum level of VA was measured by high-performance liquid chromatography (HPLC). Results The serum VA level in children with ASD was significantly lower than that in TD children, especially in boys with ASD. Furthermore, VA levels in male children with ASD were lower than those in female children with ASD. In addition, we found that serum VA level was negatively correlated the SRS, CARS and communication warming behavior of CBNS-R2016 scores in boys with ASD. In terms of developmental quotients, serum VA level was positively associated with the general quotient, language quotient, gross motor quotient and personal-social quotient of boys with ASD, but no difference was found in girls with ASD. Conclusions ASD children, especially boys, have lower serum VA levels than TD children. Moreover, serum VA status is more commonly associated with clinical symptoms and neurodevelopment in boys with ASD.
Collapse
Affiliation(s)
- Ting Yang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Li Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ying Dai
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Yan Hao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Li
- Department of Children Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| | - Jie Zhang
- Children Health Care Center, Xi'an Children's Hospital, Xi'an, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Xiaoyan Ke
- Child Mental Health Research Center of Nanjing Brain Hospital, Nanjing, China
| | - Mingji Yi
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Hong
- Maternal and Child Health Hospital of Baoan, Shenzhen, China
| | - Jinjin Chen
- Department of Child Healthcare, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuanfeng Fang
- Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Yichao Wang
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Qi Wang
- Deyang Maternity and Child Healthcare Hospital, Deyang, Sichuan, China
| | - Chunhua Jin
- Department of Children Health Care, Capital Institute of Pediatrics, Beijing, China
| | - Jie Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Tingyu Li
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| |
Collapse
|
22
|
van der Wurff I, Oenema A, de Ruijter D, Vingerhoets C, van Amelsvoort T, Rutten B, Mulkens S, Köhler S, Schols A, de Groot R. A Scoping Literature Review of the Relation between Nutrition and ASD Symptoms in Children. Nutrients 2022; 14:1389. [PMID: 35406004 PMCID: PMC9003544 DOI: 10.3390/nu14071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impairments in social interaction, communication skills, and repetitive and restrictive behaviors and interests. Even though there is a biological basis for an effect of specific nutrition factors on ASD symptoms and there is scientific literature available on this relationship, whether nutrition factors could play a role in ASD treatment is unclear. The goal of the current literature review was to summarize the available scientific literature on the relation between nutrition and autism spectrum disorder (ASD) symptoms in childhood, and to formulate practical dietary guidelines. A comprehensive search strategy including terms for ASD, nutrition factors (therapeutic diets, dietary patterns, specific food products, fatty acids and micronutrients) and childhood was developed and executed in six literature databases (Cinahl, Cochrane, Ovid Embase, PsycInfo, PubMed and Web of Science). Data from meta-analyses, systematic reviews and original studies were qualitatively summarized. A total of 5 meta-analyses, 29 systematic reviews and 27 original studies were retrieved that focused on therapeutic diets, specific food products, fatty acids and micronutrients and ASD symptoms during childhood. Results of the available studies were sparse and inconclusive, and hence, no firm conclusions could be drawn. There is currently insufficient evidence for a relation between nutrition and ASD symptoms in childhood, making it impossible to provide practical nutrition guidelines; more methodological sound research is needed.
Collapse
Affiliation(s)
- Inge van der Wurff
- Health Psychology, Faculty of Psychology, Open University of the Netherlands, 6419 AT Heerlen, The Netherlands
- Conditions for Lifelong Learning, Faculty of Educational Sciences, Open University of the Netherlands, 6419 AT Heerlen, The Netherlands;
| | - Anke Oenema
- Department of Health Promotion, Maastricht University, 6200 MD Maastricht, The Netherlands; (A.O.); (D.d.R.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Dennis de Ruijter
- Department of Health Promotion, Maastricht University, 6200 MD Maastricht, The Netherlands; (A.O.); (D.d.R.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (C.V.); (T.v.A.); (B.R.); (S.M.); (S.K.)
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (C.V.); (T.v.A.); (B.R.); (S.M.); (S.K.)
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Bart Rutten
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (C.V.); (T.v.A.); (B.R.); (S.M.); (S.K.)
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Sandra Mulkens
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (C.V.); (T.v.A.); (B.R.); (S.M.); (S.K.)
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Clinical Psychological Science, Maastricht University, 6200 MD Maastricht, The Netherlands
- SeysCentra, 6581 TE Malden, The Netherlands
| | - Sebastian Köhler
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (C.V.); (T.v.A.); (B.R.); (S.M.); (S.K.)
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Annemie Schols
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
- Department of Respiratory Medicine, Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Renate de Groot
- Conditions for Lifelong Learning, Faculty of Educational Sciences, Open University of the Netherlands, 6419 AT Heerlen, The Netherlands;
| |
Collapse
|
23
|
Nogay NH, Nahikian-Nelms M. Effects of nutritional interventions in children and adolescents with autism spectrum disorder: an overview based on a literature review. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2022; 69:811-824. [PMID: 37885847 PMCID: PMC10599198 DOI: 10.1080/20473869.2022.2036921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/27/2022] [Indexed: 10/28/2023]
Abstract
Background: Nutrition is important in autism spectrum disorder (ASD). Because nutritional problems of children with ASD can lead to nutritional deficiencies and this can also directly or indirectly affect symptoms related to autism. We investigated the effect of diet and supplementation treatments on gastrointestinal, behavioral or sleep problems based on the results of literature review. Methods: We generated four questions based on literature. We carried out title and abstract-based search using the Web of Science database. Of 4580 abstracts were identified, 192 papers were reviewed and 55 papers precisely meeting the inclusion criteria. Results: The studies examining the effects of vitamins, minerals, probiotics, and other supplements on ASD symptoms had different dosages, different treatment durations, small sample sizes and used different scales for evaluation. The results of the studies of the effectiveness of Gluten-Free and Casein-Free (GFCF) and ketogenic diet to reduce gastrointestinal, behavioral and sleeping problems in children and adolescents were contradictory. Conclusions: It is not possible to suggest the GFCF and/or ketogenic diet, vitamins, minerals and probiotics to individual with ASD based on the available evidence. By planning a sufficient and balanced diet, it should be aimed to prevent nutrient deficiency and to ensure growth in accordance with the age in children with ASD.
