1
|
Leucht S, Priller J, Davis JM. Antipsychotic Drugs: A Concise Review of History, Classification, Indications, Mechanism, Efficacy, Side Effects, Dosing, and Clinical Application. Am J Psychiatry 2024; 181:865-878. [PMID: 39350614 DOI: 10.1176/appi.ajp.20240738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The introduction of the first antipsychotic drug, chlorpromazine, was a milestone for psychiatry. The authors review the history, classification, indications, mechanism, efficacy, side effects, dosing, drug initiation, switching, and other practical issues and questions related to antipsychotics. Classifications such as first-generation/typical versus second-generation/atypical antipsychotics are neither valid nor useful; these agents should be described according to the Neuroscience-based Nomenclature (NbN). Antipsychotic drugs are not specific for treating schizophrenia. They reduce psychosis regardless of the underlying diagnosis, and they go beyond nonspecific sedation. All currently available antipsychotic drugs are dopamine blockers or dopamine partial agonists. In schizophrenia, effect sizes for relapse prevention are larger than for acute treatment. A major unresolved problem is the implausible increase in placebo response in antipsychotic drug trials over the decades. Differences in side effects, which can be objectively measured, such as weight gain, are less equivocal than differences in rating-scale-measured (subjective) efficacy. The criteria for choosing among antipsychotics are mainly pragmatic and include factors such as available formulations, metabolism, half-life, efficacy, and side effects in previous illness episodes. Plasma levels help to detect nonadherence, and once-daily dosing at night (which is possible with many antipsychotics) and long-acting injectable formulations are useful when adherence is a problem. Dose-response curves for both acute treatment and relapse prevention follow a hyperbolic pattern, with maximally efficacious average dosages for schizophrenia of around 5 mg/day risperidone equivalents. Computer apps facilitating the choice between drugs are available. Future drug development should include pharmacogenetics and focus on drugs for specific aspects of psychosis.
Collapse
Affiliation(s)
- Stefan Leucht
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Munich (Leucht, Priller); German Center for Mental Health, Munich (Leucht, Priller); Neuropsychiatry, Charité-Universitätsmedizin Berlin, and German Center for Neurodegenerative Disorders, Berlin (Priller); University of Edinburgh and UK Dementia Research Institute, Edinburgh (Priller); Department of Psychiatry, University of Illinois at Chicago (Davis)
| | - Josef Priller
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Munich (Leucht, Priller); German Center for Mental Health, Munich (Leucht, Priller); Neuropsychiatry, Charité-Universitätsmedizin Berlin, and German Center for Neurodegenerative Disorders, Berlin (Priller); University of Edinburgh and UK Dementia Research Institute, Edinburgh (Priller); Department of Psychiatry, University of Illinois at Chicago (Davis)
| | - John M Davis
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Munich (Leucht, Priller); German Center for Mental Health, Munich (Leucht, Priller); Neuropsychiatry, Charité-Universitätsmedizin Berlin, and German Center for Neurodegenerative Disorders, Berlin (Priller); University of Edinburgh and UK Dementia Research Institute, Edinburgh (Priller); Department of Psychiatry, University of Illinois at Chicago (Davis)
| |
Collapse
|
2
|
Uliana DL, Lisboa JRF, Gomes FV, Grace AA. The excitatory-inhibitory balance as a target for the development of novel drugs to treat schizophrenia. Biochem Pharmacol 2024; 228:116298. [PMID: 38782077 PMCID: PMC11410545 DOI: 10.1016/j.bcp.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The intricate balance between excitation and inhibition (E/I) in the brain plays a crucial role in normative information processing. Dysfunctions in the E/I balance have been implicated in various psychiatric disorders, including schizophrenia (SCZ). In particular, abnormalities in GABAergic signaling, specifically in parvalbumin (PV)-containing interneurons, have been consistently observed in SCZ pathophysiology. PV interneuron function is vital for maintaining an ideal E/I balance, and alterations in PV interneuron-mediated inhibition contribute to circuit deficits observed in SCZ, including hippocampus hyperactivity and midbrain dopamine system overdrive. While current antipsychotic medications primarily target D2 dopamine receptors and are effective primarily in treating positive symptoms, novel therapeutic strategies aiming to restore the E/I balance could potentially mitigate not only positive symptoms but also negative symptoms and cognitive deficits. This could involve, for instance, increasing the inhibitory drive onto excitatory neurons or decreasing the putative enhanced pyramidal neuron activity due to functional loss of PV interneurons. Compounds targeting the glycine site at glutamate NMDA receptors and muscarinic acetylcholine receptors on PV interneurons that can increase PV interneuron drive, as well as drugs that increase the postsynaptic action of GABA, such as positive allosteric modulators of α5-GABA-A receptors, and decrease glutamatergic output, such as mGluR2/3 agonists, represent promising approaches. Preventive strategies aiming at E/I balance also represent a path to reduce the risk of transitioning to SCZ in high-risk individuals. Therefore, compounds with novel mechanisms targeting E/I balance provide optimism for more effective and tailored interventions in the management of SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joao Roberto F Lisboa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Hopkins SC, Tomioka S, Szabo ST, Koblan KS. A clinical trial inclusion criteria to enrich for patients presenting with canonical symptom structure in bipolar depression. Contemp Clin Trials 2024; 145:107644. [PMID: 39098761 DOI: 10.1016/j.cct.2024.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Clinical drug development in psychiatry is challenging due to heterogeneous patient populations and the uncertainty of measuring neuropsychiatric constructs with symptom rating scales. Here we describe the development and implementation of an enrichment algorithm that identifies canonical versus anomalous symptom presentations, at the individual subject level, based on MADRS ratings obtained at screening and baseline. Data from 5 randomized, placebo-controlled, phase 3 trials in bipolar I disorder was used (N = 2026 subjects and 15,239 MADRS assessments). A variance-covariance difference (VCD) vector was developed to encode individual symptom structure using the 10 items of MADRS from the two sequential assessments. An anomaly score, calculated from each subject's VCD vector was derived by isolation forest to quantify the degree of disparity from the hypothesized canonical item structure. A retrospective application of the algorithm reliably identified a threshold anomaly score above which the psychometric properties of MADRS deteriorate. Consistent with increasing the certainty of MADRS ratings, subjects with a canonical symptom structure at baseline demonstrated greater effect sizes post-baseline in a phase 2 placebo-controlled trial of non-racemic amisulpride (SEP-4199) for bipolar depression, analyzed retrospectively. Our analyses show that the developed algorithm can reduce the symptom structure heterogeneity at baseline and thus improve the measurement certainty of psychiatric symptoms in clinical trials. This novel enrichment method has been prospectively implemented in a Phase 3 clinical study of SEP-4199 and is consistent with regulatory guidelines aimed at increasing the statistical power and lowering patient-burden in clinical trials. Clinical Trials Registry: NCT00868452, NCT00868699, NCT01284517, NCT01986101, NCT03543410, NCT05169710.
