1
|
Wang Q, Wang M, Xia AA, Wang JY, Wang Z, Xu T, Jia DT, Lu M, Tan WM, Luo JH, He Y. Natural variation in ZmNRT2.5 modulates husk leaf width and promotes seed protein content in maize. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 39757743 DOI: 10.1111/pbi.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025]
Abstract
The husk leaf of maize (Zea mays) encases the ear as a modified leaf and plays pivotal roles in protecting the ear from pathogen infection, translocating nutrition for grains and warranting grain yield. However, the natural genetic basis for variation in husk leaf width remains largely unexplored. Here, we performed a genome-wide association study for maize husk leaf width and identified a 3-bp InDel (insertion/deletion) in the coding region of the nitrate transporter gene ZmNRT2.5. This polymorphism altered the interaction strength of ZmNRT2.5 with another transporter, ZmNPF5, thereby contributing to variation in husk leaf width. We also isolated loss-of-function mutants in ZmNRT2.5, which exhibited a substantial decrease in husk leaf width relative to their controls. We demonstrate that ZmNRT2.5 facilitates the transport of nitrate from husk leaves to maize kernels in plants grown under low-nitrogen conditions, contributing to the accumulation of proteins in maize seeds. Together, our findings uncovered a key gene controlling maize husk leaf width and nitrate transport from husk leaves to kernels. Identification of the ZmNRT2.5 loci offers direct targets for improving the protein content of maize seeds via molecular-assisted maize breeding.
Collapse
Affiliation(s)
- Qi Wang
- College of Agronomy and Biotechnology, China Agricultural University, China
| | - Min Wang
- College of Agronomy and Biotechnology, China Agricultural University, China
| | - Ai-Ai Xia
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, China
| | - Jin-Yu Wang
- College of Agronomy and Biotechnology, China Agricultural University, China
| | - Zi Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- Tieling Academy of Agricultural Sciences, Tieling, China
| | - De-Tao Jia
- Tieling Academy of Agricultural Sciences, Tieling, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Wei-Ming Tan
- College of Agronomy and Biotechnology, China Agricultural University, China
| | - Jin-Hong Luo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan He
- College of Agronomy and Biotechnology, China Agricultural University, China
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Luo Y, Nan L. Genome-wide identification of high-affinity nitrate transporter 2 (NRT2) gene family under phytohormones and abiotic stresses in alfalfa (Medicago sativa). Sci Rep 2024; 14:31920. [PMID: 39738449 DOI: 10.1038/s41598-024-83438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
The high-affinity nitrate transporter 2 (NRT2) protein plays an important role in nitrate uptake and transport in plants. In this study, the NRT2s gene family were systematically analyzed in alfalfa. We identified three MsNRT2 genes from the genomic database. They were named MsNRT2.1-2.3 based on their chromosomal location. The phylogenetic tree revealed that NRT2 proteins were categorized into two main subgroups, which were further confirmed by their gene structure and conserved motifs. Three MsNRT2 genes distributed on 2 chromosomes. Furthermore, we studied the expression patterns of MsNRT2 genes in six tissues based on RNA-sequencing data from the Short Read Archive (SRA) database of NCBI, and the results showed that MsNRT2 genes were widely expressed in six tissues. After leaves and roots were treated with drought, salt, abscisic acid (ABA) and salicylic acid (SA) for 0-48 h, and we used quantitative RT-PCR to analyze the expression levels of MsNRT2 genes and the results showed that most of the MsNRT2 genes responded to these stresses. However, there are specific genes that play a role under specific treatment conditions. This result provides a basis for further research on the target genes. In summary, MsNRT2s play an irreplaceable role in the growth, development and stress response of alfalfa, and this study provides valuable information and theoretical basis for future research on MsNRT2 function.
Collapse
Affiliation(s)
- Yanyan Luo
- Pratacultural College, Key Laboratory of Grassland Ecosystem (Ministry of Education), Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-sponsored by Ministry and Province), Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Lili Nan
- Pratacultural College, Key Laboratory of Grassland Ecosystem (Ministry of Education), Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-sponsored by Ministry and Province), Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
3
|
Pal G, Saxena S, Kumar K, Verma A, Kumar D, Shukla P, Pandey A, White J, Verma SK. Seed endophytic bacterium Lysinibacillus sp. (ZM1) from maize (Zea mays L.) shapes its root architecture through modulation of auxin biosynthesis and nitrogen metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108731. [PMID: 38761545 DOI: 10.1016/j.plaphy.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Seed endophytic bacteria have been shown to promote the growth and development of numerous plants. However, the underlying mechanism still needs to be better understood. The present study aims to investigate the role of a seed endophytic bacterium Lysinibacillus sp. (ZM1) in promoting plant growth and shaping the root architecture of maize seedlings. The study explores how bacteria-mediated auxin biosynthesis and nitrogen metabolism affect plant growth promotion and shape the root architecture of maize seedlings. The results demonstrate that ZM1 inoculation significantly enhances root length, root biomass, and the number of seminal roots in maize seedlings. Additionally, the treated seedlings exhibit increased shoot biomass and higher levels of photosynthetic pigments. Confocal laser scanning microscopy (CLSM) analysis revealed extensive colonization of ZM1 on root hairs, as well as in the cortical and stellar regions of the root. Furthermore, LC-MS analysis demonstrated elevated auxin content in the roots of the ZM1 treated maize seedlings compared to the uninoculated control. Inoculation with ZM1 significantly increased the levels of endogenous ammonium content, GS, and GOGAT enzyme activities in the roots of treated maize seedlings compared to the control, indicating enhanced nitrogen metabolism. Furthermore, inoculation of bacteria under nitrogen-deficient conditions enhanced plant growth, as evidenced by increased root shoot length, fresh and dry weights, average number of seminal roots, and content of photosynthetic pigments. Transcript analysis indicated upregulation of auxin biosynthetic genes, along with genes involved in nitrogen metabolism at different time points in roots of ZM1-treated maize seedlings. Collectively, our findings highlight the positive impact of Lysinibacillus sp. ZM1 inoculation on maize seeds by improving root architecture through modulation of auxin biosynthesis and affecting various nitrogen metabolism related parameters. These findings provide valuable insights into the potential utilization of seed endophytic bacteria as biofertilizers to enhance plant growth and yield in nutrient deficient soils.
