1
|
Son HK, Jhun H, Lee HB, Lee YR, Park M, Park HY. Influence of different types of dietary sugars on the intestinal mucosa and hepatic lipid metabolism in germ-free mice. Biochem Biophys Res Commun 2024; 733:150707. [PMID: 39303524 DOI: 10.1016/j.bbrc.2024.150707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
The excessive consumption of dietary sugar induces changes in gut microbiota, which is associated with obesity and metabolic dysregulation. This study investigated the effects of monosaccharide and fructooligosaccharide (FOS) intake on metabolic function and intestinal environment in germ-free (GF) mice lacking gut microbiota. GF mice were provided with a chow diet and administered a water solution containing 15 % glucose, fructose, or FOS for 4 weeks. Compared with FOS, glucose, and fructose induced increased hepatic lipid accumulation, increased adipocyte size in white adipose tissue, and upregulated hepatic lipogenic gene expression. FOS exhibited notably higher activation of hepatic AMP-activated protein kinase compared with those consuming glucose or fructose. Moreover, the number of goblet cells in the intestinal mucosa increased significantly with FOS consumption. Collectively, these findings indicate that while monosaccharides caused metabolic disorders in GF mice, FOS alleviated these disorders and increased the number of goblet cells in the intestinal mucosa. These results provide evidence for the occurrence of these effects independently of the gut microbiota.
Collapse
Affiliation(s)
- Hee-Kyoung Son
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Hyunjhung Jhun
- Infrastructure Support Team, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Miri Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55365, Republic of Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Chu NHS, Chow E, Chan JCN. The Therapeutic Potential of the Specific Intestinal Microbiome (SIM) Diet on Metabolic Diseases. BIOLOGY 2024; 13:498. [PMID: 39056692 PMCID: PMC11273990 DOI: 10.3390/biology13070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Exploring the intricate crosstalk between dietary prebiotics and the specific intestinal microbiome (SIM) is intriguing in explaining the mechanisms of current successful dietary interventions, including the Mediterranean diet and high-fiber diet. This knowledge forms a robust basis for developing a new natural food therapy. The SIM diet can be measured and evaluated to establish a reliable basis for the management of metabolic diseases, such as diabetes, metabolic (dysfunction)-associated fatty liver disease (MAFLD), obesity, and metabolic cardiovascular disease. This review aims to delve into the existing body of research to shed light on the promising developments of possible dietary prebiotics in this field and explore the implications for clinical practice. The exciting part is the crosstalk of diet, microbiota, and gut-organ interactions facilitated by producing short-chain fatty acids, bile acids, and subsequent metabolite production. These metabolic-related microorganisms include Butyricicoccus, Akkermansia, and Phascolarctobacterium. The SIM diet, rather than supplementation, holds the promise of significant health consequences via the prolonged reaction with the gut microbiome. Most importantly, the literature consistently reports no adverse effects, providing a strong foundation for the safety of this dietary therapy.
Collapse
Affiliation(s)
- Natural H. S. Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
3
|
Krolevets TS, Livzan MA, Syrovenko MI. The role of short-chain fatty acids in the progression of non-alcoholic fatty liver disease. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2024:50-58. [DOI: 10.21518/ms2024-009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Introduction. Nowadays, a multifactorial model of the pathogenesis of NAFLD is recognized. It is interesting to study the contribution of changes in the composition of the intestinal microbiota and its metabolites in the development of the disease.Aim. To evaluate the contribution of research into the qualitative composition of the intestinal microbiota in relation to the risk of progression of NAFLD to reduce the loss of health- saving potential of the population.Materials and methods. An open comparative study of 83 mature-aged patients (56.6 years (46–63)) suffering from NAFLD was conducted. The levels of insulin, leptin, its receptor, adiponectin in blood serum, zonulin in feces were studied, and SCFA in feceswas determined. The analysis was carried out depending on the phenotypes of NAFLD: the degree of steatosis (1 – 40 patients, degree 2 – 18 and degree 3 – 25), the presence of NASH (43 patients), the presence of fibrosis (fibrosis was found in 35 patients). The degree of steatosis and fibrosis was assessed using elastometry. The results of the study were analyzed using the Microsoft Excel, STATISTICA 12.0 software package.Results. In patients with NAFLD, the absolute number of all SCFA in the feces was reduced. The anaerobic index was deviated towards sharply negative values (-0,711 (-0,576-(-0,830)). A high level of propionic acid was noted among the patients with fibrosis (p < 0.05). Anaerobic index, relative content of isoC4 + isoC5 + isoC6, relative content of butyric acid had a positive relationship with the St-index (rs = 0.254, rs = 0.269, rs = 0.240, p≤ 0.05). An increase in the relative amount of propionic acid was statistically significantly associated with a decrease of FLI (rs = -0.229, p ≤0.05). A positive correlation was found between the level of insulin and the absolute amount of butyric acid C4 (rs = 0.228, p ≤ 0.05). There was an inverse relationship of the absolute and relative amounts of isoC4+ isoC5 + isoC6 and Iso Cn/Cn with zonulin in the feces (rs = -0.231, p ≤ 0.05, rs = -0.380, p ≤ 0.05 and rs = -0.332, p ≤ 0.05, respectively).Conclusion. There is the anaerobic flora among the patients with NAFLD. Modification of the content of SCFA in feces may affect to the progression of NAFLD. The effect of SCFA on the development and progression of NAFLD may be mediated by the development of insulin and leptin resistance, as well as an integrity violation of the intestinal barrier.
