1
|
Singh A, Shadangi S, Gupta PK, Rana S. Type 2 Diabetes Mellitus: A Comprehensive Review of Pathophysiology, Comorbidities, and Emerging Therapies. Compr Physiol 2025; 15:e70003. [PMID: 39980164 DOI: 10.1002/cph4.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans are perhaps evolutionarily engineered to get deeply addicted to sugar, as it not only provides energy but also helps in storing fats, which helps in survival during starvation. Additionally, sugars (glucose and fructose) stimulate the feel-good factor, as they trigger the secretion of serotonin and dopamine in the brain, associated with the reward sensation, uplifting the mood in general. However, when consumed in excess, it contributes to energy imbalance, weight gain, and obesity, leading to the onset of a complex metabolic disorder, generally referred to as diabetes. Type 2 diabetes mellitus (T2DM) is one of the most prevalent forms of diabetes, nearly affecting all age groups. T2DM is clinically diagnosed with a cardinal sign of chronic hyperglycemia (excessive sugar in the blood). Chronic hyperglycemia, coupled with dysfunctions of pancreatic β-cells, insulin resistance, and immune inflammation, further exacerbate the pathology of T2DM. Uncontrolled T2DM, a major public health concern, also contributes significantly toward the onset and progression of several micro- and macrovascular diseases, such as diabetic retinopathy, nephropathy, neuropathy, atherosclerosis, and cardiovascular diseases, including cancer. The current review discusses the epidemiology, causative factors, pathophysiology, and associated comorbidities, including the existing and emerging therapies related to T2DM. It also provides a future roadmap for alternative drug discovery for the management of T2DM.
Collapse
Affiliation(s)
- Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Linares-Pineda TM, Lendínez-Jurado A, Piserra-López A, Suárez-Arana M, Pozo M, Molina-Vega M, Picón-César MJ, Morcillo S. Longitudinal DNA methylation profiles in saliva of offspring from mothers with gestational diabetes: associations with early childhood growth patterns. Cardiovasc Diabetol 2025; 24:15. [PMID: 39806399 PMCID: PMC11730480 DOI: 10.1186/s12933-024-02568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements. METHODS This study analyzed saliva DNA methylation patterns in 30 children (15 born to GDM mothers and 15 to non-GDM mothers) from the EPIDG cohort. Samples were collected at two time points: 8-10 weeks postpartum and at one year of age. Epigenome-wide analysis of over 850,000 CpG sites was conducted using the Illumina Methylation EPIC Bead Chip. Differential methylation positions (DMPs) were identified with the limma package, using a significance threshold of p < 0.01 and delta β ≥ 5%. Correlation analysis examined associations between methylation and growth variables (weight, height, BMI and annual growth) using Spearman tests. RESULTS We identified 6,968 DMPs at the postpartum stage and 5,132 after one year, with 50 sites remaining differentially methylated over time, 16 of which maintained consistent methylation directionality. Functional analysis linked several of these DMPs to genes involved in inflammation and metabolic processes, including CYTH3 and FARP2, both implicated in growth and metabolic pathways. Significant correlations were found between specific CpG sites and growth-related variables such as weight, head circumference, height, and BMI. CONCLUSIONS This study's longitudinal design reveals stable DNA methylation patterns in saliva samples that differentiate GDM-exposed children from controls across the first year of life, highlighting the feasibility of saliva as a minimally invasive biomarker source. The persistence of these epigenetic signatures underscores their potential as early indicators of metabolic risk, offering valuable insights into the long-term impact of maternal GDM on child health. Although the use of saliva offers a practical and non-invasive tool for pediatric epigenetic research, further studies are necessary to validate these findings in larger populations.
