1
|
da Silva VG, Smith NW, Mullaney JA, Wall C, Roy NC, McNabb WC. Food-breastmilk combinations alter the colonic microbiome of weaning infants: an in silico study. mSystems 2024; 9:e0057724. [PMID: 39191378 PMCID: PMC11406890 DOI: 10.1128/msystems.00577-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
The introduction of solid foods to infants, also known as weaning, is a critical point for the development of the complex microbial community inhabiting the human colon, impacting host physiology in infancy and later in life. This research investigated in silico the impact of food-breastmilk combinations on growth and metabolite production by colonic microbes of New Zealand weaning infants using the metagenome-scale metabolic model named Microbial Community. Eighty-nine foods were individually combined with breastmilk, and the 12 combinations with the strongest influence on the microbial production of short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) were identified. Fiber-rich and polyphenol-rich foods, like pumpkin and blackcurrant, resulted in the greatest increase in predicted fluxes of total SCFAs and individual fluxes of propionate and acetate when combined, respectively, with breastmilk. Identified foods were further combined with other foods and breastmilk, resulting in 66 multiple food-breastmilk combinations. These combinations altered in silico the impact of individual foods on the microbial production of SCFAs and BCFAs, suggesting that the interaction between the dietary compounds composing a meal is the key factor influencing colonic microbes. Blackcurrant combined with other foods and breastmilk promoted the greatest increase in the production of acetate and total SCFAs, while pork combined with other foods and breastmilk decreased the production of total BCFAs.IMPORTANCELittle is known about the influence of complementary foods on the colonic microbiome of weaning infants. Traditional in vitro and in vivo microbiome methods are limited by their resource-consuming concerns. Modeling approaches represent a promising complementary tool to provide insights into the behavior of microbial communities. This study evaluated how foods combined with other foods and human milk affect the production of short-chain fatty acids and branched-chain fatty acids by colonic microbes of weaning infants using a rapid and inexpensive in silico approach. Foods and food combinations identified here are candidates for future experimental investigations, helping to fill a crucial knowledge gap in infant nutrition.
Collapse
Affiliation(s)
- Vitor G da Silva
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nick W Smith
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Jane A Mullaney
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- AgResearch, Palmerston North, New Zealand
| | - Clare Wall
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Nutrition and Dietetics, The University of Auckland, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
2
|
Liang B, Deng Y, Huang Y, Zhong Y, Li Z, Du J, Ye R, Feng Y, Bai R, Fan B, Chen X, Huang X, Yang X, Xian H, Yang X, Huang Z. Fragile Guts Make Fragile Brains: Intestinal Epithelial Nrf2 Deficiency Exacerbates Neurotoxicity Induced by Polystyrene Nanoplastics. ACS NANO 2024; 18:24044-24059. [PMID: 39158845 DOI: 10.1021/acsnano.4c03874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Oral ingestion is the primary route for human exposure to nanoplastics, making the gastrointestinal tract one of the first and most impacted organs. Given the presence of the gut-brain axis, a crucial concern arises regarding the potential impact of intestinal damage on the neurotoxic effects of nanoplastics (NPs). The intricate mechanisms underlying NP-induced neurotoxicity through the microbiome-gut-brain axis necessitate further investigation. To address this, we used mice specifically engineered with nuclear factor erythroid-derived 2-related factor 2 (Nrf2) deficiency in their intestines, a strain whose intestines are particularly susceptible to polystyrene NPs (PS-NPs). We conducted a 28-day repeated-dose oral toxicity study with 2.5 and 250 mg/kg of 50 nm PS-NPs in these mice. Our study delineated how PS-NP exposure caused gut microbiota dysbiosis, characterized by Mycoplasma and Coriobacteriaceae proliferation, resulting in increased levels of interleukin 17C (IL-17C) production in the intestines. The surplus IL-17C permeated the brain via the bloodstream, triggering inflammation and brain damage. Our investigation elucidated a direct correlation between intestinal health and neurological outcomes in the context of PS-NP exposure. Susceptible mice with fragile guts exhibited heightened neurotoxicity induced by PS-NPs. This phenomenon was attributed to the elevated abundance of microbiota associated with IL-17C production in the intestines of these mice, such as Mesorhizobium and Lwoffii, provoked by PS-NPs. Neurotoxicity was alleviated by in vivo treatment with anti-IL-17C-neutralizing antibodies or antibiotics. These findings advanced our comprehension of the regulatory mechanisms governing the gut-brain axis in PS-NP-induced neurotoxicity and underscored the critical importance of maintaining intestinal health to mitigate the neurotoxic effects of PS-NPs.
Collapse
Affiliation(s)
- Boxuan Liang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yizhou Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhiming Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruobing Bai
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingchi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Chen
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiyun Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
3
|
Elms L, Hand B, Skubisz M, Best KP, Grzeskowiak LE, Rogers GB, Green TJ, Taylor SL. The Effect of Iron Supplements on the Gut Microbiome of Females of Reproductive Age: A Randomized Controlled Trial. J Nutr 2024; 154:1582-1587. [PMID: 38521191 DOI: 10.1016/j.tjnut.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Iron deficiency is the most common nutritional deficiency worldwide, particularly for young children and females of reproductive age. Although oral iron supplements are routinely recommended and generally considered safe, iron supplementation has been shown to alter the fecal microbiota in low-income countries. Little is known about the effect of iron supplementation on the fecal microbiota in high-income settings. OBJECTIVES To assess the effect of oral iron supplementation compared with placebo on the gut microbiome in nonpregnant females of reproductive age in a high-income country. METHODS A 21-d prospective parallel design double-blind, randomized control trial conducted in South Australia, Australia. Females (18-45 y) were randomly assigned to either iron (65.7 mg ferrous fumarate) or placebo. Fecal samples were collected prior to commencing supplements and after 21 d of supplementation. The primary outcome was microbiota β-diversity (paired-sample weighted unique fraction metric dissimilarity) between treatment and placebo groups after 21 d of supplementation. Exploratory outcomes included changes in the relative abundance of bacterial taxa. RESULTS Of 82 females randomly assigned, 80 completed the trial. There was no significant difference between the groups for weighted unique fraction metric dissimilarity (mean difference: 0.003; 95% confidence interval: -0.007, 0.014; P = 0.52) or relative abundance of common bacterial taxa or Escherichia-Shigella (q > 0.05). CONCLUSIONS Iron supplementation did not affect the microbiome of nonpregnant females of reproductive age in Australia. This trial was registered at clinicaltrials.gov as NCT05033483.
Collapse
Affiliation(s)
- Levi Elms
- Microbiome and Host Health Programme, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia; Infection and Immunity, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Brittany Hand
- College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, Australia
| | - Monika Skubisz
- SAHMRI Women and Kids Theme, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia; Discipline of Pediatrics, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Karen P Best
- SAHMRI Women and Kids Theme, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia; Discipline of Pediatrics, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Luke E Grzeskowiak
- SAHMRI Women and Kids Theme, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia; College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Geraint B Rogers
- Microbiome and Host Health Programme, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia; Infection and Immunity, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Tim J Green
- College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, Australia; SAHMRI Women and Kids Theme, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Steven L Taylor
- Microbiome and Host Health Programme, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia; Infection and Immunity, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.
| |
Collapse
|
4
|
Karamantziani T, Pouliakis A, Xanthos T, Ekmektzoglou K, Paliatsiou S, Sokou R, Iacovidou N. The Effect of Oral Iron Supplementation/Fortification on the Gut Microbiota in Infancy: A Systematic Review and Meta-Analysis. CHILDREN (BASEL, SWITZERLAND) 2024; 11:231. [PMID: 38397343 PMCID: PMC10887499 DOI: 10.3390/children11020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
(1) Background: Iron is an essential metal for the proper growth and neurodevelopment of infants. To prevent and treat iron deficiency, iron supplementation or fortification is often required. It has been shown, though, that it affects the synthesis of gut microbiota. (2) Methods: This paper is a systematic review and meta-analysis of the effect of oral iron supplementation/fortification on the gut microbiota in infancy. Studies in healthy neonates and infants who received per os iron with existing data on gut microbiota were included. Three databases were searched: PUBMED, Scopus, and Google Scholar. Randomized controlled trials (RCTs) were included. Quality appraisal was assessed using the ROB2Tool. (3) Results: A total of six RCTs met inclusion criteria for a systematic review, and four of them were included in the meta-analysis using both the fixed and random effects methods. Our results showed that there is very good heterogeneity in the iron group (I2 = 62%), and excellent heterogeneity in the non-iron group (I2 = 98%). According to the meta-analysis outcomes, there is a 10.3% (95% CI: -15.0--5.55%) reduction in the bifidobacteria population in the iron group and a -2.96% reduction for the non-iron group. There is a confirmed difference (p = 0.02) in the aggregated outcomes between iron and non-iron supplement, indicative that the bifidobacteria population is reduced when iron supplementation is given (total reduction 6.37%, 95%CI: 10.16-25.8%). (4) Conclusions: The abundance of bifidobacteria decreases when iron supplementation or fortification is given to infants.
Collapse
Affiliation(s)
- Theoni Karamantziani
- B’ Neonatal Intensive Care Unit and Neonatal High Dependency Unit, “Aghia Sofia” General Children’s Hospital, 11527 Athens, Greece;
| | - Abraham Pouliakis
- 2nd Department of Pathology, “Attikon” University Hospital, National and Kapodistrian University of Athens, 12464 Athens, Greece
| | - Theodoros Xanthos
- School of Health Sciences, University of West Attica, 12243 Athens, Greece;
| | | | - Styliani Paliatsiou
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, 3 D. Mantouvalou Str., Nikea, 18454 Piraeus, Greece;
| | - Nicoletta Iacovidou
- Neonatal Department, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
5
|
Wang Y, Zhang X, Yao Y, Hu S, Wang W, Wang D, Huang C, Liu H, Zhang Q, He T, Wang S, Wu Z, Jiang R, Yang C. Inferior social hierarchy is vulnerable to anxiety-like behavior in chronic pain mice: Potential role of gut microbiota and metabolites. Neurobiol Dis 2024; 191:106402. [PMID: 38184015 DOI: 10.1016/j.nbd.2024.106402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024] Open
Abstract
Social dominance is a universal phenomenon among grouped animals that profoundly affects survival, health, and reproductive success by determining access to resources, and exerting a powerful influence on subsequent behavior. However, the understanding of pain and anxiety comorbidities in dominant or subordinate animals suffering from chronic pain is not well-defined. Here, we provide evidence that subordinate mice are more susceptible to pain-induced anxiety compared to dominant mice. We propose that the gut microbiota may play a mediating role in this mechanism. Our findings demonstrate that transplantation of fecal microbiota from subordinate mice with chronic inflammatory pain, but not dominant mice, into antibiotics-treated pseudo-germ-free mice significantly amplifies anxiety-like phenotypes, highlighting the critical involvement of gut microbiota in this behavioral response. Using chronic inflammatory pain model, we carried out 16S rRNA sequencing and untargeted metabolomic analyses to explore the relationship between microbiota and metabolites in a stable social hierarchy of mice. Interestingly, anxiety-like behaviors were directly associated with some microbial genera and metabolites, especially bile acid metabolism. Overall, we have demonstrated a close relationship between social status and anxiety susceptibility, highlighting the contributions of gut microbiota and the associated metabolites in the high-anxiety state of subordinate mice with chronic inflammatory pain.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinying Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiting Yao
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenli Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chaoli Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hanyu Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Teng He
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sen Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Riyue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
6
|
Biagioli V, Volpedo G, Riva A, Mainardi P, Striano P. From Birth to Weaning: A Window of Opportunity for Microbiota. Nutrients 2024; 16:272. [PMID: 38257165 PMCID: PMC10819289 DOI: 10.3390/nu16020272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: The first 1000 days of life constitute a critical window of opportunity for microbiota development. Nutrients play a crucial role in enriching and diversifying the microbiota, derived not only from solid food but also from maternal dietary patterns during gestation. (2) Methods: We conducted a comprehensive literature review using the PubMed database, covering eleven years (2013-2023). We included English-language reviews, original research papers, and meta-analyses, while excluding case reports and letters. (3) Results: Consensus in the literature emphasizes that our interaction with a multitude of microorganisms begins in the intrauterine environment and continues throughout our lives. The existing data suggest that early nutritional education programs, initiated during pregnancy and guiding infant diets during development, may influence the shaping of the gut microbiota, promoting long-term health. (4) Conclusions: Further research is necessary in the coming years to assess potential interventions and early nutritional models aimed at modulating the pediatric microbiota, especially in vulnerable populations such as premature newborns.