Collapse
Affiliation(s)
- Gaurav Pal
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 276957612, USA.
| | - Samiksha Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanchan Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Deepak Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pooja Shukla
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - James White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Satish K Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
4
|
Rivero-Marcos M, Lasa B, Neves T, Zamarreño ÁM, García-Mina JM, García-Olaverri C, Aparicio-Tejo PM, Cruz C, Ariz I. Plant ammonium sensitivity is associated with external pH adaptation, repertoire of nitrogen transporters, and nitrogen requirement. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3557-3578. [PMID: 38465958 PMCID: PMC11358259 DOI: 10.1093/jxb/erae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Modern crops exhibit diverse sensitivities to ammonium as the primary nitrogen source, influenced by environmental factors such as external pH and nutrient availability. Despite its significance, there is currently no systematic classification of plant species based on their ammonium sensitivity. We conducted a meta-analysis of 50 plant species and present a new classification method based on the comparison of fresh biomass obtained under ammonium and nitrate nutrition. The classification uses the natural logarithm of the biomass ratio as the size effect indicator of ammonium sensitivity. This numerical parameter is associated with critical factors for nitrogen demand and form preference, such as Ellenberg indicators and the repertoire of nitrogen transporters for ammonium and nitrate uptake. Finally, a comparative analysis of the developmental and metabolic responses, including hormonal balance, is conducted in two species with divergent ammonium sensitivity values in the classification. Results indicate that nitrate has a key role in counteracting ammonium toxicity in species with a higher abundance of genes encoding NRT2-type proteins and fewer of those encoding the AMT2-type proteins. Additionally, the study demonstrates the reliability of the phytohormone balance and methylglyoxal content as indicators for anticipating ammonium toxicity.
Collapse
Affiliation(s)
- Mikel Rivero-Marcos
- lnstitute for Multidisciplinary Research in Applied Biology (IMAB), Sciences Department, Public University of Navarre (UPNA), Campus de Arrosadía, 31006 Pamplona, Spain
| | - Berta Lasa
- lnstitute for Multidisciplinary Research in Applied Biology (IMAB), Sciences Department, Public University of Navarre (UPNA), Campus de Arrosadía, 31006 Pamplona, Spain
| | - Tomé Neves
- CESAM—Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Ángel M Zamarreño
- Environmental Biology Department, University of Navarra, 31009 Pamplona, Spain
| | - José M García-Mina
- Environmental Biology Department, University of Navarra, 31009 Pamplona, Spain
| | - Carmen García-Olaverri
- Institute for Advanced Research in Business and Economics (INARBE), Statistics, Informatics and Mathematics Department, Public University of Navarre (UPNA), Campus de Arrosadía, 31006 Pamplona, Spain
| | - Pedro M Aparicio-Tejo
- lnstitute for Multidisciplinary Research in Applied Biology (IMAB), Sciences Department, Public University of Navarre (UPNA), Campus de Arrosadía, 31006 Pamplona, Spain
| | - Cristina Cruz
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE, Global Change and Sustainability Institute, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande Bloco C-2, 1749-016 Lisboa, Portugal
| | - Idoia Ariz
- lnstitute for Multidisciplinary Research in Applied Biology (IMAB), Sciences Department, Public University of Navarre (UPNA), Campus de Arrosadía, 31006 Pamplona, Spain
| |
Collapse
|
5
|
Zhang S, Xu L, Zheng Q, Hu J, Jiang D, Dai T, Tian Z. The tetraploid wheat (Triticum dicoccum (Schrank) Schuebl.) improves nitrogen uptake and assimilation adaptation to nitrogen-deficit stress. PLANTA 2024; 259:151. [PMID: 38733553 DOI: 10.1007/s00425-024-04432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
MAIN CONCLUSION The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Libing Xu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qiaomei Zheng
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jinling Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Maniero RA, Koltun A, Vitti M, Factor BG, de Setta N, Câmara AS, Lima JE, Figueira A. Identification and functional characterization of the sugarcane ( Saccharum spp.) AMT2-type ammonium transporter ScAMT3;3 revealed a presumed role in shoot ammonium remobilization. FRONTIERS IN PLANT SCIENCE 2023; 14:1299025. [PMID: 38098795 PMCID: PMC10720369 DOI: 10.3389/fpls.2023.1299025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Sugarcane (Saccharum spp.) is an important crop for sugar and bioethanol production worldwide. To maintain and increase sugarcane yields in marginal areas, the use of nitrogen (N) fertilizers is essential, but N overuse may result in the leaching of reactive N to the natural environment. Despite the importance of N in sugarcane production, little is known about the molecular mechanisms involved in N homeostasis in this crop, particularly regarding ammonium (NH4 +), the sugarcane's preferred source of N. Here, using a sugarcane bacterial artificial chromosome (BAC) library and a series of in silico analyses, we identified an AMMONIUM TRANSPORTER (AMT) from the AMT2 subfamily, sugarcane AMMONIUM TRANSPORTER 3;3 (ScAMT3;3), which is constitutively and highly expressed in young and mature leaves. To characterize its biochemical function, we ectopically expressed ScAMT3;3 in heterologous systems (Saccharomyces cerevisiae and Arabidopsis thaliana). The complementation of triple mep mutant yeast demonstrated that ScAMT3;3 is functional for NH3/H+ cotransport at high availability of NH4 + and under physiological pH conditions. The ectopic expression of ScAMT3;3 in the Arabidopsis quadruple AMT knockout mutant restored the transport capacity of 15N-NH4 + in roots and plant growth under specific N availability conditions, confirming the role of ScAMT3;3 in NH4 + transport in planta. Our results indicate that ScAMT3;3 belongs to the low-affinity transport system (Km 270.9 µM; Vmax 209.3 µmol g-1 root DW h-1). We were able to infer that ScAMT3;3 plays a presumed role in NH4 + source-sink remobilization in the shoots via phloem loading. These findings help to shed light on the functionality of a novel AMT2-type protein and provide bases for future research focusing on the improvement of sugarcane yield and N use efficiency.
Collapse
Affiliation(s)
- Rodolfo A. Maniero
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Alessandra Koltun
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marielle Vitti
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Bruna G. Factor
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Amanda S. Câmara
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Joni E. Lima
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
7
|
Jia L, Hu D, Wang J, Liang Y, Li F, Wang Y, Han Y. Genome-Wide Identification and Functional Analysis of Nitrate Transporter Genes ( NPF, NRT2 and NRT3) in Maize. Int J Mol Sci 2023; 24:12941. [PMID: 37629121 PMCID: PMC10454388 DOI: 10.3390/ijms241612941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Nitrate is the primary form of nitrogen uptake in plants, mainly transported by nitrate transporters (NRTs), including NPF (NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY), NRT2 and NRT3. In this study, we identified a total of 78 NPF, seven NRT2, and two NRT3 genes in maize. Phylogenetic analysis divided the NPF family into eight subgroups (NPF1-NPF8), consistent with the results in Arabidopsis thaliana and rice. The NRT2 family appears to have evolved more conservatively than the NPF family, as NRT2 genes contain fewer introns. The promoters of all NRTs are rich in cis-acting elements responding to biotic and abiotic stresses. The expression of NRTs varies in different tissues and developmental stages, with some NRTs only expressed in specific tissues or developmental stages. RNA-seq analysis using Xu178 revealed differential expression of NRTs in response to nitrogen starvation and nitrate resupply. Moreover, the expression patterns of six key NRTs genes (NPF6.6, NPF6.8, NRT2.1, NRT2.5 and NRT3.1A/B) varied in response to alterations in nitrogen levels across distinct maize inbred lines with different nitrogen uptake rates. This work enhances our understanding of the structure and expression of NRTs genes, and their roles in nitrate response, paving the way for improving maize nitrogen efficiency through molecular breeding.