Collapse
Affiliation(s)
- Nalan Hakime Nogay
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Erciyes University, Kayseri, Turkey
| | - Marcia Nahikian-Nelms
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Xiao L, Wang M, Zhang W, Song Y, Zeng J, Li H, Yu H, Li L, Gao P, Yao P. Maternal diabetes-mediated RORA suppression contributes to gastrointestinal symptoms in autism-like mouse offspring. BMC Neurosci 2022; 23:8. [PMID: 35164690 PMCID: PMC8842926 DOI: 10.1186/s12868-022-00693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retinoic acid-related orphan receptor alpha (RORA) has been reported to be suppressed in autistic patients and is associated with autism spectrum disorders (ASD), although the potential role and mechanism of RORA on gastrointestinal (GI) symptoms in ASD patients is still not reported. In this study, we aim to investigate the contribution of RORA to GI symptoms through a maternal diabetes-mediated autism-like mouse model. RESULTS Male offspring of diabetic dams were treated with either superoxide dismutase (SOD) mimetic MnTBAP or RORA agonist SR1078, or were crossbred with intestine epithelial cells (IEC)-specific RORA knockout (RORA-/-) mouse. Gene expression, oxidative stress and inflammation were measured in brain tissues, peripheral blood mononuclear cells (PBMC) and IEC, and GI symptoms were evaluated. Our results showed that SOD mimetic MnTBAP completely, while RORA agonist SR1078 partly, reversed maternal diabetes-mediated oxidative stress and inflammation in the brain, PBMC and IEC, as well as GI symptoms, including intestine permeability and altered gut microbiota compositions. IEC-specific RORA deficiency either mimicked or worsened maternal diabetes-mediated GI symptoms as well as oxidative stress and inflammation in IEC, while there was little effect on maternal diabetes-mediated autism-like behaviors. CONCLUSIONS We conclude that RORA suppression contributes to maternal diabetes-mediated GI symptoms in autism-like mouse offspring, this study provides a potential therapeutical target for maternal diabetes-mediated GI symptoms in offspring through RORA activation.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Min Wang
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China
| | - Wanhua Zhang
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Yuan Song
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China
| | - Jiaying Zeng
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Huilin Li
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China
| | - Hong Yu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Ling Li
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China.
| | - Pingming Gao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China.
| | - Paul Yao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China. .,Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China.
| |
Collapse
|
25
|
Prosperi M, Santocchi E, Guiducci L, Frinzi J, Morales MA, Tancredi R, Muratori F, Calderoni S. Interventions on Microbiota: Where Do We Stand on a Gut–Brain Link in Autism? A Systematic Review. Nutrients 2022; 14:nu14030462. [PMID: 35276821 PMCID: PMC8839651 DOI: 10.3390/nu14030462] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
The alteration of the microbiota–gut–brain axis has been recently recognized as a critical modulator of neuropsychiatric health and a possible factor in the etiopathogenesis of autism spectrum disorders (ASD). This systematic review offers practitioners an overview of the potential therapeutic options to modify dysbiosis, GI symptoms, and ASD severity by modulating the microbiota–gut–brain axis in ASD, taking into consideration limits and benefits from current findings. Comprehensive searches of PubMed, Scopus, the Web of Science Core Collection, and EMBASE were performed from 2000 to 2021, crossing terms referred to ASD and treatments acting on the microbiota–gut–brain axis. A total of 1769 publications were identified, of which 19 articles met the inclusion criteria. Data were extracted independently by two reviewers using a preconstructed form. Despite the encouraging findings, considering the variability of the treatments, the samples size, the duration of treatment, and the tools used to evaluate the outcome of the examined trials, these results are still partial. They do not allow to establish a conclusive beneficial effect of probiotics and other interventions on the symptoms of ASD. In particular, the optimal species, subspecies, and dosages have yet to be identified. Considering the heterogeneity of ASD, double-blind, randomized, controlled trials and treatment tailored to ASD characteristics and host-microbiota are recommended.
Collapse
Affiliation(s)
- Margherita Prosperi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy; (M.P.); (J.F.); (R.T.); (F.M.)
| | - Elisa Santocchi
- UFSMIA Zona Valle del Serchio, Azienda USL Toscana Nord Ovest, 55032 Località Castelnuovo Garfagnana, Italy;
| | - Letizia Guiducci
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (M.A.M.)
| | - Jacopo Frinzi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy; (M.P.); (J.F.); (R.T.); (F.M.)
| | - Maria Aurora Morales
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (M.A.M.)
| | - Raffaella Tancredi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy; (M.P.); (J.F.); (R.T.); (F.M.)
| | - Filippo Muratori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy; (M.P.); (J.F.); (R.T.); (F.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy; (M.P.); (J.F.); (R.T.); (F.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
26
|
Liu Z, Mao X, Dan Z, Pei Y, Xu R, Guo M, Liu K, Zhang F, Chen J, Su C, Zhuang Y, Tang J, Xia Y, Qin L, Hu Z, Liu X. Gene variations in autism spectrum disorder are associated with alteration of gut microbiota, metabolites and cytokines. Gut Microbes 2022; 13:1-16. [PMID: 33412999 PMCID: PMC7808426 DOI: 10.1080/19490976.2020.1854967] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The genetic variations and dysbiosis of gut microbiota are associated with ASD. However, the role of the microbiota in the etiology of ASD in terms of host genetic susceptibility remains unclear. This study aims to systematically explore the interplay between host genetic variation and gut microbiota in ASD children. Whole-exon sequencing was applied to 26 ASD children and 26 matched controls to identify the single nucleotide variations (SNVs) in ASD. Our previous study revealed alteration in gut microbiota and disorder of metabolism activity in ASD for this cohort. Systematic bioinformatic analyses were further performed to identify associations between SNVs and gut microbiota, as well as their metabolites. The ASD SNVs were significantly enriched in genes associated with innate immune response, protein glycosylation process, and retrograde axonal transport. These SNVs were also correlated with the microbiome composition and a broad aspect of microbial functions, especially metabolism. Additionally, the abundance of metabolites involved in the metabolic network of neurotransmitters was inferred to be causally related to specific SNVs and microbes. Furthermore, our data suggested that the interaction of host genetics and gut microbes may play a crucial role in the immune and metabolism homeostasis of ASD. This study may provide valuable clues to investigate the interaction of host genetic variations and gut microbiota in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Affiliated Yixing People’s Hospital, Jiangsu University, Wuxi, China
| | - Zhou Dan
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Najing, China
| | - Yang Pei
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Mengchen Guo
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Kangjian Liu
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Najing, China
| | - Faming Zhang
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Najing, China
| | - Junyu Chen
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Chuan Su
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yaoyao Zhuang
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Junming Tang
- Department of Clinical Laboratory, Affiliated Yixing People’s Hospital, Jiangsu University, Wuxi, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Lianhong Qin
- Children Growth Center of Bo’ai Homestead in Yixing, Yixing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Najing, China,CONTACT Xingyin Liu State Key Laboratory of Reproductive Medicine, Center of Gobal Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| |
Collapse
|
27
|
Xu S, Li M, Yang C, Fang X, Ye M, Wu Y, Yang B, Huang W, Li P, Ma X, Fu S, Yin Y, Tian J, Gan Y, Jiang G. Abnormal Degree Centrality in Children with Low-Function Autism Spectrum Disorders: A Sleeping-State Functional Magnetic Resonance Imaging Study. Neuropsychiatr Dis Treat 2022; 18:1363-1374. [PMID: 35818374 PMCID: PMC9270980 DOI: 10.2147/ndt.s367104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE This study used the graph-theory approach, degree centrality (DC) to analyze whole-brain functional networks at the voxel level in children with ASD, and investigated whether DC changes were correlated with any clinical variables in ASD children. METHODS The current study included 86 children with ASD and 54 matched healthy subjects Aged 2-5.5 years. Next, chloral hydrate induced sleeping-state functional magnetic resonance imaging (ss-fMRI) datasets were acquired from these ASD and healthy subjects. For a given voxel, the DC was calculated by calculating the number of functional connections with significantly positive correlations at the individual level. Group differences were tested using two-sample t-tests (p < 0.01, AlphaSim corrected). Finally, relationships between abnormal DCs and clinical variables were investigated via Pearson's correlation analysis. RESULTS Children with ASD exhibited low DC values in the right middle frontal gyrus (MFG) (p < 0.01, AlphaSim corrected). Furthermore, significantly negative correlations were established between the decreased average DC values within the right MFG in ASD children and the total ABC scores, as well as with two ABC subscales measuring highly relevant impairments in ASD (ie, stereotypes and object-use behaviors and difficulties in language). CONCLUSION Taken together, the results of our ss-fMRI study suggest that abnormal DC may represent an important contribution to elucidation of the neuropathophysiological mechanisms of preschoolers with ASD.