Collapse
Affiliation(s)
- T. S. Krolevets
- Omsk State Medical University;
Clinical Cardiology Dispensary
| | | | - M. I. Syrovenko
- Omsk State Medical University;
Clinical Cardiology Dispensary
| |
Collapse
|
4
|
Li X, He M, Yi X, Lu X, Zhu M, Xue M, Tang Y, Zhu Y. Short-chain fatty acids in nonalcoholic fatty liver disease: New prospects for short-chain fatty acids as therapeutic targets. Heliyon 2024; 10:e26991. [PMID: 38486722 PMCID: PMC10937592 DOI: 10.1016/j.heliyon.2024.e26991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a stress-induced liver injury related to heredity, environmental exposure and the gut microbiome metabolism. Short-chain fatty acids (SCFAs), the metabolites of gut microbiota (GM), participate in the regulation of hepatic steatosis and inflammation through the gut-liver axis, which play an important role in the alleviation of NAFLD. However, little progress has been made in systematically elucidating the mechanism of how SCFAs improve NAFLD, especially the epigenetic mechanisms and the potential therapeutic application as clinical treatment for NAFLD. Herein, we adopted PubMed and Medline to search relevant keywords such as 'SCFAs', 'NAFLD', 'gut microbiota', 'Epigenetic', 'diet', and 'prebiotic effect' to review the latest research on SCFAs in NAFLD up to November 2023. In this review, firstly, we specifically discussed the production and function of SCFAs, as well as their crosstalk coordination in the gut liver axis. Secondly, we provided an updated summary and intensive discussion of how SCFAs affect hepatic steatosis to alleviate NAFLD from the perspective of genetic and epigenetic. Thirdly, we paid attention to the pharmacological and physiological characteristics of SCFAs, and proposed a promising future direction to adopt SCFAs alone or in combination with prebiotics and related clinical drugs to prevent and treat NAFLD. Together, this review aimed to elucidate the function of SCFAs and provide new insights to the prospects of SCFAs as a therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Maozhang He
- Department of Microbiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xinrui Yi
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xuejin Lu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Meizi Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Min Xue
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yunshu Tang
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yaling Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Silva RSD, Mendonça IP, Paiva IHRD, Souza JRBD, Peixoto CA. Fructooligosaccharides and galactooligosaccharides improve hepatic steatosis via gut microbiota-brain axis modulation. Int J Food Sci Nutr 2023; 74:760-780. [PMID: 37771001 DOI: 10.1080/09637486.2023.2262779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Studies have shown that gut dysbiosis is associated with the steatotic liver disease associated with metabolic dysfunction (MALSD) and its severity. This study evaluated the effects of two commercially available prebiotics fructooligosaccharides (FOS) and galactooligosaccharides(GOS) on hepatic adipogenesis, inflammation, and gut microbiota in high-fat diet-induced MALSD. The results indicated that FOS and GOS effectively reduced insulin resistance, hyperglycaemia, triglyceridemia, cholesterolaemia, and IL-1β serum levels. Moreover, FOS and GOS modulated the lipogenic (SREBP-1c, ACC, and FAS) and lipolytic (ATGL) signalling pathways, and reduced inflammatory markers such as p-NFκB-65, IL-6, iNOS, COX-2, TNF-α, IL-1β, and nitrotyrosine. FOS and GOS also enhanced the abundance of acetate producers' bacteria Bacteroides acidifaciens and Bacteroides dorei. FOS and GOS also induced positive POMC/GPR43 neurons at the arcuate nucleus, indicating hypothalamic signalling modulation. Our results suggest that FOS and GOS attenuated MALSD by reducing the hepatic lipogenic pathways and intestinal permeability through the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
6
|
Dongoran RA, Tu FC, Liu CH. Current insights into the interplay between gut microbiota-derived metabolites and metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:290-299. [PMID: 38035056 PMCID: PMC10683522 DOI: 10.4103/tcmj.tcmj_122_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/29/2023] [Accepted: 07/11/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent and challenging disease associated with a significant health and economic burden. MAFLD has been subjected to and widely investigated in many studies; however, the underlying pathogenesis and its progression have yet to understand fully. Furthermore, precise biomarkers for diagnosing and specific drugs for treatment are yet to be discovered. Increasing evidence has proven gut microbiota as the neglected endocrine organ that regulates homeostasis and immune response. Targeting gut microbiota is an essential strategy for metabolic diseases, including MAFLD. Gut microbiota in the gut-liver axis is connected through tight bidirectional links through the biliary tract, portal vein, and systemic circulation, producing gut microbiota metabolites. This review focuses on the specific correlation between gut microbiota metabolites and MAFLD. Gut microbiota metabolites are biologically active in the host and, through subsequent changes and biological activities, provide implications for MAFLD. Based on the review studies, gut-liver axis related-metabolites including short-chain fatty acids, bile acids (BAs), lipopolysaccharide, choline and its metabolites, indole and its derivates, branched-chain amino acids, and methionine cycle derivates was associated with MAFLD and could be promising MAFLD diagnosis biomarkers, as well as the targets for MAFLD new drug discovery.
Collapse
Affiliation(s)
- Rachmad Anres Dongoran
- Indonesian Food and Drug Authority, Jakarta, Indonesia
- Center for Chinese Studies, National Central Library, Taipei, Taiwan
- Program in Asia Pacific Regional Studies, Department of Taiwan and Regional Studies, College of Humanities and Social Sciences, National Dong Hwa University, Hualien, Taiwan
| | - Fang-Cen Tu
- Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chin-Hung Liu
- Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Graduate Institute of Clinical Pharmacy, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
7
|
Zhao K, Pang H, Shao K, Yang Z, Li S, He N. The function of human milk oligosaccharides and their substitute oligosaccharides as probiotics in gut inflammation. Food Funct 2023; 14:7780-7798. [PMID: 37575049 DOI: 10.1039/d3fo02092d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gut inflammation seriously affects the healthy life of patients, and has a trend of increasing incidence rate. However, the current methods for treating gut inflammation are limited to surgery and drugs, which can cause irreversible damage to patients, especially infants. As natural oligosaccharides in human breast milk, human milk oligosaccharides (HMOs) function as probiotics in treating and preventing gut inflammation: improving the abundance of the gut microbiota, increasing the gut barrier function, and reducing the gut inflammatory reaction. Meanwhile, due to the complexity and high cost of their synthesis, people are searching for functional oligosaccharides that can replace HMOs as a food additive in infants milk powder and adjuvant therapy for chronic inflammation. The purpose of this review is to summarize the therapeutic and preventive effects of HMOs and their substitute functional oligosaccharides as probiotics in gut inflammation, and to summarize the prospect of their application in infant breast milk replacement in the future.
Collapse
Affiliation(s)
- Kunyi Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Hao Pang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Kaidi Shao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
8
|
Choudhuri G, Shah S, Kulkarni A, Jagtap N, Gaonkar P, Desai A, Adhav C. Non-alcoholic Steatohepatitis in Asians: Current Perspectives and Future Directions. Cureus 2023; 15:e42852. [PMID: 37664266 PMCID: PMC10473263 DOI: 10.7759/cureus.42852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a subset of non-alcoholic fatty liver disease (NAFLD), which, apart from excess fat in the liver, may be characterised by some level of inflammatory infiltration and fibrogenesis, occasionally progressing to liver cirrhosis or hepatocellular carcinoma (HCC). The objective of the current review is to elucidate the rising prevalence, the role of microbiome and genetics in pathogenesis, diagnostic challenges, and novel treatment alternatives for NASH. Newer diagnostic techniques are being developed since using liver biopsy in a larger population is not a reasonable option and is primarily restricted to clinical research, at least in developing countries. Besides these technical challenges, another important factor leading to deviation from guideline practice is the lack of health insurance coverage in countries like India. It leads to reluctance on the part of physicians and patients to delay required tests to curb out-of-pocket expenditure. There is no cure for NASH, with liver transplantation remaining the last option for those who progress to end-stage liver disease (ESLD) or are detected with early-stage HCC. Thus, lifestyle modification remains the only viable option for many, but compliance and long-term adherence remain major challenges. In obese individuals, bariatric surgery and weight reduction have shown favourable results. In patients with less severe obesity, endoscopic bariatric metabolic therapies (EBMT) are rapidly emerging as less invasive therapies. However, access and acceptability remain poor for these weight reduction methods. Therefore, intense research is being conducted for potential newer drug classes with several agents currently in phase II or III of clinical development. Some of these have demonstrated promising results, such as a reduction in hepatic fat content, and attenuation of fibrosis with an acceptable tolerability profile in phase II studies. The developments in the management of NASH have been fairly encouraging. Further well-designed long-term prospective studies should be undertaken to generate evidence with definitive results.
