1
|
Lee D, Song M, Kwon S. Enhanced Natural Killer Cell Proliferation by Stress-Induced Feeder Cells. Biotechnol Bioeng 2025; 122:1190-1201. [PMID: 39930883 DOI: 10.1002/bit.28951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/02/2024] [Accepted: 01/28/2025] [Indexed: 04/08/2025]
Abstract
Natural killer (NK) cells, integral to the innate immune system, are notable in cell therapies because of their applicability in allogeneic treatments, distinguishing them from T cells typically employed in conventional cell therapies. However, their limited half-life (proliferative capability) poses a challenge for therapy. The limited half-life creates difficulties in obtaining a sufficient number of cells for in vitro adoptive therapy. Gene modification is commonly employed to address this limitation. However, due to concerns such as genetic instability and unintended gene expression, its suitability for long-term cultivation is uncertain. Consequently, safer alternatives are needed. We aimed to promote NK cell proliferation through feeder cells rather than genetic modification. These cells are designed to interact with NK cells without adverse effects, aiming to promote NK cell proliferation more safely. In our study, during the tailoring of feeder cells, we excluded genetic modification and instead applied chemical-based extracellular stress. The extracellular stress applied consisted of hypoxia and cytochalasin D. By treating the feeder cells with these stressors, we were able to inhibit feeder cell proliferation, enabling them to function more efficiently as feeder cells. Furthermore, we observed that the feeder cells subjected to extracellular stress exhibited upregulated expression of 4-1BBL, which enhances the 4-1BB/4-1BBL interaction with NK cells. The upregulated 4-1BBL binds to 4-1BB on the surface of NK cells, promoting their proliferation. Additionally, following coculture with feeder cells exposed to extracellular stress, we observed an upregulation of CD56 expression on the surface of NK cells. These CD56bright NK cells influence NK cell proliferation through enhanced cytokine release. We further validated this process under dynamic conditions where shear stress is applied, demonstrating that the feeder cell-mediated enhancement of NK cell proliferation is applicable under dynamic conditions such as those found in bioreactors.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Biological Engineering, Inha University, Incheon, Korea
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Korea
| | - Myeongkwan Song
- Department of Biological Engineering, Inha University, Incheon, Korea
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Korea
| | - Soonjo Kwon
- Department of Biological Engineering, Inha University, Incheon, Korea
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Korea
| |
Collapse
|
2
|
Lin MH, Hu LJ, Miller JS, Huang XJ, Zhao XY. CAR-NK cell therapy: a potential antiviral platform. Sci Bull (Beijing) 2025; 70:765-777. [PMID: 39837721 DOI: 10.1016/j.scib.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Viral infections persist as a significant cause of morbidity and mortality worldwide. Conventional therapeutic approaches often fall short in fully eliminating viral infections, primarily due to the emergence of drug resistance. Natural killer (NK) cells, one of the important members of the innate immune system, possess potent immunosurveillance and cytotoxic functions, thereby playing a crucial role in the host's defense against viral infections. Chimeric antigen receptor (CAR)-NK cell therapy has been developed to redirect the cytotoxic function of NK cells specifically towards virus-infected cells, further enhancing their cytotoxic efficacy. In this manuscript, we review the role of NK cells in antiviral infections and explore the mechanisms by which viruses evade immune detection. Subsequently, we focus on the optimization strategies for CAR-NK cell therapy to address existing limitations. Furthermore, we discuss significant advancements in CAR-NK cell therapy targeting viral infections, including those caused by severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus, hepatitis B virus, human cytomegalovirus, and Epstein-Barr virus.
Collapse
Affiliation(s)
- Ming-Hao Lin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Li-Juan Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, 55455, USA.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China.
| |
Collapse
|
3
|
Naidoo SJ, Naicker T. The Enigmatic Interplay of Interleukin-10 in the Synergy of HIV Infection Comorbid with Preeclampsia. Int J Mol Sci 2024; 25:9434. [PMID: 39273381 PMCID: PMC11395227 DOI: 10.3390/ijms25179434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Cytokines coordinate the intricate choreography of the immune system, directing cellular activities that mediate inflammation, pathogen defense, pathology and tissue repair. Within this spectrum, the anti-inflammatory prowess of interleukin-10 (IL-10) predominates in immune homeostasis. In normal pregnancy, the dynamic shift of IL-10 across trimesters maintains maternal immune tolerance ensuring fetal development and pregnancy success. Unravelling the dysregulation of IL-10 in pregnancy complications is vital, particularly in the heightened inflammatory condition of preeclampsia. Of note, a reduction in IL-10 levels contributes to endothelial dysfunction. In human immunodeficiency virus (HIV) infection, a complex interplay of IL-10 occurs, displaying a paradoxical paradigm of being immune-protective yet aiding viral persistence. Genetic variations in the IL-10 gene further modulate susceptibility to HIV infection and preeclampsia, albeit with nuanced effects across populations. This review outlines the conceptual framework underlying the role of IL-10 in the duality of normal pregnancy and preeclampsia together with HIV infection, thus highlighting its regulatory mechanisms and genetic influences. Synthesizing these findings in immune modulation presents avenues for therapeutic interventions in pregnancy complications comorbid with HIV infection.
Collapse
Affiliation(s)
| | - Thajasvarie Naicker
- Department of Optics and Imaging, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| |
Collapse
|
4
|
Gutiérrez-Iñiguez C, Cervantes-Rodríguez P, González-Hernández LA, Andrade-Villanueva JF, Gutiérrez-Silerio GY, Peña Rodríguez M, Rubio-Sánchez AX, García-Castillo E, Marín-Contreras ME, Del Toro-Arreola S, Bueno-Topete MR, Vega-Magaña N. Unraveling the non-fitness status of NK cells: Examining the NKp30 receptor and its isoforms distribution in HIV/HCV coinfected patients. Mol Immunol 2024; 172:9-16. [PMID: 38850777 DOI: 10.1016/j.molimm.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND HIV/HCV coinfection is associated with a rapid progression to liver damage. Specifically, NK cell population dysregulation is of particular interest, as these cells have been shown to block HCV replication effectively and have an anti-fibrogenic activity. The NKp30 receptor is linked to tumor cell lysis and has a crucial role during viral infections. In the present study, we determined the subpopulations of NK cells based on CD56 and CD16 expression, NKp30 receptor expression, its isoforms A, B, and C, along with the cytotoxicity molecules in patients with HIV/HCV. RESULTS evidenced by the APRI and FIB-4 indices, the HCV-infected patients presented greater liver damage than the HIV and HIV/HCV groups. The HCV group presented a decreased expression of NKp30 isoform A, and NK cell frequency was not different between groups; however, CD56brigth subpopulation, NKp30 receptor, and CD247 adaptor chain were decreased in HIV/HCV patients; further, we described increased levels of soluble IL-8, IL-10, IL-12, and IL-23 in the serum of HIV/HCV patients. CONCLUSIONS HCV and HIV/HCV patients have multiple parameters of non-fitness status in NK cells; awareness of these dysfunctional immunological parameters in HIV/HCV and HCV patients can elucidate possible novel therapeutics directed towards the improvement of NK cell fitness status, in order to improve their function against liver damage.