Collapse
Affiliation(s)
- Shoujun Xu
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Meng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Chunlan Yang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Xiangling Fang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Miaoting Ye
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Yunfan Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Binrang Yang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Wenxian Huang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Peng Li
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Xiaofen Ma
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yungen Gan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
28
|
Research Progress in Vitamin A and Autism Spectrum Disorder. Behav Neurol 2021; 2021:5417497. [PMID: 34917197 PMCID: PMC8670912 DOI: 10.1155/2021/5417497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder. Over the past few decades, many studies have investigated the effects of VA supplementation in ASD patients and the relationship between vitamin A (VA) levels and ASD. VA is an essential micronutrient that plays an important role in various systems and biological processes in the form of retinoic acid (RA). Recent studies have shown that serum VA concentration is negatively correlated with the severity of ASD. The lack of VA during pregnancy or early fetal development can affect brain development and lead to long-term or even permanent impairment in the learning process, memory formation, and cognitive function. In addition, VA deficiency has been reported to have a major impact on the gastrointestinal function of children with ASD, while VA supplementation has been shown to improve the symptoms of ASD to a certain extent. This paper provides a comprehensive review of the relationship between VA and ASD.
Collapse
|
29
|
Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res 2021; 95:35-53. [PMID: 34798467 DOI: 10.1016/j.nutres.2021.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
The gut microbiome plays important roles in the maintenance of host health and the pathogenesis of many diseases. Diet is a key modulator of the gut microbiome. There is increasing evidence that nutrients other than fermentable fiber affect the gut microbial composition. In this review, we discuss the effects of vitamins on the gut microbiome, and related gastrointestinal health, based on in vitro, animal and human studies. Some vitamins, when provided in large doses or when delivered to the large intestine, have been shown to beneficially modulate the gut microbiome by increasing the abundance of presumed commensals (vitamins A, B2, D, E, and beta-carotene), increasing or maintaining microbial diversity (vitamins A, B2, B3, C, K) and richness (vitamin D), increasing short chain fatty acid production (vitamin C), or increasing the abundance of short chain fatty acid producers (vitamins B2, E). Others, such as vitamins A and D, modulate the gut immune response or barrier function, thus, indirectly influencing gastrointestinal health or the microbiome. Future research is needed to explore these potential effects and to elucidate the underlying mechanisms and host health benefits.
Collapse
Affiliation(s)
- Van T Pham
- DSM Nutritional Products, Kaiseraugst, Switzerland.
| | - Susanne Dold
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | | | - Robert E Steinert
- DSM Nutritional Products, Kaiseraugst, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Lombardi M, Troisi J. Gut Reactions: How Far Are We from Understanding and Manipulating the Microbiota Complexity and the Interaction with Its Host? Lessons from Autism Spectrum Disorder Studies. Nutrients 2021; 13:3492. [PMID: 34684493 PMCID: PMC8538077 DOI: 10.3390/nu13103492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Autism is a group of neurodevelopmental disorders, characterized by early onset difficulties in social communication and restricted, repetitive behaviors and interests. It is characterized by familial aggregation, suggesting that genetic factors play a role in disease development, in addition to developmentally early environmental factors. Here, we review the role of the gut microbiome in autism, as it has been characterized in case-control studies. We discuss how methodological differences may have led to inconclusive or contradictory results, even though a disproportion between harmful and beneficial bacteria is generally described in autism. Furthermore, we review the studies concerning the effects of gut microbial-based and dietary interventions on autism symptoms. Also, in this case, the results are not comparable due to the lack of standardized methods. Therefore, autism-specific microbiome signatures and, consequently, possible microbiome-oriented interventions are far from being recognized. We argue that a multi-omic longitudinal implementation may be useful to study metabolic changes connected to microbiome changes.
Collapse
Affiliation(s)
- Martina Lombardi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy; or
- Theoreo Srl Spin Off Company, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy
| | - Jacopo Troisi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy; or
- Theoreo Srl Spin Off Company, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy
| |
Collapse
|
31
|
Ha S, Oh D, Lee S, Park J, Ahn J, Choi S, Cheon KA. Altered Gut Microbiota in Korean Children with Autism Spectrum Disorders. Nutrients 2021; 13:nu13103300. [PMID: 34684301 PMCID: PMC8539113 DOI: 10.3390/nu13103300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and behavioral impairments. Recent studies have suggested that gut microbiota play a critical role in ASD pathogenesis. Herein, we investigated the fecal microflora of Korean ASD children to determine gut microbiota profiles associated with ASD. Specifically, fecal samples were obtained from 54 children with ASD and 38 age-matched children exhibiting typical development. Systematic bioinformatic analysis revealed that the composition of gut microbiota differed between ASD and typically developing children (TDC). Moreover, the total amounts of short-chain fatty acids, metabolites produced by bacteria, were increased in ASD children. At the phylum level, we found a significant decrease in the relative Bacteroidetes abundance of the ASD group, whereas Actinobacteria abundance was significantly increased. Furthermore, we found significantly lower Bacteroides levels and higher Bifidobacterium levels in the ASD group than in the TDC group at the genus level. Functional analysis of the microbiota in ASD children predicted that several pathways, including genetic information processing and amino acid metabolism, can be associated with ASD pathogenesis. Although more research is needed to determine whether the differences between ASD and TDC are actually related to ASD pathogenesis, these results provide further evidence of altered gut microbiota in children with ASD, possibly providing new perspectives on the diagnosis and therapeutic approaches for ASD patients.