Collapse
Affiliation(s)
- Teresa M Linares-Pineda
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain
- CIBER Pathophysiology of Obesity and Nutrition-CIBERON, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Biomedical Research Institute-IBIMA Plataforma BIONAND, 29010, Málaga, Spain
| | - Alfonso Lendínez-Jurado
- Biomedical Research Institute-IBIMA Plataforma BIONAND, 29010, Málaga, Spain
- Andalucía Tech, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
- Department of Pediatric Endocrinology, Regional University Hospital of Málaga, 29011, Málaga, Spain
- Distrito Sanitario Málaga-Guadalhorce, 29009, Málaga, Spain
| | - Alberto Piserra-López
- Department of Cardiology, Virgen de la Victoria University Hospital, Málaga, 29010, Spain
| | - María Suárez-Arana
- Department of Obstetrics and Gynecology, Regional University Hospital of Málaga, Málaga, 29011, Spain
| | - María Pozo
- Biomedical Research Institute-IBIMA Plataforma BIONAND, 29010, Málaga, Spain
| | - María Molina-Vega
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain
| | - María José Picón-César
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain
- CIBER Pathophysiology of Obesity and Nutrition-CIBERON, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Biomedical Research Institute-IBIMA Plataforma BIONAND, 29010, Málaga, Spain
| | - Sonsoles Morcillo
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain.
- CIBER Pathophysiology of Obesity and Nutrition-CIBERON, Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Biomedical Research Institute-IBIMA Plataforma BIONAND, 29010, Málaga, Spain.
| |
Collapse
|
3
|
Lastialno MP, Bashari MH, Ariyanto EF. Current Updates on the Understanding of the Role of DNA Methylation on Obesity. Diabetes Metab Syndr Obes 2024; 17:3177-3186. [PMID: 39220797 PMCID: PMC11365516 DOI: 10.2147/dmso.s471348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity is a condition in which there is an accumulation of excess body fat leading to a weight far above the normal range that poses significant health risks. According to WHO, 8 billion people in the world were obese in 2022. Consequently, obesity has become a pandemic with negative impacts on both global health and economies. Obesity is influenced by various factors including environmental influences, lifestyle choices, gut microbiota, genetic factors, and epigenetic mechanisms such as DNA methylation. DNA methylation can affect an individual's phenotype and condition without altering their DNA sequence. It is the most extensively studied epigenetic alteration and it plays an important part in controlling gene activity associated with obesity. Numerous studies have indicated that DNA methylation is implicated in obesity, thus this review aims to elaborate the roles of DNA methylation to inform the development of preventive measures for obesity.
Collapse
Affiliation(s)
- Mohammad Parezal Lastialno
- Program of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
- Study Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| |
Collapse
|
4
|
Drag MH, Debes KP, Franck CS, Flethøj M, Lyhne MK, Møller JE, Ludvigsen TP, Jespersen T, Olsen LH, Kilpeläinen TO. Nanopore sequencing reveals methylation changes associated with obesity in circulating cell-free DNA from Göttingen Minipigs. Epigenetics 2023; 18:2199374. [PMID: 37032646 PMCID: PMC10088973 DOI: 10.1080/15592294.2023.2199374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Profiling of circulating cell-free DNA (cfDNA) by tissue-specific base modifications, such as 5-methylcytosines (5mC), may enable the monitoring of ongoing pathophysiological processes. Nanopore sequencing allows genome-wide 5mC detection in cfDNA without bisulphite conversion. The aims of this study were: i) to find differentially methylated regions (DMRs) of cfDNA associated with obesity in Göttingen minipigs using Nanopore sequencing, ii) to validate a subset of the DMRs using methylation-specific PCR (MSP-PCR), and iii) to compare the cfDNA DMRs with those from whole blood genomic DNA (gDNA). Serum cfDNA and gDNA were obtained from 10 lean and 7 obese Göttingen Minipigs both with experimentally induced myocardial infarction and sequenced using Oxford Nanopore MinION. A total of 1,236 cfDNA DMRs (FDR<0.01) were associated with obesity. In silico analysis showed enrichment of the adipocytokine signalling, glucagon signalling, and cellular glucose homoeostasis pathways. A strong cfDNA DMR was discovered in PPARGC1B, a gene linked to obesity and type 2 diabetes. The DMR was validated using MSP-PCR and correlated significantly with body weight (P < 0.05). No DMRs intersected between cfDNA and gDNA, suggesting that cfDNA originates from body-wide shedding of DNA. In conclusion, nanopore sequencing detected differential methylation in minute quantities (0.1-1 ng/µl) of cfDNA. Future work should focus on translation into human and comparing 5mC from somatic tissues to pinpoint the exact location of pathology.