Collapse
Affiliation(s)
- Lihua Jia
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Desheng Hu
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Junbo Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Yuanyuan Liang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Fang Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Yanlai Han
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| |
Collapse
|
8
|
Sheeran L, Rasmussen A. Aerial roots elevate indoor plant health: Physiological and morphological responses of three high-humidity adapted Araceae species to indoor humidity levels. PLANT, CELL & ENVIRONMENT 2023; 46:1873-1884. [PMID: 36786325 DOI: 10.1111/pce.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 05/04/2023]
Abstract
Heightened by the COVID-19 pandemic there has been a global increase in urban greenspace appreciation. Indoor plants are equally important for improving mental health and air quality but despite evolving in humid (sub)tropical environments with aerial root types, planting systems ignore aerial resource supply. This study directly compared nutrient uptake preferences of aerial and soil-formed roots of three common houseplant species under high and ambient relative humidities. Growth and physiology parameters were measured weekly for Anthurium andreanum, Epipremnum aureum and Philodendron scandens grown in custom made growth chambers. Both aerial and soil-formed roots were then fed mixtures of nitrate, ammonium and glycine, with one source labelled with 15 N to determine uptake rates and maximum capacities. Aerial roots were consistently better at nitrogen uptake than soil roots but no species, root type or humidity condition showed a preference for a particular nitrogen source. All three species grew more in high humidity, with aerial roots demonstrating the greatest biomass increase. Higher humidities for indoor niches, together with fertiliser applications to aerial roots will support indoor plant growth, creating lush calming indoor environments for people inhabitants.
Collapse
Affiliation(s)
- Laura Sheeran
- Division of Agriculture and Environmental Science, School of Biosciences, The University of Nottingham, Sutton Bonington, UK
| | - Amanda Rasmussen
- Division of Agriculture and Environmental Science, School of Biosciences, The University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
9
|
Wang L, Zheng J, Zhou G, Li J, Qian C, Lin G, Li Y, Zuo Q. Moderate nitrogen application improved salt tolerance by enhancing photosynthesis, antioxidants, and osmotic adjustment in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1196319. [PMID: 37255564 PMCID: PMC10225559 DOI: 10.3389/fpls.2023.1196319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Salt stress is a major adverse environmental factor limiting plant growth. Nitrogen (N) application is an effective strategy to alleviate the negative effects of salt stress on plants. To improve the knowledge of the mechanism of N application on alleviating salt stress on rapeseed seedlings, a pot experiment was conducted with four N application treatments (0, 0.1, 0.2, and 0.3 g N kg-1 soil, referred to as N0, N1, N2, and N3, respectively) and exposed to non-salt stress (0 g NaCl kg-1 soil, referred to as S0) and salt stress (3 g NaCl kg-1 soil, referred to as S1) conditions. The results indicated that in comparison with non-salt stress, salt stress increased the Na content (236.53%) and reactive oxygen species (ROS) production such as hydrogen peroxide (H2O2) (30.26%), resulting in cell membrane lipid peroxidation characterized by an increased content of malondialdehyde (MDA) (122.32%) and suppressed photosynthetic rate (15.59%), finally leading to inhibited plant growth such as shorter plant height, thinner root neck, lower leaf area, and decreased dry weight. N application improved the plant growth, and the improvement by N application under salt stress was stronger than that under non-salt stress, suggesting that rapeseed seedlings exposed to salt stress are more sensitive to N application and require N to support their growth. Moreover, seedlings exposed to salt stress under N application showed lower ROS accumulation; increased photosynthesis; higher antioxidants such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and ascorbic acid (AsA); and greater accumulation of osmotic substances including soluble protein, soluble sugar, and proline, as compared with seedlings without N application. In particular, the best improvement by N application under salt stress occurred at the N2 level, while too high N application could weaken the improvement due to inhibited N metabolism. In summary, this study suggests that moderate N application can improve photosynthesis, antioxidants, and osmoregulation to alleviate the adverse effects of salt stress in rapeseed seedlings.
Collapse
Affiliation(s)
- Long Wang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Jingdong Zheng
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Jing Li
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Chen Qian
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Guobin Lin
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yiyang Li
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qingsong Zuo
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Genome-Wide Identification and Characterization of Ammonium Transporter (AMT) Genes in Rapeseed (Brassica napus L.). Genes (Basel) 2023; 14:genes14030658. [PMID: 36980930 PMCID: PMC10048622 DOI: 10.3390/genes14030658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Ammonium transporters (AMTs) are plasma membrane proteins mediating ammonium uptake and transport. As such, AMTs play vital roles in ammonium acquisition and mobilization, plant growth and development, and stress and pathogen defense responses. Identification of favorable AMT genotypes is a prime target for crop improvement. However, to date, systematic identification and expression analysis of AMT gene family members has not yet been reported for rapeseed (Brassica napus L.). In this study, 20 AMT genes were identified in a comprehensive search of the B. napus genome, 14 members of AMT1 and 6 members of AMT2. Tissue expression analyses revealed that the 14 AMT genes were primarily expressed in vegetative organs, suggesting that different BnaAMT genes might function in specific tissues at the different development stages. Meanwhile, qRT-PCR analysis found that several BnaAMTs strongly respond to the exogenous N conditions, implying the functional roles of AMT genes in ammonium absorption in rapeseed. Moreover, the rapeseed AMT genes were found to be differentially regulated by N, P, and K deficiency, indicating that crosstalk might exist in response to different stresses. Additionally, the subcellular localization of several BnaAMT proteins was confirmed in Arabidopsis protoplasts, and their functions were studied in detail by heterologous expression in yeast. In summary, our studies revealed the potential roles of BnaAMT genes in N acquisition or transportation and abiotic stress response and could provide valuable resources for revealing the functionality of AMTs in rapeseed.
Collapse
|
11
|
Xia X, Wei Q, Xiao C, Ye Y, Li Z, Marivingt-Mounir C, Chollet JF, Liu W, Wu H. Genomic survey of NPF and NRT2 transporter gene families in five inbred maize lines and their responses to pathogens infection. Genomics 2023; 115:110555. [PMID: 36596368 DOI: 10.1016/j.ygeno.2022.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/02/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Besides manipulating nitrate uptake and allocation, nitrate transporters (NRTs) are also known to play crucial roles in pathogen defense and stress response. By blasting with the model NRT genes of poplar and Arabidopsis, a total of 408 gene members were identified from 5 maize inbred lines in which the number of NRTs ranged from 72 to 88. Phylogenetic analysis showed that the NRT genes of maize were classified into NRT1/PTR (NPF), NRT2 and NRT3 subfamilies, respectively. Marked divergence of the duplication patterns of NRT genes were identified, which may be a new basis for classification and identification of maize varieties. In terms of biotic stress, NRT2.5A showed an enhanced expression during the pathogen infection of Colletotrichum graminicola, while NRT1c4C was down-regulated, suggesting that maize NRT transporters may have both positive and negative roles in the disease resistance response. This work will promote the further studies of NRT gene families in maize, as well as be beneficial for further understanding of their potential roles in plant-pathogen interactions.