Collapse
Affiliation(s)
- Cecilia Gutiérrez-Iñiguez
- Maestría en Microbiología Médica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Paulina Cervantes-Rodríguez
- Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Guadalajara, Jalisco CP.44430, Mexico
| | - Luz Alicia González-Hernández
- Unidad de VIH del Antiguo Hospital Civil "Fray Antonio Alcalde", Guadalajara, Jalisco CP.44200, Mexico; Instituto de Investigación en Inmunodeficiencias y VIH (InIVIH), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44200, Mexico
| | | | - Gloria Yareli Gutiérrez-Silerio
- Laboratorio de endocrinología y nutrición, Facultad de Medicina de la Universidad Autónoma de Querétaro, Querétaro CP.76140, Mexico
| | - Marcela Peña Rodríguez
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes (LaDEER), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Alina Xcaret Rubio-Sánchez
- Maestría en Microbiología Médica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Estefania García-Castillo
- Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco CP.44340, Mexico
| | - María Eugenia Marín-Contreras
- Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco CP.44340, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas (IECD), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico Degenerativas (IECD), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Natali Vega-Magaña
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes (LaDEER), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico; Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Mexico.
| |
Collapse
|
5
|
Marin MLC, Rached MR, Monteiro SM, Kalil J, Abrao MS, Coelho V. Soluble MICA in endometriosis pathophysiology: Impairs NK cell degranulation and effector functions. Am J Reprod Immunol 2024; 91:e13830. [PMID: 38454570 DOI: 10.1111/aji.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
PROBLEM Endometriosis exhibits several immune dysfunctions, including deficient natural killer (NK) cell cytotoxicity. MICA (MHC class I chain-related molecule A) is induced by biological stress and soluble MICA (sMICA) negatively modulates the expression of the activating receptor, NKG2D, reducing NK cells activities. We investigated the involvement of soluble MICA in NK cell-deficient activity in endometriosis. METHODS OF STUDY sMICA levels (serum and peritoneal fluid-PF) were evaluated by ELISA. Circulating NK cell subsets quantification and its NKG2D receptor expression, NK cell cytotoxicity and CD107a, IFN-γ and IL-10 expressions by NK cells stimulated with K562 cells were determined by flow cytometry. RESULTS We found higher sMICA levels (serum and PF) in endometriosis, especially in advanced and deep endometriosis. Endometriosis presented lower percentages of CD56dim CD16+ cytotoxic cells and impaired NK cell responses upon stimulation, resulting in lower CD107a and IFN-γ expressions, and deficient NK cell cytotoxicity. NK cell stimulation in the MICA-blocked condition (mimicking the effect of sMICA) showed decreased cytotoxicity in initial endometriosis stages and the emergence of a negative correlation between CD107a expression and sMICA levels. CONCLUSIONS We suggest that soluble MICA is a potential player in endometriosis pathophysiology with involvement in disease progression and severity, contributing to NK cell impaired IFN-γ response and degranulation. NK cell compartment exhibits multiple perturbations, including quantitative deficiency and impaired cytotoxicity, contributing to inadequate elimination of ectopic endometrial tissue.
Collapse
Affiliation(s)
- Maria Lucia Carnevale Marin
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Laboratorio de Investigaçao Medica 19 (LIM-19), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marici Rached Rached
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sandra Maria Monteiro
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Jorge Kalil
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Laboratorio de Investigaçao Medica 19 (LIM-19), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Instituto de Investigacao em Imunologia, Instituto Nacional de Ciencia e Tecnologia (iii-INCT), Sao Paulo, SP, Brazil
- Divisao de Imunologia Clinica e Alergia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Mauricio Simoes Abrao
- Divisao de Imunologia Clinica e Alergia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Departamento de Ginecologia, BP - A Beneficencia Portuguesa de Sao Paulo, Sao Paulo, SP, Brazil
| | - Verônica Coelho
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Instituto de Investigacao em Imunologia, Instituto Nacional de Ciencia e Tecnologia (iii-INCT), Sao Paulo, SP, Brazil
- Divisao de Imunologia Clinica e Alergia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
6
|
Heidarnejad F, Bolhassani A, Ajdary S, Milani A, Sadeghi SA. Investigation of Immunostimulatory Effects of IFN-γ Cytokine and CD40 Ligand Costimulatory Molecule for Development of HIV-1 Therapeutic Vaccine Candidate. Adv Biol (Weinh) 2024; 8:e2300402. [PMID: 37840398 DOI: 10.1002/adbi.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Indexed: 10/17/2023]
Abstract
The most crucial disadvantage of DNA-based vaccines is their low immunogenicity; therefore, finding an effectual adjuvant is essential for their development. Herein, immunostimulatory effects of IFNγ cytokine and a CD40 ligand (CD40L) costimulatory molecule are evaluated as combined with an antigen, and also linked to an antigen in mice. For this purpose, after preparation of the HIV-1 Nef, IFNγ, and CD40L DNA constructs, and also their recombinant protein in an Escherichia coli expression system, nine groups of female BALB/c mice are immunized with different regimens of DNA constructs. About 3 weeks and also 3 months after the last injection, humoral and cellular immune responses are assessed in mice sera and splenocytes. Additionally, mice splenocytes are exposed to single-cycle replicable (SCR) HIV-1 virions for evaluating their potency in the secretion of cytokines in vitro. The data indicate that the linkage of IFNγ and CD40L to Nef antigen can significantly induce the Th-1 pathway and activate cytotoxic T lymphocytes compared to other regimens. Moreover, groups receiving the IFNγ-Nef and CD40L-Nef fusion DNA constructs show higher secretion of IFNγ and TNF-α from virion-infected lymphocytes than other groups. Therefore, the IFNγ-Nef and CD40L-Nef fusion DNA constructs are suggested to be a potential option for development of an efficient HIV-1 vaccine.