Collapse
Affiliation(s)
- Markus Hodal Drag
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Conservation, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Clara Sandkamm Franck
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flethøj
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Mille Kronborg Lyhne
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, Copenhagen University Hospital and Odense University Hospital, Odense, Denmark
| | | | - Thomas Jespersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Shen W, Ren S, Hou Y, Zuo Z, Liu S, Liu Z, Fu J, Wang H, Yang B, Zhao R, Chen Y, Yamamoto M, Xu Y, Zhang Q, Pi J. Single-nucleus RNA-sequencing reveals NRF1/NFE2L1 as a key factor determining the thermogenesis and cellular heterogeneity and dynamics of brown adipose tissues in mice. Redox Biol 2023; 67:102879. [PMID: 37716088 PMCID: PMC10511808 DOI: 10.1016/j.redox.2023.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
Brown adipose tissue (BAT) is a major site of non-shivering thermogenesis in mammals and plays an important role in energy homeostasis. Nuclear factor-erythroid 2-related factor 1 (NFE2L1, also known as Nrf1), a master regulator of cellular metabolic homeostasis and numerous stress responses, has been found to function as a critical driver in BAT thermogenic adaption to cold or obesity by providing proteometabolic quality control. Our recent studies using adipocyte-specific Nfe2l1 knockout [Nfe2l1(f)-KO] mice demonstrated that NFE2L1-dependent transcription of lipolytic genes is crucial for white adipose tissue (WAT) homeostasis and plasticity. In the present study, we found that Nfe2l1(f)-KO mice develop an age-dependent whitening and shrinking of BAT, with signatures of down-regulation of proteasome, impaired mitochondrial function, reduced thermogenesis, pro-inflammation, and elevated regulatory cell death (RCD). Mechanistic studies revealed that deficiency of Nfe2l1 in brown adipocytes (BAC) primarily results in down-regulation of lipolytic genes, which decelerates lipolysis, making BAC unable to fuel thermogenesis. These changes lead to BAC hypertrophy, inflammation-associated RCD, and consequently cold intolerance. Single-nucleus RNA-sequencing of BAT reveals that deficiency of Nfe2l1 induces significant transcriptomic changes leading to aberrant expression of a variety of genes involved in lipid metabolism, proteasome, mitochondrial stress, inflammatory responses, and inflammation-related RCD in distinct subpopulations of BAC. Taken together, our study demonstrated that NFE2L1 serves as a vital transcriptional regulator that controls the lipid metabolic homeostasis in BAC, which in turn determines the metabolic dynamics, cellular heterogeneity and subsequently cell fates in BAT.
Collapse
Affiliation(s)
- Wei Shen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Suping Ren
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yongyong Hou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Shengnan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhiyuan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Huihui Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Bei Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; School of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Rui Zhao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yanyan Chen
- The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang, Liaoning, 110001, China
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
6
|
Gujral UP, Barkin S, Narayan KMV. Epigenetics of Early-Life Socioeconomic Stressors and the Impact on Childhood Body Mass Index-Potential Mechanism and Biomarker? JAMA Pediatr 2023; 177:1012-1014. [PMID: 37669075 DOI: 10.1001/jamapediatrics.2023.3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Affiliation(s)
- Unjali P Gujral
- Emory Global Diabetes Research Center, Emory University, Atlanta, Georgia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Nutrition and Health Sciences Program, Graduate Division of Biomedical and Biological Sciences, Laney Graduate School, Emory University, Atlanta, Georgia
| | - Shari Barkin
- Children's Hospital of Richmond at the Virginia Commonwealth University, Richmond
| | - K M Venkat Narayan
- Emory Global Diabetes Research Center, Emory University, Atlanta, Georgia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Nutrition and Health Sciences Program, Graduate Division of Biomedical and Biological Sciences, Laney Graduate School, Emory University, Atlanta, Georgia
- Department of Endocrinology, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