Collapse
Affiliation(s)
- Valentina Biagioli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Paolo Mainardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
- IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
7
|
Koivusaari K, Niinistö S, Nevalainen J, Honkanen J, Ruohtula T, Koreasalo M, Ahonen S, Åkerlund M, Tapanainen H, Siljander H, Miettinen ME, Alatossava T, Ilonen J, Vaarala O, Knip M, Virtanen SM. Infant Feeding, Gut Permeability, and Gut Inflammation Markers. J Pediatr Gastroenterol Nutr 2023; 76:822-829. [PMID: 36913717 DOI: 10.1097/mpg.0000000000003756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
OBJECTIVES Increased gut permeability and gut inflammation have been linked to the development of type 1 diabetes. Little is known on whether and how intake of different foods is linked to these mechanisms in infancy. We investigated whether the amount of breast milk and intake of other foods are associated with gut inflammation marker concentrations and permeability. METHODS Seventy-three infants were followed from birth to 12 months of age. Their diet was assessed with structured questionnaires and 3-day weighed food records at the age of 3, 6, 9, and 12 months. Gut permeability was assessed with the lactulose/mannitol test and fecal calprotectin and human β-defensin-2 (HBD-2) concentrations were analyzed from stool samples at the age of 3, 6, 9, and 12 months. The associations between foods and gut inflammation marker concentrations and permeability were analyzed using generalized estimating equations. RESULTS Gut permeability and gut inflammation marker concentrations decreased during the first year of life. Intake of hydrolyzed infant formula ( P = 0.003) and intake of fruits and juices ( P = 0.001) were associated with lower intestinal permeability. Intake of fruits and juices ( P < 0.001), vegetables ( P < 0.001), and oats ( P = 0.003) were associated with lower concentrations of HBD-2. Higher intake of breast milk was associated with higher fecal calprotectin concentrations ( P < 0.001), while intake of fruits and juices ( P < 0.001), vegetables ( P < 0.001), and potatoes ( P = 0.007) were associated with lower calprotectin concentrations. CONCLUSIONS Higher intake of breast milk may contribute to higher calprotectin concentration, whereas several complementary foods may decrease gut permeability and concentrations of calprotectin and HBD-2 in infant gut.
Collapse
Affiliation(s)
- Katariina Koivusaari
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- the Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Sari Niinistö
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jaakko Nevalainen
- the Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland
| | - Jarno Honkanen
- the Research Program for Translational Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Terhi Ruohtula
- the Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mirva Koreasalo
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Suvi Ahonen
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Mari Åkerlund
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Heli Tapanainen
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Heli Siljander
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Maija E Miettinen
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tapani Alatossava
- the Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- the Immunogenetics Laboratory, University of Turku, Turku, Finland
| | - Outi Vaarala
- the Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Suvi M Virtanen
- From the Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
8
|
Wang Y, Uffelman CN, Bergia RE, Clark CM, Reed JB, Cross TWL, Lindemann SR, Tang M, Campbell WW. Meat Consumption and Gut Microbiota: a Scoping Review of Literature and Systematic Review of Randomized Controlled Trials in Adults. Adv Nutr 2023; 14:215-237. [PMID: 36822879 PMCID: PMC10229385 DOI: 10.1016/j.advnut.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 12/23/2022] Open
Abstract
Emerging research indicates the importance of gut microbiota in mediating the relationship between meat intake and human health outcomes. We aimed to assess the state of available scientific literature on meat intake and gut microbiota in humans (PROSPERO, International Prospective Register of Systematic Reviews, CRD42020135649). We first conducted a scoping review to identify observational and interventional studies on this topic. Searches were performed for English language articles using PubMed, Cochrane Library, Scopus, and CINAHL (Cumulated Index to Nursing and Allied Health Literature) databases from inception to August 2021 and using keywords related to meat (inclusive of mammalian, avian, and aquatic subtypes) and gut microbiota. Of 14,680 records, 85 eligible articles were included in the scoping review, comprising 57 observational and 28 interventional studies. One prospective observational study and 13 randomized controlled trials (RCTs) were identified in adults without diagnosed disease. We included the 13 RCTs, comprising 18 comparisons, in the systematic review to assess the effects of higher and lower intakes of total meat and meat subtypes on the gut microbiota composition. The bacterial composition was differentially affected by consuming diets with and without meat or with varied meat subtypes. For example, higher meat intake tended to decrease population sizes of genera Anerostipes and Faecalibacterium, but it increased the population size of Roseburia across studies. However, the magnitude and directionality of most microbial responses varied, with inconsistent patterns of responses across studies. The data were insufficient for comparison within or between meat subtypes. The paucity of research, especially among meat subtypes, and heterogeneity of findings underscore the need for more well-designed prospective studies and full-feeding RCTs to address the relationships between and effects of consuming total meat and meat subtypes on gut microbiota, respectively.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Cassi N Uffelman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Robert E Bergia
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Caroline M Clark
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Jason B Reed
- Libraries and School of Information Studies, Purdue University, West Lafayette, IN, USA
| | - Tzu-Wen L Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | - Minghua Tang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
9
|
Tang M, Ma C, Weinheimer-Haus EM, Robertson CE, Kofonow JM, Berman LM, Waljee A, Zhu J, Frank DN, Krebs NF. Different gut microbiota in U.S. formula-fed infants consuming a meat vs. dairy-based complementary foods: A randomized controlled trial. Front Nutr 2023; 9:1063518. [PMID: 36778973 PMCID: PMC9909089 DOI: 10.3389/fnut.2022.1063518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 01/27/2023] Open
Abstract
Objective This project aimed to evaluate the impact of meat- vs. dairy-based complementary foods on gut microbiota and whether it relates to growth. Design Full-term, formula-fed infants were recruited from the metro Denver area (Colorado, US) and randomized to a meat- or dairy-based complementary diet from 5 to 12 months of age. Infant's length and weight were measured, and stool samples were collected at 5, 10, and 12 months for 16S rRNA gene sequencing and short-chain fatty acids (SCFAs) quantification. Results Sixty-four infants completed the dietary intervention (n = 32/group). Weight-for-age Z (WAZ) scores increased in both groups and length-for-age Z scores (LAZ) increased in the meat group only, which led to a significant group-by-time interaction (P = 0.02) of weight-for-length Z (WLZ) score. Microbiota composition (Beta-diversity) differed between groups at 12 months (weighted PERMANOVA P = 0.01) and had a group-by-time interaction of P = 0.09. Microbial community richness (Chao1) increased in the meat group only. Genus Akkermansia had a significant group-by-time interaction and increased in the dairy group and decreased in the meat group. A significant fold change of butyric acid from 5 to 12 months was found in the meat group (+1.75, P = 0.011) but not in the dairy group. Regression analysis showed that Chao1 had a negative association with WLZ and WAZ. Several genera also had significant associations with all growth Z scores. Conclusion Complementary feeding not only impacts infant growth but also affects gut microbiota maturation. Complementary food choices can affect both the gut microbiota diversity and structures and these changes in gut microbiota are associated with infant growth.
Collapse
Affiliation(s)
- Minghua Tang
- Section of Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Cheng Ma
- Department of Statistics, University of Michigan, Ann Arbor, MI, United States
| | - Eileen M. Weinheimer-Haus
- Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, United States
| | - Charles E. Robertson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer M. Kofonow
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lillian M. Berman
- Section of Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Akbar Waljee
- Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, United States
- Center for Clinical Management Research, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Ji Zhu
- Department of Statistics, University of Michigan, Ann Arbor, MI, United States
| | - Daniel N. Frank
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nancy F. Krebs
- Section of Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Balashova EA, Shadrina IL, Pogodina AA. Gastrointestinal side effects of iron supplements: potential effects on gut microbiota. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2022. [DOI: 10.21508/1027-4065-2022-67-5-18-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron deficiency anemia remains a significant problem in pediatric practice with its prevalence of 6–40% in the Russian Federation. Oral iron supplementation is the most common first-line treatment especially in outpatient setting. Despite adequate efficacy of oral supplementation, the problem of its side effects and, primarily, gastrointestinal toxicity remains. This review examines the issue of the potential effect of iron supplementation on gut microbiota composition, presents data from studies in animal models and in clinical studies.
Collapse
Affiliation(s)
| | - I. L. Shadrina
- Samara State Medical University;
Samara City Hospital No. 7
| | | |
Collapse
|
11
|
Khan AZ, Badar S, O'Callaghan KM, Zlotkin S, Roth DE. Fecal Iron Measurement in Studies of the Human Intestinal Microbiome. Curr Dev Nutr 2022; 6:nzac143. [PMID: 36475017 PMCID: PMC9718653 DOI: 10.1093/cdn/nzac143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 04/22/2024] Open
Abstract
Iron is an essential micronutrient for humans and their intestinal microbiota. Host intestinal cells and iron-dependent bacteria compete for intraluminal iron, so the composition and functions of the gut microbiota may influence iron availability. Studies of the effects of the microbiota or probiotic interventions on host iron absorption may be particularly relevant to settings with high burdens of iron deficiency and gastrointestinal infections, since inflammation reduces iron bioavailability and unabsorbed intraluminal iron may modify the composition of the microbiota. The quantification of stool iron content may serve as an indicator of the amount of intraluminal iron to which the intestinal microbiota is exposed, which is particularly relevant for studies of the effect of iron on the intestinal microbiome, where fecal samples collected for purposes of microbiome characterization can be leveraged for stool iron analysis. However, few studies are available to guide researchers in the selection and implementation of stool iron assays, particularly because cross-comparison of available methods is limited in literature. This review aims to describe the available stool iron quantification methods and highlight their potential application in studies of iron-microbiome relationships, with a focus on pediatric research. MS-based methods offer high sensitivity and precision, but the need for expensive equipment and the high per-sample and maintenance costs may limit their widespread use. Conversely, colorimetric assays offer lower cost, ease of use, and rapid turnaround times but have thus far been optimized primarily for blood-derived matrices rather than stool. Further research efforts are needed to validate and standardize methods for stool iron assessment and to determine if the incorporation of such analyses in human microbiome studies 1) yields insights into the interactions between intestinal microbiota and iron and 2) contributes to the development of interventions that mitigate iron deficiency and promote a healthy microbiome.