Collapse
Affiliation(s)
- Fatemeh Heidarnejad
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 1316943551, Iran
- Iranian Comprehensive Hemophilia Care Center, Tehran, 1415863675, Iran
| | - Seyed Amir Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
7
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Ka’e AC, Nanfack AJ, Ambada G, Santoro MM, Takou D, Semengue ENJ, Nka AD, Bala MLM, Endougou ON, Elong E, Beloumou G, Djupsa S, Gouissi DH, Fainguem N, Tchouaket MCT, Sosso SM, Kesseng D, Ndongo FA, Sonela N, Kamta ACL, Tchidjou HK, Ndomgue T, Ndiang STM, Nlend AEN, Nkenfou CN, Montesano C, Halle-Ekane GE, Cappelli G, Tiemessen CT, Colizzi V, Ceccherini-Silberstein F, Perno CF, Fokam J. Inflammatory profile of vertically HIV-1 infected adolescents receiving ART in Cameroon: a contribution toward optimal pediatric HIV control strategies. Front Immunol 2023; 14:1239877. [PMID: 37646023 PMCID: PMC10461471 DOI: 10.3389/fimmu.2023.1239877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023] Open
Abstract
Antiretroviral therapy (ART) has improved the lifespan of people living with HIV. However, their immune system remains in a state of sustained activation/inflammation, which favors viral replication and depletion of helper T-cells with varying profiles according to ART-response. We herein sought to ascertain the inflammatory profile of adolescents living with perinatal HIV-1 infection (ALPHI) receiving ART in an African context. In this cross-sectional and comparative study among ART-experienced ALPHI in Yaoundé-Cameroon, HIV-1 RNA was measured by Abbott Real-time PCR; CD4 cells were enumerated using flow cytometry; serum cytokines were measured by ELISA; HIV-1 proviral DNA was genotyped by Sanger-sequencing; and archived drug resistance mutations (ADRMs) were interpreted using Stanford HIVdb.v9.0.1. Overall, 73 adolescents were enrolled (60 ALPHI and 13 HIV-1 negative peers) aged 15 (13-18) years; 60.00% were female. ART median duration was 92 (46-123) months; median viral load was 3.99 (3.17-4.66) RNA Log10 (copies)/mL and median CD4 count was 326 (201-654) cells/mm3. As compared to HIV-negative adolescents, TNFα was highly expressed among ALPHI (p<0.01). Following a virological response, inflammatory cytokines (IFNγ and IL-12), anti-inflammatory cytokines (IL-4 and IL-10) and inflammation-related cytokines (IL-6 and IL-1β) were highly expressed with viral suppression (VS) vs. virological failure (VF), while the chemokine CCL3 was highly expressed with VF (p<0.01). Regarding the immune response, the inflammatory cytokine TNFα was highly expressed in those that are immunocompetent (CD4≥500 cell/mm3) vs. immunocompromised (CD4<500 cell/mm3), p ≤ 0.01; while chemokine CCL2 was highly expressed in the immunocompromised (p<0.05). In the presence of ADRMs, IL-4 and CCL3 were highly expressed (p=0.027 and p=0.043 respectively). Among ART-experienced ALPHI in Cameroon, the TNFα cytokine was found to be an inflammatory marker of HIV infection; IFNγ, IL-1β, IL-6, and IL-12 are potential immunological markers of VS and targeting these cytokines in addition to antiretroviral drugs may improve management. Moreover, CCL3 and CCL2 are possible predictors of VF and/or being immunocompromised and could serve as surrogates of poor ART response.
Collapse
Affiliation(s)
- Aude Christelle Ka’e
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Aubin Joseph Nanfack
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Georgia Ambada
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | | | - Desire Takou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | | | - Alex Durand Nka
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Marie Laure Mpouel Bala
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Orphelie Ndoh Endougou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- School of Health Sciences, Catholic University of Central Africa, Yaounde, Cameroon
| | - Elise Elong
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Grace Beloumou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Sandrine Djupsa
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Davy Hyacinthe Gouissi
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Nadine Fainguem
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Michel Carlos Tommo Tchouaket
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- School of Health Sciences, Catholic University of Central Africa, Yaounde, Cameroon
| | - Samuel Martin Sosso
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Daniel Kesseng
- Mother and Child Centre, Chantal BIYA Foundation, Yaounde, Cameroon
| | - Francis Ateba Ndongo
- Mother and Child Centre, Chantal BIYA Foundation, Yaounde, Cameroon
- Division of Operational Health Research, Ministry of Public Health, Yaounde, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Nelson Sonela
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Arnaud Cedric Lacmago Kamta
- Elisabeth Glaser Pediatric AIDS Foundation (EGPAF), Country-office, Yaoundé, Cameroon
- HIV Management Unit, Mfou District Hospital, Mfou, Cameroon
| | | | - Therese Ndomgue
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | | | | | - Celine Nguefeu Nkenfou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
| | - Carla Montesano
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Giulia Cappelli
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- National Research Council, Rome, Italy
| | - Caroline T. Tiemessen
- National Institute for Communicable Diseases and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vittorio Colizzi
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Faculty of Science and Technology, Evangelic University of Cameroon, Bandjoun, Cameroon
| | | | - Carlo-Federico Perno
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- Bambino Gesu Pediactric Hospital, Rome, Italy
| | - Joseph Fokam
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaounde, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Faculty of Health Sciences, University of Buea, Buea, Cameroon
| |
Collapse
|
9
|
Maksoud S, El Hokayem J. The cytokine/chemokine response in Leishmania/HIV infection and co-infection. Heliyon 2023; 9:e15055. [PMID: 37082641 PMCID: PMC10112040 DOI: 10.1016/j.heliyon.2023.e15055] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
HIV infection progressively weakens the immune system by infecting and destroying cells involved in host defense. Viral infection symptoms are generated and aggravated as immunosuppression progresses, triggered by the presence of opportunistic infections: among these is leishmaniasis, a disease caused by the intracellular parasite Leishmania. The incidence of this co-infection is growing progressively due to the geographic distribution overlap. Both pathogens infect monocytes/macrophages and dendritic cells, although they can also modulate the activity of other cells without co-infecting, such as T and B lymphocytes. Leishmania/HIV co-infection could be described as a system comprising modulations of cell surface molecule expression, production of soluble factors, and intracellular death activities, leading ultimately to the potentiation of infectivity, replication, and spread of both pathogens. This review describes the cytokine/chemokine response in Leishmania/HIV infection and co-infection, discussing how these molecules modulate the course of the disease and analyzing the therapeutic potential of targeting this network.