Basu T, Sehar U, Selman A, Reddy AP, Reddy PH. Support Provided by Caregivers for Community-Dwelling Obesity Individuals: Focus on Elderly and Hispanics. Healthcare (Basel) 2023; 11:1442. [PMID: 37239728 PMCID: PMC10218002 DOI: 10.3390/healthcare11101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity is a chronic disease marked by the buildup of extra adipose tissue and a higher chance of developing concomitant illnesses such as heart disease, diabetes, high blood pressure, and some malignancies. Over the past few decades, there has been a global increase in the prevalence of obesity, which now affects around one-third of the world's population. According to recent studies, a variety of factors, including genetics and biology as well as environmental, physiological, and psychosocial factors, may have a role in the development of obesity. The prevalence of obesity is often higher among Hispanic American groups than among White people in the U.S. Obesity is a widespread condition with a high risk of morbidity and death, and it is well-recognized that the prevalence of comorbidities rises with rising levels of obesity or body mass index. To combat the rising prevalence of obesity in the USA, especially among Hispanics, one of the fastest-growing racial/ethnic groups in the country, there is an urgent need for obesity therapies. The exact cause of this disparity is unclear, but some responsible factors are a lack of education, high unemployment rates, high levels of food insecurity, an unhealthy diet, inadequate access to physical activity resources, a lack of health insurance, and constricted access to culturally adequate healthcare. Additionally, managing obesity and giving needed/timely support to obese people is a difficult responsibility for medical professionals and their loved ones. The need for caregivers is increasing with the increased number of individuals with obesity, particularly Hispanics. Our article summarizes the status of obesity, focusing on Hispanic populations, and we also highlight specific factors that contribute to obesity, including genetics, epigenetics, biological, physiological, and psychosocial factors, medication and disease, environment, and socio-demographics. This article also reviews caregiver duties and challenges associated with caring for people with obesity.
Collapse
Affiliation(s)
- Tanisha Basu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.B.)
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.B.)
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.B.)
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.B.)
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
8
|
Patel P, Selvaraju V, Babu JR, Wang X, Geetha T. Racial Disparities in Methylation of NRF1, FTO, and LEPR Gene in Childhood Obesity. Genes (Basel) 2022; 13:2030. [PMID: 36360268 PMCID: PMC9690504 DOI: 10.3390/genes13112030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 09/18/2023] Open
Abstract
Childhood obesity has affected the health of millions of children around the world despite vigorous efforts by health experts. The obesity epidemic in the United States has disproportionately afflicted certain racial and ethnic minority groups. African American children are more likely than other children to have obesity-related risk factors such as hyperlipidemia, diabetes, cardiovascular disease, and coronavirus disease (COVID-19). For the reduction in obesity-related health inequalities to be successful, it is essential to identify the variables affecting various groups. A notable advancement in epigenetic biology has been made over the past decade. Epigenetic changes like DNA methylation impact on many genes associated with obesity. Here, we evaluated the DNA methylation levels of the genes NRF1, FTO, and LEPR from the saliva of children using real-time quantitative PCR-based multiplex MethyLight technology. ALU was used as a reference gene, and the Percent of Methylated Reference (PMR) was calculated for each sample. European American children showed a significant increase in PMR of NRF1 and FTO in overweight/obese participants compared to normal weight, but not in African American children. After adjusting for maternal education and annual family income by regression analysis, the PMR of NRF1 and FTO was significantly associated with BMI z-score only in European American children. While for the gene LEPR, African American children had higher methylation in normal weight participants as compared to overweight/obese and no methylation difference in European American children. The PMR of LEPR was significantly negative associated with the obesity measures only in African American children. These findings contribute to a race-specific link between NRF1, FTO, and LEPR gene methylation and childhood obesity.
Collapse
Affiliation(s)
- Priyadarshni Patel
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
9
|
Nagpal N, Messito MJ, Katzow M, Gross RS. Obesity in Children. Pediatr Rev 2022; 43:601-617. [PMID: 36316265 DOI: 10.1542/pir.2021-005095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Child obesity is widely prevalent, and general pediatricians play an important role in identifying and caring for patients with obesity. Appropriate evaluation and treatment require an understanding of the complex etiology of child obesity, its intergenerational transmission, and its epidemiologic trends, including racial/ethnic and socioeconomic disparities. The American Academy of Pediatrics has published screening, evaluation, and treatment guidelines based on the best available evidence. However, gaps in evidence remain, and implementation of evidence-based recommendations can be challenging. It is important to review optimal care in both the primary care and multidisciplinary weight management settings. This allows for timely evaluation and appropriate referrals, with the pediatrician playing a key role in advocating for patients at higher risk. There is also a role for larger-scale prevention and policy measures that would not only aid pediatricians in managing obesity but greatly benefit child health on a population scale.