Collapse
|
4
|
Li Y, Dahl K, Johnström P, Varnäs K, Farde L, Halldin C, Medd A, Maier D, Powell ME, Chen J, Van R, Patel J, Chaudhary A, Gao Y, Song Z, Haider A, Shao Y, Elmore CS, Liang S, Schou M. Radiosynthesis and Evaluation of 11C-Labeled Isoindolone-Based Positive Allosteric Modulators for Positron Emission Tomography Imaging of Metabotropic Glutamate Receptor 2. ACS Pharmacol Transl Sci 2024; 7:2414-2423. [PMID: 39144551 PMCID: PMC11320742 DOI: 10.1021/acsptsci.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 08/16/2024]
Abstract
The metabotropic glutamate receptor 2 (mGluR2) has emerged as a potential therapeutic target for the treatment of various neurological diseases, prompting substantial interest in the development of mGluR2-targeted drug candidates. As part of our medicinal chemistry program, we synthesized a series of isoindolone derivatives and assessed their potential as mGluR2 positive allosteric modulators (PAMs). Notably, AZ12559322 exhibited high affinity (K i mGluR2 = 1.31 nM) and an excellent in vitro binding specificity of 89% while demonstrating selectivity over other mGluR subtypes (>4000-fold). Autoradiography with the radiolabeled counterpart, [3H]AZ12559322, revealed a heterogeneous accumulation with the highest binding in mGluR2-rich brain regions. Radioligand binding was significantly reduced by pretreatment with nonradioactive mGluR2 PAMs in brains of rats and nonhuman primates. Although positron emission tomography imaging of [11C]AZ12559322 (6a) revealed low brain uptake in a nonhuman primate, this study provides valuable guidance to further design novel isoindolone-based mGluR2 PAMs with improved brain exposure.
Collapse
Affiliation(s)
- Yinlong Li
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton
Road, Atlanta, Georgia 30322, United States
| | - Kenneth Dahl
- PET
Science Centre, Precision Medicine and Biosamples, Oncology R&D,
AstraZeneca, Karolinska Institutet, Stockholm S-17176, Sweden
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm S-17176, Sweden
| | - Peter Johnström
- PET
Science Centre, Precision Medicine and Biosamples, Oncology R&D,
AstraZeneca, Karolinska Institutet, Stockholm S-17176, Sweden
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm S-17176, Sweden
| | - Katarina Varnäs
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm S-17176, Sweden
| | - Lars Farde
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm S-17176, Sweden
| | - Christer Halldin
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm S-17176, Sweden
| | - Amy Medd
- Neuroscience,
BioPharmaceuticals R&D, AstraZeneca, Wilmington, Delaware 19803, United States
| | - Donna Maier
- Neuroscience,
BioPharmaceuticals R&D, AstraZeneca, Wilmington, Delaware 19803, United States
| | - Mark E. Powell
- Neuroscience,
BioPharmaceuticals R&D, AstraZeneca, Wilmington, Delaware 19803, United States
| | - Jiahui Chen
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton
Road, Atlanta, Georgia 30322, United States
| | - Richard Van
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Jimmy Patel
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton
Road, Atlanta, Georgia 30322, United States
| | - Ahmad Chaudhary
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton
Road, Atlanta, Georgia 30322, United States
| | - Yabiao Gao
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton
Road, Atlanta, Georgia 30322, United States
| | - Zhendong Song
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton
Road, Atlanta, Georgia 30322, United States
| | - Ahmed Haider
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton
Road, Atlanta, Georgia 30322, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Charles S. Elmore
- Neuroscience,
BioPharmaceuticals R&D, AstraZeneca, Wilmington, Delaware 19803, United States
- Early
Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Pharmaceuticals, Gothenburg 43183, Sweden
| | - Steven Liang
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton
Road, Atlanta, Georgia 30322, United States
| | - Magnus Schou
- PET
Science Centre, Precision Medicine and Biosamples, Oncology R&D,
AstraZeneca, Karolinska Institutet, Stockholm S-17176, Sweden
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm S-17176, Sweden
| |
Collapse
|
5
|
Kraft J, Braun A, Awasthi S, Panagiotaropoulou G, Schipper M, Bell N, Posthuma D, Pardiñas AF, Ripke S, Heilbron K. Identifying drug targets for schizophrenia through gene prioritization. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307423. [PMID: 38798390 PMCID: PMC11118622 DOI: 10.1101/2024.05.15.24307423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Schizophrenia genome-wide association studies (GWASes) have identified >250 significant loci and prioritized >100 disease-related genes. However, gene prioritization efforts have mostly been restricted to locus-based methods that ignore information from the rest of the genome. Methods To more accurately characterize genes involved in schizophrenia etiology, we applied a combination of highly-predictive tools to a published GWAS of 67,390 schizophrenia cases and 94,015 controls. We combined both locus-based methods (fine-mapped coding variants, distance to GWAS signals) and genome-wide methods (PoPS, MAGMA, ultra-rare coding variant burden tests). To validate our findings, we compared them with previous prioritization efforts, known neurodevelopmental genes, and results from the PsyOPS tool. Results We prioritized 62 schizophrenia genes, 41 of which were also highlighted by our validation methods. In addition to DRD2, the principal target of antipsychotics, we prioritized 9 genes that are targeted by approved or investigational drugs. These included drugs targeting glutamatergic receptors (GRIN2A and GRM3), calcium channels (CACNA1C and CACNB2), and GABAB receptor (GABBR2). These also included genes in loci that are shared with an addiction GWAS (e.g. PDE4B and VRK2). Conclusions We curated a high-quality list of 62 genes that likely play a role in the development of schizophrenia. Developing or repurposing drugs that target these genes may lead to a new generation of schizophrenia therapies. Rodent models of addiction more closely resemble the human disorder than rodent models of schizophrenia. As such, genes prioritized for both disorders could be explored in rodent addiction models, potentially facilitating drug development.
Collapse
Affiliation(s)
- Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | | | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Antonio F. Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| |
Collapse
|
6
|
Peng A, Chai J, Wu H, Bai B, Yang H, He W, Zhao Y. New Therapeutic Targets and Drugs for Schizophrenia Beyond Dopamine D2 Receptor Antagonists. Neuropsychiatr Dis Treat 2024; 20:607-620. [PMID: 38525480 PMCID: PMC10961082 DOI: 10.2147/ndt.s455279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Schizophrenia is a disease with a complex pathological mechanism that is influenced by multiple genes. The study of its pathogenesis is dominated by the dopamine hypothesis, as well as other hypotheses such as the 5-hydroxytryptamine hypothesis, glutamate hypothesis, immune-inflammatory hypothesis, gene expression abnormality hypothesis, and neurodevelopmental abnormality hypothesis. The first generation of antipsychotics was developed based on dopaminergic receptor antagonism, which blocks dopamine D2 receptors in the brain to exert antipsychotic effects. The second generation of antipsychotics acts by dual blockade of 5-hydroxytryptamine and dopamine receptors. From the third generation of antipsychotics onwards, the therapeutic targets for antipsychotic schizophrenia expanded beyond D2 receptor blockade to explore D2 receptor partial agonism and the antipsychotic effects of new targets such as D3, 5-HT1A, 5-HT7, and mGlu2/3 receptors. The main advantages of the second and third generation antipsychotics over first-generation antipsychotics are the reduction of side effects and the improvement of negative symptoms, and even though third-generation antipsychotics do not directly block D2 receptors, the modulation of the dopamine transmitter system is still an important part of their antipsychotic process. According to recent research, several receptors, including 5-hydroxytryptamine, glutamate, γ-aminobutyric acid, acetylcholine receptors and norepinephrine, play a role in the development of schizophrenia. Therefore, the focus of developing new antipsychotic drugs has shifted towards agonism or inhibition of these receptors. Specifically, the development of NMDARs stimulants, GABA receptor agonists, mGlu receptor modulators, cholinergic receptor modulators, 5-HT2C receptor agonists and alpha-2 receptor modulators has become the main direction. Animal experiments have confirmed the antipsychotic effects of these drugs, but their pharmacokinetics and clinical applicability still require further exploration. Research on alternative targets for antipsychotic drugs, beyond the dopamine D2 receptor, has expanded the potential treatment options for schizophrenia and gives an important way to address the challenge of refractory schizophrenia. This article aims to provide a comprehensive overview of the research on therapeutic targets and medications for schizophrenia, offering valuable insights for both treatment and further research in this field.