Collapse
Affiliation(s)
| | - Saumin Shah
- Gastroenterology, Gujarat Gastro and Vascular Hospital, Surat, IND
| | - Anand Kulkarni
- Gastroenterology and Hepatology, Asian Institute of Gastroenterology, Hyderabad, IND
| | - Nitin Jagtap
- Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, IND
| | | | | | | |
Collapse
|
9
|
Fotschki B, Sójka M, Kosmala M, Juśkiewicz J. Prebiotics Together with Raspberry Polyphenolic Extract Mitigate the Development of Nonalcoholic Fatty Liver Diseases in Zucker Rats. Nutrients 2023; 15:3115. [PMID: 37513533 PMCID: PMC10385479 DOI: 10.3390/nu15143115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Previous studies suggested that dietary supplementation with prebiotic fructooligosaccharides (FOSs) and polyphenols could mitigate disorders related to the first stage of nonalcoholic fatty liver disease (NAFLD) induced by an obesogenic diet. Therefore, this experiment aimed to address whether the health-promoting potential of raspberry polyphenols together with FOSs can regulate advanced-stage NAFLD in Zucker rats genetically predisposed to develop obesity. The addition of FOSs and raspberry polyphenolic extract to the diet reduced liver fat accumulation and triglyceride, free fatty acid, and total cholesterol levels in the liver. The elevated GSH/GSSG ratio and reduced malondialdehyde content indicated that the liver antioxidant potential was considerably increased. The treatment also lowered the plasma aminotransferase and alkaline phosphatase activities and collagen type IV levels. Insulin levels were decreased, but glucose levels remained constant, indicating greater insulin sensitivity. These changes may result from the upregulation of FXR and AHR receptors in the liver, which are responsible for regulating lipid metabolism and glucose and bile acid synthesis. The reduced bile acid levels in the cecal contents confirmed the activation of liver mechanisms. In conclusion, dietary enrichment with FOSs and raspberry polyphenolic extract has sufficient health-promoting potential to regulate liver metabolism, oxidative stress, and inflammation related to NAFLD development in obese Zucker rats.
Collapse
Affiliation(s)
- Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Tuwima 10, 10-748 Olsztyn, Poland
| | - Michał Sójka
- Institute of Food Technology and Analysis, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Monika Kosmala
- Institute of Food Technology and Analysis, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
10
|
Huang X, Chen H, Wen S, Dong M, Zhou L, Yuan X. Therapeutic Approaches for Nonalcoholic Fatty Liver Disease: Established Targets and Drugs. Diabetes Metab Syndr Obes 2023; 16:1809-1819. [PMID: 37366486 PMCID: PMC10290856 DOI: 10.2147/dmso.s411400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), as a multisystemic disease, is the most prevalent chronic liver disease characterized by extremely complex pathogenic mechanisms and multifactorial etiology, which often develops as a consequence of obesity, metabolic syndrome. Pathophysiological mechanisms involved in the development of NAFLD include diet, obesity, insulin resistance (IR), genetic and epigenetic determinants, intestinal dysbiosis, oxidative/nitrosative stress, autophagy dysregulation, hepatic inflammation, gut-liver axis, gut microbes, impaired mitochondrial metabolism and regulation of hepatic lipid metabolism. Some of the new drugs for the treatment of NAFLD are introduced here. All of them achieve therapeutic objectives by interfering with certain pathophysiological pathways of NAFLD, including fibroblast growth factors (FGF) analogues, peroxisome proliferator-activated receptors (PPARs) agonists, glucagon-like peptide-1 (GLP-1) agonists, G protein-coupled receptors (GPCRs), sodium-glucose cotransporter-2 inhibitors (SGLT-2i), farnesoid X receptor (FXR), fatty acid synthase inhibitor (FASNi), antioxidants, etc. This review describes some pathophysiological mechanisms of NAFLD and established targets and drugs.
Collapse
Affiliation(s)
- Xiaojing Huang
- Graduate School of Fudan University, Shanghai, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Huiling Chen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Munteanu C, Schwartz B. The Effect of Bioactive Aliment Compounds and Micronutrients on Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12040903. [PMID: 37107278 PMCID: PMC10136128 DOI: 10.3390/antiox12040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/28/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
In the current review, we focused on identifying aliment compounds and micronutrients, as well as addressed promising bioactive nutrients that may interfere with NAFLD advance and ultimately affect this disease progress. In this regard, we targeted: 1. Potential bioactive nutrients that may interfere with NAFLD, specifically dark chocolate, cocoa butter, and peanut butter which may be involved in decreasing cholesterol concentrations. 2. The role of sweeteners used in coffee and other frequent beverages; in this sense, stevia has proven to be adequate for improving carbohydrate metabolism, liver steatosis, and liver fibrosis. 3. Additional compounds were shown to exert a beneficial action on NAFLD, namely glutathione, soy lecithin, silymarin, Aquamin, and cannabinoids which were shown to lower the serum concentration of triglycerides. 4. The effects of micronutrients, especially vitamins, on NAFLD. Even if most studies demonstrate the beneficial role of vitamins in this pathology, there are exceptions. 5. We provide information regarding the modulation of the activity of some enzymes related to NAFLD and their effect on this disease. We conclude that NAFLD can be prevented or improved by different factors through their involvement in the signaling, genetic, and biochemical pathways that underlie NAFLD. Therefore, exposing this vast knowledge to the public is particularly important.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
12
|
Luo L, Chang Y, Sheng L. Gut-liver axis in the progression of nonalcoholic fatty liver disease: From the microbial derivatives-centered perspective. Life Sci 2023; 321:121614. [PMID: 36965522 DOI: 10.1016/j.lfs.2023.121614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the world's most common chronic liver diseases. However, its pathogenesis remains unclear. With the deepening of research, NAFLD is considered a metabolic syndrome associated with the environment, heredity, and metabolic disorders. Recently, the close relationship between the intestinal microbiome and NAFLD has been discovered, and the theory of the "gut-liver axis" has been proposed. In short, the gut bacteria directly reach the liver via the portal vein through the damaged intestinal wall or indirectly participate in the development of NAFLD through signaling pathways mediated by their components and metabolites. This review focuses on the roles of microbiota-derived lipopolysaccharide, DNA, peptidoglycan, bile acids, short-chain fatty acids, endogenous ethanol, choline and its metabolites, indole and its derivatives, and bilirubin and its metabolites in the progression of NAFLD, which may provide significative insights into the pathogenesis, diagnosis, and treatment for this highly prevalent liver disease.
Collapse
Affiliation(s)
- Lijun Luo
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Yongchun Chang
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Li Sheng
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
13
|
Fructooligosaccharides attenuate non-alcoholic fatty liver disease by remodeling gut microbiota and association with lipid metabolism. Biomed Pharmacother 2023; 159:114300. [PMID: 36696803 DOI: 10.1016/j.biopha.2023.114300] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common liver disease highly associated with metabolic diseases and gut dysbiosis. Several clinical trials have confirmed that fructooligosaccharides (FOSs) are a viable alternative treatment for NAFLD. However, the mechanisms underlying the activities of FOSs remain unclear. METHODS In this study, the effects of FOSs were investigated with the use of two C57BL/6 J mouse models of NAFLD induced by a high-fat, high-cholesterol (HFHC) diet and a methionine- and choline-deficient (MCD) diet, respectively. The measured metabolic parameters included body, fat, and liver weights; and blood glucose, glucose tolerance, and serum levels of glutamate transaminase, aspartate transaminase, and triglycerides. Liver tissues were collected for histological analysis. In addition, 16 S rRNA sequencing was conducted to investigate the effects of FOSs on the composition of the gut microbiota of mice in the HFHC and MCD groups and treated with FOSs. RESULTS FOS treatment attenuated severe metabolic changes and hepatic steatosis caused by the HFHC and MCD diets. In addition, FOSs remodeled the structure of gut microbiota in mice fed the HFHC and MCD diets, as demonstrated by increased abundances of Bacteroidetes (phylum level), Klebsiella variicola, Lactobacillus gasseri, and Clostridium perfringens (species level); and decreased abundances of Verrucomicrobia (phylum level) and the Fissicatena group (genus level). Moreover, the expression levels of genes associated with lipid metabolism and inflammation (i.e., ACC1, PPARγ, CD36, MTTP, APOC3, IL-6, and IL-1β) were down-regulated after FOS treatment. CONCLUSION FOSs alleviated the pathological phenotype of NAFLD via remodeling of the gut microbiota composition and decreasing hepatic lipid metabolism, suggesting that FOSs as functional dietary supplements can potentially reduce the risk of NAFLD.