Collapse
Affiliation(s)
- Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Qiuhe Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Chunxia Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Yiping Ye
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Cécile Marivingt-Mounir
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Unité Mixte de Recherche CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, F-86073 Poitiers, Cedex 9, France
| | - Jean-François Chollet
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Unité Mixte de Recherche CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, F-86073 Poitiers, Cedex 9, France
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China.
| | - Hanxiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China.
| |
Collapse
|
12
|
Maize Breeding for Low Nitrogen Inputs in Agriculture: Mechanisms Underlying the Tolerance to the Abiotic Stress. STRESSES 2023. [DOI: 10.3390/stresses3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nitrogen (N) is essential for sustaining life on Earth and plays a vital role in plant growth and thus agricultural production. The excessive use of N fertilizers not only harms the economy, but also the environment. In the context of the environmental impacts caused by agriculture, global maize improvement programs aim to develop cultivars with high N-use efficiency (NUE) to reduce the use of N fertilizers. Since N is highly mobile in plants, NUE is related to numerous little-known morphophysiological and molecular mechanisms. In this review paper we present an overview of the morpho-physiological adaptations of shoot and root, molecular mechanisms involved in plant response to low nitrogen environment, and the genetic effects involved in the control of key traits for NUE. Some studies show that the efficiency of cultivars growing under low N is related to deep root architecture, more lateral roots (LR), and sparser branching of LR, resulting in lower metabolic costs. The NUE cultivars also exhibit more efficient photosynthesis, which affects plant growth under suboptimal nitrogen conditions. In this sense, obtaining superior genotypes for NUE can be achieved with the exploitation of heterosis, as non-additive effects are more important in the expression of traits associated with NUE.
Collapse
|
13
|
Koltun A, Maniero RA, Vitti M, de Setta N, Giehl RFH, Lima JE, Figueira A. Functional characterization of the sugarcane ( Saccharum spp.) ammonium transporter AMT2;1 suggests a role in ammonium root-to-shoot translocation. FRONTIERS IN PLANT SCIENCE 2022; 13:1039041. [PMID: 36466275 PMCID: PMC9716016 DOI: 10.3389/fpls.2022.1039041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
AMMONIUM TRANSPORTER/METHYLAMMONIUM PERMEASE/RHESUS (AMT) family members transport ammonium across membranes in all life domains. Plant AMTs can be categorized into AMT1 and AMT2 subfamilies. Functional studies of AMTs, particularly AMT1-type, have been conducted using model plants but little is known about the function of AMTs from crops. Sugarcane (Saccharum spp.) is a major bioenergy crop that requires heavy nitrogen fertilization but depends on a low carbon-footprint for competitive sustainability. Here, we identified and functionally characterized sugarcane ScAMT2;1 by complementing ammonium uptake-defective mutants of Saccharomyces cerevisiae and Arabidopsis thaliana. Reporter gene driven by the ScAMT2;1 promoter in A. thaliana revealed preferential expression in the shoot vasculature and root endodermis/pericycle according to nitrogen availability and source. Arabidopsis quadruple mutant plants expressing ScAMT2;1 driven by the CaMV35S promoter or by a sugarcane endogenous promoter produced significantly more biomass than mutant plants when grown in NH4 + and showed more 15N-ammonium uptake by roots and nitrogen translocation to shoots. In A. thaliana, ScAMT2;1 displayed a Km of 90.17 µM and Vmax of 338.99 µmoles h-1 g-1 root DW. Altogether, our results suggest that ScAMT2;1 is a functional high-affinity ammonium transporter that might contribute to ammonium uptake and presumably to root-to-shoot translocation under high NH4 + conditions.
Collapse
Affiliation(s)
- Alessandra Koltun
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Rodolfo A. Maniero
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marielle Vitti
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ricardo F. H. Giehl
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Joni E. Lima
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
14
|
Miao J, Shi F, Li W, Zhong M, Li C, Chen S. Comprehensive screening of low nitrogen tolerant maize based on multiple traits at the seedling stage. PeerJ 2022; 10:e14218. [PMID: 36275463 PMCID: PMC9586120 DOI: 10.7717/peerj.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Background Plants tolerant to low nitrogen are a quantitative trait affected by many factors, and the different parameters were used for stress-tolerant plant screening in different investigations. But there is no agreement on the use of these indicators. Therefore, a method that can integrate different parameters to evaluate stress tolerance is urgently needed. Methods Six maize genotypes were subject to low nitrogen stress for twenty days. Then seventeen traits of the six maize genotypes related to nitrogen were investigated. Nitrogen tolerance coefficient (NTC) was calculated as low nitrogen traits to high nitrogen traits. Then principal component analysis was conducted based on the NTC. Based on fuzzy mathematics theory, a D value (decimal comprehensive evaluation value) was introduced to evaluate maize tolerant to low nitrogen. Results Three maize (SY998, GEMS42-I and GEMS42-II) with the higher D value have better growth and higher nitrogen accumulation under low nitrogen conditions. In contrast, Ji846 with the lowest D value has the lowest nitrogen accumulation and biomass in response to nitrogen limitation. These results indicated that the D value could help to screen low nitrogen tolerant maize, given that the D value was positively correlated with low nitrogen tolerance in maize seedlings. Conclusions The present study introduced the D value to evaluate stress tolerance. The higher the D value, the greater tolerance of maize to low nitrogen stress. This method may reduce the complexity of the investigated traits and enhance the accuracy of stress-tolerant evaluation. In addition, this method not only can screen potentially tolerant germplasm for low-nitrogen tolerance quickly, but also can comprise the correlated traits as many as possible to avoid the one-sidedness of a single parameter.