Collapse
Affiliation(s)
- Nikita Nagpal
- New York University Grossman School of Medicine, New York, NY.,Bellevue Hospital Center, New York, NY
| | - Mary Jo Messito
- New York University Grossman School of Medicine, New York, NY.,Bellevue Hospital Center, New York, NY
| | - Michelle Katzow
- Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY
| | - Rachel S Gross
- New York University Grossman School of Medicine, New York, NY.,Bellevue Hospital Center, New York, NY
| |
Collapse
|
10
|
Unexpected lifeskills for physician-scientists: advice to early career investigators. Pediatr Res 2022; 93:1-2. [PMID: 35715493 PMCID: PMC9876390 DOI: 10.1038/s41390-022-02168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 11/08/2022]
|
11
|
Bizjak DA, Ammerpohl O, Schulz SV, Wendt J, Steinacker JM, Flechtner-Mors M. Pro-inflammatory and (Epi-)genetic markers in saliva for disease risk in childhood obesity. Nutr Metab Cardiovasc Dis 2022; 32:1502-1510. [PMID: 35450790 DOI: 10.1016/j.numecd.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Childhood obesity is an emerging problem often leading to earlier onset of non-communicable diseases in later life. Biomarkers to identify individual risk scores are insufficient in routine clinical practice, which is related to the need for easily sampled, non-invasive survey methods in children. We aimed to investigate and strengthen possible pro-inflammatory markers and epigenetic risk factors in saliva of obese children compared to lean controls. METHODS AND RESULTS 19 overweight/obese (OC, 10.1 ± 1.9 years, BMI 27.7 ± 3.2 kg/m2) and 19 lean control children (CC, 9.7 ± 2.5 years, BMI 16.4 ± 1.8 kg/m2) participated in this explorative pilot study. Anthropometric measures, saliva and cheek swab samples were taken. Saliva profiles were examined for acute phase proteins (CRP and neopterin) and pro-inflammatory cytokines (IL-17a/IL-1β/IL-6). Cheek swabs were analyzed to investigate DNA methylation differences with subsequent hierarchical cluster and principal component analyses (PCA). Saliva analysis showed significant increased CRP concentrations in OC compared to CC (p < 0.001). There were no significant differences, but high intra-individual values in neopterin, IL-17a, IL-1β and IL-6. An unsupervised PCA of CpG loci with high variance (σ/σmax > 0.2) clearly separated OC and CC according to their methylation pattern. Furthermore, a supervised approach revealed 7125 significantly differentially methylated loci, whose corresponding genes were significantly enriched for genes playing roles in e.g., cellular signalling, cytoskeleton organization and cell motility. CONCLUSIONS CRP and methylation status determinations in saliva are suitable as non-invasive methods for early detection of risks for non-communicable diseases in children/adolescents and might be a useful supplementary approach in the routine clinical practice/monitoring.
Collapse
Affiliation(s)
- Daniel A Bizjak
- Ulm University Hospital, Division of Sports and Rehabilitation Medicine, 89075 Ulm, Germany.