Collapse
Affiliation(s)
- Sungji Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Donghun Oh
- Graduate School of Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Sunghee Lee
- Research Lab., Ildong Pharmaceutical Co., Ltd., Hwaseong 18449, Korea; (S.L.); (J.P.); (S.C.)
| | - Jaewan Park
- Research Lab., Ildong Pharmaceutical Co., Ltd., Hwaseong 18449, Korea; (S.L.); (J.P.); (S.C.)
| | - Jaeun Ahn
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Severance Children’s Hospital, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Sungku Choi
- Research Lab., Ildong Pharmaceutical Co., Ltd., Hwaseong 18449, Korea; (S.L.); (J.P.); (S.C.)
| | - Keun-Ah Cheon
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Severance Children’s Hospital, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2228-1620
| |
Collapse
|
32
|
Divyashri G, Sadanandan B, Chidambara Murthy KN, Shetty K, Mamta K. Neuroprotective Potential of Non-Digestible Oligosaccharides: An Overview of Experimental Evidence. Front Pharmacol 2021; 12:712531. [PMID: 34497516 PMCID: PMC8419344 DOI: 10.3389/fphar.2021.712531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Non-digestible oligosaccharides (NDOs) from dietary sources have the potential as prebiotics for neuroprotection. Globally, diverse populations suffering from one or the other forms of neurodegenerative disorders are on the rise, and NDOs have the potential as supportive complementary therapeutic options against these oxidative-linked disorders. Elevated levels of free radicals cause oxidative damage to biological molecules like proteins, lipids, and nucleic acids associated with various neurological disorders. Therefore, investigating the therapeutic or prophylactic potential of prebiotic bioactive molecules such as NDOs as supplements for brain and cognitive health has merits. Few prebiotic NDOs have shown promise as persuasive therapeutic solutions to counter oxidative stress by neutralizing free radicals directly or indirectly. Furthermore, they are also known to modulate through brain-derived neurotrophic factors through direct and indirect mechanisms conferring neuroprotective and neuromodulating benefits. Specifically, NDOs such as fructo-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, manno-oligosaccharides, pectic-oligosaccharides, and similar oligosaccharides positively influence the overall health via various mechanisms. Increasing evidence has suggested that the beneficial role of such prebiotic NDOs is not only directed towards the colon but also distal organs including the brain. Despite the wide applications of these classes of NDOs as health supplements, there is limited understanding of the possible role of these NDOs as neuroprotective therapeutics. This review provides important insights into prebiotic NDOs, their source, and production with special emphasis on existing direct and indirect evidence of their therapeutic potential in neuroprotection.
Collapse
Affiliation(s)
- Gangaraju Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Kotamballi N Chidambara Murthy
- Central Research Laboratory and Division of Research and Patents, Ramaiah Medical College and Hospital, Bengaluru, India
| | - Kalidas Shetty
- Department of Plant Science, North Dakota State University, Fargo, ND, United States
| | - Kumari Mamta
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
33
|
Fei Y, Chen Z, Han S, Zhang S, Zhang T, Lu Y, Berglund B, Xiao H, Li L, Yao M. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Crit Rev Food Sci Nutr 2021; 63:1037-1054. [PMID: 34323634 DOI: 10.1080/10408398.2021.1958744] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the development of high-throughput DNA sequencing and molecular analysis technologies, next-generation probiotics (NGPs) are increasingly gaining attention as live bacterial therapeutics for treatment of diseases. However, compared to traditional probiotics, NGPs are much more vulnerable to the harsh conditions in the human gastrointestinal tract, and their functional mechanisms in the gut are more complex. Prebiotics have been confirmed to play a critical role in improving the function and viability of traditional probiotics. Defined as substrates that are selectively utilized by host microorganisms conferring a health benefit, prebiotics are also important for NGPs. This review summarizes potential prebiotics for use with NGPs and clarifies their characteristics and functional mechanisms. Then we particularly focus on illustrating the protective effects of various prebiotics by enhancing the antioxidant capacity and their resistance to digestive fluids. We also elucidate the role of prebiotics in regulating anti-bacterial effects, intestinal barrier maintenance, and cross-feeding mechanisms of NPGs. With the expanding range of candidate NGPs and prebiotic substrates, more studies need to be conducted to comprehensively elucidate the interactions between prebiotics and NGPs outside and inside hosts, in order to boost their nutritional and healthcare applications.
Collapse
Affiliation(s)
- Yiqiu Fei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Björn Berglund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Wen J, Yang T, Zhu J, Guo M, Lai X, Tang T, Chen L, Chen J, Xue M, Li T. Vitamin a deficiency and sleep disturbances related to autism symptoms in children with autism spectrum disorder: a cross-sectional study. BMC Pediatr 2021; 21:299. [PMID: 34217246 PMCID: PMC8254303 DOI: 10.1186/s12887-021-02775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 06/08/2021] [Indexed: 12/03/2022] Open
Abstract
Background Vitamin A deficiency (VAD) and sleep disturbances have been reported in children with autism spectrum disorder (ASD). The influence of vitamin A (VA) levels on sleep regulation and sleep disturbances in ASD has garnered concern. The present study aimed to characterize the association of VA levels with sleep disturbances in children with ASD. Methods This cross-sectional study compared children with ASD (n = 856) to typically developing children (TDC; n = 316). We used the Children’s Sleep Habits Questionnaire to assess sleep disturbances, Childhood Autism Rating Scale to evaluate the severity of autism symptoms, and Autism Behavior Checklist and Social Responsiveness Scale to assess autism behaviors. Serum VA levels were estimated using high-performance liquid chromatography. Multivariable linear regression and two-way analysis of variance were performed to investigate if VAD was related to sleep disturbances in children with ASD. Results Children with ASD had lower serum VA levels and a higher prevalence of sleep disturbances than TDC did. The incidence of VAD in ASD children with sleep disturbances was higher, and the symptoms more severe than those without sleep disturbances and TDC. Interestingly, the interaction between VAD and sleep disturbances was associated with the severity of autism symptoms. Conclusion VAD and sleep disturbances are associated with the core symptoms of ASD in children. Regular monitoring of sleep and VA levels may be beneficial for children with ASD. Trial registration Chinese Clinical Trial Registry, registration number: ChiCTR-ROC-14005442, registration date: December 9th 2014.