Collapse
Affiliation(s)
- Jianjia Miao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Fei Shi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wei Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ming Zhong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shuisen Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Pankievicz VCS, Delaux PM, Infante V, Hirsch HH, Rajasekar S, Zamora P, Jayaraman D, Calderon CI, Bennett A, Ané JM. Nitrogen fixation and mucilage production on maize aerial roots is controlled by aerial root development and border cell functions. FRONTIERS IN PLANT SCIENCE 2022; 13:977056. [PMID: 36275546 PMCID: PMC9583020 DOI: 10.3389/fpls.2022.977056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Exploring natural diversity for biological nitrogen fixation in maize and its progenitors is a promising approach to reducing our dependence on synthetic fertilizer and enhancing the sustainability of our cropping systems. We have shown previously that maize accessions from the Sierra Mixe can support a nitrogen-fixing community in the mucilage produced by their abundant aerial roots and obtain a significant fraction of their nitrogen from the air through these associations. In this study, we demonstrate that mucilage production depends on root cap and border cells sensing water, as observed in underground roots. The diameter of aerial roots correlates with the volume of mucilage produced and the nitrogenase activity supported by each root. Young aerial roots produce more mucilage than older ones, probably due to their root cap's integrity and their ability to produce border cells. Transcriptome analysis on aerial roots at two different growth stages before and after mucilage production confirmed the expression of genes involved in polysaccharide synthesis and degradation. Genes related to nitrogen uptake and assimilation were up-regulated upon water exposure. Altogether, our findings suggest that in addition to the number of nodes with aerial roots reported previously, the diameter of aerial roots and abundance of border cells, polysaccharide synthesis and degradation, and nitrogen uptake are critical factors to ensure efficient nitrogen fixation in maize aerial roots.
Collapse
Affiliation(s)
| | - Pierre-Marc Delaux
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Valentina Infante
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Hayley H. Hirsch
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Shanmugam Rajasekar
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Pablo Zamora
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Dhileepkumar Jayaraman
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Alan Bennett
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Jean-Michel Ané
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
16
|
Kumar P, Eriksen RL, Simko I, Shi A, Mou B. Insights into nitrogen metabolism in the wild and cultivated lettuce as revealed by transcriptome and weighted gene co-expression network analysis. Sci Rep 2022; 12:9852. [PMID: 35701518 PMCID: PMC9197935 DOI: 10.1038/s41598-022-13954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Large amounts of nitrogen fertilizers applied during lettuce (Lactuca sativa L.) production are lost due to leaching or volatilization, causing severe environmental pollution and increased costs of production. Developing lettuce varieties with high nitrogen use efficiency (NUE) is the eco-friendly solution to reduce nitrogen pollution. Hence, in-depth knowledge of nitrogen metabolism and assimilation genes and their regulation is critical for developing high NUE varieties. In this study, we performed comparative transcriptomic analysis of the cultivated lettuce (L. sativa L.) and its wild progenitor (L. serriola) under high and low nitrogen conditions. A total of 2,704 differentially expressed genes were identified. Key enriched biological processes included photosynthesis, oxidation-reduction process, chlorophyll biosynthetic process, and cell redox homeostasis. The transcription factors (TFs) belonging to the ethylene responsive factor family and basic helix-loop-helix family were among the top differentially expressed TFs. Using weighted gene co-expression network analysis we constructed nine co-expression modules. Among these, two modules were further investigated because of their significant association with total nitrogen content and photosynthetic efficiency of photosystem II. Three highly correlated clusters were identified which included hub genes for nitrogen metabolism, secondary metabolites, and carbon assimilation, and were regulated by cluster specific TFs. We found that the expression of nitrogen transportation and assimilation genes varied significantly between the two lettuce species thereby providing the opportunity of introgressing wild alleles into the cultivated germplasm for developing lettuce cultivars with more efficient use of nitrogen.
Collapse
Affiliation(s)
- Pawan Kumar
- Crop Improvement and Protection Research Unit, USDA-ARS, 1636 E Alisal St, Salinas, CA, 93905, USA.
| | - Renee L Eriksen
- Forage Seed and Cereal Research Unit, USDA-ARS, 3450 SW Campus Way, Corvallis, OR, 97331, USA
| | - Ivan Simko
- Crop Improvement and Protection Research Unit, USDA-ARS, 1636 E Alisal St, Salinas, CA, 93905, USA
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Beiquan Mou
- Crop Improvement and Protection Research Unit, USDA-ARS, 1636 E Alisal St, Salinas, CA, 93905, USA
| |
Collapse
|
17
|
López-Bucio J, Esparza-Reynoso S, Pelagio-Flores R. Nitrogen availability determines plant growth promotion and the induction of root branching by the probiotic fungus Trichoderma atroviride in Arabidopsis seedlings. Arch Microbiol 2022; 204:380. [PMID: 35680712 DOI: 10.1007/s00203-022-03004-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
Abstract
Plant growth-promoting fungi are integral components of the root microbiome that help the host resist biotic and abiotic stress while improving nutrient acquisition. Trichoderma atroviride is a common inhabitant of the rhizosphere, which establishes a perdurable symbiosis with plants through the emission of volatiles, diffusible compounds, and robust colonization. Currently, little is known on how the environment influences the Trichoderma-plant interaction. In this report, we assessed plant growth and root architectural reconfiguration of Arabidopsis seedlings grown in physical contact with T. atroviride under contrasting nitrate and ammonium availability. The shoot and root biomass accumulation and lateral root formation triggered by the fungus required high nitrogen supplements and involved nitrate reduction via AtNIA1 and NIA2. Ammonium supplementation did not restore biomass production boosted by T. atroviride in nia1nia2 double mutant, but instead fungal inoculation increased nitric oxide accumulation in Arabidopsis primary root tips depending upon nitrate supplements. N deprived seedlings were largely resistant to the effects of nitric oxide donor SNP triggering lateral root formation. T. atroviride enhanced expression of CHL1:GUS in root tips, particularly under high N supplements and required an intact CHL1 nitrate transporter to promote lateral root formation in Arabidopsis seedlings. These data imply that the developmental programs strengthened by Trichoderma and the underlying growth promotion in plants are dependent upon adequate nitrate nutrition and may involve nitric oxide as a second messenger.
Collapse
Affiliation(s)
- José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, México.