Collapse
|
10
|
Wang F, Cui Y, He D, Gong L, Liang H. Natural killer cells in sepsis: Friends or foes? Front Immunol 2023; 14:1101918. [PMID: 36776839 PMCID: PMC9909201 DOI: 10.3389/fimmu.2023.1101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Sepsis is one of the major causes of death in the hospital worldwide. The pathology of sepsis is tightly associated with dysregulation of innate immune responses. The contribution of macrophages, neutrophils, and dendritic cells to sepsis is well documented, whereas the role of natural killer (NK) cells, which are critical innate lymphoid lineage cells, remains unclear. In some studies, the activation of NK cells has been reported as a risk factor leading to severe organ damage or death. In sharp contrast, some other studies revealed that triggering NK cell activity contributes to alleviating sepsis. In all, although there are several reports on NK cells in sepsis, whether they exert detrimental or protective effects remains unclear. Here, we will review the available experimental and clinical studies about the opposing roles of NK cells in sepsis, and we will discuss the prospects for NK cell-based immunotherapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yiqin Cui
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongmei He
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lisha Gong
- School of Laboratory Medicine and Technology, Harbin Medical University, Daqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
11
|
Korenevsky AV, Gert TN, Berezkina ME, Sinyavin SA, Mikhailova VA, Markova KL, Simbirtsev AS, Selkov SA, Sokolov DI. Protein Fractions of Natural Killer Cell Lysates Affect the Phenotype, Proliferation and Migration of Endothelial Cells in vitro. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
TAO Z, WANG J, CHEN X, LI Y, YAN Y, ZHANG A, ZOU W, LIU Y. Wenshen Jianpi recipe induced immune reconstruction and redistribution of natural killer cell subsets in immunological non-responders of human immunodeficiency virus/acquired immune deficiency syndrome: a randomized controlled trial. J TRADIT CHIN MED 2022; 42:795-802. [PMID: 36083488 PMCID: PMC9924785 DOI: 10.19852/j.cnki.jtcm.20220519.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To evaluate the effects of the Wenshen Jianpi recipe (, WJR) on immune reconstruction and natural killer (NK) cells in immunological non-responders (INRs) of people living with human immunodeficiency virus (HIV) (PLWH) and propose new therapeutic strategies for HIV. METHODS Based on Traditional Chinese Medicine treatment principle "invigorating and warming in the spleen and kidneys", WJR combined with antire-troviral therapy (ART) therapy was performed in a randomized, double-blind, placebo-controlled study of 60 patients with non-responders. The randomized process was executed by the Clinical Evaluation Center of China Academy of Chinese Medical Sciences. Sixty patients who met the inclusion criteria obtained random numbers (that is the drug number) was randomly divided into a treatment group and a placebo control group according to a 1∶1 ratio. CD4+T cell counts and natural killer (NK) cells counts were evaluated at baseline and 12-week, 24-week follow-ups. RESULTS Four participants received random numbers and did not enter the group due to the patient's own reasons. A total of 56 patients were enrolled, including 28 in the treatment group and 28 in the control group. CD4+T cell counts in the treatment group were significantly increased at week 24 ( = 0.01 < 0.05), which were significantly higher than those in the control group (= 0.01 < 0.05). Although no significant differences were observed between two groups, the CD56briCD16- NK cell counts in the treatment group were significantly increased after duration. and CD56dimCD16+ NK cell counts in the treatment group were significantly higher than those in the control group after 24 weeks of treatment (= 0.025 < 0.05). As compared with the control group, the treatment group had significantly lower CD56negCD16+ NK cell counts after 24 weeks of treatment (= 0.023 < 0.05). CONCLUSIONS WJR promotes the immune reconstruction of INRs and redistribution of NK cell subsets, notably decreasing CD56negCD16+ NK cell counts in INRs. However, the redistribution of NK cell subsets is not beneficial for immune reconstruction in INRs. Further large-scale RCTs are required to evaluate the effect of WJR on immune recovery in INRs and decipher the underlying mechanism.
Collapse
Affiliation(s)
- Zhuang TAO
- 1 Research Center of AIDS Treatment with Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian WANG
- 2 Research Center of AIDS Treatment with Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin CHEN
- 3 Department of Integrated Traditional Chinese and Wetern Medicine, Kunming Hospital of Traditional Chinese Medicine, Kunming 650000, China
| | - Yonghong LI
- 4 Department of Infection, No.6 People's Hospital of Shenyang City, Shenyang 110006, China
| | - Yuguang YAN
- 4 Department of Infection, No.6 People's Hospital of Shenyang City, Shenyang 110006, China
| | - Ao ZHANG
- 5 University of Chinese Academy of SoCIal SCIences, Beijing, 100102, China
| | - Wen ZOU
- 2 Research Center of AIDS Treatment with Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- ZOU Wen, Research Center of AIDS Treatment with Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ying LIU
- 2 Research Center of AIDS Treatment with Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- LIU Ying, Research Center of AIDS Treatment with Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China. Telephone: +86-13552252730; +86-13021985109
| |
Collapse
|
13
|
Witalisz-Siepracka A, Klein K, Zdársky B, Stoiber D. The Multifaceted Role of STAT3 in NK-Cell Tumor Surveillance. Front Immunol 2022; 13:947568. [PMID: 35865518 PMCID: PMC9294167 DOI: 10.3389/fimmu.2022.947568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a member of the Janus kinase (JAK)-STAT pathway, which is one of the key pathways contributing to cancer. STAT3 regulates transcription downstream of many cytokines including interleukin (IL)-6 and IL-10. In cancer, STAT3 is mainly described as a tumor promoter driving tumor cell proliferation, resistance to apoptosis, angiogenesis and metastasis and aberrant activation of STAT3 is associated with poor prognosis. STAT3 is also an important driver of immune evasion. Among many other immunosuppressive mechanisms, STAT3 aids tumor cells to escape natural killer (NK) cell-mediated immune surveillance. NK cells are innate lymphocytes, which can directly kill malignant cells but also regulate adaptive immune responses and contribute to the composition of the tumor microenvironment. The inborn ability to lyse transformed cells renders NK cells an attractive tool for cancer immunotherapy. Here, we provide an overview of the role of STAT3 in the dynamic interplay between NK cells and tumor cells. On the one hand, we summarize the current knowledge on how tumor cell-intrinsic STAT3 drives the evasion from NK cells. On the other hand, we describe the multiple functions of STAT3 in regulating NK-cell cytotoxicity, cytokine production and their anti-tumor responses in vivo. In light of the ongoing research on STAT3 inhibitors, we also discuss how targeting STAT3 would affect the two arms of STAT3-dependent regulation of NK cell-mediated anti-tumor immunity. Understanding the complexity of this interplay in the tumor microenvironment is crucial for future implementation of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Agnieszka Witalisz-Siepracka
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Bernhard Zdársky
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
- *Correspondence: Dagmar Stoiber,
| |
Collapse
|
14
|
Westhaver LP, Nersesian S, Nelson A, MacLean LK, Carter EB, Rowter D, Wang J, Gala-Lopez BL, Stadnyk AW, Johnston B, Boudreau JE. Mitochondrial damage-associated molecular patterns trigger arginase-dependent lymphocyte immunoregulation. Cell Rep 2022; 39:110847. [PMID: 35613582 DOI: 10.1016/j.celrep.2022.110847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/25/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
Tissue damage leads to loss of cellular and mitochondrial membrane integrity and release of damage-associated molecular patterns, including those of mitochondrial origin (mitoDAMPs). Here, we describe the lymphocyte response to mitoDAMPs. Using primary cells from mice and human donors, we demonstrate that natural killer (NK) cells and T cells adopt regulatory phenotypes and functions in response to mitoDAMPs. NK cell-mediated cytotoxicity, interferon gamma (IFN-γ) production, T cell proliferation, and in vivo anti-viral T cell activation are all interrupted in the presence of mitoDAMPs or mitoDAMP-rich irradiated cells in in vitro and in vivo assays. Mass spectrometry analysis of mitoDAMPs demonstrates that arginase and products of its enzymatic activity are prevalent in mitoDAMP preparations. Functional validation by arginase inhibition and/or arginine add-back shows that arginine depletion is responsible for the alteration in immunologic polarity. We conclude that lymphocyte responses to mitoDAMPs reflect a highly conserved mechanism that regulates inflammation in response to tissue injury.