Collapse
Affiliation(s)
- Jing Wen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorder, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorder, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China
| | - Jiang Zhu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorder, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China
| | - Min Guo
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorder, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China
| | - Xi Lai
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorder, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China
| | - Ting Tang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorder, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China
| | - Li Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorder, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, PR China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China.,National Clinical Research Center for Child Health and Disorder, Chongqing, PR China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China
| | - Ming Xue
- Department of Neurosciences and Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, PR China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China. .,National Clinical Research Center for Child Health and Disorder, Chongqing, PR China. .,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China.
| |
Collapse
|
35
|
Wang Z, Fu H, Zhou Y, Yan M, Chen D, Yang M, Xiao S, Chen C, Huang L. Identification of the gut microbiota biomarkers associated with heat cycle and failure to enter oestrus in gilts. Microb Biotechnol 2021; 14:1316-1330. [PMID: 33305898 PMCID: PMC8313273 DOI: 10.1111/1751-7915.13695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 01/09/2023] Open
Abstract
Failed puberty is one of the main reasons for eliminating gilts from production herds. This is often caused by disorders of sex hormones. An increasing number of studies have suggested that the gut microbiota may regulate sex hormones and vice versa. Whether the gut microbiota is involved in the failure of oestrus in gilts remains unknown. We used 16S rRNA gene sequencing, network-based microbiota analysis and prediction of functional capacity from 16S rRNA gene sequences to explore the shifts in the gut microbiota throughout a heat cycle in 22 eight-month-old gilts. We found that a module of co-occurrence networks composed of Sphaerochaeta and Treponema, co-occurred with oestrus during a heat cycle. The mcode score of this module reflecting the stability and importance in the network achieved the highest value at the oestrus stage. We then identified bacterial biosignatures associated with the failure to show puberty in 163 gilts. Prevotella, Treponema, Faecalibacterium, Oribacterium, Succinivibrio and Anaerovibrio were enriched in gilts showing normal heat cycles, while Lachnospiraceae, Ruminococcus, Coprococcus and Oscillospira had higher abundance in gilts failing to show puberty. Prediction of functional capacity of the gut microbiome identified a lesser abundance of the pathway 'retinol metabolism' in gilts that failed to undergo puberty. This pathway was also significantly associated with those bacterial taxa involved in failed puberty identified in this study (P < 0.05). This result suggests that the changed gut bacteria might result in a disorder of retinol metabolism, and this may be an explanation for the failure to enter oestrus.
Collapse
Affiliation(s)
- Zhong Wang
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Hao Fu
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Yunyan Zhou
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Min Yan
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Dong Chen
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Ming Yang
- Zhongkai University of Agriculture and EngineeringGuangzhouGuangdong510225China
| | - Shijun Xiao
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| |
Collapse
|
36
|
Wang S, Liu H, Cheng B, Wu Q, Li L, Yang T, Hou N, Li T. Vitamin A supplementation ameliorates motor incoordination via modulating RORα in the cerebellum in a valproic acid-treated rat autism model with vitamin A deficiency. Neurotoxicology 2021; 85:90-98. [PMID: 33991534 DOI: 10.1016/j.neuro.2021.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Motor dysfunctions are common comorbidities among autism spectrum disorder (ASD) patients. Abnormal cerebellar development throughout critical periods may have an effect on motor functions and result in motor impairments. Vitamin A (VA) plays a crucial role in the developing process of the nervous system. The correlation of VA deficiency (VAD) and ASD with motor dysfunctions, however, is not clear. Therefore, we built rat models with different VA levels based on the valproic acid (VPA)-treated autism model. ASD rats with VAD showed aggravated motor coordination abnormalities, Purkinje cell loss and impaired dendritic arborization of Purkinje cells compared to ASD rats with normal VA levels (VA normal, VAN). Additionally, the expression levels of retinoid-related orphan receptor α (RORα) and retinoic acid receptor α (RARα) were lower in the cerebellum of ASD rats with VAD than in those of ASD rats with VAN. VA supplementation (VAS) effectively improved motor coordination and cerebellar Purkinje cell abnormalities in ASD rats with VAD. Furthermore, the results of chromatin immunoprecipitation (ChIP) assays confirmed that the enrichment of RARα was detected on the RORα promoter in the cerebellum and that VAS could upregulate the binding capacity of RARα for RORα promoters. These results showed that VAD in autism might result in cerebellar impairments and be a factor aggravating a subtype of ASD with motor comorbidities. The therapeutic effect of VAS on motor deficits and Purkinje neuron impairments in autism might be due to the regulation of RORα by RARα.
Collapse
Affiliation(s)
- Si Wang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Huan Liu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Boli Cheng
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Qionghui Wu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Lisha Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Nali Hou
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China; Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China.
| |
Collapse
|
37
|
Adachi S, Torio M, Okuzono S, Motomura Y, Ichimiya Y, Sonoda Y, Nagata J, Okamoto M, Noutomi S, Sanefuji M, Sakai Y, Ohga S. Vitamin A deficiency-associated corneal perforation in a boy with autism spectrum disorder: A case report and literature review. Nutrition 2021; 90:111275. [PMID: 34004415 DOI: 10.1016/j.nut.2021.111275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Malnutrition and vitamin deficiency are growing concerns in the clinical management of children with autism spectrum disorder (ASD). This case report presents a boy with ASD who developed vitamin A deficiency during follow-up. CASE REPORT A 7-y-old boy had been diagnosed with ASD and developmental delay at age 18 mo. He developed convulsions associated with hypocalcemia and vitamin D deficiency at 3 y of age. Although vitamin D supplementation was continued, he was only able to eat rice, green tea, and fried potatoes from 3 y of age to age 7 y. He had started rubbing his eyes and had refused to open his eyes 9 mo before. An ophthalmologic examination showed bilateral corneal ulcers and right corneal perforation. Vitamin A was immediately supplemented with a nasogastric tube; however, his right eye was surgically enucleated against the persistent infection. LITERATURE REVIEW A search of the relevant literature from 1993 to 2020 identified 11 cases of patients with ASD (5-17 y of age) who developed vitamin A deficiency owing to malnutrition. Only 4 cases (36%) had a full recovery in visual acuity. CONCLUSION Vitamin A deficiency frequently causes irreversible visual impairment in children with ASD. Vigilant monitoring of vitamin levels prevents unfavorable outcomes in children with ASD and difficulty in food intake.