Collapse
Affiliation(s)
- Afreen Z Khan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Sayema Badar
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Karen M O'Callaghan
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Stanley Zlotkin
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Daniel E Roth
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Daher S, Ziade F, Nasreddine L, Baroudi M, Naja F. Breastfeeding and complementary feeding in fragile settings: the case of Syrian refugees and their host communities in North Lebanon. Int Breastfeed J 2022; 17:37. [PMID: 35568877 PMCID: PMC9107246 DOI: 10.1186/s13006-022-00480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adequate breastfeeding and complementary feeding practices are paramount in fragile situations where access to food and healthcare is limited. The objectives of this study are to examine breastfeeding and complementary feeding practices among Syrian refugees and their Lebanese host communities and to investigate the correlates of exclusive breastfeeding (EBF) at four and 6 months in these communities. METHODS Using two-stage stratified sampling, a cross-sectional survey was conducted in Akkar, a region with a high density of Syrian refugees in Lebanon, between April and November 2019. In one-to-one interviews, mothers of children (6-24 months) completed a questionnaire including specific questions about breastfeeding and complementary feeding practices, a 24-h recall, and socio-demographic characteristics for 189 Syrian refugees and 182 Lebanese host community households. Descriptive statistics, simple and multiple logistic regression were used in data analysis. RESULTS Among breastfeeding practices, ever-breastfeeding was most prevalent (90%), followed by early initiation of breastfeeding (64.8%), EBF at four (49.6%), and six (36%) months. One in four children was introduced to solids before 6 months of age, and less than a third was given iron-fortified baby cereals as the first complementary foods. Only 24.4% and 9.2% of children met the minimum dietary diversity and minimum acceptable diet requirements, respectively. Compared to children of the Lebanese host communities, those of Syrian refugees had higher rates of EBF at four and 6 months as well as continued breastfeeding at 1 year, whereas only 17.9% of Syrian refugees' children met minimum dietary diversity compared to 30.9% of Lebanese host community children (p < 0.05). Among refugees, education and spouse's employment status were associated with higher odds of EBF at 4 months. As for Lebanese households, female children were less likely to be exclusively breastfed at 4 months and 6 months, while a natural delivery increased the odds of EBF at 6 months. CONCLUSION Breastfeeding and complementary feeding practices are suboptimal among children of Syrian refugees and their Lebanese host communities in North Lebanon. There is a need for intervention strategies to tackle gaps in services and assistance delivery programs to enhance infant and young child feeding practices among both communities.
Collapse
Affiliation(s)
- Sara Daher
- Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Ziade
- Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Lara Nasreddine
- Nutrition and Food Sciences Department, Faculty of Agriculture and Food Sciences, American University of Beirut, Riad El Solh, 1107 2020, Lebanon
| | - Moomen Baroudi
- Nutrition and Food Sciences Department, Faculty of Agriculture and Food Sciences, American University of Beirut, Riad El Solh, 1107 2020, Lebanon
| | - Farah Naja
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical & Health Sciences (RIMHS), University of Sharjah, Sharjah, 27272, UAE.
- Faculty of Agriculture and Food Sciences, American University of Beirut, Riad El Solh, 1107 2020, Lebanon.
| |
Collapse
|
13
|
de Sire A, de Sire R, Curci C, Castiglione F, Wahli W. Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells 2022; 11:cells11040743. [PMID: 35203401 PMCID: PMC8870226 DOI: 10.3390/cells11040743] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoporosis is characterized by an alteration of bone microstructure with a decreased bone mineral density, leading to the incidence of fragility fractures. Around 200 million people are affected by osteoporosis, representing a major health burden worldwide. Several factors are involved in the pathogenesis of osteoporosis. Today, altered intestinal homeostasis is being investigated as a potential additional risk factor for reduced bone health and, therefore, as a novel potential therapeutic target. The intestinal microflora influences osteoclasts’ activity by regulating the serum levels of IGF-1, while also acting on the intestinal absorption of calcium. It is therefore not surprising that gut dysbiosis impacts bone health. Microbiota alterations affect the OPG/RANKL pathway in osteoclasts, and are correlated with reduced bone strength and quality. In this context, it has been hypothesized that dietary supplements, prebiotics, and probiotics contribute to the intestinal microecological balance that is important for bone health. The aim of the present comprehensive review is to describe the state of the art on the role of dietary supplements and probiotics as therapeutic agents for bone health regulation and osteoporosis, through gut microbiota modulation.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (A.d.S.); (W.W.)
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Claudio Curci
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy;
| | - Fabiana Castiglione
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore
- Toxalim Research Center in Food Toxicology (UMR 1331), French National Research Institute for Agriculture, Food, and the Environment (INRAE), F-31300 Toulouse, France
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Correspondence: (A.d.S.); (W.W.)
| |
Collapse
|
14
|
Song R, Xu Y, Jia Z, Liu X, Zhang X. Integration of intestinal microbiota and metabonomics to elucidate different alleviation impacts of non-saponification and saponification astaxanthin pre-treatment on paracetamol-induced oxidative stress in rats. Food Funct 2022; 13:1860-1880. [PMID: 35084415 DOI: 10.1039/d1fo02972j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal microbiota and metabonomics were integrated to investigate the efficiency of non-saponification or saponification astaxanthin (N-Asta or S-Asta) derived from Penaeus sinensis by-products on alleviating paracetamol (PCM)-induced oxidative stress. Pre-treatment with N-Asta or S-Asta for 14 days restored the cellular morphology of the intestine and increased glutathione (GSH) levels under PCM overdose in rats. However, S-Asta displayed higher adsorption than that of N-Asta. PCM overdose reduced the richness and diversity of intestinal microbiota in the model group. Comparably, N-Asta or S-Asta pre-treatment increased the Actinobacteria abundance. Increased phyla Bacteroidetes and Verrucomicrobia were only found in the S-Asta-pre-treated group. At the genus level, N-Asta pre-treatment increased Lactobacillus and Parasutterella abundance, whereas S-Asta pre-treatment elevated Bacteroidales_S24-7_group_norank and Ruminococcaceae_uncultured. Compared to the control and model groups, remarkable increases of fecal short-chain fatty acids were detected in both N-Asta and S-Asta pre-treatment groups, suggesting the contribution of N-Asta and S-Asta adsorption to SCFA-producing bacteria enrichment. Furthermore, the genera of Ruminococcaceae_uncultured, Ruminiclostridium_9, Ruminococcaceae_unclassified and Ruminococcus_1 showed high correlations with propionic acid, isobutyric acid, butyric acid, isovaleric acid and valeric acid increases in the S-Asta pre-treated group. Seventeen plasma biomarker metabolites in more than 10 metabolic pathways were responsible for the difference between the N-Asta and S-Asta pre-treated groups. Metabolites GSH, retinol, all-trans-Retinoic acid and taurine related to antioxidant activities were significantly accumulated in the S-Asta pre-treated group, while increasing taurocholic acid levels associated with the anti-inflammatory activity was found in the N-Asta-pre-treated group. Therefore, N-Asta and S-Asta could have potential applications in counterbalancing intestinal flora and metabolite disturbances by overdose chemical induction.
Collapse
Affiliation(s)
- Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yan Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zhe Jia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xinyan Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xiaoxia Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
15
|
Jahan H, Tumpa IJ, Qasem WA, Moniruzzaman M, Pervin MA, Akter R, Omri A, Min T, Hossain Z. Evaluation of the Partial Replacement of Dietary Fish Meal With Fermented or Untreated Soybean Meal in Juvenile Silver Barb, Barbonymus gonionotus. Front Nutr 2021; 8:733402. [PMID: 34790685 PMCID: PMC8591853 DOI: 10.3389/fnut.2021.733402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Fish meal (FM) has excellent protein and lipid profile. However, FM is losing its acceptability and substituted with plant protein due to FM has high price, high demand, and sustainability issues in global aquaculture production. In this study, experimental diets were prepared by substituting FM with fermented soybean meal (FSM) or normal and untreated soybean meal (SM) to assess the effects on growth, hematology, innate immunity, gut physiology, and digestive enzyme activities in juvenile silver barb, Barbonymus gonionotus. Five diets, that is, 40% FM (FM 40), 20% FM + 20% FSM (FM 20 + FSM 20), 20% FM + 20% SM (FM 20 + SM 20), 40% FSM (FSM 40), and 40% SM (SM 40) were fed to the fish two times daily for 90 days. After 90 days of feeding trial, FM 40, FM 20 + FSM 20, and FM 20 + SM 20 diet groups showed significantly higher weight gain (WG) and specific growth rate (SGR) compared to the FSM 40 and SM 40 diets. Hepatosomatic index (HSI) and viscerosomatic index (VSI) were significantly higher in fish fed with the FSM 40 and SM 40 diets than those of fish fed with the FM 40 diet. Hematocrit, hemoglobin, and erythrocyte count were significantly lower in fish fed with the SM 40 diet compared to fish fed with the FM 40 and FM 20 + FSM 20 diets. Superoxide dismutase and catalase activities in the liver were significantly higher in fish fed with the SM 40 diet compared to fish fed with the FM 40 diet. However, serum thiobarbituric acid reactive substances in fish fed with the experimental diets were unaltered. Fish showed significant reduction of villus height (Vh) in the anterior and posterior intestine of fish fed with the FSM 40 and SM 40 diets, whereas muscular thickness was opposite to the findings of Vh. Digestive enzyme activities in intestine were significantly higher in fish fed with the FM 40 diet compared to those in the SM 40 diet. The results of the present study revealed that the 50% of FM can be replaced by FSM or SM as a source of protein without affecting the growth of juvenile silver barb.