Collapse
Affiliation(s)
- Aineng Peng
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, People’s Republic of China
| | - Haiyuan Wu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Bing Bai
- Tongde Hospital of Zhejiang Province, Hangzhou, 311100, People’s Republic of China
| | - Huihui Yang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Weizhi He
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, People’s Republic of China
| |
Collapse
|
7
|
Sohal VS. Neurobiology of schizophrenia. Curr Opin Neurobiol 2024; 84:102820. [PMID: 38091860 DOI: 10.1016/j.conb.2023.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 02/18/2024]
Affiliation(s)
- Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA.
| |
Collapse
|
8
|
Płoska A, Siekierzycka A, Cieślik P, Dobrucki LW, Kalinowski L, Wierońska JM. The Impact of LY487379 or CDPPB on eNOS Expression in the Mouse Brain and the Effect of Joint Administration of Compounds with NO • Releasers on MK-801- or Scopolamine-Driven Cognitive Dysfunction in Mice. Molecules 2024; 29:627. [PMID: 38338372 PMCID: PMC10856750 DOI: 10.3390/molecules29030627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test. Our results indicate that both compounds provoked eNOS monomer formation, and CDPPB at a dose of 5 mg/kg exaggerated the effect of MK-801 or scopolamine. The coadministration of spermineNONOate or DETANONOate enhanced the antiamnesic effect of CDPPB or LY487379. The best activity was observed for ineffective or moderate dose combinations. The results indicate that treatment with mGluR2 and mGluR5 PAMs may be burdened with the risk of promoting eNOS uncoupling through the induction of dimer dissociation. Administration of the lowest possible doses of the compounds with NO• donors, which themselves have procognitive efficacy, may be proposed for the treatment of schizophrenia or AD.
Collapse
Affiliation(s)
- Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland; (A.P.); (A.S.); (L.W.D.)
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland; (A.P.); (A.S.); (L.W.D.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland;
| | - Lawrence W. Dobrucki
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland; (A.P.); (A.S.); (L.W.D.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland; (A.P.); (A.S.); (L.W.D.)
- BioTechMed Center, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Steet, 80-223 Gdansk, Poland
| | - Joanna M. Wierońska
- Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland;
| |
Collapse
|
9
|
Kang W, Nuara SG, Bédard D, Frouni I, Kwan C, Hamadjida A, Gourdon JC, Gaudette F, Beaudry F, Huot P. The mGluR 2/3 orthosteric agonist LY-404,039 reduces dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2347-2355. [PMID: 37410156 DOI: 10.1007/s00210-023-02587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/06/2022] [Indexed: 07/07/2023]
Abstract
LY-404,039 is an orthosteric agonist of metabotropic glutamate 2 and 3 receptors (mGluR2/3) that may harbour additional agonist effect at dopamine D2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously entered clinical trials as treatment options for schizophrenia. They could therefore be repurposed, if proven efficacious, for other conditions, notably Parkinson's disease (PD). We have previously shown that the mGluR2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia and psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Unlike LY-404,039, LY-354,740 does not stimulate dopamine D2 receptors, suggesting that LY-404,039 may elicit broader therapeutic effects in PD. Here, we sought to investigate the effect of this possible additional dopamine D2-agonist action of LY-404,039 by assessing its efficacy on dyskinesia, PLBs and parkinsonism in the MPTP-lesioned marmoset. We first determined the pharmacokinetic profile of LY-404,039 in the marmoset, in order to select doses resulting in plasma concentrations known to be well tolerated in the clinic. Marmosets were then injected L-DOPA with either vehicle or LY-404,039 (0.1, 0.3, 1 and 10 mg/kg). The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of global dyskinesia (by 55%, P < 0.01) and PLBs (by 50%, P < 0.05), as well as reduction of global parkinsonism (by 47%, P < 0.05). Our results provide additional support of the efficacy of mGluR2/3 orthosteric stimulation at alleviating dyskinesia, PLBs and parkinsonism. Because LY-404,039 has already been tested in clinical trials, it could be repurposed for indications related to PD.
Collapse
Affiliation(s)
- Woojin Kang
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Dominique Bédard
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Imane Frouni
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Kwan
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Adjia Hamadjida
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Philippe Huot
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
10
|
Wierońska JM, Cieślik P, Burnat G, Kalinowski L. Activation of Metabotropic Glutamate Receptor (mGlu 2) and Muscarinic Receptors (M 1, M 4, and M 5), Alone or in Combination, and Its Impact on the Acquisition and Retention of Learning in the Morris Water Maze, NMDA Expression and cGMP Synthesis. Biomolecules 2023; 13:1064. [PMID: 37509100 PMCID: PMC10377483 DOI: 10.3390/biom13071064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The Morris water maze (MWM) is regarded as one of the most popular tests for detecting spatial memory in rodents. Long-term potentiation and cGMP synthesis seem to be among the crucial factors involved in this type of learning. Muscarinic (M1, M4, and M5 receptors) and metabotropic glutamate (mGlu) receptors are important targets in the search for antipsychotic drugs with the potency to treat cognitive disabilities associated with the disorder. Here, we show that muscarinic receptor activators (VU0357017, VU0152100, and VU0238429) and an mGlu2 receptor activator, LY487379, dose-dependently prevented the development of cognitive disorders as a result of MK-801 administration in the MWM. The dose-ranges of the compounds were as follows: VU0357017, 0.25, 0.5, and 1 mg/kg; VU0152100, 0.05, 0.25, and 1 mg/kg; VU0238429, 1, 5, and 20 mg/kg; and LY487379, 0.5, 3, and 5 mg/kg. The co-administration of LY487379 with each of the individual muscarinic receptor ligands showed no synergistic effect, which contradicts the results obtained earlier in the novel object recognition (NOR) test. MWM learning resulted in increased cGMP synthesis, both in the cortex and hippocampi, when compared to that in intact animals, which was prevented by MK-801 administration. The investigated compounds at the highest doses reversed this MK-801-induced effect. Neither the procedure nor the treatment resulted in changes in GluN2B-NMDA expression.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Paulina Cieślik
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Grzegorz Burnat
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
| |
Collapse
|
11
|