Collapse
Affiliation(s)
| | - Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Leah K MacLean
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Derek Rowter
- CORES Facility, Dalhousie University, Halifax, NS, Canada
| | - Jun Wang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada; Department of Pediatrics, Dalhousie University, Halifax, NS, Canada; Canadian Center for Vaccinology, IWK Health Centre, Halifax, NS, Canada
| | - Boris L Gala-Lopez
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Andrew W Stadnyk
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada; Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Brent Johnston
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Jeanette E Boudreau
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada; Canadian Center for Vaccinology, IWK Health Centre, Halifax, NS, Canada.
| |
Collapse
|
15
|
Sun Y, Zhou J, Jiang Y. Negative Regulation and Protective Function of Natural Killer Cells in HIV Infection: Two Sides of a Coin. Front Immunol 2022; 13:842831. [PMID: 35320945 PMCID: PMC8936085 DOI: 10.3389/fimmu.2022.842831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells play an important immunologic role, targeting tumors and virus-infected cells; however, NK cells do not impede the progression of human immunodeficiency virus (HIV) infection. In HIV infection, NK cells exhibit impaired functions and negatively regulate other immune cell responses, although NK cells can kill HIV-infected cells and thereby suppress HIV replication. Considerable recent research has emerged regarding NK cells in the areas of immune checkpoints, negative regulation, antibody-dependent cell-mediated cytotoxicity and HIV reservoirs during HIV infection; however, no overall summary of these factors is available. This review focuses on several important aspects of NK cells in relation to HIV infection, including changes in NK cell count, subpopulations, and immune checkpoints, as well as abnormalities in NK cell functions and NK cell negative regulation. The protective function of NK cells in inhibiting HIV replication to reduce the viral reservoir and approaches for enhancing NK cell functions are also summarized.
Collapse
|
16
|
Connell SJ, Jabbari A. The current state of knowledge of the immune ecosystem in alopecia areata. Autoimmun Rev 2022; 21:103061. [PMID: 35151885 PMCID: PMC9018517 DOI: 10.1016/j.autrev.2022.103061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Alopecia areata (AA) is an autoimmune disease that affects approximately 2% of the general population. Patients with AA most commonly present with one or more patches of hair loss on the scalp in defined circular areas. A fraction of patients progress to more severe forms of the disease, in some cases with involvement of all body surfaces. The healthy anagen stage hair follicle is considered an immune privileged site, described as an environment that suppresses inflammatory immune responses. However, in AA, this immune privileged state collapses and marks the hair follicle as a target for the immune system, resulting in peri- and intrafollicular infiltration by lymphocytes. The complexity of the inflammatory ecosystem of the immune response to the hair follicle, and the relationships between the cellular and soluble participants, in AA remains incompletely understood. Many studies have demonstrated the presence of various immune cells around diseased hair follicles; however, often little is known about their respective contributions to AA pathogenesis. Furthering our understanding of the mechanisms of disease in AA is essential for the novel identification of targeted therapeutics that are efficacious and have few unintended effects.
Collapse
|
17
|
Lievin R, Hendel-Chavez H, Baldé A, Lancar R, Algarte-Génin M, Krzysiek R, Costagliola D, Assoumou L, Taoufik Y, Besson C. Increased Production of B-Cell Activating Cytokines and Altered Peripheral B-Cell Subset Distribution during HIV-Related Classical Hodgkin Lymphoma. Cancers (Basel) 2021; 14:cancers14010128. [PMID: 35008292 PMCID: PMC8750095 DOI: 10.3390/cancers14010128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Patients with HIV are at high risk of developing Hodgkin’s lymphoma. This is potentially due to alterations in blood circulating B-lymphocytes and their activating cytokines. We analyzed the distribution of circulating B-lymphocytes and the level of the activating cytokines IL6, IL10 and BAFF in 38 patients with HIV-related Hodgkin’s lymphoma during a 2-year follow-up. We also compared their characteristics at diagnosis with (1) pre-diagnosis serum samples and (2) samples from control HIV-infected subjects without lymphoma. We found an increase in activating cytokines in cases compared to controls. The level of activating cytokines increased in advanced lymphoma. It decreased over time during follow-up. B-lymphocytic count was similar between patients and controls, but their subset distribution differed. There was an overrepresentation of naive B-lymphocytes over memory B-lymphocytes in HIV-associated Hodgkin lymphoma patients, more pronounced in those with advanced lymphoma. Follow-up showed an increase in B-lymphocytic count with an even greater proportion of naive B-cells. Together this suggests that in HIV-infected patients, Hodgkin lymphoma is associated with an altered blood distribution of B-lymphocytic subsets and an increased production of activating cytokines. This environment may contribute to the process of tumorigenesis. Abstract Classical Hodgkin Lymphoma incidence increases in HIV-1-infected patients (HIV-cHL). HIV infection is associated with higher B-cell activation. Here, in 38 HIV-cHL patients from the French cohort ANRS-CO16 Lymphovir, we examined longitudinally over 24 months the serum levels of the B-cell activating cytokines IL10, IL6, and BAFF, and blood distribution of B-cell subsets. Fourteen HIV-cHL patients were also compared to matched HIV-infected controls without cHL. IL10, IL6, and BAFF levels were higher in HIV-cHL patients than in controls (p < 0.0001, p = 0.002, and p < 0.0001, respectively). Cytokine levels increased in patients with advanced-stage lymphoma compared to those with limited-stage (p = 0.002, p = 0.03, and p = 0.01, respectively). Cytokine levels significantly decreased following HIV-cHL diagnosis and treatment. Blood counts of whole B-cells were similar in HIV-cHL patients and controls, but the distribution of B-cell subsets was different with higher ratios of naive B-cells over memory B-cells in HIV-cHL patients. Blood accumulation of naive B-cells was more marked in patients with advanced cHL stages (p = 0.06). During the follow-up, total B-cell counts increased (p < 0.0001), and the proportion of naive B-cells increased further (p = 0.04). Together the results suggest that in HIV-infected patients, cHL is associated with a particular B-cell-related environment that includes increased production of B-cell-activating cytokines and altered peripheral distribution of B-cell subsets. This B-cell-related environment may fuel the process of tumorigenesis.