| | - Saraí Esparza-Reynoso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, México
| | - Ramón Pelagio-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan 173, Matamoros, C. P., 58240, Morelia, Michoacán, México
| |
Collapse
|
18
|
Shao A, Wang H, Xu X, Li X, Amombo E, Fu J. Moderately Reducing Nitrogen Application Ameliorates Salt-Induced Growth and Physiological Damage on Forage Bermudagrass. FRONTIERS IN PLANT SCIENCE 2022; 13:896358. [PMID: 35574147 PMCID: PMC9100817 DOI: 10.3389/fpls.2022.896358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) application is one of the most effective methods to alleviate salt-induced damage on plants. Forage bermudagrass has higher utilization potential on saline soil, but whether its N requirement changed under high salt stress has not been studied. Through examining plant growth-related traits, salt-stress-responsive physiological traits, photosynthesis, N metabolism, and forage quality supplied with different N concentrations under high salt stress (200 mM NaCl), we noticed that the optimum N requirement of forage bermudagrass reduced. When supplied with 10 mM N under higher salt stress, plants had a similar biomass, turf color, and chlorophyll content with plants supplied with 15 mM N, accompanied by a lower firing rate and Na+ content of leaves. The N content, crude protein, crude fat content, the expression of AMTs (ammonium transporters), NR (nitrate reductase), GS (glutamine synthetase), and GOGAT (glutamate synthetase), the chlorophyll fluorescence curve, and parameters of leaves (e.g., PIABS; PICS; ABS/RC; TRo/RC; ETo/RC) all peaked under 10 mM N under high salt stress instead of 15 mM N. Through exploring the proper N application under higher salt stress and its alleviation mechanisms, our results indicated that moderate reduction in N application under high salt level had a maximum promotion effect on the salt tolerance of forage bermudagrass without growth or forage quality inhibition. These response mechanisms obtained can provide a useful reference for N application in moderation rather than in excess on forage bermudagrass, especially in higher salinity areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| |
Collapse
|
19
|
Woods P, Lehner KR, Hein K, Mullen JL, McKay JK. Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes. FRONTIERS IN PLANT SCIENCE 2022; 13:883209. [PMID: 35498695 PMCID: PMC9051544 DOI: 10.3389/fpls.2022.883209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
High-throughput, field-based characterization of root systems for hundreds of genotypes in thousands of plots is necessary for breeding and identifying loci underlying variation in root traits and their plasticity. We designed a large-scale sampling of root pulling force, the vertical force required to extract the root system from the soil, in a maize diversity panel under differing irrigation levels for two growing seasons. We then characterized the root system architecture of the extracted root crowns. We found consistent patterns of phenotypic plasticity for root pulling force for a subset of genotypes under differential irrigation, suggesting that root plasticity is predictable. Using genome-wide association analysis, we identified 54 SNPs as statistically significant for six independent root pulling force measurements across two irrigation levels and four developmental timepoints. For every significant GWAS SNP for any trait in any treatment and timepoint we conducted post hoc tests for genotype-by-environment interaction, using a mixed model ANOVA. We found that 8 of the 54 SNPs showed significant GxE. Candidate genes underlying variation in root pulling force included those involved in nutrient transport. Although they are often treated separately, variation in the ability of plant roots to sense and respond to variation in environmental resources including water and nutrients may be linked by the genes and pathways underlying this variation. While functional validation of the identified genes is needed, our results expand the current knowledge of root phenotypic plasticity at the whole plant and gene levels, and further elucidate the complex genetic architecture of maize root systems.
Collapse
Affiliation(s)
- Patrick Woods
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| | - Kevin R. Lehner
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Kirsten Hein
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| | - Jack L. Mullen
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - John K. McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
20
|
Zoghbi-Rodríguez NM, Gamboa-Tuz SD, Pereira-Santana A, Rodríguez-Zapata LC, Sánchez-Teyer LF, Echevarría-Machado I. Phylogenomic and Microsynteny Analysis Provides Evidence of Genome Arrangements of High-Affinity Nitrate Transporter Gene Families of Plants. Int J Mol Sci 2021; 22:13036. [PMID: 34884876 PMCID: PMC8658032 DOI: 10.3390/ijms222313036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.
Collapse
Affiliation(s)
- Normig M. Zoghbi-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Alejandro Pereira-Santana
- Conacyt-Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico;
| | - Luis C. Rodríguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Lorenzo Felipe Sánchez-Teyer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| |
Collapse
|
21
|
Wani SH, Vijayan R, Choudhary M, Kumar A, Zaid A, Singh V, Kumar P, Yasin JK. Nitrogen use efficiency (NUE): elucidated mechanisms, mapped genes and gene networks in maize ( Zea mays L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2875-2891. [PMID: 35035142 PMCID: PMC8720126 DOI: 10.1007/s12298-021-01113-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 05/22/2023]
Abstract
UNLABELLED Nitrogen, the vital primary plant growth nutrient at deficit soil conditions, drastically affects the growth and yield of a crop. Over the years, excess use of inorganic nitrogenous fertilizers resulted in pollution, eutrophication and thereby demanding the reduction in the use of chemical fertilizers. Being a C4 plant with fibrous root system and high NUE, maize can be deployed to be the best candidate for better N uptake and utilization in nitrogen deficient soils. The maize germplasm sources has enormous genetic variation for better nitrogen uptake contributing traits. Adoption of single cross maize hybrids as well as inherent property of high NUE has helped maize cultivars to achieve the highest growth rate among the cereals during last decade. Further, considering the high cost of nitrogenous fertilizers, adverse effects on soil health and environmental impact, maize improvement demands better utilization of existing genetic variation for NUE via introgression of novel allelic combinations in existing cultivars. Marker assisted breeding efforts need to be supplemented with introgression of genes/QTLs related to NUE in ruling varieties and thereby enhancing the overall productivity of maize in a sustainable manner. To achieve this, we need mapped genes and network of interacting genes and proteins to be elucidated. Identified genes may be used in screening ideal maize genotypes in terms of better physiological functionality exhibiting high NUE. Future genome editing may help in developing lines with increased productivity under low N conditions in an environment of optimum agronomic practices. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01113-z.
Collapse
Affiliation(s)
- Shabir H. Wani
- Genetics and Plant Breeding, Mountain Research Centre For Field Crops, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani Anantnag, J&K 192101 India
| | - Roshni Vijayan
- Regional Agricultural Research Station-Central Zone, Kerala Agricultural University, MelePattambi, Palakkad, Kerala 679306 India
| | | | - Anuj Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Vishal Singh
- Department of Plants, Soils and Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322 USA
| | - Pardeep Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana, 141001 India
| | - Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012 India
| |
Collapse
|
22
|
Torres-Rodríguez JV, Salazar-Vidal MN, Chávez Montes RA, Massange-Sánchez JA, Gillmor CS, Sawers RJH. Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays ssp. mays L.). BMC PLANT BIOLOGY 2021; 21:259. [PMID: 34090337 PMCID: PMC8178920 DOI: 10.1186/s12870-021-02997-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nitrogen (N) and phosphorus (P) are macronutrients essential for crop growth and productivity. In cultivated fields, N and P levels are rarely sufficient, contributing to the gap between realized and potential production. Fertilizer application increases nutrient availability, but is not available to all farmers, nor are current rates of application sustainable or environmentally desirable. Transcriptomic studies of cereal crops have revealed dramatic responses to either low N or low P single stress treatments. In the field, however, levels of both N and P may be suboptimal. The interaction between N and P starvation responses remains to be fully characterized. RESULTS We characterized growth and root and leaf transcriptomes of young maize plants under nutrient replete, low N, low P or combined low NP conditions. We identified 1555 genes to respond to our nutrient treatments, in one or both tissues. A large group of genes, including many classical P starvation response genes, were regulated antagonistically between low N and P conditions. An additional experiment over a range of N availability indicated that a mild reduction in N levels was sufficient to repress the low P induction of P starvation genes. Although expression of P transporter genes was repressed under low N or low NP, we confirmed earlier reports of P hyper accumulation under N limitation. CONCLUSIONS Transcriptional responses to low N or P were distinct, with few genes responding in a similar way to the two single stress treatments. In combined NP stress, the low N response dominated, and the P starvation response was largely suppressed. A mild reduction in N availability was sufficient to repress the induction of P starvation associated genes. We conclude that activation of the transcriptional response to P starvation in maize is contingent on N availability.