Valencia Carlo YE, Saracco-Alvarez RA, Valencia Carlo VA, Vázquez Vega D, Natera Rey G, Escamilla Orozco RI. Adverse effects of antipsychotics on sleep in patients with schizophrenia. Systematic review and meta-analysis. Front Psychiatry 2023; 14:1189768. [PMID: 37441144 PMCID: PMC10333591 DOI: 10.3389/fpsyt.2023.1189768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Our objective was to conduct a systematic review and meta-analysis of adverse effects on sleep in patients with schizophrenia receiving antipsychotic treatment. Methods A systematic search was performed in PubMed, Cochrane Central, Embase, Toxline, Ebsco, Virtual Health Library, Web of Science, SpringerLink, and in Database of abstracts of Reviews of Effects of Randomized Clinical Trials to identify eligible studies published from January 1990 to October 2021. The methodological quality of the studies was evaluated using the CONSORT list, and the Cochrane bias tool. Network meta-analysis was performed using the Bayesian random-effects model, with multivariate meta-regression to assess the association of interest. Results 87 randomized clinical trials were identified that met the inclusion criteria, and 70 articles were included in the network meta-analysis. Regarding the methodological quality of the studies, 47 had a low or moderate bias risk. The most common adverse effects on sleep reported in the studies were insomnia, somnolence, and sedation. The results of the network meta-analysis showed that ziprasidone was associated with an increased risk of insomnia (OR, 1.56; 95% credible interval CrI, 1.18-2.06). Several of the included antipsychotics were associated with a significantly increased risk of somnolence; haloperidol (OR, 1.90; 95% CrI, 1.12-3.22), lurasidone (OR, 2.25; 95% CrI, 1.28-3.97) and ziprasidone (OR, 1.79; 95% CrI, 1.06-3.02) had the narrowest confidence intervals. In addition, perphenazine (OR, 5.33; 95% CrI, 1.92-14.83), haloperidol (OR, 2.61; 95% CrI, 1.14-5.99), and risperidone (OR, 2.41; 95% CrI, 1.21-4.80) were associated with an increased risk of sedation compared with placebo, and other antipsychotics did not differ. According to the SUCRAs for insomnia, chlorpromazine was ranked as the lowest risk of insomnia (57%), followed by clozapine (20%), while flupentixol (26 %) and perospirone (22.5%) were associated with a lower risk of somnolence. On the other hand, amisulpride (89.9%) was the safest option to reduce the risk of sedation. Discussion Insomnia, sedation, and somnolence were the most frequent adverse effects on sleep among the different antipsychotics administered. The evidence shows that chlorpromazine, clozapine, flupentixol, perospirone, and amisulpride had favorable safety profiles. In contrast, ziprasidone, perphenazine, haloperidol, and risperidone were the least safe for sleep. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42017078052, identifier: PROSPERO 2017 CRD42017078052.
Collapse
Affiliation(s)
| | | | | | - Daniela Vázquez Vega
- Health Sciences Program, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Guillermina Natera Rey
- Department of Epidemiological and Psychosocial Research, National Institute of Psychiatry Ramon de la Fuente Muñiz, Mexico City, Mexico
| | | |
Collapse
|
12
|
Dormann OD, Schuelert N, Rosenbrock H. Effects of the mGlu2/3 receptor agonist LY379268 on two models of disturbed auditory evoked brain oscillations in mice. Transl Psychiatry 2023; 13:150. [PMID: 37147311 PMCID: PMC10162958 DOI: 10.1038/s41398-023-02455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Cognitive impairment is a core feature of schizophrenia and is poorly addressed by currently available medication. This is partly because the underlying circuits are insufficiently understood, and available animal models for brain dysfunction do not adequately mimic human pathology. To improve the translatability of animal studies and complement behavioral data, EEG measurements are being increasingly used in preclinical research. Brain oscillations are similar across species and can be impaired via several means. In this study, we used two approaches to impair early sensory processing and cortical oscillations in mice: a pharmacological model targeting NMDA receptor function in the whole brain via systemic MK-801 application and an optogenetic model targeting parvalbumin-positive (PV+) interneurons locally in the medial prefrontal cortex (mPFC). We evoked brain activity using auditory stimulation, a tool with high translatability from mouse to human. We then investigated the effect of LY379268, an agonist of mGlu2/3 receptors, a potential therapeutic target for schizophrenia, on single neuron and EEG responses. LY379268 was able to rescue MK-801-induced deficits for a variety of clinically relevant early sensory EEG biomarkers. Single neuron recordings revealed a strong effect of LY379268 on the signal-to-noise ratio during auditory stimulation and optogenetic inhibition of PV+ interneurons. Our results contribute to a better understanding of how group II metabotropic glutamate receptors modulate neuronal population and network activity under sensory stimulation while challenged pharmacologically or optogenetically.
Collapse
Affiliation(s)
- Oana-Daniela Dormann
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riss, Germany.
| | - Niklas Schuelert
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riss, Germany
| | - Holger Rosenbrock
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riss, Germany
| |
Collapse
|
13
|
McCutcheon RA, Keefe RSE, McGuire PK. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol Psychiatry 2023; 28:1902-1918. [PMID: 36690793 PMCID: PMC10575791 DOI: 10.1038/s41380-023-01949-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Cognitive deficits are a core feature of schizophrenia, account for much of the impaired functioning associated with the disorder and are not responsive to existing treatments. In this review, we first describe the clinical presentation and natural history of these deficits. We then consider aetiological factors, highlighting how a range of similar genetic and environmental factors are associated with both cognitive function and schizophrenia. We then review the pathophysiological mechanisms thought to underlie cognitive symptoms, including the role of dopamine, cholinergic signalling and the balance between GABAergic interneurons and glutamatergic pyramidal cells. Finally, we review the clinical management of cognitive impairments and candidate novel treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK.
- Oxford health NHS Foundation Trust, Oxford health NHS Foundation Trust, Oxford, UK.
| | - Richard S E Keefe
- Departments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Philip K McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford health NHS Foundation Trust, Oxford health NHS Foundation Trust, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| |
Collapse
|
14
|
Yuan G, Dhaynaut M, Guehl NJ, Neelamegam R, Moon SH, Qu X, Poutiainen P, Afshar S, Fakhri GE, Normandin MD, Brownell AL. PET imaging studies to investigate functional expression of mGluR2 using [ 11C]mG2P001. J Cereb Blood Flow Metab 2023; 43:296-308. [PMID: 36172629 PMCID: PMC9903221 DOI: 10.1177/0271678x221130387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 01/24/2023]
Abstract
Metabotropic glutamate receptor 2 (mGluR2) has been extensively studied for the treatment of various neurological and psychiatric disorders. Understanding of the mGluR2 function is pivotal in supporting the drug discovery targeting mGluR2. Herein, the positive allosteric modulation of mGluR2 was investigated via the in vivo positron emission tomography (PET) imaging using 2-((4-(2-[11C]methoxy-4-(trifluoromethyl)phenyl)piperidin-1-yl)methyl)-1-methyl-1H-imidazo[4,5-b]pyridine ([11C]mG2P001). Distinct from the orthosteric compounds, pretreatment with the unlabeled mG2P001, a potent mGluR2 positive allosteric modulator (PAM), resulted in a significant increase instead of decrease of the [11C]mG2P001 accumulation in rat brain detected by PET imaging. Subsequent in vitro studies with [3H]mG2P001 revealed the cooperative binding mechanism of mG2P001 with glutamate and its pharmacological effect that contributed to the enhanced binding of [3H]mG2P001 in transfected CHO cells expressing mGluR2. The in vivo PET imaging and quantitative analysis of [11C]mG2P001 in non-human primates (NHPs) further validated the characteristics of [11C]mG2P001 as an imaging ligand for mGluR2. Self-blocking studies in primates enhanced accumulation of [11C]mG2P001. Altogether, these studies show that [11C]mG2P001 is a sensitive biomarker for mGluR2 expression and the binding is affected by the tissue glutamate concentration.