Collapse
Affiliation(s)
- Halima Jahan
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh.,Department of Fisheries Biology and Genetics, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Israt Jahan Tumpa
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Wafaa A Qasem
- Department of Surgery, Mubarak Al Kabeer Hospital, Hawally, Kuwait.,Community Medicine Department, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju-si, South Korea
| | - Mst Arzu Pervin
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rabeya Akter
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Greater Sudbury, ON, Canada
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju-si, South Korea
| | - Zakir Hossain
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
16
|
Abstract
The neonatal body provides a range of potential habitats, such as the gut, for microbes. These sites eventually harbor microbial communities (microbiotas). A "complete" (adult) gut microbiota is not acquired by the neonate immediately after birth. Rather, the exclusive, milk-based nutrition of the infant encourages the assemblage of a gut microbiota of low diversity, usually dominated by bifidobacterial species. The maternal fecal microbiota is an important source of bacterial species that colonize the gut of infants, at least in the short-term. However, development of the microbiota is influenced by the use of human milk (breast feeding), infant formula, preterm delivery of infants, caesarean delivery, antibiotic administration, family details and other environmental factors. Following the introduction of weaning (complementary) foods, the gut microbiota develops in complexity due to the availability of a diversity of plant glycans in fruits and vegetables. These glycans provide growth substrates for the bacterial families (such as members of the Ruminococcaceae and Lachnospiraceae) that, in due course, will dominate the gut microbiota of the adult. Although current data are often fragmentary and observational, it can be concluded that the nutrition that a child receives in early life is likely to impinge not only on the development of the microbiota at that time but also on the subsequent lifelong, functional relationships between the microbiota and the human host. The purpose of this review, therefore, is to discuss the importance of promoting the assemblage of functionally robust gut microbiotas at appropriate times in early life.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Jiang P, Yuan GH, Jiang BR, Zhang JY, Wang YQ, Lv HJ, Zhang Z, Wu JL, Wu Q, Li L. Effects of microplastics (MPs) and tributyltin (TBT) alone and in combination on bile acids and gut microbiota crosstalk in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112345. [PMID: 34020283 DOI: 10.1016/j.ecoenv.2021.112345] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and tributyltin (TBT) are both potential environmental pollutants that enter organisms through the food chain and affect bodily functions. However, the effects and mechanisms of MPs and TBT exposure (especially the co-exposure of both pollutants) on mammals remain unclear. In this study, Ф5μm MPs (5MP) was administered alone or in combination with TBT to investigate the health risk of oral exposure in mice. All three treatments induced inflammation in the liver, altered gut microbiota composition and disturbed fecal bile acids profiles. In addition to decreasing triglyceride (TG) and increasing aspartate aminotransferase (AST) and macrophage-expressed gene 1 (Mpeg1), 5MP induced hepatic cholestasis by stimulating the expression of the cholesterol hydroxylase enzymes CYP8B1 and CYP27A1, and inhibiting multidrug resistance-associated protein 2 and 3 (MRP2, MRP3), and bile-salt export pump (BSEP) to prevent bile acids for entering the blood and bile. Correspondingly, 5MP treatment decreased 7-ketolithocholic acid (7-ketoLCA) and taurocholic acid (TCA), which were positively correlated with decreased Bacteroides and Marvinbryantia and negatively correlated with increased Bifidobacterium. In addition, TBT increased interferon γ (IFNγ) and Mpeg1 levels to induce inflammation, accompanied by decreased 7-ketoLCA, tauro-alpha-muricholic acid (T-alpha-MCA) and alpha-muricholic acid (alpha-MCA) levels, which were negatively related to Coriobacteriaceae_UCG-002 and Bifidobacterium. Co-exposure to 5MP and TBT also decreased TG and induced bile acids accumulation in the liver due to inhibited BSEP, which might be attributed to the co-regulation of decreased T-alpha-MCA and Harryflintia. In conclusion, the administration of 5MP and TBT alone and in combination could cause gut microbiome dysbiosis and subsequently alter bile acids profiles, while the combined exposure of 5MP and TBT weakened the toxic effects of 5MP and TBT alone.
Collapse
Affiliation(s)
- Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Ge-Hui Yuan
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Bao-Rong Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Jing-Yi Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Yu-Qian Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Hui-Jie Lv
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Jia-Lin Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
18
|
Laursen MF. Gut Microbiota Development: Influence of Diet from Infancy to Toddlerhood. ANNALS OF NUTRITION & METABOLISM 2021; 77:1-14. [PMID: 34461613 DOI: 10.1159/000517912] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022]
Abstract
Early life is a critical period as our gut microbiota establishes here and may impact both current and future health. Thus, it is of importance to understand how different factors govern the complex microbial colonization patterns in this period. The gut microbiota changes substantially during infancy and toddlerhood in terms of both taxonomic composition and diversity. This developmental trajectory differs by a variety of factors, including term of birth, mode of birth, intake of antibiotics, presence of furred pets, siblings and family members, host genetics, local environment, geographical location, and maternal and infant/toddler diet. The type of milk feeding and complementary feeding is particularly important in early and late infancy/toddlerhood, respectively. Breastfeeding, due to the supply of human milk oligosaccharide into the gut, promotes the growth of specific human milk oligosaccharide (HMO)-utilizing Bifidobacterium species that dominate the ecosystem as long as the infant is primarily breastfed. These species perform saccharolytic fermentation in the gut and produce metabolites with physiological effects that may contribute to protection against infectious and immune-related diseases. Formula feeding, due to its lack of HMOs and higher protein content, give rise to a more diverse gut microbiota that contains more opportunistic pathogens and results in a more proteolytic metabolism in the gut. Complementary feeding, due to the introduction of dietary fibers and new protein sources, induces a shift in the gut microbiota and metabolism away from the milk-adapted and toward a more mature and diverse adult-like community with increased abundances of short chain fatty acid-producing bacterial taxa. While the physiological implication of these complementary diet-induced changes remains to be established, a few recent studies indicate that an inadequately matured gut microbiota may be causally related to poor growth and development. Further studies are required to expand our knowledge on interactions between diet, gut microbiota, and health in the early life setting.
Collapse
|
19
|
Hossain Z, Qasem WA, Friel JK, Omri A. Effects of Total Enteral Nutrition on Early Growth, Immunity, and Neuronal Development of Preterm Infants. Nutrients 2021; 13:2755. [PMID: 34444915 PMCID: PMC8401306 DOI: 10.3390/nu13082755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022] Open
Abstract
The feeding of colostrum and mother's transitional milk improves immune protection and neurodevelopmental outcomes. It also helps with gut maturation and decreases the risks of infection. The supply of nutrients from human milk (HM) is not adequate for preterm infants, even though preterm mother's milk contains higher concentrations of protein, sodium, zinc, and calcium than mature HM. The human milk fortifiers, particularly those with protein, calcium, and phosphate, should be used to supplement HM to meet the necessities of preterm infants. The management of fluid and electrolytes is a challenging aspect of neonatal care of preterm infants. Trace minerals such as iron, zinc, copper, iodine, manganese, molybdenum, selenium, chromium, and fluoride are considered essential for preterm infants. Vitamins such as A, D, E, and K play an important role in the prevention of morbidities, such as bronchopulmonary dysplasia, retinopathy of prematurity, and intraventricular hemorrhage. Therefore, supplementation of HM with required nutrients is recommended for all preterm infants.
Collapse
Affiliation(s)
- Zakir Hossain
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Wafaa A Qasem
- Department of Surgery, Mubarak AlKabeer Hospital, Hawally 32052, Kuwait;
- Community Medicine Department, Faculty of Medicine, Kuwait University, Kuwait City 13003, Kuwait
| | - James K. Friel
- Richardson Centre for Functional Foods and Nutraceuticals, Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
20
|
Iddrisu I, Monteagudo-Mera A, Poveda C, Pyle S, Shahzad M, Andrews S, Walton GE. Malnutrition and Gut Microbiota in Children. Nutrients 2021; 13:nu13082727. [PMID: 34444887 PMCID: PMC8401185 DOI: 10.3390/nu13082727] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Malnutrition continues to threaten the lives of millions across the world, with children being hardest hit. Although inadequate access to food and infectious disease are the primary causes of childhood malnutrition, the gut microbiota may also contribute. This review considers the evidence on the role of diet in modifying the gut microbiota, and how the microbiota impacts childhood malnutrition. It is widely understood that the gut microbiota of children is influenced by diet, which, in turn, can impact child nutritional status. Additionally, diarrhoea, a major contributor to malnutrition, is induced by pathogenic elements of the gut microbiota. Diarrhoea leads to malabsorption of essential nutrients and reduced energy availability resulting in weight loss, which can lead to malnutrition. Alterations in gut microbiota of severe acute malnourished (SAM) children include increased Proteobacteria and decreased Bacteroides levels. Additionally, the gut microbiota of SAM children exhibits lower relative diversity compared with healthy children. Thus, the data indicate a link between gut microbiota and malnutrition in children, suggesting that treatment of childhood malnutrition should include measures that support a healthy gut microbiota. This could be of particular relevance in sub-Saharan Africa and Asia where prevalence of malnutrition remains a major threat to the lives of millions.
Collapse
Affiliation(s)
- Ishawu Iddrisu
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK; (I.I.); (A.M.-M.); (C.P.)
| | - Andrea Monteagudo-Mera
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK; (I.I.); (A.M.-M.); (C.P.)
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK; (I.I.); (A.M.-M.); (C.P.)
| | - Simone Pyle
- Unilever R&D, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ, UK;
| | - Muhammad Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | - Simon Andrews
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK;
| | - Gemma Emily Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK; (I.I.); (A.M.-M.); (C.P.)
- Correspondence:
| |
Collapse
|
21
|
Mehta S, Huey SL, McDonald D, Knight R, Finkelstein JL. Nutritional Interventions and the Gut Microbiome in Children. Annu Rev Nutr 2021; 41:479-510. [PMID: 34283919 DOI: 10.1146/annurev-nutr-021020-025755] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gut microbiome plays an integral role in health and disease, and diet is a major driver of its composition, diversity, and functional capacity. Given the dynamic development of the gut microbiome in infants and children, it is critical to address two major questions: (a) Can diet modify the composition, diversity, or function of the gut microbiome, and (b) will such modification affect functional/clinical outcomes including immune function, cognitive development, and overall health? We synthesize the evidence on the effect of nutritional interventions on the gut microbiome in infants and children across 26 studies. Findings indicate the need to study older children, assess the whole intestinal tract, and harmonize methods and interpretation of findings, which are critical for informing meaningful clinical and public health practice. These findings are relevant for precision health, may help identify windows of opportunity for intervention, and may inform the design and delivery of such interventions. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Saurabh Mehta
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York 14853, USA; .,Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Daniel McDonald
- Center for Microbiome Innovation and Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Rob Knight
- Center for Microbiome Innovation and Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA.,Departments of Bioengineering and Computer Science & Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Julia L Finkelstein
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York 14853, USA; .,Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
22
|
Luthra-Guptasarma M, Guptasarma P. Does chronic inflammation cause acute inflammation to spiral into hyper-inflammation in a manner modulated by diet and the gut microbiome, in severe Covid-19? Bioessays 2021; 43:e2000211. [PMID: 34213801 DOI: 10.1002/bies.202000211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022]
Abstract
We propose that hyper-inflammation (HYPi) is a ''runaway'' consequence of acute inflammation (ACUi) that arises more easily (and also abates less easily) in those who host a pre-existing chronic inflammation (CHRi), because (i) most factors involved in generating an ACUi to limit viral proliferation are already present when there is an underlying CHRi, and also because (ii) anti-inflammatory (AI) mechanisms for the abatement of ACUi (following containment of viral proliferation) are suppressed and desensitized where there is an underlying CHRi, with this causing the ACUi to spiral into a HYPi. Stress, pollution, diet, and gut microbiomes (alterable in weeks through dietary changes) have an intimate and bidirectional cause-effect relationship with CHRi. We propose that avoidance of CHRi-promoting foods and adoption of CHRi-suppressing foods could reduce susceptibility to HYPi, in Covid-19 and in other viral diseases, such as influenza, which are characterized by episodic and unpredictable HYPi.