Collapse
|
14
|
Vazquez-Marroquin G, Ochoa-Précoma R, Porchia LM, Pérez-Fuentes R, Nicolás-Toledo L, Rodríguez-Antolín J, Gonzalez-Mejia ME. The Effect of Microbiome Therapies on Waist Circumference, a Measure of Central Obesity, in Patients with Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J Acad Nutr Diet 2023; 123:933-952.e1. [PMID: 36634870 DOI: 10.1016/j.jand.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Microbiome therapies (probiotic, prebiotic, and synbiotics) have been proposed as adjuvants in the control of central obesity; however, their results for patients with type 2 diabetes (T2D) remain inconclusive. OBJECTIVE The aim of this systematic review and meta-analysis was to evaluate the effect of microbiome therapies on central obesity as measured by waist circumference (WC), and to evaluate the effect of microbiome therapies for glycemic parameters (fasting glucose [FPG], fasting insulin [FPI], hemoglobin A1c [HbA1c], and insulin resistance [HOMA1-IR]) in patients with T2D. METHODS SCOPUS, Pubmed, EBSCO, and LILACS databases were searched for studies that investigated the effect of microbiome therapies on WC up to June 1, 2022. Heterogeneity was determined using Cochran's Q test and quantified using the inconsistency index. The random effects model was used to calculate the pooled difference in means (DM) and 95% confidence intervals (95%CI). Egger's test and Beggs-Muzamar's test were used to assess publication bias. RESULTS Fifteen reports were included (443 treated and 387 controls). Overall, a significant decrease in WC was found (DM = -0.97 cm; 95% confidence interval [95%CI] = -1.74 to -0.20; P = 0.014); however, when stratified by type of microbiome therapy, only probiotics significantly decreased WC (DM = -0.62 cm; 95%CI = -1.00 to -0.24; P = 0.002). No effect was observed for prebiotics and synbiotics. With respect to glycemic parameters, HbA1c, FPG, and HOMA1-IR significantly decrease with microbiome therapies (P ≤ 0.001). When stratified by the type of therapy, for probiotic treatments, HbA1c, FPG, and HOMA1-IR scores decrease (P < 0.001). For prebiotic treatments, HbA1c and FPG (P ≤ 0.001) levels decrease, whereas FPI increased (P = 0.012). Synbiotic treatments were only associated with an increase in FPI (P = 0.031). CONCLUSION Findings indicate that using probiotics alone improved WC in patients with T2D. Both probiotics and prebiotics decreased HbA1c and FPG; however, prebiotics and synbiotics resulted in an increase in FPI. The formulation of the therapy (single vs multi) had no difference on the effect.
Collapse
|
15
|
Ilyés T, Silaghi CN, Crăciun AM. Diet-Related Changes of Short-Chain Fatty Acids in Blood and Feces in Obesity and Metabolic Syndrome. BIOLOGY 2022; 11:1556. [PMID: 36358258 PMCID: PMC9687917 DOI: 10.3390/biology11111556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 09/13/2023]
Abstract
Obesity-related illnesses are one of the leading causes of death worldwide. Metabolic syndrome has been associated with numerous health issues. Short-chain fatty acids (SCFAs) have been shown to have multiple effects throughout the body, both directly as well as through specific G protein-coupled receptors. The main SCFAs produced by the gut microbiota are acetate, propionate, and butyrate, which are absorbed in varying degrees from the large intestine, with some acting mainly locally and others systemically. Diet has the potential to influence the gut microbial composition, as well as the type and amount of SCFAs produced. High fiber-containing foods and supplements increase the production of SCFAs and SCFA-producing bacteria in the gut and have been shown to have bodyweight-lowering effects. Dietary supplements, which increase SCFA production, could open the way for novel approaches to weight loss interventions. The aim of this review is to analyze the variations of fecal and blood SCFAs in obesity and metabolic syndrome through a systematic search and analysis of existing literature.
Collapse
Affiliation(s)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| | | |
Collapse
|
16
|
Wang L, Cao ZM, Zhang LL, Li JM, Lv WL. The Role of Gut Microbiota in Some Liver Diseases: From an Immunological Perspective. Front Immunol 2022; 13:923599. [PMID: 35911738 PMCID: PMC9326173 DOI: 10.3389/fimmu.2022.923599] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is a microecosystem composed of various microorganisms. It plays an important role in human metabolism, and its metabolites affect different tissues and organs. Intestinal flora maintains the intestinal mucosal barrier and interacts with the immune system. The liver is closely linked to the intestine by the gut-liver axis. As the first organ that comes into contact with blood from the intestine, the liver will be deeply influenced by the gut microbiota and its metabolites, and the intestinal leakage and the imbalance of the flora are the trigger of the pathological reaction of the liver. In this paper, we discuss the role of gut microbiota and its metabolites in the pathogenesis and development of autoimmune liver diseases((including autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis), metabolic liver disease such as non-alcoholic fatty liver disease, cirrhosisits and its complications, and liver cancer from the perspective of immune mechanism. And the recent progress in the treatment of these diseases was reviewed from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Li Wang
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | - Zheng-Min Cao
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | | | - Juan-mei Li
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-liang Lv
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Pengrattanachot N, Thongnak L, Lungkaphin A. The impact of prebiotic fructooligosaccharides on gut dysbiosis and inflammation in obesity and diabetes related kidney disease. Food Funct 2022; 13:5925-5945. [PMID: 35583860 DOI: 10.1039/d1fo04428a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is an extensive health problem worldwide that is frequently associated with diabetes. It is a risk factor for the development of several diseases including diabetic nephropathy. Recent studies have reported that gut dysbiosis aggravates the progression of obesity and diabetes by increasing the production of uremic toxins in conjunction with gut barrier dysfunction which then leads to increased passage of lipopolysaccharides (LPS) into the blood circulatory system eventually causing systemic inflammation. Therefore, the modification of gut microbiota using a prebiotic supplement may assist in the restoration of gut barrier function and reduce any disturbance of the inflammatory response. In this review information has been compiled concerning the possible mechanisms involved in an increase in obesity, diabetes and kidney dysfunction via the exacerbation of the inflammatory response and its association with gut dysbiosis. In addition, the role of fructooligosaccharides (FOS), a source of prebiotic widely available commercially, on the improvement of gut dysbiosis and attenuation of inflammation on obese and diabetic conditions has been reviewed. The evidence confirms that FOS supplementation could improve the pathological changes associated with obesity and diabetes related kidney disease, however, knowledge concerning the mechanisms involved is still limited and needs further elucidation.