Collapse
Affiliation(s)
- Shunichi Adachi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michiko Torio
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jyunya Nagata
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Misato Okamoto
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouji Noutomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Spichak S, Bastiaanssen TFS, Berding K, Vlckova K, Clarke G, Dinan TG, Cryan JF. Mining microbes for mental health: Determining the role of microbial metabolic pathways in human brain health and disease. Neurosci Biobehav Rev 2021; 125:698-761. [PMID: 33675857 DOI: 10.1016/j.neubiorev.2021.02.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
There is increasing knowledge regarding the role of the microbiome in modulating the brain and behaviour. Indeed, the actions of microbial metabolites are key for appropriate gut-brain communication in humans. Among these metabolites, short-chain fatty acids, tryptophan, and bile acid metabolites/pathways show strong preclinical evidence for involvement in various aspects of brain function and behaviour. With the identification of neuroactive gut-brain modules, new predictive tools can be applied to existing datasets. We identified 278 studies relating to the human microbiota-gut-brain axis which included sequencing data. This spanned across psychiatric and neurological disorders with a small number also focused on normal behavioural development. With a consistent bioinformatics pipeline, thirty-five of these datasets were reanalysed from publicly available raw sequencing files and the remainder summarised and collated. Among the reanalysed studies, we uncovered evidence of disease-related alterations in microbial metabolic pathways in Alzheimer's Disease, schizophrenia, anxiety and depression. Amongst studies that could not be reanalysed, many sequencing and technical limitations hindered the discovery of specific biomarkers of microbes or metabolites conserved across studies. Future studies are warranted to confirm our findings. We also propose guidelines for future human microbiome analysis to increase reproducibility and consistency within the field.
Collapse
Affiliation(s)
- Simon Spichak
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kirsten Berding
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Klara Vlckova
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
39
|
Romano-Keeler J, Zhang J, Sun J. The Life-Long Role of Nutrition on the Gut Microbiome and Gastrointestinal Disease. Gastroenterol Clin North Am 2021; 50:77-100. [PMID: 33518170 PMCID: PMC7863586 DOI: 10.1016/j.gtc.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial colonization of the intestines occurs during the first 2 years of life. Homeostasis of the gut microbiome is established to foster normal intestinal immune development for adulthood. Derangements in this process can interfere with immune function and increase an individual's risk for gastrointestinal disorders. We discuss the role of diet and the microbiome on the onset of such disorders. We examine how micronutrients, prebiotics, and probiotics modulate disease pathogenesis. We discuss how diet and abnormal microbial colonization impact extraintestinal organs. Understanding the communication of nutrition and the microbiome offers exciting opportunities for therapeutics.
Collapse
Affiliation(s)
- Joann Romano-Keeler
- Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, 840 South Wood Street, MC 856, Suite 1252, Chicago, IL 60612, USA
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 South Wood Street, Room 704 CSB, MC716, Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 South Wood Street, Room 704 CSB, MC716, Chicago, IL 60612, USA; University of Illinois Cancer Center, 818 South Wolcott Avenue, Chicago, IL 60612, USA.
| |
Collapse
|
40
|
Qi C, Wang P, Fu T, Lu M, Cai Y, Chen X, Cheng L. A comprehensive review for gut microbes: technologies, interventions, metabolites and diseases. Brief Funct Genomics 2021; 20:42-60. [PMID: 33554248 DOI: 10.1093/bfgp/elaa029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Gut microbes have attracted much more attentions in the recent decade since their essential roles in the development of metabolic diseases, cancer and neurological diseases. Considerable evidence indicates that the metabolism of gut microbes exert influences on intestinal homeostasis and human diseases. Here, we first reviewed two mainstream sequencing technologies involving 16s rRNA sequencing and metagenomic sequencing for gut microbes, and data analysis methods assessing alpha and beta diversity. Next, we introduced some observational studies reflecting that many factors, such as lifestyle and intake of diets, drugs, contribute to gut microbes' quantity and diversity. Then, metabolites produced by gut microbes were presented to understand that gut microbes exert on host homeostasis in the intestinal epithelium and immune system. Finally, we focused on the molecular mechanism of gut microbes on the occurrence and development of several common diseases. In-depth knowledge of the relationship among interventions, gut microbes and diseases might provide new insights in to disease prevention and treatment.
Collapse
|
41
|
Salcedo-Arellano MJ, Cabal-Herrera AM, Punatar RH, Clark CJ, Romney CA, Hagerman RJ. Overlapping Molecular Pathways Leading to Autism Spectrum Disorders, Fragile X Syndrome, and Targeted Treatments. Neurotherapeutics 2021; 18:265-283. [PMID: 33215285 PMCID: PMC8116395 DOI: 10.1007/s13311-020-00968-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are subdivided into idiopathic (unknown) etiology and secondary, based on known etiology. There are hundreds of causes of ASD and most of them are genetic in origin or related to the interplay of genetic etiology and environmental toxicology. Approximately 30 to 50% of the etiologies can be identified when using a combination of available genetic testing. Many of these gene mutations are either core components of the Wnt signaling pathway or their modulators. The full mutation of the fragile X mental retardation 1 (FMR1) gene leads to fragile X syndrome (FXS), the most common cause of monogenic origin of ASD, accounting for ~ 2% of the cases. There is an overlap of molecular mechanisms in those with idiopathic ASD and those with FXS, an interaction between various signaling pathways is suggested during the development of the autistic brain. This review summarizes the cross talk between neurobiological pathways found in ASD and FXS. These signaling pathways are currently under evaluation to target specific treatments in search of the reversal of the molecular abnormalities found in both idiopathic ASD and FXS.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| | - Ana Maria Cabal-Herrera
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle, Cali, 00000, Colombia
| | - Ruchi Harendra Punatar
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Courtney Jessica Clark
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Christopher Allen Romney
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| |
Collapse
|
42
|
Vitamin A deficiency increases the risk of gastrointestinal comorbidity and exacerbates core symptoms in children with autism spectrum disorder. Pediatr Res 2021; 89:211-216. [PMID: 32225174 DOI: 10.1038/s41390-020-0865-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder, and many individuals with ASD have gastrointestinal (GI) comorbidities. Vitamin A (VA) is an essential micronutrient that plays an important role in brain development and GI function. METHODS A total of 323 children with ASD and 180 control children were enrolled in this study. Symptoms of ASD were assessed with the Child Autism Rating Scale (CARS), the Social Responsiveness Scale (SRS), and the Autism Behavior Checklist (ABC). Caregivers of the children completed questionnaires about GI symptoms. Serum retinol levels were detected with high-performance liquid chromatography (HPLC). RESULTS Children with ASD and with GI comorbidity and constipation had considerably lower serum VA levels than autistic children without these symptoms. VA level was associated with CARS, SRS, and ABC scores, whereas GI symptoms were associated some SRS and ABC scores. The interaction of VAD and GI symptoms appeared to aggravate some of the core symptoms of children with ASD. CONCLUSIONS VAD exacerbates core symptoms in children with ASD, and ASD children with GI comorbidities also have more serious core symptoms than ASD children without GI comorbidities. VAD comorbid with GI symptoms aggravates autistic children's core symptoms. IMPACT VAD exacerbates core symptoms in children with ASD. ASD children with GI comorbidities have more serious core symptoms than ASD children without GI comorbidities. VAD comorbid with GI symptoms aggravates autistic children's core symptoms. We speculate that VAD might be related to a subtype of ASD that involves GI comorbidities. We believe that our findings will be of fundamental importance to the scientific community.