Collapse
Affiliation(s)
- Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
23
|
Vander Wyst KB, Ortega-Santos CP, Toffoli SN, Lahti CE, Whisner CM. Diet, adiposity, and the gut microbiota from infancy to adolescence: A systematic review. Obes Rev 2021; 22:e13175. [PMID: 33590719 PMCID: PMC10762698 DOI: 10.1111/obr.13175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
Early life gut microbiota are affected by several factors that make identification of microbial-adiposity relationships challenging. This review evaluates studies that have investigated the gut microbiota composition associated with adiposity in infants, children, and adolescents and provides evidence-based nutrition recommendations that address microbiota-adiposity links. Electronic databases were systematically searched through January 2020. Eligible studies were published in English and analyzed gut microbiota and adiposity among individuals aged birth to 18 years. Abstracts and full-text articles were reviewed by three independent reviewers. Of 45 full-text articles reviewed, 33 were included. No difference in abundance was found for Bacteroidetes (n = 7/15 articles), Firmicutes (n = 10/17), Actinobacteria (n = 8/12), Proteobacteria (n = 8/12), Tenericutes (n = 4/5), and Verrucomicrobia (n = 4/6) with adiposity. Lower abundance of Christensenellaceae (n = 3/5) and Rikenellaceae (n = 6/8) but higher abundance of F. prausnitzii (n = 3/5) and Prevotella (n = 5/7) were associated with adiposity. A lack of consensus exists for gut microbial composition associations with adiposity. A healthy gut microbiota is associated with a diet rich in fruits and vegetables with moderate consumption of animal fat and protein. Future research should use more robust sequencing technologies to identify all bacterial taxa associated with adiposity and evaluate how diet effects these adiposity-associated microbes.
Collapse
Affiliation(s)
- Kiley B Vander Wyst
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
- Center for Health Promotion and Disease Prevention, Arizona State University, Phoenix, Arizona, USA
| | | | - Samantha N Toffoli
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Caroline E Lahti
- College of Liberal Arts and Sciences, Arizona State University, Phoenix, Arizona, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| |
Collapse
|
24
|
Ratajczak AE, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I. Do Only Calcium and Vitamin D Matter? Micronutrients in the Diet of Inflammatory Bowel Diseases Patients and the Risk of Osteoporosis. Nutrients 2021; 13:nu13020525. [PMID: 33562891 PMCID: PMC7914453 DOI: 10.3390/nu13020525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is one of the most common extraintestinal complications among patients suffering from inflammatory bowel diseases. The role of vitamin D and calcium in the prevention of a decreased bone mineral density is well known, although other nutrients, including micronutrients, are also of extreme importance. Despite the fact that zinc, copper, selenium, iron, cadmium, silicon and fluorine have not been frequently discussed with regard to the prevention of osteoporosis, it is possible that a deficiency or excess of the abovementioned elements may affect bone mineralization. Additionally, the risk of malnutrition, which is common in patients with ulcerative colitis or Crohn's disease, as well as the composition of gut microbiota, may be associated with micronutrients status.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| | | | | | | | - Iwona Krela-Kaźmierczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| |
Collapse
|
25
|
Tang M, Matz KL, Berman LM, Davis KN, Melanson EL, Frank DN, Hendricks AE, Krebs NF. Effects of Complementary Feeding With Different Protein-Rich Foods on Infant Growth and Gut Health: Study Protocol. Front Pediatr 2021; 9:793215. [PMID: 35096709 PMCID: PMC8793676 DOI: 10.3389/fped.2021.793215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
Background: An urgent need exists for evidence-based dietary guidance early in life, particularly regarding protein intake. However, a significant knowledge gap exists in the effects of protein-rich foods on growth and development during early complementary feeding. Methods: This is a randomized controlled trial of infant growth and gut health (primary outcomes). We directly compare the effects of dietary patterns with common protein-rich foods (meat, dairy, plant) on infant growth trajectories and gut microbiota development (monthly assessments) during early complementary feeding in both breast- and formula-fed infants. Five-month-old infants (up to n = 300) are randomized to a meat-, dairy-, plant-based complementary diet or a reference group (standard of care) from 5 to 12 months of age, with a 24-month follow-up assessment. Infants are matched for sex, mode of delivery and mode of feeding using stratified randomization. Growth assessments include length, weight, head circumference and body composition. Gut microbiota assessments include both 16S rRNA profiling and metagenomics sequencing. The primary analyses will evaluate the longitudinal effects of the different diets on both anthropometric measures and gut microbiota. The secondary analysis will evaluate the potential associations between gut microbiota and infant growth. Discussion: Findings are expected to have significant scientific and health implications for identifying beneficial gut microbial changes and dietary patterns and for informing dietary interventions to prevent the risk of overweight and later obesity, and promote optimal health. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT05012930.
Collapse
Affiliation(s)
- Minghua Tang
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kinzie L Matz
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lillian M Berman
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathryn N Davis
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Edward L Melanson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel N Frank
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Audrey E Hendricks
- Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, United States
| | - Nancy F Krebs
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
26
|
Li N, Liang S, Chen Q, Zhao L, Li B, Huo G. Distinct gut microbiota and metabolite profiles induced by delivery mode in healthy Chinese infants. J Proteomics 2020; 232:104071. [PMID: 33307251 DOI: 10.1016/j.jprot.2020.104071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
Delivery mode is recognized as an important determinant of gut microbiota composition. Vaginally delivered infants were colonized by maternal vaginal and fecal microbiota, while those delivered by cesarean section were colonized by environmental microorganisms. To reveal differences induced by delivery mode, we determined fecal microbiota and fecal metabolome from 60 infants in Northeast China region. Bacterial gene sequence analysis showed that the feces of vaginally delivered infants had the highest abundance of Bifidobacterium, Lactobacillus, Bacteroides and Parabacteroides, while the feces of cesarean section delivered infants were more enriched in Klebsiella. LC-MS-based metabolomics data demonstrated that the feces of vaginally delivered infants were associated with high abundance of DL-norvaline and DL-citrulline, while the feces of cesarean section delivered infants were abundant in trans-vaccenic acid and cis-aconitic acid. Moreover, the feces of vaginally delivered infants was significantly in positive correlation with tryptophan metabolism and pyruvate metabolism, however, the feces of cesarean section delivered infants was positively correlated with ABC transporters. Collectively, our study demonstrated that gut microbiota and metabolite profiles were significantly different between vaginally delivered and cesarean section delivered infants, and provided the theoretical basis for restoring the intestinal environment of cesarean section infants birthed in the study region. SIGNIFICANCE: The intestinal microbiota and metabolites play important roles in infant development. To validate whether delivery modes influence the gut environment, we performed a detailed analysis of the earliest microbial colonization of the infant gut using a combination of 16S rRNA gene amplicon sequencing and LC-MS-based metabolomics. We found that the gut microbiota and metabolite composition were significantly different between vaginally delivered infants and cesarean section delivered infants. Our findings establish a vital baseline for studies tracking the infant gut microbiota and metabolite development following different delivery modes, and their associated effects on infant health. This study provides preliminary evidence that the observed differences due to delivery modes highlight their importance in shaping the early intestinal microbiota and metabolites.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China; Food College, Northeast Agricultural University, Harbin, China
| | - Shengnan Liang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China; Food College, Northeast Agricultural University, Harbin, China
| | - Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China; Food College, Northeast Agricultural University, Harbin, China
| | - Lina Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China; Food College, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China; Food College, Northeast Agricultural University, Harbin, China.
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China; Food College, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
27
|
Chehab RF, Cross TWL, Forman MR. The Gut Microbiota: A Promising Target in the Relation between Complementary Feeding and Child Undernutrition. Adv Nutr 2020; 12:969-979. [PMID: 33216115 PMCID: PMC8166545 DOI: 10.1093/advances/nmaa146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023] Open
Abstract
Child undernutrition is a major public health challenge that is persistent and disproportionately prevalent in low- and middle-income countries. Undernourished children face adverse health, economic, and social consequences that can be intergenerational. The first 1000 days of life, from conception until the child's second birthday, constitute the period of greatest vulnerability to undernutrition. The transition process from milk-based diets to solid, semi-solid, and soft food and liquids other than milk, referred to as complementary feeding (CF), occurs between the age of 6 mo and 2 y. CF practices that do not meet the WHO's guiding principles and are lacking in both quality and quantity increase susceptibility to undernutrition, restrict growth, and jeopardize child development and survival. The gut microbiota develops toward an adult-like configuration within the first 2-3 y of life. Recent studies suggest that significant changes in the gut microbial composition and functional capacity occur during the CF period, but these studies were conducted in high-income countries. Research in low- and middle-income countries, on the other hand, has implicated a disrupted gut microbiota in child undernutrition, and animal experiments reveal the potential for a causal relation. Given the growing body of evidence for a plausible role of the gut microbiota in the link between CF and undernutrition, microbiota-targeted complementary food may be a promising treatment modality for undernutrition management. The aims of this paper are to review the evidence for the relation between CF and undernutrition and to highlight the potential of the gut microbiota to be a promising target in this relation. Our summary of the current state of the knowledge in this area provides a foundation for future research and helps inform the design of interventions targeting the gut microbiota to combat child undernutrition and promote healthy growth.
Collapse
Affiliation(s)
| | - Tzu-Wen L Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Michele R Forman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
28
|
Abstract
Iron supplementation and fortification are used to treat iron deficiency, which is often associated with gastrointestinal conditions, such as inflammatory bowel disease and colorectal cancer. Within the gut, commensal bacteria contribute to maintaining systemic iron homeostasis. Disturbances that lead to excess iron promote the replication and virulence of enteric pathogens. Consequently, research has been interested in better understanding the effects of iron supplementation and fortification on gut bacterial composition and overall gut health. While animal and human trials have shown seemingly conflicting results, these studies emphasize how numerous factors influence gut microbial composition. Understanding how different iron formulations and doses impact specific bacteria will improve the outcomes of iron supplementation and fortification in humans. Furthermore, discerning the nuances of iron supplementation and fortification will benefit subpopulations that currently do not respond well to treatment.
Collapse
|
29
|
Xu J, Lawley B, Wong G, Otal A, Chen L, Ying TJ, Lin X, Pang WW, Yap F, Chong YS, Gluckman PD, Lee YS, Chong MFF, Tannock GW, Karnani N. Ethnic diversity in infant gut microbiota is apparent before the introduction of complementary diets. Gut Microbes 2020; 11:1362-1373. [PMID: 32453615 PMCID: PMC7524347 DOI: 10.1080/19490976.2020.1756150] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human gut microbiota develops soon after birth and can acquire inter-individual variation upon exposure to intrinsic and environmental cues. However, inter-individual variation has not been comprehensively assessed in a multi-ethnic study. We studied a longitudinal birth cohort of 106 infants of three Asian ethnicities (Chinese, Malay, and Indian) that resided in the same geographical location (Singapore). Specific and temporal influences of ethnicity, mode of delivery, breastfeeding status, gestational age, birthweight, gender, and maternal education on the development of the gut microbiota in the first 2 years of life were studied. Mode of delivery, breastfeeding status, and ethnicity were identified as the main factors influencing the compositional development of the gut microbiota. Effects of delivery mode and breastfeeding status lasted until 6M and 3M, respectively, with the primary impact on the diversity and temporal colonization of the genera Bacteroides and Bifidobacterium. The effect of ethnicity was apparent at 3M post-birth, even before the introduction of weaning (complementary) foods, and remained significant after adjusting for delivery mode and breastfeeding status. Ethnic influences remained significant until 12M in the Indian and Chinese infants. The microbiota of Indian infants was characterized by higher abundances of Bifidobacterium and Lactobacillus, while Chinese infants had higher abundances of Bacteroides and Akkermansia. These findings provide a detailed insight into the specific and temporal influences of early life factors and ethnicity in the development of the human gut microbiota. Trial Registration: Clinicaltrials.gov registration no. NCT01174875.