Collapse
Affiliation(s)
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
18
|
Gut Microbiome in Non-Alcoholic Fatty Liver Disease: From Mechanisms to Therapeutic Role. Biomedicines 2022; 10:biomedicines10030550. [PMID: 35327352 PMCID: PMC8945462 DOI: 10.3390/biomedicines10030550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered to be a significant health threat globally, and has attracted growing concern in the research field of liver diseases. NAFLD comprises multifarious fatty degenerative disorders in the liver, including simple steatosis, steatohepatitis and fibrosis. The fundamental pathophysiology of NAFLD is complex and multifactor-driven. In addition to viruses, metabolic syndrome and alcohol, evidence has recently indicated that the microbiome is related to the development and progression of NAFLD. In this review, we summarize the possible microbiota-based therapeutic approaches and highlight the importance of establishing the diagnosis of NAFLD through the different spectra of the disease via the gut–liver axis.
Collapse
|
19
|
Pérez-Monter C, Álvarez-Arce A, Nuño-Lambarri N, Escalona-Nández I, Juárez-Hernández E, Chávez-Tapia NC, Uribe M, Barbero-Becerra VJ. Inulin Improves Diet-Induced Hepatic Steatosis and Increases Intestinal Akkermansia Genus Level. Int J Mol Sci 2022; 23:ijms23020991. [PMID: 35055177 PMCID: PMC8782000 DOI: 10.3390/ijms23020991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023] Open
Abstract
Hepatic steatosis is characterized by triglyceride accumulation within hepatocytes in response to a high calorie intake, and it may be related to intestinal microbiota disturbances. The prebiotic inulin is a naturally occurring polysaccharide with a high dietary fiber content. Here, we evaluate the effect of inulin on the intestinal microbiota in a non-alcoholic fatty liver disease model. Mice exposed to a standard rodent diet or a fat-enriched diet, were supplemented or not, with inulin. Liver histology was evaluated with oil red O and H&E staining and the intestinal microbiota was determined in mice fecal samples by 16S rRNA sequencing. Inulin treatment effectively prevents liver steatosis in the fat-enriched diet group. We also observed that inulin re-shaped the intestinal microbiota at the phylum level, were Verrucomicrobia genus significantly increased in the fat-diet group; specifically, we observed that Akkermansia muciniphila increased by 5-fold with inulin supplementation. The family Prevotellaceae was also significantly increased in the fat-diet group. Overall, we propose that inulin supplementation in liver steatosis-affected animals, promotes a remodeling in the intestinal microbiota composition, which might regulate lipid metabolism, thus contributing to tackling liver steatosis.
Collapse
Affiliation(s)
- Carlos Pérez-Monter
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
- Correspondence: (C.P.-M.); (V.J.B.-B.)
| | - Alejandro Álvarez-Arce
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico;
| | - Natalia Nuño-Lambarri
- Unidad de Investigación Traslacional, Fundación Clínica Médica Sur, Mexico City 14050, Mexico; (N.N.-L.); (E.J.-H.); (N.C.C.-T.); (M.U.)
| | - Ivonne Escalona-Nández
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Eva Juárez-Hernández
- Unidad de Investigación Traslacional, Fundación Clínica Médica Sur, Mexico City 14050, Mexico; (N.N.-L.); (E.J.-H.); (N.C.C.-T.); (M.U.)
| | - Norberto C. Chávez-Tapia
- Unidad de Investigación Traslacional, Fundación Clínica Médica Sur, Mexico City 14050, Mexico; (N.N.-L.); (E.J.-H.); (N.C.C.-T.); (M.U.)
| | - Misael Uribe
- Unidad de Investigación Traslacional, Fundación Clínica Médica Sur, Mexico City 14050, Mexico; (N.N.-L.); (E.J.-H.); (N.C.C.-T.); (M.U.)
| | - Varenka J. Barbero-Becerra
- Unidad de Investigación Traslacional, Fundación Clínica Médica Sur, Mexico City 14050, Mexico; (N.N.-L.); (E.J.-H.); (N.C.C.-T.); (M.U.)
- Correspondence: (C.P.-M.); (V.J.B.-B.)
| |
Collapse
|
20
|
Xiang H, Sun D, Liu X, She ZG, Chen Y. The Role of the Intestinal Microbiota in Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2022; 13:812610. [PMID: 35211093 PMCID: PMC8861316 DOI: 10.3389/fendo.2022.812610] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a serious disease threatening public health, and its pathogenesis remains largely unclear. Recent scientific research has shown that intestinal microbiota and its metabolites have an important impact on the development of NASH. A balanced intestinal microbiota contributes to the maintenance of liver homeostasis, but when the intestinal microbiota is disequilibrated, it serves as a source of pathogens and molecules that lead to NASH. In this review, we mainly emphasize the key mechanisms by which the intestinal microbiota and its metabolites affect NASH. In addition, recent clinical trials and animal studies on the treatment of NASH by regulating the intestinal microbiota through prebiotics, probiotics, synbiotics and FMT have also been briefly elaborated. With the increasing understanding of interactions between the intestinal microbiota and liver, accurate and personalized detection and treatment methods for NASH are expected to be established.
Collapse
Affiliation(s)
- Hui Xiang
- Infectious Disease Department, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Hui Xiang, ; Zhi-Gang She, ; Yonghong Chen,
| | - Dating Sun
- Department of Cardiology, Wuhan NO.1 Hospital, Wuhan, China
| | - Xin Liu
- Infectious Disease Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Hui Xiang, ; Zhi-Gang She, ; Yonghong Chen,
| | - Yonghong Chen
- Infectious Disease Department, Chongqing University Three Gorges Hospital, Chongqing, China
- *Correspondence: Hui Xiang, ; Zhi-Gang She, ; Yonghong Chen,
| |
Collapse
|
21
|
Costa GT, Vasconcelos QDJS, Aragão GF. Fructooligosaccharides on inflammation, immunomodulation, oxidative stress, and gut immune response: a systematic review. Nutr Rev 2021; 80:709-722. [PMID: 34966938 DOI: 10.1093/nutrit/nuab115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
CONTEXT Evidence shows that fructooligosaccharides (FOSs) can modulate inflammatory, oxidative, and immune activity in the gut, possibly leading to a systemic response, improving human health. OBJECTIVE To assess the present knowledge of the effects of FOSs on inflammation, immunomodulation, oxidative stress, and gut immune response. DATA SOURCES Studies published between December 2000 and January 2020 were systematically searched in four databases: MEDLINE, LILACS, Web of Science, and Scopus. After the screening of 1316 articles, 8 human studies and 20 animal models were included. DATA EXTRACTION Data were extracted separately by 2 reviewers. For each study, the design, population, exposures, main results, and conclusion were extracted. The research questions and the risk-of-bias information were also extracted. Additionally, the risk-of-bias were analyzed to guarantee the reliability of this review. DATA ANALYSIS A qualitative analysis revealed that FOSs can increase bifidobacteria counts and short-chain fatty acids in the gut, stimulate IgA secretion in the colon, and decrease proinflammatory cytokines, thus influencing metabolic diseases. CONCLUSION Studies suggest that FOS supplementation is positively associated with an anti-inflammatory and antioxidant effect, thus enhancing the gut immune system, which may be beneficial for the host's health. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration nos 42020209865 and 42020220369.