| | - Ole Ammerpohl
- Institute for Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Sebastian Vw Schulz
- Ulm University Hospital, Division of Sports and Rehabilitation Medicine, 89075 Ulm, Germany
| | - Janine Wendt
- Ulm University Hospital, Division of Sports and Rehabilitation Medicine, 89075 Ulm, Germany
| | - Jürgen M Steinacker
- Ulm University Hospital, Division of Sports and Rehabilitation Medicine, 89075 Ulm, Germany
| | - Marion Flechtner-Mors
- Ulm University Hospital, Division of Sports and Rehabilitation Medicine, 89075 Ulm, Germany
| |
Collapse
|
12
|
Li Z, Sarnat JA, Liu KH, Hood RB, Chang CJ, Hu X, Tran V, Greenwald R, Chang HH, Russell A, Yu T, Jones DP, Liang D. Evaluation of the Use of Saliva Metabolome as a Surrogate of Blood Metabolome in Assessing Internal Exposures to Traffic-Related Air Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6525-6536. [PMID: 35476389 PMCID: PMC9153955 DOI: 10.1021/acs.est.2c00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the omics era, saliva, a filtrate of blood, may serve as an alternative, noninvasive biospecimen to blood, although its use for specific metabolomic applications has not been fully evaluated. We demonstrated that the saliva metabolome may provide sensitive measures of traffic-related air pollution (TRAP) and associated biological responses via high-resolution, longitudinal metabolomics profiling. We collected 167 pairs of saliva and plasma samples from a cohort of 53 college student participants and measured corresponding indoor and outdoor concentrations of six air pollutants for the dormitories where the students lived. Grand correlation between common metabolic features in saliva and plasma was moderate to high, indicating a relatively consistent association between saliva and blood metabolites across subjects. Although saliva was less associated with TRAP compared to plasma, 25 biological pathways associated with TRAP were detected via saliva and accounted for 69% of those detected via plasma. Given the slightly higher feature reproducibility found in saliva, these findings provide some indication that the saliva metabolome offers a sensitive and practical alternative to blood for characterizing individual biological responses to environmental exposures.
Collapse
Affiliation(s)
- Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Jeremy A Sarnat
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Ken H Liu
- Clinical Biomarkers Laboratory, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Robert B Hood
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Che-Jung Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Xin Hu
- Clinical Biomarkers Laboratory, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Roby Greenwald
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia 30302, United States
| | - Howard H Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Armistead Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tianwei Yu
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
13
|
D'Addario C, Pucci M, Bellia F, Girella A, Sabatucci A, Fanti F, Vismara M, Benatti B, Ferrara L, Fasciana F, Celebre L, Viganò C, Elli L, Sergi M, Maccarrone M, Buzzelli V, Trezza V, Dell'Osso B. Regulation of oxytocin receptor gene expression in obsessive-compulsive disorder: a possible role for the microbiota-host epigenetic axis. Clin Epigenetics 2022; 14:47. [PMID: 35361281 PMCID: PMC8973787 DOI: 10.1186/s13148-022-01264-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a prevalent and severe clinical condition. Robust evidence suggests a gene-environment interplay in its etiopathogenesis, yet the underlying molecular clues remain only partially understood. In order to further deepen our understanding of OCD, it is essential to ascertain how genes interact with environmental risk factors, a cross-talk that is thought to be mediated by epigenetic mechanisms. The human microbiota may be a key player, because bacterial metabolites can act as epigenetic modulators. We analyzed, in the blood and saliva of OCD subjects and healthy controls, the transcriptional regulation of the oxytocin receptor gene and, in saliva, also the different levels of major phyla. We also investigated the same molecular mechanisms in specific brain regions of socially isolated rats showing stereotyped behaviors reminiscent of OCD as well as short chain fatty acid levels in the feces of rats. RESULTS Higher levels of oxytocin receptor gene DNA methylation, inversely correlated with gene expression, were observed in the blood as well as saliva of OCD subjects when compared to controls. Moreover, Actinobacteria also resulted higher in OCD and directly correlated with oxytocin receptor gene epigenetic alterations. The same pattern of changes was present in the prefrontal cortex of socially-isolated rats, where also altered levels of fecal butyrate were observed at the beginning of the isolation procedure. CONCLUSIONS This is the first demonstration of an interplay between microbiota modulation and epigenetic regulation of gene expression in OCD, opening new avenues for the understanding of disease trajectories and for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy. .,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy.
| | | | - Fabio Bellia
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | | | | | - Federico Fanti
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Matteo Vismara
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Beatrice Benatti
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Luca Ferrara
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Federica Fasciana
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Laura Celebre
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Caterina Viganò
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Luca Elli
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Manuel Sergi
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Bernardo Dell'Osso
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy. .,Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", Psychiatry Unit 2, ASST Sacco-Fatebenefratelli, Via G.B. Grassi, 74, 20157, Milan, Italy.