Collapse
Affiliation(s)
- Jia Xu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gerard Wong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Anna Otal
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Li Chen
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Toh Jia Ying
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Xinyi Lin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Centre for Quantitative Medicine and Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Wei Wei Pang
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fabian Yap
- Department of Pediatric Endocrinology, KK Women’s and Children’s Hospital, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peter D. Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mary Foong-Fong Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand,Gerald W. Tannock Department of Microbiology and Immunology, University of Otago, Dunedin9054, New Zealand
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,CONTACT Neerja Karnani Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Sciences (SICS), A*STAR, 30 Medical Drive117609, Singapore
| |
Collapse
|
30
|
Pervin MA, Jahan H, Akter R, Omri A, Hossain Z. Appraisal of different levels of soybean meal in diets on growth, digestive enzyme activity, antioxidation, and gut histology of tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1397-1407. [PMID: 32222857 DOI: 10.1007/s10695-020-00798-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/22/2020] [Indexed: 06/10/2023]
Abstract
This study was designed to determine the effect of fishmeal (FM) replacement with soybean meal (SBM) in the diet of tilapia (Oreochromis niloticus). Growth, digestive enzyme activity, antioxidation, and gut histomorphology were assessed in the fish fed with five different formulated diets that increasingly replaced FM. The SBM0 contained 100% FM, followed by 25% (SBM25), 50% (SBM50), 75% (SBM75), and 100% (SBM100). Juvenile tilapia having weight and length of 6.6 ± 0.1 g and 5.4 ± 0.2 cm, respectively, were randomly divided into five treatment groups. Each group had 40 individual fish and fed to visual satiation for 90 days. Body weight gain and specific growth rate in fish fed with 25-75% SBM increased significantly (P < 0.01) compared with those in fish fed with SBM100. Fish having the same weight fed with diets SBM50, SBM75, and SBM100 showed a significantly (P < 0.01) longer intestine compared with those fed with SBM0 and SBM25. Villus height of the stomach and intestine was significantly (P < 0.01) greater in the fish fed with the diets SBM0, SBM25, and SBM50 compared with SBM75 and SBM100. Muscular thickness was inversely related with the increasing villus height. Protease activity increased significantly (P < 0.01) in the stomach, anterior intestine, and posterior intestine of fish fed with SBM0 compared with SBM100. In the stomach and anterior and posterior segments of the intestine, significantly (P < 0.01) higher lipase activity was observed in fish fed with the diets SBM0 and SBM25 compared with diet SBM100. In the stomach, anterior intestine, and posterior intestine, amylase activity was also significantly (P < 0.01) greater in SBM0 compared with SBM100. The antioxidant enzymes including superoxide dismutase and catalase of the liver were significantly (P < 0.01) higher in fish fed SBM100 compared with SBM0. These results suggest that the replacement of FM up to 75% with SBM could be possible considering the growth performances, gut health, and activities of digestive enzymes and antioxidant enzymes in O. niloticus.
Collapse
Affiliation(s)
- Mst Arzu Pervin
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, -2202, Mymensingh, Bangladesh
| | - Halima Jahan
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, -2202, Mymensingh, Bangladesh
| | - Rabeya Akter
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, -2202, Mymensingh, Bangladesh
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | - Zakir Hossain
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, -2202, Mymensingh, Bangladesh.
| |
Collapse
|
31
|
Li N, Yan F, Wang N, Song Y, Yue Y, Guan J, Li B, Huo G. Distinct Gut Microbiota and Metabolite Profiles Induced by Different Feeding Methods in Healthy Chinese Infants. Front Microbiol 2020; 11:714. [PMID: 32435235 PMCID: PMC7219020 DOI: 10.3389/fmicb.2020.00714] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 01/03/2023] Open
Abstract
Human milk is closely correlated with infant gut microbiota and is important for infant development. However, most infants receive exclusively insufficient breast milk, and the discordance between effects of commercial formula and human milk exists. To elucidate the differences induced by various feeding methods, we determined microbiota and metabolites composition in fecal samples from 77 healthy infants in Northeast China and identified the differences in various feeding methods. Bacterial 16S rRNA gene sequence analysis demonstrated that the fecal samples of exclusively breastfed (BF) infants were abundant in Bifidobacterium and Lactobacillus; the mixed-fed (MF) infants had the highest abundance of Veillonella and Klebsiella; the exclusively formula-fed (FF) infants were enriched in Bacteroides and Blautia; and the complementary food-fed (CF) infants were associated with higher relative abundance of Lachnoclostridium and Akkermansia. Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics data revealed that the fecal samples of BF infants had the highest abundance of dl-citrulline, threonine, l-proline, l-glutamine, guanine, and l-arginine; the MF infants were abundant in d-maltose, stearidonic acid, capric acid, and myristic acid; the FF infants were enriched in itaconic acid, 4-pyridoxic acid, prostaglandin B2, thymine, dl-α-hydroxybutyric acid, and orotic acid; and the CF infants were associated with higher relative abundance of taurine, l-tyrosine, adenine, and uric acid. Furthermore, compared with the BF infants, the MF and FF infants were more abundant in fatty acid biosynthesis. Collectively, these findings will provide probable explanations for some of the risks and benefits related to infant feeding methods and will support a theoretical basis for the development of infant formula.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Fenfen Yan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Nana Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Yue Song
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Jiaqi Guan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| |
Collapse
|
32
|
Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020; 12:E381. [PMID: 32023943 PMCID: PMC7071260 DOI: 10.3390/nu12020381] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding how dietary nutrients modulate the gut microbiome is of great interest for the development of food products and eating patterns for combatting the global burden of non-communicable diseases. In this narrative review we assess scientific studies published from 2005 to 2019 that evaluated the effect of micro- and macro-nutrients on the composition of the gut microbiome using in vitro and in vivo models, and human clinical trials. The clinical evidence for micronutrients is less clear and generally lacking. However, preclinical evidence suggests that red wine- and tea-derived polyphenols and vitamin D can modulate potentially beneficial bacteria. Current research shows consistent clinical evidence that dietary fibers, including arabinoxylans, galacto-oligosaccharides, inulin, and oligofructose, promote a range of beneficial bacteria and suppress potentially detrimental species. The preclinical evidence suggests that both the quantity and type of fat modulate both beneficial and potentially detrimental microbes, as well as the Firmicutes/Bacteroides ratio in the gut. Clinical and preclinical studies suggest that the type and amount of proteins in the diet has substantial and differential effects on the gut microbiota. Further clinical investigation of the effect of micronutrients and macronutrients on the microbiome and metabolome is warranted, along with understanding how this influences host health.
Collapse
Affiliation(s)
- Qi Yang
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | - Qi Liang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Biju Balakrishnan
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | | | - Qian-Jin Feng
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Wei Zhang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| |
Collapse
|
33
|
Lawley B, Otal A, Moloney-Geany K, Diana A, Houghton L, Heath ALM, Taylor RW, Tannock GW. Fecal Microbiotas of Indonesian and New Zealand Children Differ in Complexity and Bifidobacterial Taxa during the First Year of Life. Appl Environ Microbiol 2019; 85:e01105-19. [PMID: 31375480 PMCID: PMC6752005 DOI: 10.1128/aem.01105-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
The biological succession that occurs during the first year of life in the gut of infants in Western countries is broadly predictable in terms of the increasing complexity of the composition of microbiotas. Less information is available about microbiotas in Asian countries, where environmental, nutritional, and cultural influences may differentially affect the composition and development of the microbial community. We compared the fecal microbiotas of Indonesian (n = 204) and New Zealand (NZ) (n = 74) infants 6 to 7 months and 12 months of age. Comparisons were made by analysis of 16S rRNA gene sequences and derivation of community diversity metrics, relative abundances of bacterial families, enterotypes, and cooccurrence correlation networks. Abundances of Bifidobacterium longum subsp. infantis and B. longum subsp. longum were determined by quantitative PCR. All observations supported the view that the Indonesian and NZ infant microbiotas developed in complexity over time, but the changes were much greater for NZ infants. B. longum subsp. infantis dominated the microbiotas of Indonesian children, whereas B. longum subsp. longum was dominant in NZ children. Network analysis showed that the niche model (in which trophic adaptation results in preferential colonization) of the assemblage of microbiotas was supported in Indonesian infants, whereas the neutral (stochastic) model was supported by the development of the microbiotas of NZ infants. The results of the study show that the development of the fecal microbiota is not the same for infants in all countries, and they point to the necessity of obtaining a better understanding of the factors that control the colonization of the gut in early life.IMPORTANCE This study addresses the microbiology of a natural ecosystem (the infant bowel) for children in a rural setting in Indonesia and in an urban environment in New Zealand. Analysis of DNA sequences generated from the microbial community (microbiota) in the feces of the infants during the first year of life showed marked differences in the composition and complexity of the bacterial collections. The differences were most likely due to differences in the prevalence and duration of breastfeeding of infants in the two countries. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of nutrition and environment on the development of the gut microbiota and for determining the long-term effects of microbiological events in early life on human health and well-being.
Collapse
Affiliation(s)
- Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Anna Otal
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Kit Moloney-Geany
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aly Diana
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Lisa Houghton
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- Microbiome Otago, University of Otago, Dunedin, New Zealand
| | - Anne-Louise M Heath
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- Microbiome Otago, University of Otago, Dunedin, New Zealand
| | - Rachael W Taylor
- Microbiome Otago, University of Otago, Dunedin, New Zealand
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Microbiome Otago, University of Otago, Dunedin, New Zealand
- Riddet Centre of Research Excellence, Massey University, Palmerston North, New Zealand
| |
Collapse
|
34
|
Kim SJ, Kim SE, Kim AR, Kang S, Park MY, Sung MK. Dietary fat intake and age modulate the composition of the gut microbiota and colonic inflammation in C57BL/6J mice. BMC Microbiol 2019; 19:193. [PMID: 31429703 PMCID: PMC6701133 DOI: 10.1186/s12866-019-1557-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background More than half of the adult population worldwide is overweight or obese, while excess adiposity has been linked to chronic low-grade inflammation, contributing to the development of chronic diseases. Recent studies have showed that diet-induced alterations to the gut microbiota composition play a pivotal role in the development of obesity. However, the cause-effect relationship between obesity and gut microbiota composition is not yet fully understood. In this study, we investigated the short-term responses of gut microbiota composition to diets with different fat contents and their associations with inflammatory biomarkers. Results Sixty male C57BL/6 J mice were fed a normal diet (ND; 15% fat) or a high-fat diet (HFD; 45% fat) for 10 or 20 weeks. The relative proportion of the phylum Actinobacteria was elevated by the HFD and was positively associated with body weight and proinflammatory cytokines including TNF-α, IL-1β, and IL-6. The proportion of the phylum Firmicutes increased with aging and was also positively correlated with proinflammatory cytokines. The proportions of Actinobacteria and Firmicutes were inversely associated with tight junction proteins claudin-1 and E-cadherin, respectively. The proportions of the class Clostridia and the family Ruminococcaceae within the phylum Firmicutes were affected by both diet and age. In addition, the proportions of the phylum Bacteroidetes, the family Bacteroidaceae, and the genus Bacteroides decreased with aging and were inversely correlated with colonic proinflammatory cytokines representing a positive association with tight junction proteins. Conclusions Host age and dietary fat intake are important elements that induce proportional changes in gut microbiota, and these changes are also associated with systemic inflammation. This study provides evidence that diet affects the gut microbiota composition within a short period of time.