Collapse
Affiliation(s)
- Graciana T Costa
- G.T. Costa is with the Surgery Department, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. Q.D.J.S. Vasconcelos and G.F. Aragão are with the Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. G.F. Aragão is with the Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Quezia D J S Vasconcelos
- G.T. Costa is with the Surgery Department, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. Q.D.J.S. Vasconcelos and G.F. Aragão are with the Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. G.F. Aragão is with the Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Gislei F Aragão
- G.T. Costa is with the Surgery Department, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. Q.D.J.S. Vasconcelos and G.F. Aragão are with the Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. G.F. Aragão is with the Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
22
|
Ichimura-Shimizu M, Kageyama T, Oya T, Ogawa H, Matsumoto M, Sumida S, Kakimoto T, Miyakami Y, Nagatomo R, Inoue K, Cheng C, Tsuneyama K. Verification of the Impact of Blood Glucose Level on Liver Carcinogenesis and the Efficacy of a Dietary Intervention in a Spontaneous Metabolic Syndrome Model. Int J Mol Sci 2021; 22:ijms222312844. [PMID: 34884650 PMCID: PMC8657638 DOI: 10.3390/ijms222312844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome (MS) is a risk factor for type 2 diabetes mellitus, vascular inflammation, atherosclerosis, and renal, liver, and heart diseases. Non-alcoholic steatohepatitis (NASH) is a progressive representative liver disease and may lead to the irreversible calamities of cirrhosis and hepatocellular carcinoma. Metabolic disorders such as hyperglycemia have been broadly reported to be related to hepatocarcinogenesis in NASH; however, direct evidence of a link between hyperglycemia and carcinogenesis is still lacking. Tsumura Suzuki Obese Diabetic (TSOD) mice spontaneously develop metabolic syndrome, including obesity, insulin resistance, and NASH-like liver phenotype, and eventually develop hepatocellular carcinomas. TSOD mice provide a spontaneous human MS-like model, even with significant individual variations. In this study, we monitored mice in terms of their changes in blood glucose levels, body weights, and pancreatic and liver lesions over time. As a result, liver carcinogenesis was delayed in non-hyperglycemic TSOD mice compared to hyperglycemic mice. Moreover, at the termination point of 40 weeks, liver tumors appeared in 18 of 24 (75%) hyperglycemic TSOD mice; in contrast, they only appeared in 5 of 24 (20.8%) non-hyperglycemic mice. Next, we investigated three kinds of oligosaccharide that could lower blood glucose levels in hyperglycemic TSOD mice. We monitored the levels of blood and urinary glucose and assessed pancreatic lesions among the experimental groups. As expected, significantly lower levels of blood and urinary glucose and smaller deletions of Langerhans cells were found in TSOD mice fed with milk-derived oligosaccharides (galactooligosaccharides and lactosucrose). At the age of 24 weeks, mild steatohepatitis was found in the liver but there was no evidence of liver carcinogenesis. Steatosis in the liver was alleviated in the milk-derived oligosaccharide-administered group. Taken together, suppressing the increase in blood glucose level from a young age prevented susceptible individuals from diabetes and the onset of NAFLD/NASH, as well as carcinogenesis. Milk-derived oligosaccharides showed a lowering effect on blood glucose levels, which may be expected to prevent liver carcinogenesis.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Takeshi Kageyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Takeshi Oya
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (T.O.); (M.M.)
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Minoru Matsumoto
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (T.O.); (M.M.)
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Takumi Kakimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Yuko Miyakami
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Ryosuke Nagatomo
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (R.N.); (K.I.)
| | - Koichi Inoue
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (R.N.); (K.I.)
| | - Chunmei Cheng
- Pharmacology and Histopathology, Novo Nordisk Research Centre China, Beijing 102206, China;
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (T.O.); (M.M.)
- Correspondence: ; Tel.: +81-88-633-7065; Fax: +81-88-633-7067
| |
Collapse
|
23
|
Li W, Deng M, Gong J, Zhang X, Ge S, Zhao L. Sodium Acetate Inhibit TGF-β1-Induced Activation of Hepatic Stellate Cells by Restoring AMPK or c-Jun Signaling. Front Nutr 2021; 8:729583. [PMID: 34660662 PMCID: PMC8515000 DOI: 10.3389/fnut.2021.729583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are crucial gut microbial metabolites that play a major role in the occurrence and development of hepatic fibrosis (HF). However, the effect of SCFAs on hepatic stellate cells (HSCs), the major pro-fibrogenic cells, is yet undefined. In this study, the effects of three major SCFAs (acetate, propionate, and butyrate) were assessed on the activation of HSCs. LX2 cells were activated with TGF-β1 and treated with sodium acetate (NaA), sodium propionate (NaP), or sodium butyrate (NaB). SCFA treatment significantly reduced the protein levels of α-SMA and the phosphorylation of Smad2 and decreased the mRNA expression of Acta2/Col1a1/Fn in cells compared to the TGF-β1 treatment. Among the three SCFAs, NaA revealed the best efficacy at alleviating TGF-β1-induced LX2 cell activation. Additionally, acetate accumulated in the cells, and G protein-coupled receptor (GPR) 43 silencing did not have any impact on the inhibition of LX2 cell activation by NaA. These findings indicated that NaA enters into the cells to inhibit LX2 cell activation independent of GPR43. The results of phosphokinase array kit and Western blot indicated that NaA increased the AMP-activated protein kinase (AMPK) activation and reduced the phosphorylation of c-Jun in cultured LX2 cells, and siRNA-peroxisome proliferator-activated receptor (PPAR) -γ abolished the inhibitory effects of NaA against TGF-β1-induced LX2 cell activation. In conclusion, this study showed that NaA inhibited LX2 cell activation by activating the AMPK/PPARγ and blocking the c-Jun signaling pathways. Thus, SCFAs might represent a novel and viable approach for alleviating HF.
Collapse
Affiliation(s)
- Weiwei Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mingjuan Deng
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Jiahui Gong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoying Zhang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Gadallah SH, Eissa S, Ghanem HM, Ahmed EK, Hasanin AH, El Mahdy MM, Matboli M. Probiotic-prebiotic-synbiotic modulation of (YAP1, LATS1 and NF2 mRNAs/miR-1205/lncRNA SRD5A3-AS1) panel in NASH animal model. Biomed Pharmacother 2021; 140:111781. [PMID: 34090052 DOI: 10.1016/j.biopha.2021.111781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/02/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
AIM To investigate the prophylactic efficacy of gut microbiota-based treatments on nonalcoholic steatohepatitis (NASH) management via modulation of Hippo signaling pathway-related genes (YAP1, LATS1 and NF2), and their epigenetic regulators (miR-1205 and lncRNA SRD5A3-AS1) retrieved from in-silico data analysis. MATERIALS & METHODS Histopathological, biochemical, molecular and immunohistochemistry analyses were used to assess the effects of multistrain probiotic mixture and prebiotic inulin fiber on high sucrose high fat (HSHF) diet-induced NASH in rats. These treatments were administered orally either alone or in combination, along with HSHF diet. RESULTS Both probiotic mixture and prebiotic inulin fiber attenuated steatosis, inflammation and fibrosis grades in HSHF diet-induced NASH rats. Moreover, the applied treatments significantly prevented the elevation of serum liver enzymes and improved lipid panel. At the molecular level, both treatments down-regulated hepatic YAP1 mRNA and miR-1205 expressions, and concomitantly up-regulated the expression of hepatic LATS1& NF2 mRNAs and the lncRNA SRD5A3-AS1. At the protein level, both treatments decreased the hepatic content of the inflammatory marker IL6 and the fibrotic marker TGFβ1. Moreover, an observable reduction in α-SMA together with noticeable elevation in LATS1/2 protein expression levels were detected in liver sections compared to the untreated rats. CONCLUSION Probiotic mixture and prebiotic inulin fiber, either alone or in combination, attenuated NASH progression and ameliorated both fibrosis and hepatic inflammation in the applied animal model. The produced effect was correlated with modulation of the retrieved (YAP1, LATS1 and NF2) - (miR-1205) - (lncRNA SRD5A3-AS1) RNA panel.