Collapse
|
43
|
Zawada A, Rychter AM, Ratajczak AE, Lisiecka-Masian A, Dobrowolska A, Krela-Kaźmierczak I. Does Gut-Microbiome Interaction Protect against Obesity and Obesity-Associated Metabolic Disorders? Microorganisms 2020; 9:microorganisms9010018. [PMID: 33374597 PMCID: PMC7822472 DOI: 10.3390/microorganisms9010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
More research has recently focused on the role of the gut microbiota in the development or course of numerous diseases, including non-communicable diseases. As obesity remains prevalent, the question arises as to what microbial changes are associated with increased obesity prevalence and what kind of prevention and treatment approaches it could provide. Moreover, the influence of the gut-brain axis on obesity is also crucial, since it can affect metabolism and food intake. The quantitative and qualitative changes in the microbiota composition are called dysbiosis; however, in view of the current knowledge, it is difficult to conclude which microbial imbalances are adverse or beneficial. Increased numbers of pathological microorganisms were observed among patients with obesity and comorbidities associated with it, such as diabetes, cardiovascular disease, and insulin resistance. Our review provides current knowledge regarding changes in the intestinal microbiota associated with obesity and obesity-associated comorbidities. Nevertheless, given that dietary patterns and nutrients are two of the factors affecting the intestinal microbiota, we also discuss the role of different dietary approaches, vitamins, and minerals in the shaping of the intestinal microbiota.
Collapse
|
44
|
A weekly vitamin A supplementary program alleviates social impairment in Chinese children with autism spectrum disorders and vitamin A deficiency. Eur J Clin Nutr 2020; 75:1118-1125. [PMID: 33328600 DOI: 10.1038/s41430-020-00827-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 10/12/2020] [Accepted: 11/27/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Children in China with Autism Spectrum Disorders (ASD) are prone to vitamin A deficiency (VAD). The present study compared two vitamin A supplements (VAS) in two groups of children with ASD and VAD to explore a better VAS program for children with ASD. METHOD A total of 138 3-8-year-old children with ASD (118 males and 20 females) were enrolled in this 6-month study. Of these 138 children, 82 who had VAD (ASD-VAD) were divided into two VAS groups that received the recommended VAS program (RNI-VAS) or a weekly dose of VAS (WD-VAS). The 56 children who had normal vitamin A levels (ASD-VAN) served as a control group. The Social Responsiveness Scale (SRS) was used to assess the severity of social impairment before and after the interventions. Their serum retinol (VA) and oxytocin (OXT) concentrations, the mRNA expression of retinoic acid receptors (RARs), and CD38 gene in peripheral blood was measured before and after the 6-month intervention. RESULTS The WD-VAS program increased VA levels better than the RNI-VAS program did (P < 0.01), and it significantly decreased SRS scores (P < 0.05). In addition, the change in VA was positively correlated with the change in mRNA levels in RARβ (r = 0.2441, P = 0.0092), the CD38 in PBMC (r = 0.2729, P = 0.0033), and the change in OXT concentration in serum (r = 0.3735, P < 0.0001). VA was also negatively correlated with changes in SRS scores across the three groups (r = -0.2615, P = 0.0026). CONCLUSION The WD-VAS might be more suitable for children with ASD and VAD than other interventions to improve both VA and social functioning, which may be mediated through the RARβ-CD38-OXT axis.
Collapse
|
45
|
Effects of gut microbial-based treatments on gut microbiota, behavioral symptoms, and gastrointestinal symptoms in children with autism spectrum disorder: A systematic review. Psychiatry Res 2020; 293:113471. [PMID: 33198044 DOI: 10.1016/j.psychres.2020.113471] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
Many studies have identified some abnormalities in gastrointestinal (GI) physiology (e.g., increased intestinal permeability, overall microbiota alterations, and gut infection) in children with autism spectrum disorder (ASD). Furthermore, changes in the intestinal flora may be related to GI and ASD symptom severity. Thus, we decided to systematically review the effects of gut microbial-based interventions on gut microbiota, behavioral symptoms, and GI symptoms in children with ASD. We reviewed current evidence from the Cochrane Library, EBSCO PsycARTICLES, PubMed, Web of Science, and Scope databases up to July 12, 2020. Experimental studies that used gut microbial-based treatments among children with ASD were included. Independent data extraction and quality assessment of studies were conducted according to the PRISMA statement. Finally, we identified 16 articles and found that some interventions (i.e., prebiotic, probiotic, vitamin A supplementation, antibiotics, and fecal microbiota transplantation) could alter the gut microbiota and improve behavioral symptoms and GI symptoms among ASD patients. Our findings highlight that the gut microbiota could be a novel target for ASD patients in the future. However, we only provided suggestive but not conclusive evidence regarding the efficacy of interventions on GI and behavioral symptoms among ASD patients. Additional rigorous trials are needed to evaluate the effects of gut microbial-based treatments and explore potential mechanisms.