Collapse
Affiliation(s)
- Su Jeong Kim
- Department of Food and Nutrition, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - A-Reum Kim
- Department of Food and Nutrition, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Saemyi Kang
- Department of Food and Nutrition, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Mi-Young Park
- Department of Food and Nutrition Education, Graduate School of Education, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea.
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea.
| |
Collapse
|
35
|
Hamidi B, Wallace K, Alekseyenko AV. MODIMA, a Method for Multivariate Omnibus Distance Mediation Analysis, Allows for Integration of Multivariate Exposure-Mediator-Response Relationships. Genes (Basel) 2019; 10:E524. [PMID: 31336807 PMCID: PMC6679421 DOI: 10.3390/genes10070524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Many important exposure-response relationships, such as diet and weight, can be influenced by intermediates, such as the gut microbiome. Understanding the role of these intermediates, the mediators, is important in refining cause-effect theories and discovering additional medical interventions (e.g., probiotics, prebiotics). Mediation analysis has been at the heart of behavioral health research, rapidly gaining popularity with the biomedical sciences in the last decade. A specific analytic challenge is being able to incorporate an entire 'omics assay as a mediator. To address this challenge, we propose a hypothesis testing framework for multivariate omnibus distance mediation analysis (MODIMA). We use the power of energy statistics, such as partial distance correlation, to allow for analysis of multivariate exposure-mediator-response triples. Our simulation results demonstrate the favorable statistical properties of our approach relative to the available alternatives. Finally, we demonstrate the application of the proposed methods in two previously published microbiome datasets. Our framework adds a new tool to the toolbox of approaches to the integration of 'omics big data.
Collapse
Affiliation(s)
- Bashir Hamidi
- Program for Human Microbiome Research, Medical University of South Carolina, 135 Cannon Street MSC 200, Charleston, SC 29425, USA
- Biomedical Informatics Center, Medical University of South Carolina, 135 Cannon Street MSC 200, Charleston, SC 29425, USA
| | - Kristin Wallace
- Department of Public Health Science, Medical University of South Carolina, 135 Cannon Street MSC 200, Charleston, SC 29425, USA
| | - Alexander V Alekseyenko
- Program for Human Microbiome Research, Medical University of South Carolina, 135 Cannon Street MSC 200, Charleston, SC 29425, USA.
- Biomedical Informatics Center, Medical University of South Carolina, 135 Cannon Street MSC 200, Charleston, SC 29425, USA.
- Department of Public Health Science, Medical University of South Carolina, 135 Cannon Street MSC 200, Charleston, SC 29425, USA.
- Department of Oral Health Sciences, Medical University of South Carolina, 135 Cannon Street MSC 200, Charleston, SC 29425, USA.
- Department of Healthcare Leadership and Management, Medical University of South Carolina, 135 Cannon Street MSC 200, Charleston, SC 29425, USA.
| |
Collapse
|
36
|
The Early Introduction of Complementary (Solid) Foods: A Prospective Cohort Study of Infants in Chengdu, China. Nutrients 2019; 11:nu11040760. [PMID: 30939733 PMCID: PMC6521052 DOI: 10.3390/nu11040760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/01/2022] Open
Abstract
The objective of this study was to document the types of foods introduced to infants before six months of age and identify factors associated with their early introduction. A prospective cohort study of infant feeding for the first six months after birth was undertaken in the city of Chengdu, PR China. The participants were 845 mothers who delivered their infants in hospitals in Chengdu. Mothers were interviewed within 15 days of giving birth and were followed up with for six months. The outcome measures were the introduction of complementary foods to infants within four and six months postpartum. Complementary foods are defined as any food, whether manufactured or locally prepared, used as a complement to breast milk or infant formula. In this study the emphasis was on solids and not liquid foods. More than 94% of the infants were given complementary foods (semi-solid or solid foods) before the age of six months and 10% by four months. The most commonly introduced food was infant cereal, which was given to three quarters of the infants by six months. Multivariate analysis showed that maternal education level was a significant factor affecting the introduction of complementary foods before four months, adjusted odds ratio 2.983 (1.232–7.219), with the more educated mothers introducing complementary foods earlier. More antenatal and postnatal health promotion efforts are required to highlight the benefits of introducing solid foods later than is the current practice in Chengdu, at or close to six months of age. Further education is also required for training health professionals including pediatricians, midwives, and community health staff.
Collapse
|
37
|
Mediation Analysis as a Means of Identifying Dietary Components That Differentially Affect the Fecal Microbiota of Infants Weaned by Modified Baby-Led and Traditional Approaches. Appl Environ Microbiol 2018; 84:AEM.00914-18. [PMID: 30006390 DOI: 10.1128/aem.00914-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
The introduction of "solids" (i.e., complementary foods) to the milk-only diet in early infancy affects the development of the gut microbiota. The aim of this study was to determine whether a "baby-led" approach to complementary feeding that encourages the early introduction of an adult-type diet results in alterations of the gut microbiota composition compared to traditional spoon-feeding. The Baby-Led Introduction to SolidS (BLISS) study randomized 206 infants to BLISS (a modified version of baby-led weaning [BLW], the introduction of solids at 6 months of age, followed by self-feeding of family foods) or control (traditional spoon-feeding of purées) groups. Fecal microbiotas and 3-day weighed-diet records were analyzed for a subset of 74 infants at 7 and 12 months of age. The composition of the microbiota was determined by sequencing of 16S rRNA genes amplified by PCR from bulk DNA extracted from feces. Diet records were used to estimate food and dietary fiber intake. Alpha diversity (number of operational taxonomic units [OTUs]) was significantly lower in BLISS infants at 12 months of age (difference [95% confidence interval {CI}] of 31 OTUs [3.4 to 58.5]; P = 0.028), and while there were no significant differences between control and BLISS infants in relative abundances of Bifidobacteriaceae, Enterobacteriaceae, Veillonellaceae, Bacteroidaceae, Erysipelotrichaceae, Lachnospiraceae, or Ruminococcaceae at 7 or 12 months of age, OTUs representing the genus Roseburia were less prevalent in BLISS microbiotas at 12 months. Mediation models demonstrated that the intake of "fruit and vegetables" and "dietary fiber" explained 29% and 25%, respectively, of the relationship between group (BLISS versus control) and alpha diversity.IMPORTANCE The introduction of solid foods (complementary feeding or weaning) to infants leads to more-complex compositions of microbial communities (microbiota or microbiome) in the gut. In baby-led weaning (BLW), infants are given only finger foods that they can pick up and feed themselves-there is no parental spoon-feeding of puréed baby foods-and infants are encouraged to eat family meals. BLW is a new approach to infant feeding that is increasing in popularity in the United States, New Zealand, the United Kingdom, and Canada. We used mediation modeling, commonly used in health research but not in microbiota studies until now, to identify particular dietary components that affected the development of the infant gut microbiota.
Collapse
|
38
|
Berding K, Donovan SM. Diet Can Impact Microbiota Composition in Children With Autism Spectrum Disorder. Front Neurosci 2018; 12:515. [PMID: 30108477 PMCID: PMC6079226 DOI: 10.3389/fnins.2018.00515] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022] Open
Abstract
Diet is one of the most influential environmental factors in determining the composition of the gastrointestinal microbiota. Microbial dysbiosis in children with Autism Spectrum Disorder (ASD) and the impact of some bacterial taxa on symptoms of ASD has been recognized. Children with ASD are often described as picky eaters with low intake of fiber-rich foods, including fruits and vegetables. However, the impact of diet on the microbiota composition in children with ASD is largely unknown. Herein, fecal samples, 3 day food diaries and the Youth and Adolescence Food Frequency questionnaire (YAQ) were collected from children with ASD (ASD; n = 26) and unaffected controls (CONT; n = 32). Children's ASD symptoms were determined using the Pervasive Developmental Disorder Behavior Inventory Screening Version (PDDBI-SV). Differences in the microbiota composition at the phyla, order, family, and genus level between ASD and CONT were observed. Microbiota composition of children with ASD was investigated in relation to feeding behavior, nutrient and food group intake as well as dietary patterns derived from the YAQ. In children with ASD, two distinct dietary patterns (DP) were associated with unique microbial profiles. DP1, characterized by higher intakes of vegetables, legumes, nuts and seeds, fruit, refined carbohydrates, and starchy vegetables, but lower intakes of sweets, was associated with lower abundance of Enterobacteriaceae, Lactococcus, Roseburia, Leuconostoc, and Ruminococcus. DP2, characterized by low intakes of vegetables, legumes, nuts and seeds and starchy vegetables, was associated with higher Barnesiellaceae and Alistipes and lower Streptophyta, as well as higher levels of propionate, isobutyrate, valerate, and isovalerate. Peptostreptococcaceae and Faecalibacterium predicted social deficit scores in children with ASD as measured by the PDDBI-SV. Diet-associated microbial profiles were related to GI symptoms, but no significant interaction between nutrition and microbiota in predicting social deficit scores were observed. In conclusion, dietary patterns associated with fecal microbiota composition and VFA concentrations in children with ASD were identified. Future studies using a larger sample size and measuring other behaviors associated with ASD are needed to investigate whether dietary intake may be a modifiable moderator of ASD symptoms.
Collapse
Affiliation(s)
- Kirsten Berding
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Sharon M Donovan
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States.,Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, United States
| |
Collapse
|
39
|
Paalanne N, Husso A, Salo J, Pieviläinen O, Tejesvi MV, Koivusaari P, Pirttilä AM, Pokka T, Mattila S, Jyrkäs J, Turpeinen A, Uhari M, Renko M, Tapiainen T. Intestinal microbiome as a risk factor for urinary tract infections in children. Eur J Clin Microbiol Infect Dis 2018; 37:1881-1891. [PMID: 30006660 DOI: 10.1007/s10096-018-3322-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
As urinary tract infection (UTI) pathogens originate from the gut, we hypothesized that the gut environment reflected by intestinal microbiome influences the risk of UTI. Our prospective case-control study compared the intestinal microbiomes of 37 children with a febrile UTI with those of 69 healthy children. We sequenced the regions of the bacterial 16S rRNA gene and used the LefSe algorithm to calculate the size of the linear discriminant analysis (LDA) effect. We measured fecal lactoferrin and iron concentrations and quantitative PCR for Escherichia coli. At the phylum level, there were no significant differences. At the genus level, Enterobacter was more abundant in UTI patients with an LDA score > 3 (log 10), while Peptostreptococcaceae were more abundant in healthy subjects with an LDA score > 3 (log 10). In total, 20 OTUs with significantly different abundances were observed. Previous use of antimicrobials did not associate with intestinal microbiome. The relative abundance of E. coli was 1.9% in UTI patients and 0.5% in controls (95% CI of the difference-0.8 to 3.6%). The mean concentration of E.coli in quantitative PCR was 0.14 ng/μl in the patients and 0.08 ng/μl in the controls (95% CI of the difference-0.04 to 0.16). Fecal iron and lactoferrin concentrations were similar between the groups. At the family and genus level, we noted several differences in the intestinal microbiome between children with UTI and healthy children, which may imply that the gut environment is linked with the risk of UTI in children.