Collapse
Affiliation(s)
- Raphael Lievin
- Department of Hematology and Oncology, Hospital of Versailles, 78150 Le Chesnay, France;
| | - Houria Hendel-Chavez
- Service d’Hématologie et Immunologie Biologique, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France; (H.H.-C.); (R.K.); (Y.T.)
- INSERM 1186, Institut Gustave Roussy, 94805 Villejuif, France
| | - Aliou Baldé
- Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, Sorbonne Université, INSERM UMR-S 1136, 75646 Paris, France; (A.B.); (R.L.); (M.A.-G.); (D.C.); (L.A.)
| | - Rémi Lancar
- Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, Sorbonne Université, INSERM UMR-S 1136, 75646 Paris, France; (A.B.); (R.L.); (M.A.-G.); (D.C.); (L.A.)
| | - Michèle Algarte-Génin
- Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, Sorbonne Université, INSERM UMR-S 1136, 75646 Paris, France; (A.B.); (R.L.); (M.A.-G.); (D.C.); (L.A.)
| | - Roman Krzysiek
- Service d’Hématologie et Immunologie Biologique, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France; (H.H.-C.); (R.K.); (Y.T.)
- INSERM 1186, Institut Gustave Roussy, 94805 Villejuif, France
| | - Dominique Costagliola
- Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, Sorbonne Université, INSERM UMR-S 1136, 75646 Paris, France; (A.B.); (R.L.); (M.A.-G.); (D.C.); (L.A.)
| | - Lambert Assoumou
- Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, Sorbonne Université, INSERM UMR-S 1136, 75646 Paris, France; (A.B.); (R.L.); (M.A.-G.); (D.C.); (L.A.)
| | - Yassine Taoufik
- Service d’Hématologie et Immunologie Biologique, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, 94270 Le Kremlin-Bicêtre, France; (H.H.-C.); (R.K.); (Y.T.)
- INSERM 1186, Institut Gustave Roussy, 94805 Villejuif, France
| | - Caroline Besson
- Department of Hematology and Oncology, Hospital of Versailles, 78150 Le Chesnay, France;
- Université Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 78180 Montigny le Bretonneux, France
- Centre for Research in Epidemiology and Population Health, INSERM Unit 1018, 94800 Villejuif, France
- Correspondence:
| |
Collapse
|
18
|
Sun H, Wu Y, Zhang Y, Ni B. IL-10-Producing ILCs: Molecular Mechanisms and Disease Relevance. Front Immunol 2021; 12:650200. [PMID: 33859642 PMCID: PMC8042445 DOI: 10.3389/fimmu.2021.650200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are mainly composed of natural killer (NK) cells and helper-like lymphoid cells, which play a vital role in maintaining tissue homeostasis, enhancing adaptive immunity and regulating tissue inflammation. Alteration of the distribution and function of ILCs subgroups are closely related to the pathogenesis of inflammatory diseases and cancers. Interleukin-10 (IL-10) is a highly pleiotropic cytokine, and can be secreted by several cell types, among of which ILCs are recently verified to be a key source of IL-10. So far, the stable production of IL-10 can only be observed in certain NK subsets and ILC2s. Though the regulatory mechanisms for ILCs to produce IL-10 are pivotal for understanding ILCs and potential intervenes of diseases, which however is largely unknown yet. The published studies show that ILCs do not share exactly the same mechanisms for IL-10 production with helper T cells. In this review, the molecular mechanisms regulating IL-10 production in NK cells and ILC2s are discussed in details for the first time, and the role of IL-10-producing ILCs in diseases such as infections, allergies, and cancers are summarized.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Chongqing International Institute for Immunology, Chongqing, China
| | - Yi Zhang
- Chongqing International Institute for Immunology, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
19
|
Slattery K, Woods E, Zaiatz-Bittencourt V, Marks S, Chew S, Conroy M, Goggin C, MacEochagain C, Kennedy J, Lucas S, Finlay DK, Gardiner CM. TGFβ drives NK cell metabolic dysfunction in human metastatic breast cancer. J Immunother Cancer 2021; 9:jitc-2020-002044. [PMID: 33568351 PMCID: PMC7878131 DOI: 10.1136/jitc-2020-002044] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Background Natural killer (NK) cells provide important immune protection from cancer and are a key requirement for particular immunotherapies. There is accumulating evidence that NK cells become dysfunctional during cancer. Overcoming NK cell exhaustion would be an important step to allow them to function optimally in a range of NK cell therapies, including those that depend on autologos circulating NK cells. We have previously demonstrated that NK cells undergo a normal metabolic reprogramming in response to cytokine activation and that this is required for optimal function. The objective of this work was to investigate if cellular metabolism of circulating NK cells is dysregulated in patients with metastatic breast cancer and if so, to gain insights into potential mechanisms underpinning this. Such discoveries would provide important insights into how to unleash the full activity of NK cells for maximum immunotherapy output. Methods Single-cell analysis, metabolic flux and confocal analysis of NK cells from patients with metastatic breast cancer and healthy controls Results In addition to reduced interferon-γ production and cytotoxicity, peripheral blood NK cells from patients had clear metabolic deficits including reduced glycolysis and oxidative phosphorylation. There were also distinct morphologically alterations in the mitochondria with increased mitochondrial fragmentation observed. Transforminggrowth factor-β (TGFβ) was identified as a key driver of this phenotype as blocking its activity reversed many metabolic and functional readouts. Expression of glycoprotein-A repetitions predominant (GARP) and latency associated peptide (LAP), which are involved with a novel TGFβ processing pathway, was increased on NK cells from some patients. Blocking the GARP–TGFβ axis recapitulated the effects of TGFβ neutralization, highlighting GARP as a novel NK cell immunotherapy target for the first time. Conclusions TGFβ contributes to metabolic dysfunction of circulating NK cells in patients with metastatic breast cancer. Blocking TGFβ and/or GARP can restore NK cell metabolism and function and is an important target for improving NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Elena Woods
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Sam Marks
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | - Sonya Chew
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | - Michael Conroy
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | | | | | - John Kennedy
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | - Sophie Lucas
- Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Wang S, Zhang J, Zhang Y, Yang J, Wang L, Qi Y, Han X, Zhou X, Miao F, Chen T, Wang Y, Zhang F, Zhang S, Hu R. Cytokine Storm in Domestic Pigs Induced by Infection of Virulent African Swine Fever Virus. Front Vet Sci 2021; 7:601641. [PMID: 33553280 PMCID: PMC7862125 DOI: 10.3389/fvets.2020.601641] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/10/2020] [Indexed: 01/03/2023] Open
Abstract
African swine fever, caused by African swine fever virus (ASFV), is a highly contagious hemorrhagic disease of domestic pigs. The current continent-wide pandemic has persisted for over 10 years, and its economy-devastating effect was highlighted after spreading to China, which possesses half of the world pig industry. So far, development of an effective and safe vaccine has not been finished largely due to the knowledge gaps in pathogenesis and immunology, particularly the role of cytokines in the host's immune response. Therefore, we performed experiments in domestic pigs to analyze the kinetics of representative circulating interferons (IFNs), interleukins (ILs), growth factors, tumor necrosis factors (TNFs), and chemokines induced by infection of type II virulent ASFV SY18. Pigs infected with this Chinese prototypical isolate developed severe clinical manifestations mostly from 3 days post inoculation (dpi) and died from 7 to 8 dpi. Serum analysis revealed a trend of robust and sustained elevation of pro-inflammatory cytokines including TNF-α, IFN-α, IL-1β, IL-6, IL-8, IL-12, IL-18, RANTES (regulated upon activation, normal T cell expressed and secreted), and IFN-γ-induced protein 10 (IP-10) from 3 dpi, but not the anti-inflammatory cytokines IL-10 and transforming growth factor-β (TGF-β). Moreover, secondary drastic increase of the levels of TNF-α, IL-1β, IL-6, and IL-8, as well as elevated IL-10, was observed at the terminal phase of infection. This pattern of cytokine secretion clearly drew an image of a typical cytokine storm characterized by delayed and dysregulated initiation of the secretion of pro-inflammatory cytokine and imbalanced pro- and anti-inflammatory response, which paved a way for further understanding of the molecular basis of ASFV pathogenesis.