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Ramesh Neelamegam
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Xiying Qu
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Pekka Poutiainen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 70210, Finland
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| |
Collapse
|
15
|
Correll CU, Solmi M, Cortese S, Fava M, Højlund M, Kraemer HC, McIntyre RS, Pine DS, Schneider LS, Kane JM. The future of psychopharmacology: a critical appraisal of ongoing phase 2/3 trials, and of some current trends aiming to de-risk trial programmes of novel agents. World Psychiatry 2023; 22:48-74. [PMID: 36640403 PMCID: PMC9840514 DOI: 10.1002/wps.21056] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 01/15/2023] Open
Abstract
Despite considerable progress in pharmacotherapy over the past seven decades, many mental disorders remain insufficiently treated. This situation is in part due to the limited knowledge of the pathophysiology of these disorders and the lack of biological markers to stratify and individualize patient selection, but also to a still restricted number of mechanisms of action being targeted in monotherapy or combination/augmentation treatment, as well as to a variety of challenges threatening the successful development and testing of new drugs. In this paper, we first provide an overview of the most promising drugs with innovative mechanisms of action that are undergoing phase 2 or 3 testing for schizophrenia, bipolar disorder, major depressive disorder, anxiety and trauma-related disorders, substance use disorders, and dementia. Promising repurposing of established medications for new psychiatric indications, as well as variations in the modulation of dopamine, noradrenaline and serotonin receptor functioning, are also considered. We then critically discuss the clinical trial parameters that need to be considered in depth when developing and testing new pharmacological agents for the treatment of mental disorders. Hurdles and perils threatening success of new drug development and testing include inadequacy and imprecision of inclusion/exclusion criteria and ratings, sub-optimally suited clinical trial participants, multiple factors contributing to a large/increasing placebo effect, and problems with statistical analyses. This information should be considered in order to de-risk trial programmes of novel agents or known agents for novel psychiatric indications, increasing their chances of success.
Collapse
Affiliation(s)
- Christoph U Correll
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Marco Solmi
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Mental Health, Ottawa Hospital, Ottawa, ON, Canada
- Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program, University of Ottawa, Ottawa, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| | - Maurizio Fava
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mikkel Højlund
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
- Mental Health Services in the Region of Southern Denmark, Department of Psychiatry Aabenraa, Aabenraa, Denmark
| | - Helena C Kraemer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Cupertino, CA, USA
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Canadian Rapid Treatment Center of Excellence, Mississauga, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Daniel S Pine
- Section on Developmental Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Lon S Schneider
- Department of Psychiatry and Behavioral Sciences, and Department of Neurology, Keck School of Medicine, and L. Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - John M Kane
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
16
|
Gutiérrez-Rojas L, Alvarez-Mon MA, Andreu-Bernabeu Á, Capitán L, de Las Cuevas C, Gómez JC, Grande I, Hidalgo-Mazzei D, Mateos R, Moreno-Gea P, De Vicente-Muñoz T, Ferre F. Telepsychiatry: The future is already present. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2023; 16:51-57. [PMID: 37689522 DOI: 10.1016/j.rpsm.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 09/11/2023]
Abstract
This review paper analyzes the state of knowledge on Telepsychiatry (TP) after the crisis caused by COVID and the resulting need to use new modalities of care. Six essential aspects of TP are addressed: patient's and mental health staff satisfaction, diagnostic reliability, effectiveness of TP interventions, cost-effectiveness in terms of opportunity cost (or efficiency), legal aspects inherent to confidentiality and privacy in particular and the attitude of professionals toward TP. Satisfaction with TP is acceptable among both patients and professionals, the latter being the most reluctant. Diagnostic reliability has been demonstrated, but requires further studies to confirm this reliability in different diagnoses and healthcare settings. The efficacy of TP treatments is not inferior to face-to-face care, as has been proven in specific psychotherapies. Finally, it should be noted that the attitude of the psychiatrist is the most decisive element that limits or facilitates the implementation of TP.
Collapse
Affiliation(s)
- Luis Gutiérrez-Rojas
- Department of Psychiatry and CTS-549 Research Group, Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain.
| | - Miguel A Alvarez-Mon
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Luis Capitán
- Psychiatry Service, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Carlos de Las Cuevas
- Department of Internal Medicine, Dermatology and Psychiatry, Instituto Universitario de Neurociencia (IUNE) de la Universidad de La Laguna
| | | | - Iria Grande
- Bipolar and Depressive Disorders Unit, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Diego Hidalgo-Mazzei
- Bipolar and Depressive Disorders Unit, Hospital Clinic, IDIBAPS, CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Raimundo Mateos
- University of Santiago de Compostela, Department of Psyhciatry and CHUS University Hospital, Psychogeriatric Unit, Santiago de Compostela, Spain
| | | | | | - Francisco Ferre
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
17
|
Hoglund BK, Carfagno V, Olive MF, Leyrer-Jackson JM. Metabotropic glutamate receptors and cognition: From underlying plasticity and neuroprotection to cognitive disorders and therapeutic targets. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:367-413. [PMID: 36868635 DOI: 10.1016/bs.irn.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors that play pivotal roles in mediating the activity of neurons and other cell types within the brain, communication between cell types, synaptic plasticity, and gene expression. As such, these receptors play an important role in a number of cognitive processes. In this chapter, we discuss the role of mGlu receptors in various forms of cognition and their underlying physiology, with an emphasis on cognitive dysfunction. Specifically, we highlight evidence that links mGlu physiology to cognitive dysfunction across brain disorders including Parkinson's disease, Alzheimer's disease, Fragile X syndrome, post-traumatic stress disorder, and schizophrenia. We also provide recent evidence demonstrating that mGlu receptors may elicit neuroprotective effects in particular disease states. Lastly, we discuss how mGlu receptors can be targeted utilizing positive and negative allosteric modulators as well as subtype specific agonists and antagonist to restore cognitive function across these disorders.