Collapse
Affiliation(s)
- J Vladimir Torres-Rodríguez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
| | - M Nancy Salazar-Vidal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
- Department of Evolution and Ecology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Ricardo A Chávez Montes
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA
| | - Julio A Massange-Sánchez
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ) Subsede Zapopan, Guadalajara, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
| | - Ruairidh J H Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico.
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
23
|
Wu Z, Gao X, Zhang N, Feng X, Huang Y, Zeng Q, Wu J, Zhang J, Qi Y. Genome-wide identification and transcriptional analysis of ammonium transporters in Saccharum. Genomics 2021; 113:1671-1680. [PMID: 33838277 DOI: 10.1016/j.ygeno.2021.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/20/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
Ammonium transporters (AMTs) are plasma membrane proteins that exclusively transport ammonium/ammonia. It is essential for the nitrogen demand of plantsby AMT-mediated acquisition of ammonium from soils. The molecular characteristics and evolutionary history of AMTs in Saccharum spp. remain unclear. We comprehensively evaluated the AMT gene family in the latest release of the S. spontaneum genome and identified 6 novel AMT genes. These genes belong to 3 clusters: AMT2 (2 genes), AMT3 (3 genes), and AMT4 (one gene). Evolutionary analyses suggested that the S. spontaneum AMT gene family may have expanded via whole-genome duplication events. All of the 6 AMT genes are located on 5 chromosomes of S. spontaneum. Expression analyses revealed that AMT3;2 was highly expressed in leaves and in the daytime, and AMT2;1/3;2/4 were dynamic expressed in different leaf segments, as well as AMT2;1/3;2 demonstrated a high transcript accumulation level in leaves and roots and were significantly dynamic expressed under low-nitrogen conditions. The results suggest the functional roles of AMT genes on tissue expression and ammonium absorption in Saccharum. This study will provide some reference information for further elucidation of the functional mechanism and regulation of expression of the AMT gene family in Saccharum.
Collapse
Affiliation(s)
- Zilin Wu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xiaoning Gao
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Nannan Zhang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xiaomin Feng
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Yonghong Huang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Qiaoying Zeng
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jiayun Wu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jisen Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongwen Qi
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| |
Collapse
|
24
|
Islam S, Zhang J, Zhao Y, She M, Ma W. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110759. [PMID: 33487345 DOI: 10.1016/j.plantsci.2020.110759] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 05/25/2023]
Abstract
High nitrogen application aimed at increasing crop yield is offset by higher production costs and negative environmental consequences. For wheat, only one third of the applied nitrogen is utilized, which indicates there is scope for increasing Nitrogen Use Efficiency (NUE). However, achieving greater NUE is challenged by the complexity of the trait, which comprises processes associated with nitrogen uptake, transport, reduction, assimilation, translocation and remobilization. Thus, knowledge of the genetic regulation of these processes is critical in increasing NUE. Although primary nitrogen uptake and metabolism-related genes have been well studied, the relative influence of each towards NUE is not fully understood. Recent attention has focused on engineering transcription factors and identification of miRNAs acting on expression of specific genes related to NUE. Knowledge obtained from model species needs to be translated into wheat using recently-released whole genome sequences, and by exploring genetic variations of NUE-related traits in wild relatives and ancient germplasm. Recent findings indicate the genetic basis of NUE is complex. Pyramiding various genes will be the most effective approach to achieve a satisfactory level of NUE in the field.
Collapse
Affiliation(s)
- Shahidul Islam
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Yun Zhao
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
25
|
Kong L, Zhang Y, Du W, Xia H, Fan S, Zhang B. Signaling Responses to N Starvation: Focusing on Wheat and Filling the Putative Gaps With Findings Obtained in Other Plants. A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:656696. [PMID: 34135921 PMCID: PMC8200679 DOI: 10.3389/fpls.2021.656696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 05/16/2023]
Abstract
Wheat is one of the most important food crops worldwide. In recent decades, fertilizers, especially nitrogen (N), have been increasingly utilized to maximize wheat productivity. However, a large proportion of N is not used by plants and is in fact lost into the environment and causes serious environmental pollution. Therefore, achieving a low N optimum via efficient physiological and biochemical processes in wheat grown under low-N conditions is highly important for agricultural sustainability. Although N stress-related N capture in wheat has become a heavily researched subject, how this plant adapts and responds to N starvation has not been fully elucidated. This review summarizes the current knowledge on the signaling mechanisms activated in wheat plants in response to N starvation. Furthermore, we filled the putative gaps on this subject with findings obtained in other plants, primarily rice, maize, and Arabidopsis. Phytohormones have been determined to play essential roles in sensing environmental N starvation and transducing this signal into an adjustment of N transporters and phenotypic adaptation. The critical roles played by protein kinases and critical kinases and phosphatases, such as MAPK and PP2C, as well as the multifaceted functions of transcription factors, such as NF-Y, MYB, DOF, and WRKY, in regulating the expression levels of their target genes (proteins) for low-N tolerance are also discussed. Optimization of root system architecture (RSA) via root branching and thinning, improvement of N acquisition and assimilation, and fine-tuned autophagy are pivotal strategies by which plants respond to N starvation. In light of these findings, we attempted to construct regulatory networks for RSA modification and N uptake, transport, assimilation, and remobilization.
Collapse
Affiliation(s)
- Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wanying Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Haiyong Xia
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan, China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Bin Zhang,
| |
Collapse
|
26
|
Liu R, Jia T, Cui B, Song J. The expression patterns and putative function of nitrate transporter 2.5 in plants. PLANT SIGNALING & BEHAVIOR 2020; 15:1815980. [PMID: 32867594 PMCID: PMC7671049 DOI: 10.1080/15592324.2020.1815980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nitrate transporter 2.5 (NRT2.5) was originally characterized as the transporter for nitrogen (N) limitation. In Arabidopsis, NRT2.5 is expressed mainly under extremely low NO3- and N starvation conditions, and this must work in conjunction with NAR2.1. NRT2.5 is expressed both in the roots and leaves in Arabidopsis, poplars, tea trees and cassava. This is also expressed in the seeds of Arabidopsis and wheat. In wheat, NRT2.5 is expressed in the embryo and shell and plays a role in the accumulation of NO3- in the seeds. In maize, this is also expressed in silk, cobs and tassel husk leaves. In rice, OsNRT2.5 (also known as OsNRT2.3a) may help the species to remove NO3- from the roots to shoots. In addition, NRT2.5 may interact with TGA3, MYC1, LBD37, LBD38, TaNAC2 and other transcription factors and participate in the transmission of NO3- signals. The present review summarizes the functions of NRT2.5 in different plant species, which may help plant breeders and molecular biologists to improve crop yield. Abbreviations: NRT, Nitrate transporter; NUE, nitrogen use efficiency; PTR, peptide transporter; NPF, nitrate peptide transporter family; CLC, chloride channel; LAC1/SLAH, slow anion channel-associated 1 homolog 3; LATS, low-affinity transporter systems; HATS, high-affinity transport systems; NNP, nitrate-nitrite-porter; MFS, major facilitator superfamily.