Collapse
Affiliation(s)
- Niko Paalanne
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland. .,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| | - Aleksi Husso
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Jarmo Salo
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Oskari Pieviläinen
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Mysore V Tejesvi
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland.,Chain Antimicrobials Ltd, Teknologiantie 2, 90590, Oulu, Finland
| | - Pirjo Koivusaari
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | | | - Tytti Pokka
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Sampo Mattila
- Research Unit in Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Juha Jyrkäs
- Research Unit in Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Ari Turpeinen
- Research Unit in Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Matti Uhari
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Marjo Renko
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Terhi Tapiainen
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
40
|
Forbes JD, Azad MB, Vehling L, Tun HM, Konya TB, Guttman DS, Field CJ, Lefebvre D, Sears MR, Becker AB, Mandhane PJ, Turvey SE, Moraes TJ, Subbarao P, Scott JA, Kozyrskyj AL. Association of Exposure to Formula in the Hospital and Subsequent Infant Feeding Practices With Gut Microbiota and Risk of Overweight in the First Year of Life. JAMA Pediatr 2018; 172:e181161. [PMID: 29868719 PMCID: PMC6137517 DOI: 10.1001/jamapediatrics.2018.1161] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE The effect of neonatal and infant feeding practices on childhood obesity is unclear. The gut microbiome is strongly influenced by feeding practices and has been linked to obesity. OBJECTIVE To characterize the association between breastfeeding, microbiota, and risk of overweight during infancy, accounting for the type and timing of supplementary feeding. DESIGN, SETTING, AND PARTICIPANTS In this study of a subset of 1087 infants from the prospective CHILD pregnancy cohort, mothers were recruited between January 1, 2009, and December 31, 2012. Statistical analysis was performed from February 1 to December 20, 2017. MAIN OUTCOMES AND MEASURES Feeding was reported by mothers and documented from hospital records. Fecal microbiota at 3 to 4 months (from 996 infants) and/or 12 months (from 821 infants) were characterized by 16S ribosomal RNA sequencing. Infants with a weight for length exceeding the 85th percentile were considered to be at risk for overweight. RESULTS There were 1087 infants in the study (507 girls and 580 boys); at 3 months, 579 of 1077 (53.8%) were exclusively breastfed according to maternal report. Infants who were exclusively formula fed at 3 months had an increased risk of overweight in covariate-adjusted models (53 of 159 [33.3%] vs 74 of 386 [19.2%]; adjusted odds ratio, 2.04; 95% CI, 1.25-3.32). This association was attenuated (adjusted odds ratio, 1.33; 95% CI, 0.79-2.24) after further adjustment for microbiota features characteristic of formula feeding at 3 to 4 months, including higher overall richness and enrichment of Lachnospiraceae. A total of 179 of 579 infants who were exclusively breastfed (30.9%) received formula as neonates; this brief supplementation was associated with lower relative abundance of Bifidobacteriaceae and higher relative abundance of Enterobacteriaceae at 3 to 4 months but did not influence the risk of overweight. At 12 months, microbiota profiles differed significantly according to feeding practices at 6 months; among partially breastfed infants, formula supplementation was associated with a profile similar to that of nonbreastfed infants (higher diversity and enrichment of Bacteroidaceae), whereas the introduction of complementary foods without formula was associated with a profile more similar to that of exclusively breastfed infants (lower diversity and enrichment of Bifidobacteriaceae and Veillonellaceae). Microbiota profiles at 3 months were more strongly associated with risk of overweight than were microbiota profiles at 12 months. CONCLUSIONS AND RELEVANCE Breastfeeding may be protective against overweight, and gut microbiota may contribute to this effect. Formula feeding appears to stimulate changes in microbiota that are associated with overweight, whereas other complementary foods do not. Subtle microbiota differences emerge after brief exposure to formula in the hospital. These results identify important areas for future research and distinguish early infancy as a critical period when transient gut dysbiosis may lead to increased risk of overweight.
Collapse
Affiliation(s)
- Jessica D. Forbes
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada,Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Department of Pediatrics and Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Meghan B. Azad
- Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Department of Pediatrics and Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lorena Vehling
- Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Department of Pediatrics and Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hein M. Tun
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Theodore B. Konya
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Catherine J. Field
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Diana Lefebvre
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Malcolm R. Sears
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Allan B. Becker
- Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Department of Pediatrics and Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Stuart E. Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada,Child and Family Research Institute, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Theo J. Moraes
- Department of Pediatrics and Physiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Padmaja Subbarao
- Department of Pediatrics and Physiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - James A. Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Anita L. Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
41
|
Iron and the Breastfed Infant. Antioxidants (Basel) 2018; 7:antiox7040054. [PMID: 29642400 PMCID: PMC5946120 DOI: 10.3390/antiox7040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
The first 6 months of life is a crucial time in meeting iron needs. The purpose of this review is to examine iron in mother’s milk and whether or not it meets the physiological needs of the growing infant. Key issues include iron content and iron transport from the mammary gland as well as when and what foods should be added to the solely breastfed infant. We examine these topics in light of new molecular biology findings in the mammary gland.
Collapse
|
42
|
|
43
|
Pekmez CT, Dragsted LO, Brahe LK. Gut microbiota alterations and dietary modulation in childhood malnutrition - The role of short chain fatty acids. Clin Nutr 2018; 38:615-630. [PMID: 29496274 DOI: 10.1016/j.clnu.2018.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/12/2022]
Abstract
The gut microbiome affects the health status of the host through different mechanisms and is associated with a wide variety of diseases. Both childhood undernutrition and obesity are linked to alterations in composition and functionality of the gut microbiome. One of the possible mechanisms underlying the interplay between microbiota and host metabolism is through appetite-regulating hormones (including leptin, ghrelin, glucagon-like peptide-1). Short chain fatty acids, the end product of bacterial fermentation of non-digestible carbohydrates, might be able to alter energy harvest and metabolism through enteroendocrine cell signaling, adipogenesis and insulin-like growth factor-1 production. Elucidating these mechanisms may lead to development of new modulation practices of the gut microbiota as a potential prevention and treatment strategy for childhood malnutrition. The present overview will briefly outline the gut microbiota development in the early life, gut microbiota alterations in childhood undernutrition and obesity, and whether this relationship is causal. Further we will discuss possible underlying mechanisms in relation to the gut-brain axis and short chain fatty acids, and the potential of probiotics, prebiotics and synbiotics for modulating the gut microbiota during childhood as a prevention and treatment strategy against undernutrition and obesity.
Collapse
Affiliation(s)
- Ceyda Tugba Pekmez
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark; Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lena Kirchner Brahe
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
44
|
Huang J, Zhang Z, Wu Y, Wang Y, Wang J, Zhou L, Ni Z, Hao L, Yang N, Yang X. Early feeding of larger volumes of formula milk is associated with greater body weight or overweight in later infancy. Nutr J 2018; 17:12. [PMID: 29368651 PMCID: PMC5784650 DOI: 10.1186/s12937-018-0322-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/05/2018] [Indexed: 01/16/2023] Open
Abstract
Background The relation between infant feeding and growth has been extensively evaluated, but studies examining the volume of formula milk consumption on infant growth are limited. This study aimed to examine the effects of early feeding of larger volumes of formula on growth and risk of overweight in later infancy. Methods In total, 1093 infants were studied prospectively. Milk records collected at 3 mo of age were used to define the following 3 feeding groups: breast milk feeding (BM, no formula), lower-volume formula milk feeding (LFM, <840 ml formula/d), and higher-volume formula milk feeding (HFM, ≥840 ml formula/d). Body weight and length were measured at 3 time points of 3, 6 and 12 mo of age. Results The results showed that the difference in weight and length between the HFM and BM infants was significant at 3 mo of age (P < 0.05) and continued until 12 mo of age (P < 0.001). The adjusted mean changes in weight-for-length z-scores (WLZ) and BMI-for-age z-scores (BAZ) from 3 to 6 mo of age were significantly higher in HFM and LFM group than in BM group. Two-way interactions between feeding practice and age intervals were significant for WLZ changes (P = 0.002) and BAZ changes (P = 0.017). Compared with BM-fed infants, infants fed with HFM had 1.60-fold (95% CI 1.05–2.44) higher odds of greater body weight (1SD < WLZ ≤2 SD) at the age of 6 mo and 1.55-fold (95% CI 1.01–2.37) higher odds of greater body weight and 2.13-fold (95% CI 1.03–4.38) higher odds of overweight (WLZ > 2 SD) at the age of 12 mo. Conclusion Feeding higher volumes of formula in early infancy is associated with greater body weight and overweight in later infancy.
Collapse
Affiliation(s)
- Junmei Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Zhen Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Yuanjue Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Yan Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Jing Wang
- Jiangan Maternal and Child Health Hospital, Wuhan, Hubei, 430014, China.,Jiangan Centers for Disease Control and Prevention, Wuhan, Hubei, 430014, China
| | - Li Zhou
- Jiangan Maternal and Child Health Hospital, Wuhan, Hubei, 430014, China
| | - Zemin Ni
- Jiangan Maternal and Child Health Hospital, Wuhan, Hubei, 430014, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China.
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
45
|
Ximenez C, Torres J. Development of Microbiota in Infants and its Role in Maturation of Gut Mucosa and Immune System. Arch Med Res 2017; 48:666-680. [PMID: 29198451 DOI: 10.1016/j.arcmed.2017.11.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022]
Abstract
Dysbiosis of the gut microbiota has been associated with increasing numbers of diseases, including obesity, diabetes, inflammatory bowel disease, asthma, allergy, cancer and even neurologic or behavioral disorders. The other side of the coin is that a healthy microbiota leads to a healthy human development, to a mature and well trained immune system and to an efficient metabolic machinery. What we have learned in adults is in the end the result of a good start, a programmed, healthy development of the microbiota that must occur in the early years of life, probably even starting during the fetal stage. This review aims to present and discuss reports that helps us understand what we have learned of the development of microbiota during the early times of life, from pregnancy to delivery to the early years after birth. The impact of the establishment of "healthy" bacterial communities on human surfaces in the maturation of epithelia, immune system and metabolism will also be discussed. The right process of maturation of the bacterial communities that establish a symbiosis with human surfaces depends on a number of environmental, genetic and temporal factors that need to be understand in order to have tools to monitor a healthy development and eventually intervene to correct undesired courses.
Collapse
Affiliation(s)
- Cecilia Ximenez
- Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Ciudad de México, México.
| |
Collapse
|