Collapse
Affiliation(s)
- Shuchao Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Jingyuan Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China.,College of Life Sciences, University of Ningxia, Yinchuan, China
| | - Yanyan Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Jinjin Yang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Lidong Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Yu Qi
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Xun Han
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Xintao Zhou
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China.,College of Life Sciences, University of Ningxia, Yinchuan, China
| | - Faming Miao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Teng Chen
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Ying Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Fei Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Shoufeng Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Rongliang Hu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| |
Collapse
|
21
|
Clark SE, Schmidt RL, Aguilera ER, Lenz LL. IL-10-producing NK cells exacerbate sublethal Streptococcus pneumoniae infection in the lung. Transl Res 2020; 226:70-82. [PMID: 32634590 PMCID: PMC7572800 DOI: 10.1016/j.trsl.2020.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Lung inflammation is tightly controlled to balance microbial clearance with the tissue damage that accompanies this response. Bacterial pathogens including Streptococcus pneumoniae (S. pneumoniae) modulate immune regulation by promoting secretion of the anti-inflammatory cytokine IL-10. The important cellular sources of IL-10 that impact protection against different bacterial infections are not well characterized. We find that S. pneumoniaeactivates IL-10 secretion from natural killer (NK) cells in the lung, which restrict host protection in a mouse model of sublethal infection. Direct transfer of wild-type NK cells into the lungs of IL-10-deficient mice drives bacterial expansion, identifying NK cells as a critical source of IL-10 promoting S. pneumoniae infection. The S. pneumoniae virulence protein Spr1875 was found to elicit NK cell IL-10 production in purified cells and in the lungs of live animals. These findings reveal therapeutic targets to combat bacterial-driven immune regulation in the lung.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Rebecca L Schmidt
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado; Department of Biology and Chemistry, Upper Iowa University, Fayette, Iowa
| | - Elizabeth R Aguilera
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Laurel L Lenz
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
22
|
Marcon F, Zuo J, Pearce H, Nicol S, Margielewska-Davies S, Farhat M, Mahon B, Middleton G, Brown R, Roberts KJ, Moss P. NK cells in pancreatic cancer demonstrate impaired cytotoxicity and a regulatory IL-10 phenotype. Oncoimmunology 2020; 9:1845424. [PMID: 33299656 PMCID: PMC7714501 DOI: 10.1080/2162402x.2020.1845424] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common tumor subtypes and remains associated with very poor survival. T cell infiltration into tumor tissue is associated with improved clinical outcome but little is known regarding the potential role of NK cells in disease control. Here we analyze the phenotype and function of NK cells in the blood and tumor tissue from patients with PDAC. Peripheral NK cells are present in normal numbers but display a CD16hiCD57hi phenotype with marked downregulation of NKG2D. Importantly, these cells demonstrate reduced cytotoxic activity and low levels of IFN-γ expression but instead produce high levels of intracellular IL-10, an immunoregulatory cytokine found at increased levels in the blood of PDAC patients. In contrast, NK cells are largely excluded from tumor tissue where they display strong downregulation of both CD16 and CD57, a phenotype that was recapitulated in primary NK cells following co-culture with PDAC organoids. Moreover, expression of activatory proteins, including DNAM-1 and NKP30, was markedly suppressed and the DNAM-1 ligand PVR was strongly expressed on tumor cells. As such, in situ and peripheral NK cells display differential features in patients with PDAC and indicate local and systemic mechanisms by which the tumor can evade immune control. These findings offer a number of potential options for NK-based immunotherapy in the management of patients with PDAC.
Collapse
Affiliation(s)
- Francesca Marcon
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham;UK
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samantha Nicol
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sandra Margielewska-Davies
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Mustafa Farhat
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Brinder Mahon
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham;UK
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rachel Brown
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham;UK
| | - Keith J. Roberts
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham;UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Guloyan V, Oganesian B, Baghdasaryan N, Yeh C, Singh M, Guilford F, Ting YS, Venketaraman V. Glutathione Supplementation as an Adjunctive Therapy in COVID-19. Antioxidants (Basel) 2020; 9:antiox9100914. [PMID: 32992775 PMCID: PMC7601802 DOI: 10.3390/antiox9100914] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 01/08/2023] Open
Abstract
Morbidity and mortality of coronavirus disease 2019 (COVID-19) are due in large part to severe cytokine storm and hypercoagulable state brought on by dysregulated host-inflammatory immune response, ultimately leading to multi-organ failure. Exacerbated oxidative stress caused by increased levels of interleukin (IL)-6 and tumor necrosis factor α (TNF-α) along with decreased levels of interferon α and interferon β (IFN-α, IFN-β) are mainly believed to drive the disease process. Based on the evidence attesting to the ability of glutathione (GSH) to inhibit viral replication and decrease levels of IL-6 in human immunodeficiency virus (HIV) and tuberculosis (TB) patients, as well as beneficial effects of GSH on other pulmonary diseases processes, we believe the use of liposomal GSH could be beneficial in COVID-19 patients. This review discusses the epidemiology, transmission, and clinical presentation of COVID-19 with a focus on its pathogenesis and the possible use of liposomal GSH as an adjunctive treatment to the current treatment modalities in COVID-19 patients.