Collapse
Affiliation(s)
- Ranran Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, P.R. China
| | - Ting Jia
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, P.R. China
| | - Bing Cui
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, P.R. China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, P.R. China
- CONTACT Jie Song Jinan250014, P.R. China
| |
Collapse
|
27
|
Thi Nong H, Tateishi R, Suriyasak C, Kobayashi T, Oyama Y, Chen WJ, Matsumoto R, Hamaoka N, Iwaya-Inoue M, Ishibashi Y. Effect of Seedling Nitrogen Condition on Subsequent Vegetative Growth Stages and Its Relationship to the Expression of Nitrogen Transporter Genes in Rice. PLANTS (BASEL, SWITZERLAND) 2020; 9:E861. [PMID: 32646051 PMCID: PMC7412562 DOI: 10.3390/plants9070861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 11/17/2022]
Abstract
Nitrogen (N) deficiency is one of the most common problems in soils, limiting crop growth and production. However, the effects of N limitation in seedlings on vegetative growth remain poorly understood. Here, we show that N limitation in rice seedlings restricted vegetative growth but not yield. Aboveground parts were affected mainly during the period of tillering, but belowground parts were sensitive throughout vegetative growth, especially during panicle development. At the tillering stage, N-limited plants had a significantly lower N content in shoots, but not in roots. On the other hand, N content in roots during the panicle development stage was significantly lower in N-limited plants. This distinct response was driven by significant changes in expression of N transporter genes during growth. Under N limitation, N translocation from roots to shoots was greatly sped up by systemic expression of N transporter genes to obtain balanced growth. N limitation during the seedling stage did not reduce any yield components. We conclude that the N condition during the seedling stage affects physiological responses such as N translocation through the expression of N transporter genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yushi Ishibashi
- Graduate school of Bioresource and Bioenviromental Sciences, Kyushu University, Mootoka 774, Fukuoka 819–0395, Japan; (H.T.N.); (R.T.); (C.S.); (T.K.); (Y.O.); (W.J.C.); (R.M.); (N.H.); (M.I.-I.)
| |
Collapse
|
28
|
Adewale SA, Badu-Apraku B, Akinwale RO, Paterne AA, Gedil M, Garcia-Oliveira AL. Genome-wide association study of Striga resistance in early maturing white tropical maize inbred lines. BMC PLANT BIOLOGY 2020; 20:203. [PMID: 32393176 PMCID: PMC7212567 DOI: 10.1186/s12870-020-02360-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/24/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Striga hermonthica (Benth.) parasitism militates against increased maize production and productivity in savannas of sub-Saharan Africa (SSA). Identification of Striga resistance genes is important in developing genotypes with durable resistance. So far, there is only one report on the existence of QTL for Striga resistance on chromosome 6 of maize. The objective of this study was to identify genomic regions significantly associated with grain yield and other agronomic traits under artificial Striga field infestation. A panel of 132 early-maturing maize inbreds were phenotyped for key agronomic traits under Striga-infested and Striga-free conditions. The inbred lines were also genotyped using 47,440 DArTseq markers from which 7224 markers were retained for population structure analysis and genome-wide association study (GWAS). RESULTS The inbred lines were grouped into two major clusters based on structure analysis as well as the neighbor-joining hierarchical clustering. A total of 24 SNPs significantly associated with grain yield, Striga damage at 8 and 10 weeks after planting (WAP), ears per plant and ear aspect under Striga infestation were detected. Under Striga-free conditions, 11 SNPs significantly associated with grain yield, number of ears per plant and ear aspect were identified. Three markers physically located close to the putative genes GRMZM2G164743 (bin 10.05), GRMZM2G060216 (bin 3.06) and GRMZM2G103085 (bin 5.07) were detected, linked to grain yield, Striga damage at 8 and 10 WAP and number of ears per plant under Striga infestation, explaining 9 to 42% of the phenotypic variance. Furthermore, the S9_154,978,426 locus on chromosome 9 was found at 2.61 Mb close to the ZmCCD1 gene known to be associated with the reduction of strigolactone production in the maize roots. CONCLUSIONS Presented in this study is the first report of the identification of significant loci on chromosomes 9 and 10 of maize that are closely linked to ZmCCD1 and amt5 genes, respectively and may be related to plant defense mechanisms against Striga parasitism. After validation, the identified loci could be targets for breeders for marker-assisted selection (MAS) to accelerate genetic enhancement of maize for Striga resistance in the tropics, particularly in SSA, where the parasitic weed is endemic.
Collapse
Affiliation(s)
- Samuel Adeyemi Adewale
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan, Nigeria
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Baffour Badu-Apraku
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan, Nigeria
| | | | - Agre Angelot Paterne
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan, Nigeria
| | - Melaku Gedil
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan, Nigeria
| | | |
Collapse
|
29
|
Bellantuono AJ, Dougan KE, Granados‐Cifuentes C, Rodriguez‐Lanetty M. Free‐living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly distinct transcriptomes under both stable and heat stress conditions. Mol Ecol 2019; 28:5265-5281. [DOI: 10.1111/mec.15300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Katherine E. Dougan
- Department of Biological Sciences Florida International University Miami FL USA
| | - Camila Granados‐Cifuentes
- Department of Biological Sciences Florida International University Miami FL USA
- Baruch College The City University of New York New York NY USA
| | | |
Collapse
|
30
|
Nitrogen Starvation Differentially Influences Transcriptional and Uptake Rate Profiles in Roots of Two Maize Inbred Lines with Different NUE. Int J Mol Sci 2019; 20:ijms20194856. [PMID: 31574923 PMCID: PMC6801476 DOI: 10.3390/ijms20194856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Nitrogen use efficiency (NUE) of crops is estimated to be less than 50%, with a strong impact on environment and economy. Genotype-dependent ability to cope with N shortage has been only partially explored in maize and, in this context, the comparison of molecular responses of lines with different NUE is of particular interest in order to dissect the key elements underlying NUE. Changes in root transcriptome and NH4+/NO3- uptake rates during growth (after 1 and 4 days) without N were studied in high (Lo5) and low (T250) NUE maize inbred lines. Results suggests that only a small set of transcripts were commonly modulated in both lines in response to N starvation. However, in both lines, transcripts linked to anthocyanin biosynthesis and lateral root formation were positively affected. On the contrary, those involved in root elongation were downregulated. The main differences between the two lines reside in the ability to modulate the transcripts involved in the transport, distribution and assimilation of mineral nutrients. With regard to N mineral forms, only the Lo5 line responded to N starvation by increasing the NH4+ fluxes as supported by the upregulation of a transcript putatively involved in its transport.
Collapse
|