Collapse
Affiliation(s)
- Brandon K Hoglund
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States
| | - Vincent Carfagno
- School of Medicine, Midwestern University, Glendale, AZ, United States
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Jonna M Leyrer-Jackson
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States.
| |
Collapse
|
18
|
Ibi D. Role of interaction of mGlu2 and 5-HT 2A receptors in antipsychotic effects. Pharmacol Biochem Behav 2022; 221:173474. [PMID: 36244526 DOI: 10.1016/j.pbb.2022.173474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
The serotonergic and glutamatergic neurotransmitter systems have been implicated in the pathophysiology of schizophrenia, and increasing evidence shows that they interact functionally. Of note, the Gq/11-coupled serotonin 5-HT2A (5-HT2A) and the Gi/o-coupled metabotropic glutamate type 2 (mGlu2) receptors have been demonstrated to assemble into a functional heteromeric complex that modulates the function of each individual receptor. For conformation of the heteromeric complex, corresponding transmembrane-4 segment of 5-HT2A and mGlu2 are required. The 5-HT2A/mGlu2 heteromeric complex is necessary for the activation of Gq/11 proteins and for the subsequent increase in the levels of the intracellular messenger Ca2+. Furthermore, signaling via the heteromeric complex is dysregulated in the post-mortem brains of patients with schizophrenia, and could be linked to altered cortical function. From a behavioral perspective, this complex contributes to the hallucinatory and antipsychotic behaviors associated with 5-HT2A and mGlu2/3 agonists, respectively. Synaptic and epigenetic mechanisms have also been found to be significantly associated with the mGlu2/5-HT2A heteromeric complex. This review summarizes the role of crosstalk between mGlu2 and 5-HT2A in the mechanism of antipsychotic effects and introduces recent key advancements on this topic.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan.
| |
Collapse
|
19
|
Li SH, Abd-Elrahman KS, Ferguson SS. Targeting mGluR2/3 for treatment of neurodegenerative and neuropsychiatric diseases. Pharmacol Ther 2022; 239:108275. [DOI: 10.1016/j.pharmthera.2022.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
|
20
|
Abstract
UNLABELLED This continuing education supplement is jointly provided by Medical Education Resources and CMEology. The supplement is supported by an independent educational grant from Sunovion Pharmaceuticals Inc. It was edited and peer reviewed by the Journal of Clinical Psychopharmacology.After reviewing the learning objectives and reading the supplement, please complete the Activity Evaluation/Credit Request form online at https://www.cmesurvey.site/TAAR1. ABSTRACT All currently available antipsychotics work via essentially the same mechanism: by antagonizing the dopamine D2 receptor. However, schizophrenia is an extremely heterogeneous condition, and antipsychotics do not adequately control symptoms for all patients. Negative and cognitive symptoms are especially difficult to manage with existing medications. Therefore, antipsychotic agents with novel mechanisms of action are urgently needed. Recently, a phase 2 clinical trial and extension study demonstrated that, relative to placebo, the trace amine-associated receptor 1 (TAAR1) agonist ulotaront was effective at controlling the positive, negative, and cognitive symptoms of schizophrenia. In addition, ulotaront seems to lack the weight gain, metabolic issues, and extrapyramidal symptoms associated with traditional antipsychotics. This agent is currently undergoing multiple phase 3 trials for the treatment of schizophrenia. Another TAAR1 agonist, ralmitaront, is being investigated for the treatment of schizophrenia and schizoaffective disorders. Two phase 2 clinical trials are underway, evaluating ralmitaront both as a monotherapy and an add-on therapy to traditional antipsychotics. In this supplement, we review the biologic, preclinical, and clinical data available for TAAR1 agonists, so that if and when they are approved for the treatment of schizophrenia, psychiatry specialists will be ready to use them to optimize patient outcomes. We also briefly review other emerging therapies in late-stage development for the treatment of schizophrenia.
Collapse
|
21
|
Witkin JM, Pandey KP, Smith JL. Clinical investigations of compounds targeting metabotropic glutamate receptors. Pharmacol Biochem Behav 2022; 219:173446. [PMID: 35987339 DOI: 10.1016/j.pbb.2022.173446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022]
Abstract
Pharmacological modulation of glutamate has long been considered to be of immense therapeutic utility. The metabotropic glutamate receptors (mGluRs) are potential targets for safely altering glutamate-driven excitation. Data support the potential therapeutic use of mGluR modulators in the treatment of anxiety, depression, schizophrenia, and other psychiatric disorders, pain, epilepsy, as well as neurodegenerative and neurodevelopmental disorders. For each of the three mGluR groups, compounds have been constructed that produce either potentiation or functional blockade. PET ligands for mGlu5Rs have been studied in a range of patient populations and several mGlu5R antagonists have been tested for potential efficacy in patients including mavoglurant, diploglurant, basimglurant, GET 73, and ADX10059. Efficacy with mGlu5R antagonists has been reported in trials with patients with gastroesophageal reflux disease; data from patients with Parkinson's disease or Fragile X syndrome have not been as robust as hoped. Fenobam was approved for use as an anxiolytic prior to its recognition as an mGlu5R antagonist. mGlu2/3R agonists (pomaglumated methionil) and mGlu2R agonists (JNJ-40411813, AZD 8529, and LY2979165) have been studied in patients with schizophrenia with promising but mixed results. Antagonists of mGlu2/3Rs (decoglurant and TS-161) have been studied in depression where TS-161 has advanced into a planned Phase 2 study in treatment-resistant depression. The Group III mGluRs are the least developed of the mGluR receptor targets. The mGlu4R potentiator, foliglurax, did not meet its primary endpoint in patients with Parkinson's disease. Ongoing efforts to develop mGluR-targeted compounds continue to promise these glutamate modulators as medicines for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | - Kamal P Pandey
- Department of Chemistry & Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| |
Collapse
|
22
|
Yuan G, Dhaynaut M, Guehl NJ, Afshar S, Huynh D, Moon SH, Iyengar SM, Jain MK, Pickett JE, Kang HJ, Ondrechen MJ, El Fakhri G, Normandin MD, Brownell AL. Design, Synthesis, and Characterization of [ 18F]mG2P026 as a High-Contrast PET Imaging Ligand for Metabotropic Glutamate Receptor 2. J Med Chem 2022; 65:9939-9954. [PMID: 35802702 PMCID: PMC9434700 DOI: 10.1021/acs.jmedchem.2c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An array of triazolopyridines based on JNJ-46356479 (6) were synthesized as potential positron emission tomography radiotracers for metabotropic glutamate receptor 2 (mGluR2). The selected candidates 8-10 featured enhanced positive allosteric modulator (PAM) activity (20-fold max.) and mGluR2 agonist activity (25-fold max.) compared to compound 6 in the cAMP GloSensor assays. Radiolabeling of compounds 8 and 9 (mG2P026) was achieved via Cu-mediated radiofluorination with satisfactory radiochemical yield, >5% (non-decay-corrected); high molar activity, >180 GBq/μmol; and excellent radiochemical purity, >98%. Preliminary characterization of [18F]8 and [18F]9 in rats confirmed their excellent brain permeability and binding kinetics. Further evaluation of [18F]9 in a non-human primate confirmed its superior brain heterogeneity in mapping mGluR2 and higher affinity than [18F]6. Pretreatment with different classes of PAMs in rats and a primate led to similarly enhanced brain uptake of [18F]9. As a selective ligand, [18F]9 has the potential to be developed for translational studies.
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Dalena Huynh
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Suhasini M Iyengar
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Manish Kumar Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Julie E Pickett
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
23
|
Spark DL, Fornito A, Langmead CJ, Stewart GD. Beyond antipsychotics: a twenty-first century update for preclinical development of schizophrenia therapeutics. Transl Psychiatry 2022; 12:147. [PMID: 35393394 PMCID: PMC8991275 DOI: 10.1038/s41398-022-01904-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
Despite 50+ years of drug discovery, current antipsychotics have limited efficacy against negative and cognitive symptoms of schizophrenia, and are ineffective-with the exception of clozapine-against any symptom domain for patients who are treatment resistant. Novel therapeutics with diverse non-dopamine D2 receptor targets have been explored extensively in clinical trials, yet often fail due to a lack of efficacy despite showing promise in preclinical development. This lack of translation between preclinical and clinical efficacy suggests a systematic failure in current methods that determine efficacy in preclinical rodent models. In this review, we critically evaluate rodent models and behavioural tests used to determine preclinical efficacy, and look to clinical research to provide a roadmap for developing improved translational measures. We highlight the dependence of preclinical models and tests on dopamine-centric theories of dysfunction and how this has contributed towards a self-reinforcing loop away from clinically meaningful predictions of efficacy. We review recent clinical findings of distinct dopamine-mediated dysfunction of corticostriatal circuits in patients with treatment-resistant vs. non-treatment-resistant schizophrenia and suggest criteria for establishing rodent models to reflect such differences, with a focus on objective, translational measures. Finally, we review current schizophrenia drug discovery and propose a framework where preclinical models are validated against objective, clinically informed measures and preclinical tests of efficacy map onto those used clinically.