Collapse
Affiliation(s)
- Vika Guloyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Buzand Oganesian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Nicole Baghdasaryan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Christopher Yeh
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Manpreet Singh
- Department of Emergency Medicine, St Barnabas Hospital, Bronx, NY 10457, USA;
| | | | - Yu-Sam Ting
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
- Correspondence: ; Tel.: +1-909-706-3736; Fax: +1-909-469-5698
| |
Collapse
|
24
|
Abou Hassan F, Bou Hamdan M, Melhem NM. The Role of Natural Killer Cells and Regulatory T Cells While Aging with Human Immunodeficiency Virus. AIDS Res Hum Retroviruses 2019; 35:1123-1135. [PMID: 31510754 DOI: 10.1089/aid.2019.0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Combined antiretroviral therapy (cART) has increased the quality of life of people living with HIV (PLHIV). Consequently, the number of PLHIV >50 years is increasing worldwide. Patients on cART are known to remain in a proinflammatory state. The latter is linked to the development of non-AIDS-related chronic conditions. Although the number of aging PLHIV is increasing, the effect of HIV infection on the process of aging is not fully understood. Understanding the complexity of aging with HIV by investigating the effect of the latter on different components of the innate and adaptive immune systems is important to reduce the impact of these comorbid conditions and improve the quality of life of PLHIV. The role of killer immunoglobulin receptors (KIRs), expressed on the surface of natural killer (NK) cells, and their human leukocyte antigen (HLA) ligands in the clearance, susceptibility to or disease progression following HIV infection is well established. However, data on the effect of KIR-HLA interaction in aging HIV-infected population and the development of non-AIDS-related comorbid conditions are lacking. Moreover, conflicting data exist on the role of regulatory T cells (Tregs) during HIV infection. The purpose of this review is to advance the current knowledge on the role of NK cells and Tregs while aging with HIV infection.
Collapse
Affiliation(s)
- Farouk Abou Hassan
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Mirna Bou Hamdan
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nada M. Melhem
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
25
|
Clark SE, Burrack KS, Jameson SC, Hamilton SE, Lenz LL. NK Cell IL-10 Production Requires IL-15 and IL-10 Driven STAT3 Activation. Front Immunol 2019; 10:2087. [PMID: 31552035 PMCID: PMC6736993 DOI: 10.3389/fimmu.2019.02087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/19/2019] [Indexed: 01/22/2023] Open
Abstract
Natural killer (NK) cells can produce IFNγ or IL-10 to regulate inflammation and immune responses but the factors driving NK cell IL-10 secretion are poorly-defined. Here, we identified NK cell-intrinsic STAT3 activation as vital for IL-10 production during both systemic Listeria monocytogenes (Lm) infection and following IL-15 cytokine/receptor complex (IL15C) treatment for experimental cerebral malaria (ECM). In both contexts, conditional Stat3 deficiency in NK cells abrogated production of IL-10. Initial NK cell STAT3 phosphorylation was driven by IL-15. During Lm infection, this required capture or presentation of IL-15 by NK cell IL-15Rα. Persistent STAT3 activation was required to drive measurable IL-10 secretion and required NK cell expression of IL-10Rα. Survival-promoting effects of IL-15C treatment in ECM were dependent on NK cell Stat3 while NK cell-intrinsic deficiency for Stat3, Il15ra, or Il10ra abrogated NK cell IL-10 production and increased resistance against Lm. NK cell Stat3 deficiency did not impact production of IFNγ, indicating the STAT3 activation initiated by IL-15 and amplified by IL-10 selectively drives the production of anti-inflammatory IL-10 by responding NK cells.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kristina S Burrack
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Sara E Hamilton
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Laurel L Lenz
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
26
|
The Potential for Cancer Immunotherapy in Targeting Surgery-Induced Natural Killer Cell Dysfunction. Cancers (Basel) 2018; 11:cancers11010002. [PMID: 30577463 PMCID: PMC6356325 DOI: 10.3390/cancers11010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Natural Killer (NK) cells are granular lymphocytes of the innate immune system that are able to recognize and kill tumor cells without undergoing clonal selection. Discovered over 40 years ago, they have since been recognized to possess both cytotoxic and cytokine-producing effector functions. Following trauma, NK cells are suppressed and their effector functions are impaired. This is especially important for cancer patients undergoing the removal of solid tumors, as surgery has shown to contribute to the development of metastasis and cancer recurrence postoperatively. We have recently shown that NK cells are critical mediators in the formation of metastasis after surgery. While research into the mechanism(s) responsible for NK cell dysfunction is ongoing, knowledge of these mechanisms will pave the way for perioperative therapeutics with the potential to improve cancer outcomes by reversing NK cell dysfunction. This review will discuss mechanisms of suppression in the postoperative environment, including hypercoagulability, suppressive soluble factors, the expansion of suppressive cell populations, and how this affects NK cell biology, including modulation of cell surface receptors, the potential for anergy, and immunosuppressive NK cell functions. This review will also outline potential immunotherapies to reverse postoperative NK dysfunction, with the goal of preventing surgery-induced metastasis.
Collapse
|
27
|
Guo L, Smith JA, Abelson M, Vlasova-St. Louis I, Schiff LA, Bohjanen PR. Reovirus infection induces stabilization and up-regulation of cellular transcripts that encode regulators of TGF-β signaling. PLoS One 2018; 13:e0204622. [PMID: 30261045 PMCID: PMC6160134 DOI: 10.1371/journal.pone.0204622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Reovirus infection induces dramatic changes in host mRNA expression. We utilized oligonucleotide microarrays to measure cellular mRNA decay rates in mock- or reovirus-infected murine L929 cells to determine if changes in host mRNA expression are a consequence of reovirus-induced alterations in cellular mRNA stability. Our analysis detected a subset of cellular transcripts that were coordinately induced and stabilized following infection with the reovirus isolates c87 and c8, strains that led to an inhibition of cellular translation, but not following infection with Dearing, a reovirus isolate that did not negatively impact cellular translation. The induced and stabilized transcripts encode multiple regulators of TGF- β signaling, including components of the Smad signaling network and apoptosis/survival pathways. The coordinate induction, through mRNA stabilization, of multiple genes that encode components of TGF-β signaling pathways represents a novel mechanism by which the host cell responds to reovirus infection.
Collapse
Affiliation(s)
- Liang Guo
- Program in Infection and Immunity, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology Training Program, Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jennifer A. Smith
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michelle Abelson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Irina Vlasova-St. Louis
- Program in Infection and Immunity, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Leslie A. Schiff
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Paul R. Bohjanen
- Program in Infection and Immunity, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology Training Program, Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|