Collapse
Affiliation(s)
- Shaimaa H Gadallah
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Sanaa Eissa
- The Department of Medicinal Biochemistry and Molecular Biology, The School of Medicine, Ain Shams University, Egypt.
| | - Hala M Ghanem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Emad K Ahmed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Amany Helmy Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Manal M El Mahdy
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Marwa Matboli
- The Department of Medicinal Biochemistry and Molecular Biology, The School of Medicine, Ain Shams University, Egypt.
| |
Collapse
|
25
|
Chen J, Vitetta L. Modulation of Gut Microbiota for the Prevention and Treatment of COVID-19. J Clin Med 2021; 10:2903. [PMID: 34209870 PMCID: PMC8268324 DOI: 10.3390/jcm10132903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota is well known to exert multiple benefits on human health including protection from disease causing pathobiont microbes. It has been recognized that healthy intestinal microbiota is of great importance in the pathogenesis of COVID-19. Gut dysbiosis caused by various reasons is associated with severe COVID-19. Therefore, the modulation of gut microbiota and supplementation of commensal bacterial metabolites could reduce the severity of COVID-19. Many approaches have been studied to improve gut microbiota in COVID-19 including probiotics, bacterial metabolites, and prebiotics, as well as nutraceuticals and trace elements. So far, 19 clinical trials for testing the efficacy of probiotics and synbiotics in COVID-19 prevention and treatment are ongoing. In this narrative review, we summarize the effects of various approaches on the prevention and treatment of COVID-19 and discuss associated mechanisms.
Collapse
Affiliation(s)
- Jiezhong Chen
- Medlab Clinical, Research Department, Sydney 2015, Australia;
| | - Luis Vitetta
- Medlab Clinical, Research Department, Sydney 2015, Australia;
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
26
|
Yang M, Zhang CY. G protein-coupled receptors as potential targets for nonalcoholic fatty liver disease treatment. World J Gastroenterol 2021; 27:677-691. [PMID: 33716447 PMCID: PMC7934005 DOI: 10.3748/wjg.v27.i8.677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a broad-spectrum disease, ranging from simple hepatic steatosis to nonalcoholic steatohepatitis, which can progress to cirrhosis and liver cancer. Abnormal hepatic lipid accumulation is the major manifestation of this disease, and lipotoxicity promotes NAFLD progression. In addition, intermediate metabolites such as succinate can stimulate the activation of hepatic stellate cells to produce extracellular matrix proteins, resulting in progression of NAFLD to fibrosis and even cirrhosis. G protein-coupled receptors (GPCRs) have been shown to play essential roles in metabolic disorders, such as NAFLD and obesity, through their function as receptors for bile acids and free fatty acids. In addition, GPCRs link gut microbiota-mediated connections in a variety of diseases, such as intestinal diseases, hepatic steatosis, diabetes, and cardiovascular diseases. The latest findings show that gut microbiota-derived acetate contributes to liver lipogenesis by converting dietary fructose into hepatic acetyl-CoA and fatty acids. GPCR agonists, including peptides and natural products like docosahexaenoic acid, have been applied to investigate their role in liver diseases. Therapies such as probiotics and GPCR agonists may be applied to modulate GPCR function to ameliorate liver metabolism syndrome. This review summarizes the current findings regarding the role of GPCRs in the development and progression of NAFLD and describes some preclinical and clinical studies of GPCR-mediated treatment. Overall, understanding GPCR-mediated signaling in liver disease may provide new therapeutic options for NAFLD.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | - Chun-Ye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
27
|
Xia Y, Zhang Y, Wang H. Upregulated lncRNA HCG18 in Patients with Non-Alcoholic Fatty Liver Disease and Its Regulatory Effect on Insulin Resistance. Diabetes Metab Syndr Obes 2021; 14:4747-4756. [PMID: 34887672 PMCID: PMC8651094 DOI: 10.2147/dmso.s333431] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is a disease associated with genetic-environmental-metabolic stress, which severely damages the liver function of patients. This study aimed to explore the significance and probable functions of HCG18 in NAFLD. PATIENTS AND METHODS The expression of HCG18 and miR-197-3p was tested by qRT-PCR. The clinical signification of HCG18 was provided by the ROC curve and Pearson correlation. The corresponding mechanism was punctuated by the luciferase reporter assay and HFD-managed mice. RESULTS HCG18 expression was higher in the patients with NAFLD than in controls and in individuals with HOMA-IR score ≥2.5 than those with HOMA-IR score <2.5. HCG18 expression in NAFLD patients was related to BMI, HOMA-IR, ALT, FBG, TC, and TG. HCG18 showed satisfactory predictive accuracy in differentiating NAFLD patients and patients with HOMA-IR ≥2.5. Besides, HCG18 had protective impacts on blood glucose and fat deposition but not on body weight. MiR-197-3p is a direct gene of HCG18, and a reverse correlation was found between miR-197-3p and HCG18. Furthermore, miR-197-3p regulated the influence of HCG18 on insulin resistance and lipid accumulation. CONCLUSION Increased levels of HCG18 might be an alternate indicator for NAFLD patients. The HCG18-miR-197-3p axis exerted effects on the progression of fat sedimentation and glucose disorder in NAFLD.
Collapse
Affiliation(s)
- Yu Xia
- Department of Health Comprehensive Geriatrics, Yidu Central Hospital of Weifang, Weifang, Shandong, People’s Republic of China
- Correspondence: Yu Xia Department of Health Comprehensive Geriatrics, Yidu Central Hospital of Weifang, No. 4138, Linglongshan Road, Weifang, Shandong, 262500, People’s Republic of ChinaTel +86-536-3279993 Email
| | - Yanxia Zhang
- Department of Health Comprehensive Geriatrics, Yidu Central Hospital of Weifang, Weifang, Shandong, People’s Republic of China
| | - Huiyun Wang
- Department of Health Comprehensive Geriatrics, Yidu Central Hospital of Weifang, Weifang, Shandong, People’s Republic of China
| |
Collapse
|
28
|
Nie X, Chen J, Ma X, Ni Y, Shen Y, Yu H, Panagiotou G, Bao Y. A metagenome-wide association study of gut microbiome and visceral fat accumulation. Comput Struct Biotechnol J 2020; 18:2596-2609. [PMID: 33033580 PMCID: PMC7528071 DOI: 10.1016/j.csbj.2020.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Visceral fat is an independent risk factor for metabolic and cardiovascular disease. The study aimed to investigate the associations between gut microbiome and visceral fat. Methods We recruited 32 obese adults and 30 healthy controls at baseline. Among the obese subjects, 14 subjects underwent laparoscopic sleeve gastrectomy (LSG) and were followed 6 months after surgery. Abdominal visceral fat area (VFA) and subcutaneous fat area (SFA) were measured by magnetic resonance imaging. Waist, hipline, waist-to-hip ratio (WHR) and body mass index (BMI) were included as simple obese parameters. Gut microbiome was analyzed by metagenomic sequencing. Results Among the obese parameters, VFA had the largest number of correlations with the species that were differentially enriched between obese and healthy subjects, following by waist, WHR, BMI, hipline, and SFA. Within the species negatively correlated with VFA, Eubacterium eligens had the strongest correlation, following by Clostridium citroniae, C. symbiosum, Bacteroides uniformis, E. ventriosum, Ruminococcaceae bacterium D16, C. hathewayi, etc. C. hathewayi and C. citroniae were increased after LSG. Functional analyses showed that among all the obese parameters, VFA had strongest correlation coefficients with the obesity-related microbial pathways. Microbial pathways involved in carbohydrate fermentation and biosynthesis of L-glutamate and L-glutamine might contribute to visceral fat accumulation. Conclusions Visceral fat was more closely correlated with gut microbiome compared with subcutaneous fat, suggesting an intrinsic connection between gut microbiome and metabolic cardiovascular diseases. Specific microbial species and pathways which were closely associated with visceral fat accumulation might contribute to new targeted therapies for metabolic disorders.