Collapse
Affiliation(s)
- Daisy L Spark
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash Biomedical Imaging, and School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
24
|
Yuan G, Dhaynaut M, Lan Y, Guehl NJ, Huynh D, Iyengar SM, Afshar S, Jain MK, Pickett JE, Kang HJ, Wang H, Moon SH, Ondrechen MJ, Wang C, Shoup TM, El Fakhri G, Normandin MD, Brownell AL. Synthesis and Characterization of 5-(2-Fluoro-4-[ 11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2 H-pyrano[2,3- b]pyridine-7-carboxamide as a PET Imaging Ligand for Metabotropic Glutamate Receptor 2. J Med Chem 2022; 65:2593-2609. [PMID: 35089713 PMCID: PMC9434702 DOI: 10.1021/acs.jmedchem.1c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabotropic glutamate receptor 2 (mGluR2) is a therapeutic target for several neuropsychiatric disorders. An mGluR2 function in etiology could be unveiled by positron emission tomography (PET). In this regard, 5-(2-fluoro-4-[11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridine-7-carboxamide ([11C]13, [11C]mG2N001), a potent negative allosteric modulator (NAM), was developed to support this endeavor. [11C]13 was synthesized via the O-[11C]methylation of phenol 24 with a high molar activity of 212 ± 76 GBq/μmol (n = 5) and excellent radiochemical purity (>99%). PET imaging of [11C]13 in rats demonstrated its superior brain heterogeneity and reduced accumulation with pretreatment of mGluR2 NAMs, VU6001966 (9) and MNI-137 (26), the extent of which revealed a time-dependent drug effect of the blocking agents. In a nonhuman primate, [11C]13 selectively accumulated in mGluR2-rich regions and resulted in high-contrast brain images. Therefore, [11C]13 is a potential candidate for translational PET imaging of the mGluR2 function.
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Dalena Huynh
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Suhasini M Iyengar
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Manish Kumar Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Julie E Pickett
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Hao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Timothy M Shoup
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
25
|
Zhang X, Tang J, Zhang X, Abdelrahim MEA, Yin Z. Response efficacy and heterogeneity of antipsychotic drugs in schizophrenia: Systemic review and meta-analysis. Hum Psychopharmacol 2022; 37:e2808. [PMID: 34418150 DOI: 10.1002/hup.2808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUNDS This meta-analysis aimed to assess antipsychotic and placebo effects in patients with schizophrenia at the level of symptom factors. METHODS A systematic literature search up to June 2020 was undertaken and 62 studies were included, with 23,478 patients with schizophrenia at the study baseline point. We calculated mean differences with 95% confidence intervals. The comparison was made according to the study content using a continuous method with a random-effects model. RESULTS Patients with schizophrenia treated by antipsychotic drugs had a significantly lower psychiatric rating scale total score; lower clinical global impression of severity; lower positive and negative syndrome scale; and lower assessment of negative symptoms total score, when compared to placebo treated patients. CONCLUSIONS Patients with schizophrenia treated with an antipsychotic drug show a much greater improvement and lower inconsistency in the level of symptom factors when compared to the effects of placebo. Our findings evidence for a comparatively homogeneous outcome of the antipsychotic-treatment in improving schizophrenia symptoms. This opposes the notion of the presence of patient sub-groups with treatment non-responsive schizophrenia.
Collapse
Affiliation(s)
- Xin Zhang
- Geriatric Psychiatry Department, Hebei Mental Health Center, Baoding, Hebei, China
| | - Jia Tang
- Nursing Department, Jiangjin Central Hospital, Chongqing, Jiangjin, China
| | - Xue Zhang
- Psychiatry Department, Chifeng Anding Hospital, Chifeng, Inner Mongolia, China
| | - Mohamed E A Abdelrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zubin Yin
- Department of Psychosomatic Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
26
|
Positive allosteric modulators (PAMs) of the group II metabotropic glutamate receptors: Design, synthesis, and evaluation as ex-vivo tool compounds. Bioorg Med Chem Lett 2021; 50:128342. [PMID: 34461178 DOI: 10.1016/j.bmcl.2021.128342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 11/23/2022]
Abstract
This letter describes synthesis and evaluation of two series of dual mGlu2/mGlu3 positive allosteric modulators with moderate mGlu3 potency and robust mGlu2 potency in thallium flux assays. These compounds were profiled their ability to modulate mGlu3-mediated signaling in central neurons by co-application of a selective mGlu2 NAM to isolate mGlu3-selective effects. Using acute mouse brain slices from the prefrontal cortex, potentiation of group II mGlu receptor agonist Ca2+ signaling in PFC pyramidal cells with either the dual mGlu2/mGlu3 PAM 16e or 23d demonstrated effects mediated selectively via mGlu3.
Collapse
|
27
|
Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments. Int J Mol Sci 2021; 22:ijms22189905. [PMID: 34576069 PMCID: PMC8468549 DOI: 10.3390/ijms22189905] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023] Open
Abstract
Schizophrenia is a major mental illness characterized by positive and negative symptoms, and by cognitive deficit. Although cognitive impairment is disabling for patients, it has been largely neglected in the treatment of schizophrenia. There are several reasons for this lack of treatments for cognitive deficit, but the complexity of its etiology-in which neuroanatomic, biochemical and genetic factors concur-has contributed to the lack of effective treatments. In the last few years, there have been several attempts to develop novel drugs for the treatment of cognitive impairment in schizophrenia. Despite these efforts, little progress has been made. The latest findings point to the importance of developing personalized treatments for schizophrenia which enhance neuroplasticity, and of combining pharmacological treatments with non-pharmacological measures.