| |
Collapse
|
14
|
Padilla-Martinez F, Wojciechowska G, Szczerbinski L, Kretowski A. Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. Int J Mol Sci 2021; 23:ijms23010295. [PMID: 35008723 PMCID: PMC8745431 DOI: 10.3390/ijms23010295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes (T2D) is a deficiency in how the body regulates glucose. Uncontrolled T2D will result in chronic high blood sugar levels, eventually resulting in T2D complications. These complications, such as kidney, eye, and nerve damage, are even harder to treat. Identifying individuals at high risk of developing T2D and its complications is essential for early prevention and treatment. Numerous studies have been done to identify biomarkers for T2D diagnosis and prognosis. This review focuses on recent T2D biomarker studies based on circulating nucleic acids using different omics technologies: genomics, transcriptomics, and epigenomics. Omics studies have profiled biomarker candidates from blood, urine, and other non-invasive samples. Despite methodological differences, several candidate biomarkers were reported for the risk and diagnosis of T2D, the prognosis of T2D complications, and pharmacodynamics of T2D treatments. Future studies should be done to validate the findings in larger samples and blood-based biomarkers in non-invasive samples to support the realization of precision medicine for T2D.
Collapse
Affiliation(s)
- Felipe Padilla-Martinez
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
| | - Gladys Wojciechowska
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Correspondence:
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| |
Collapse
|
15
|
D'Addario C, Macellaro M, Bellia F, Benatti B, Annunzi E, Palumbo R, Conti D, Fasciana F, Vismara M, Varinelli A, Ferrara L, Celebre L, Viganò C, Dell'Osso B. In Search for Biomarkers in Obsessive-Compulsive Disorder: New Evidence on Saliva as a Practical Source of DNA to Assess Epigenetic Regulation. Curr Med Chem 2021; 29:5782-5791. [PMID: 34879796 DOI: 10.2174/0929867328666211208115536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Brain-Derived Neurotrophic Factor (BDNF) is a promising candidate biomarker in both the development and aetiology of different neuropsychiatric conditions, including obsessive-compulsive disorder (OCD). Most of the studies in the field have been carried out in blood cells, including peripheral blood mononucleated cells (PBMCs), although DNA of high quality can be easily isolated from saliva. OBJECTIVE The objective of this study was to evaluate the epigenetic regulation of the BDNF gene in the saliva of a clinical sample of OCD patients in order to assess this source as an alternative to blood. METHODS We first analyzed DNA methylation levels at BDNF in the saliva of subjects suffering from OCD (n= 50) and healthy controls (n=50). Then, we compared these data with the results previously obtained for the same genomic region in blood samples from the same patients and controls (CTRL). RESULTS Our preliminary data showed a significant reduction of 5mC levels at BDNF gene (OCD: 1.23 ± 0.45; CTRL: 1.85 ± 0.64; p < 0.0001) and a significant correlation between DNA methylation in PBMCs and saliva (Spearman r = 0.2788). CONCLUSION We support the perspective that saliva could be a possible, reliable source, and a substitute for blood, in search of epigenetic biomarkers in OCD.
Collapse
Affiliation(s)
| | - Monica Macellaro
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| | | | - Beatrice Benatti
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| | | | - Riccardo Palumbo
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele D'Annunzio University, Chieti. Italy
| | - Dario Conti
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. 0
| | - Federica Fasciana
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. 0
| | - Matteo Vismara
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. 0
| | - Alberto Varinelli
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| | - Luca Ferrara
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| | - Laura Celebre
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| | - Caterina Viganò
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| | - Bernardo Dell'Osso
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| |
Collapse
|
16
|
Gustafsson HC, Young AS, Stamos G, Wilken S, Brito NH, Thomason ME, Graham A, Nigg JT, Sullivan EL. Innovative methods for remote assessment of neurobehavioral development. Dev Cogn Neurosci 2021; 52:101015. [PMID: 34601346 PMCID: PMC8483646 DOI: 10.1016/j.dcn.2021.101015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/27/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022] Open
Abstract
In response to the COVID-19 pandemic, research institutions across the globe have modified their operations in ways that have limited or eliminated the amount of permissible in-person research interaction. In order to prevent the loss of important developmentally-timed data during the pandemic, researchers have quickly pivoted and developed innovative methods for remote assessment of research participants. In this manuscript, we describe methods developed for remote assessment of a parent child cohort with a focus on examining the perinatal environment, behavioral and biological indicators of child neurobehavioral development, parent-child interaction, as well as parent and child mental and physical health. We include recommendations relevant to adapting in-laboratory assessments for remote data collection and conclude with a description of the successful dissemination of the methods to eight research sites across the United States, each of whom are involved in Phase 1 of the HEALthy Brain and Child Development (HBCD) Study. These remote methods were born out of pandemic-related necessity; however, they have much wider applicability and may offer advantages over in-laboratory neurodevelopmental assessments.