Collapse
|
46
|
Nutraceuticals and probiotics in the management of psychiatric and neurological disorders: A focus on microbiota-gut-brain-immune axis. Brain Behav Immun 2020; 90:403-419. [PMID: 32889082 DOI: 10.1016/j.bbi.2020.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
|
47
|
Wu T, Wang H, Lu W, Zhai Q, Zhang Q, Yuan W, Gu Z, Zhao J, Zhang H, Chen W. Potential of gut microbiome for detection of autism spectrum disorder. Microb Pathog 2020; 149:104568. [PMID: 33096147 DOI: 10.1016/j.micpath.2020.104568] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a neuro developmental disorder characterized by a series of abnormal social behaviors. The increasing prevalence of ASD has led to the discovery of a correlation with the intestinal microbiome in many studies. In our research, we evaluated 297 subjects, including 169 individuals with ASD and 128 neurotypical subjects, from the Sequence Read Archive database. We conducted a series of analyses, including alpha-diversity, phylogenetic profiles, and functional profiles, to explore the correlation between the gut microbiome and ASD. The principal component analysis (PCA) indicated that ASD and neurotypical subjects could be divided based on the unweighted UniFrac distance. The genera Prevotella, Roseburia, Ruminococcus, Megasphaera, and Catenibacterium might be biomarkers of ASD after linear discriminant analysis effect size (LEfSe) evaluation and Random Forest analysis, respectively. The functional analysis found six significant pathways between ASD and neurotypical subjects, including oxidative phosphorylation, nucleotide excision repair, peptidoglycan biosynthesis, photosynthesis, photosynthesis proteins, and two-component system. Based on these alterations of the intestinal microbiome in ASD subjects, we developed four machine learning models: random forest (RF), Multilayer Perceptron (MLP), kernelized support vector machines with the RBF kernel (SVMs), and Decision trees (DT). Notably, the RF model after RF selection was superior, with an F1 score of 0.74 and area under the curve of 0.827(0.004), suggesting the reliability and generalizability of predictive model. Besides, the validation performance of RF model after RF selection could be 0.75(0.01) on external cohort collected by our laboratory. Our study advances the understanding of human gut microbiome in ASD that designing and evaluating microbially based interventions of ASD.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Weiwei Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| |
Collapse
|
48
|
Murata C, Gutiérrez-Castrellón P, Pérez-Villatoro F, García-Torres I, Enríquez-Flores S, de la Mora-de la Mora I, Fernández-Lainez C, Werner J, López-Velázquez G. Delivery mode-associated gut microbiota in the first 3 months of life in a country with high obesity rates: A descriptive study. Medicine (Baltimore) 2020; 99:e22442. [PMID: 33019428 PMCID: PMC7535699 DOI: 10.1097/md.0000000000022442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/13/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
Delivery methods during childbirth and their related gut microbiota profiles have important impacts on health later in life, they can contribute to the development of diseases such as obesity, whose highest prevalence rate is found among the Mexican child population. Coincidentally, Mexico has one of the highest global average annual rate increase in cesarean births (C-section). Since Mexico leads the world in childhood obesity, studying the relationship between childbirth delivery methods and gut microbiota profiles in this vulnerable population may be used to identify early risk factors for obesity in other developed and developing countries. The objective of this study is to determine the association between child delivery method and gut microbiota profiles in healthy Mexican newborns.Fecal samples of 57 term infants who participated in a randomized clinical trial in 2013 to study the safety of Agave fructans in newborns, were used in this study. DNA samples were extracted and used to characterize the microbiota composition using high-throughput 16S rRNA gene sequencing. The samples were further divided based on childbirth delivery method, as well as early diet. Gut microbiota profiles were determined and analyzed using cluster analysis followed by multiple correspondence analysis.An unusual high abundance of Proteobacteria was found in the gut microbiota of all Mexican infants studied, regardless of delivery method. Feces from infants born by C-section had low levels of Bacteroidetes, high levels of Firmicutes, especially Clostridium and Enterococcus, and a strikingly high ratio of Firmicutes/Bacteroidetes (F:B). Profiles enriched in Bacteroidetes and low F:B ratios, were strongly associated with vaginal delivery.The profile of gut microbiota associated with feces from Mexican infants born by C-section, may be added to the list of boosting factors for the worrying obesity epidemic in Mexico.
Collapse
Affiliation(s)
- Chiharu Murata
- Research Methodology Department. National Institute of Pediatrics, Mexico
| | | | | | | | | | | | - Cynthia Fernández-Lainez
- Laboratory of Inborn Errors of Metabolism and Screening, INP, and Postgraduate in Biological Sciences, UNAM, México. Actual Address: Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Julieta Werner
- Indigenous Services Canada, Thunder Bay, Ontario, Canada
| | | |
Collapse
|
49
|
Obesity Measures and Dietary Parameters as Predictors of Gut Microbiota Phyla in Healthy Individuals. Nutrients 2020; 12:nu12092695. [PMID: 32899326 PMCID: PMC7551767 DOI: 10.3390/nu12092695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
The dynamics and diversity of human gut microbiota that can remarkably influence the wellbeing and health of the host are constantly changing through the host’s lifetime in response to various factors. The aim of the present study was to determine a set of parameters that could have a major impact on classifying subjects into a single cluster regarding gut bacteria composition. Therefore, a set of demographical, environmental, and clinical data of healthy adults aged 25–50 years (117 female and 83 men) was collected. Fecal microbiota composition was characterized using Illumina MiSeq 16S rRNA gene amplicon sequencing. Hierarchical clustering was performed to analyze the microbiota data set, and a supervised machine learning model (SVM; Support Vector Machines) was applied for classification. Seventy variables from collected data were included in machine learning analysis. The agglomerative clustering algorithm suggested the presence of four distinct community types of most abundant bacterial phyla. Each cluster harbored a statistically significant different proportion of bacterial phyla. Regarding prediction, the most important features classifying subjects into clusters were measures of obesity (waist to hip ratio, BMI, and visceral fat index), total body water, blood pressure, energy intake, total fat, olive oil intake, total fiber intake, and water intake. In conclusion, the SVM model was shown as a valuable tool to classify healthy individuals based on their gut microbiota composition.
Collapse
|
50
|
Stacchiotti V, Rezzi S, Eggersdorfer M, Galli F. Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Crit Rev Food Sci Nutr 2020; 61:3211-3232. [PMID: 32715724 DOI: 10.1080/10408398.2020.1793728] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut microbiota is a complex ecosystem seen as an extension of human genome. It represents a major metabolic interface of interaction with food components and xenobiotics in the gastrointestinal (GI) environment. In this context, the advent of modern bacterial genome sequencing technology has enabled the identification of dietary nutrients as key determinants of gut microbial ecosystem able to modulate the host-microbiome symbiotic relationship and its effects on human health. This article provides a literature review on functional and molecular interactions between a specific group of lipids and essential nutrients, e.g., fat-soluble vitamins (FSVs), and the gut microbiota. A two-way relationship appears to emerge from the available literature with important effects on human metabolism, nutrition, GI physiology and immune function. First, FSV directly or indirectly modify the microbial composition involving for example immune system-mediated and/or metabolic mechanisms of bacterial growth or inhibition. Second, the gut microbiota influences at different levels the synthesis, metabolism and transport of FSV including their bioactive metabolites that are either introduced with the diet or released in the gut via entero-hepatic circulation. A better understanding of these interactions, and of their impact on intestinal and metabolic homeostasis, will be pivotal to design new and more efficient strategies of disease prevention and therapy, and personalized nutrition.
Collapse
Affiliation(s)
- Valentina Stacchiotti
- Micronutrient Vitamins and Lipidomics Lab, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Serge Rezzi
- Swiss Vitamin Institute, Epalinges, Switzerland
| | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Francesco Galli
- Micronutrient Vitamins and Lipidomics Lab, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|