Collapse
Key Words
- 2hCP, 2-hour C-peptide
- 2hPG, 2-hour plasma glucose
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BCAAs, branched chain amino acids
- BMI, body mass index
- CoDA, Compositional Data Analysis
- Cr, creatinine
- DBP, diastolic blood pressure
- FCp, fasting C-peptide
- FDR, false discovery rate
- FMT, fecal microbiota transplantation
- FPG, fasting plasma glucose
- GPR43, G-protein coupled receptor 43
- Gut microbiome
- HDL, high-density lipoprotein cholesterol
- HbA1c, glycated hemoglobin A1c
- LDL, low-density lipoprotein cholesterol
- LPS, lipopolysaccharides
- LSG, laparoscopic sleeve gastrectomy
- Laparoscopic sleeve gastrectomy
- MRI, magnetic resonance imaging
- MSG, monosodium glutamate
- Metagenomics
- Obesity
- SBP, systolic blood pressure
- SCFAs, short chain fatty acids
- SFA, subcutaneous fat area
- TC, total cholesterol
- TCA, tricarboxylic acid cycle
- TG, triglyceride
- UA, uric acid
- VFA, visceral fat area
- Visceral fat
- WBC, white blood cell count
- WHR, waist-to-hip ratio
Collapse
Affiliation(s)
- Xiaomin Nie
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Jiarui Chen
- Leibniz Institute for Natural Product Research and Infection Biology – Systems Biology and Bioinformatics, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong Special Administrative Region
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Yueqiong Ni
- Leibniz Institute for Natural Product Research and Infection Biology – Systems Biology and Bioinformatics, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Yun Shen
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
- Corresponding authors at: Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, China (H. Yu and Y. Bao). Leibniz Institute for Natural Product Research and Infection Biology – Systems Biology and Bioinformatics, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany (G. Panagiotou).
| | - Gianni Panagiotou
- Leibniz Institute for Natural Product Research and Infection Biology – Systems Biology and Bioinformatics, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong Special Administrative Region
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Corresponding authors at: Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, China (H. Yu and Y. Bao). Leibniz Institute for Natural Product Research and Infection Biology – Systems Biology and Bioinformatics, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany (G. Panagiotou).
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
- Corresponding authors at: Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, China (H. Yu and Y. Bao). Leibniz Institute for Natural Product Research and Infection Biology – Systems Biology and Bioinformatics, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany (G. Panagiotou).
| |
Collapse
|
29
|
Chen J, Vitetta L. Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic Implications. Int J Mol Sci 2020; 21:ijms21155214. [PMID: 32717871 PMCID: PMC7432372 DOI: 10.3390/ijms21155214] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota dysregulation plays a key role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) through its metabolites. Therefore, the restoration of the gut microbiota and supplementation with commensal bacterial metabolites can be of therapeutic benefit against the disease. In this review, we summarize the roles of various bacterial metabolites in the pathogenesis of NAFLD and their therapeutic implications. The gut microbiota dysregulation is a feature of NAFLD, and the signatures of gut microbiota are associated with the severity of the disease through altered bacterial metabolites. Disturbance of bile acid metabolism leads to underactivation of bile acid receptors FXR and TGR5, causal for decreased energy expenditure, increased lipogenesis, increased bile acid synthesis and increased macrophage activity. Decreased production of butyrate results in increased intestinal inflammation, increased gut permeability, endotoxemia and systemic inflammation. Dysregulation of amino acids and choline also contributes to lipid accumulation and to a chronic inflammatory status. In some NAFLD patients, overproduction of ethanol produced by bacteria is responsible for hepatic inflammation. Many approaches including probiotics, prebiotics, synbiotics, faecal microbiome transplantation and a fasting-mimicking diet have been applied to restore the gut microbiota for the improvement of NAFLD.
Collapse
Affiliation(s)
- Jiezhong Chen
- Medlab Clinical, Sydney 2015, Australia
- Correspondence: (J.C.); (L.V.)
| | - Luis Vitetta
- Medlab Clinical, Sydney 2015, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Correspondence: (J.C.); (L.V.)
| |
Collapse
|
30
|
Tengeler AC, Gart E, Wiesmann M, Arnoldussen IAC, van Duyvenvoorde W, Hoogstad M, Dederen PJ, Verweij V, Geenen B, Kozicz T, Kleemann R, Morrison MC, Kiliaan AJ. Propionic acid and not caproic acid, attenuates nonalcoholic steatohepatitis and improves (cerebro) vascular functions in obese Ldlr -/- .Leiden mice. FASEB J 2020; 34:9575-9593. [PMID: 32472598 DOI: 10.1096/fj.202000455r] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
The obesity epidemic increases the interest to elucidate impact of short-chain fatty acids on metabolism, obesity, and the brain. We investigated the effects of propionic acid (PA) and caproic acid (CA) on metabolic risk factors, liver and adipose tissue pathology, brain function, structure (by MRI), and gene expression, during obesity development in Ldlr-/- .Leiden mice. Ldlr-/- .Leiden mice received 16 weeks either a high-fat diet (HFD) to induce obesity, or chow as reference group. Next, obese HFD-fed mice were treated 12 weeks with (a) HFD + CA (CA), (b) HFD + PA (PA), or (c) a HFD-control group. PA reduced the body weight and systolic blood pressure, lowered fasting insulin levels, and reduced HFD-induced liver macrovesicular steatosis, hypertrophy, inflammation, and collagen content. PA increased the amount of glucose transporter type 1-positive cerebral blood vessels, reverted cerebral vasoreactivity, and HFD-induced effects in microstructural gray and white matter integrity of optic tract, and somatosensory and visual cortex. PA and CA also reverted HFD-induced effects in functional connectivity between visual and auditory cortex. However, PA mice were more anxious in open field, and showed reduced activity of synaptogenesis and glutamate regulators in hippocampus. Therefore, PA treatment should be used with caution even though positive metabolic, (cerebro) vascular, and brain structural and functional effects were observed.
Collapse
Affiliation(s)
- Anouk C Tengeler
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eveline Gart
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Maximilian Wiesmann
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ilse A C Arnoldussen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Marloes Hoogstad
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Pieter J Dederen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vivienne Verweij
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bram Geenen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Robert Kleemann
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Amanda J Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|