Collapse
Affiliation(s)
- Hanna C Gustafsson
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Anna S Young
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Gayle Stamos
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Sydney Wilken
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Natalie H Brito
- New York University, 426 Greene Street, New York, NY 10003, USA
| | | | - Alice Graham
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Joel T Nigg
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Elinor L Sullivan
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| |
Collapse
|
17
|
López-Taboada I, González-Pardo H, Conejo NM. Western Diet: Implications for Brain Function and Behavior. Front Psychol 2020; 11:564413. [PMID: 33329193 PMCID: PMC7719696 DOI: 10.3389/fpsyg.2020.564413] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The Western diet (WD) pattern characterized by high daily intake of saturated fats and refined carbohydrates often leads to obesity and overweight, and it has been linked to cognitive impairment and emotional disorders in both animal models and humans. This dietary pattern alters the composition of gut microbiota, influencing brain function by different mechanisms involving the gut-brain axis. In addition, long-term exposure to highly palatable foods typical of WD could induce addictive-like eating behaviors and hypothalamic-pituitary-adrenal (HPA) axis dysregulation associated with chronic stress, anxiety, and depression. In turn, chronic stress modulates eating behavior, and it could have detrimental effects on different brain regions such as the hippocampus, hypothalamus, amygdala, and several cortical regions. Moreover, obesity and overweight induce neuroinflammation, causing neuronal dysfunction. In this review, we summarize the current scientific evidence about the mechanisms and factors relating WD consumption with altered brain function and behavior. Possible therapeutic interventions and limitations are also discussed, aiming to tackle and prevent this current pandemic.
Collapse
Affiliation(s)
| | | | - Nélida María Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
18
|
Henriksson P, Lentini A, Altmäe S, Brodin D, Müller P, Forsum E, Nestor CE, Löf M. DNA methylation in infants with low and high body fatness. BMC Genomics 2020; 21:769. [PMID: 33167873 PMCID: PMC7654595 DOI: 10.1186/s12864-020-07169-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Birth weight is determined by the interplay between infant genetics and the intrauterine environment and is associated with several health outcomes in later life. Many studies have reported an association between birth weight and DNA methylation in infants and suggest that altered epigenetics may underlie birthweight-associated health outcomes. However, birth weight is a relatively nonspecific measure of fetal growth and consists of fat mass and fat-free mass which may have different effects on health outcomes which motivates studies of infant body composition and DNA methylation. Here, we combined genome-wide DNA methylation profiling of buccal cells from 47 full-term one-week old infants with accurate measurements of infant fat mass and fat-free mass using air-displacement plethysmography. RESULTS No significant association was found between DNA methylation in infant buccal cells and infant body composition. Moreover, no association between infant DNA methylation and parental body composition or indicators of maternal glucose metabolism were found. CONCLUSIONS Despite accurate measures of body composition, we did not identify any associations between infant body fatness and DNA methylation. These results are consistent with recent studies that generally have identified only weak associations between DNA methylation and birthweight. Although our results should be confirmed by additional larger studies, our findings may suggest that differences in DNA methylation between individuals with low and high body fatness may be established later in childhood.
Collapse
Affiliation(s)
- Pontus Henriksson
- Department of Health, Medicine and Caring Sciences, Linköping University, 58183, Linköping, Sweden.
| | - Antonio Lentini
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Brodin
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Patrick Müller
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Forsum
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Colm E Nestor
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Marie Löf
- Department of Health, Medicine and Caring Sciences, Linköping University, 58183, Linköping, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|