Collapse
|
28
|
Hodkinson A, Heneghan C, Mahtani KR, Kontopantelis E, Panagioti M. Benefits and harms of Risperidone and Paliperidone for treatment of patients with schizophrenia or bipolar disorder: a meta-analysis involving individual participant data and clinical study reports. BMC Med 2021; 19:195. [PMID: 34429113 PMCID: PMC8386072 DOI: 10.1186/s12916-021-02062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Schizophrenia and bipolar disorder are severe mental illnesses which are highly prevalent worldwide. Risperidone and Paliperidone are treatments for either illnesses, but their efficacy compared to other antipsychotics and growing reports of hormonal imbalances continue to raise concerns. As existing evidence on both antipsychotics are solely based on aggregate data, we aimed to assess the benefits and harms of Risperidone and Paliperidone in the treatment of patients with schizophrenia or bipolar disorder, using individual participant data (IPD), clinical study reports (CSRs) and publicly available sources (journal publications and trial registries). METHODS We searched MEDLINE, Central, EMBASE and PsycINFO until December 2020 for randomised placebo-controlled trials of Risperidone, Paliperidone or Paliperidone palmitate in patients with schizophrenia or bipolar disorder. We obtained IPD and CSRs from the Yale University Open Data Access project. The primary outcome Positive and Negative Syndrome Scale (PANSS) score was analysed using one-stage IPD meta-analysis. Random-effect meta-analysis of harm outcomes involved methods for coping with rare events. Effect-sizes were compared across all available data sources using the ratio of means or relative risk. We registered our review on PROSPERO, CRD42019140556. RESULTS Of the 35 studies, IPD meta-analysis involving 22 (63%) studies showed a significant clinical reduction in the PANSS in patients receiving Risperidone (mean difference - 5.83, 95% CI - 10.79 to - 0.87, I2 = 8.5%, n = 4 studies, 1131 participants), Paliperidone (- 6.01, 95% CI - 8.7 to - 3.32, I2 = 4.3%, n = 13, 3821) and Paliperidone palmitate (- 7.89, 95% CI - 12.1 to - 3.69, I2 = 2.9%, n = 5, 2209). CSRs reported nearly two times more adverse events (4434 vs. 2296 publication, relative difference (RD) = 1.93, 95% CI 1.86 to 2.00) and almost 8 times more serious adverse events (650 vs. 82; RD = 7.93, 95% CI 6.32 to 9.95) than the journal publications. Meta-analyses of individual harms from CSRs revealed a significant increased risk among several outcomes including extrapyramidal disorder, tardive dyskinesia and increased weight. But the ratio of relative risk between the different data sources was not significant. Three treatment-related gynecomastia events occurred, and these were considered mild to moderate in severity. CONCLUSION IPD meta-analysis conclude that Risperidone and Paliperidone antipsychotics had a small beneficial effect on reducing PANSS score over 9 weeks, which is more conservative than estimates from reviews based on journal publications. CSRs also contained significantly more data on harms that were unavailable in journal publications or trial registries. Sharing of IPD and CSRs are necessary when performing meta-analysis on the efficacy and safety of antipsychotics.
Collapse
Affiliation(s)
- Alexander Hodkinson
- National Institute for Health Research School for Primary Care Research, Centre for Primary Care and Health Services Research, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK.
- National Institute for Health Research Greater Manchester Patient Safety Translational Research Centre, School of Health Sciences, University of Manchester, Manchester, M13 9PL, UK.
| | - Carl Heneghan
- Nuffield Department of Primary Care health Sciences, University of Oxford, Oxford, UK
| | - Kamal R Mahtani
- Nuffield Department of Primary Care health Sciences, University of Oxford, Oxford, UK
| | - Evangelos Kontopantelis
- National Institute for Health Research School for Primary Care Research, Centre for Primary Care and Health Services Research, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
- Division of Informatics, Imaging & Data Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Maria Panagioti
- National Institute for Health Research School for Primary Care Research, Centre for Primary Care and Health Services Research, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
- National Institute for Health Research Greater Manchester Patient Safety Translational Research Centre, School of Health Sciences, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
29
|
Gomes FV, Grace AA. Beyond Dopamine Receptor Antagonism: New Targets for Schizophrenia Treatment and Prevention. Int J Mol Sci 2021; 22:4467. [PMID: 33922888 PMCID: PMC8123139 DOI: 10.3390/ijms22094467] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Treatment of schizophrenia (SCZ) historically relies on the use of antipsychotic drugs to treat psychosis, with all of the currently available antipsychotics acting through the antagonism of dopamine D2 receptors. Although antipsychotics reduce psychotic symptoms in many patients, they induce numerous undesirable effects and are not effective against negative and cognitive symptoms. These highlight the need to develop new drugs to treat SCZ. An advanced understanding of the circuitry of SCZ has pointed to pathological origins in the excitation/inhibition balance in regions such as the hippocampus, and restoring function in this region, particularly as a means to compensate for parvalbumin (PV) interneuron loss and resultant hippocampal hyperactivity, may be a more efficacious approach to relieve a broad range of SCZ symptoms. Other targets, such as cholinergic receptors and the trace amine-associated receptor 1 (TAAR1), have also shown some promise for the treatment of SCZ. Importantly, assessing efficacy of novel compounds must take into consideration treatment history of the patient, as preclinical studies suggest prior antipsychotic treatment may interfere with the efficacy of these novel agents. However, while novel therapeutic targets may be more effective in treating SCZ, a more effective approach would be to prevent the transition to SCZ in susceptible individuals. A focus on stress, which has been shown to be a predisposing factor in risk for SCZ, is a possible avenue that has shown promise in preclinical studies. Therefore, therapeutic approaches based on our current understanding of the circuitry of SCZ and its etiology are likely to enable development of more effective therapeutic interventions for this complex disorder.
Collapse
Affiliation(s)
- Felipe V. Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 01000-000, Brazil;
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
30
|
Goh KK, Wu TH, Chen CH, Lu ML. Efficacy of N-methyl- D-aspartate receptor modulator augmentation in schizophrenia: A meta-analysis of randomised, placebo-controlled trials. J Psychopharmacol 2021; 35:236-252. [PMID: 33406959 DOI: 10.1177/0269881120965937] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Dysfunction of the N-methyl-D-aspartate glutamate receptor is involved in the putative pathology of schizophrenia. There is growing interest in the potential of N-methyl-D-aspartate receptor modulators to improve the symptoms of schizophrenia, but the evidence for the use of glutamatergic agents for augmenting schizophrenia remains inconclusive. AIMS We conducted a meta-analysis to test the efficacy and safety of N-methyl-D-aspartate receptor modulator supplements in patients with schizophrenia. METHODS Following a systemic search in MEDLINE, Embase, Cochrane and Scopus, 40 double-blinded, randomised, placebo-controlled trials involving 4937 patients with schizophrenia were included in this meta-analysis. The change in the severity of symptoms among patients with schizophrenia was defined as the primary outcome, whereas the safety profiles of the intervention, including the discontinuation rate and adverse events, were defined as secondary outcomes. RESULTS When added to antipsychotic treatments, N-methyl-D-aspartate receptor modulators improved multiple schizophrenia symptoms, particularly negative symptoms, and had satisfactory side effects and safety profile. Among the seven glutamatergic agents analysed, glycine, D-serine and sarcosine had better treatment profiles than other agents, and NMDA receptor co-agonists, as a group, provided a reduction in schizophrenia symptoms compared to antipsychotic treatments without supplementation. Augmentation with N-methyl-D-aspartate receptor modulators was only effective among patients treated with antipsychotics other than clozapine. CONCLUSIONS The results indicate that N-methyl-D-aspartate receptor modulators, particularly with glycine, D-serine and sarcosine, are more beneficial than the placebo in treating schizophrenia, and the effects extended to both positive and negative symptoms, when augmented with antipsychotics other than clozapine.
Collapse
Affiliation(s)
- Kah Kheng Goh
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hua Wu
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Tapei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Tapei, Taiwan
| |
Collapse
|
31
|
Yuan G, Guehl NJ, Zheng B, Qu X, Moon SH, Dhaynaut M, Shoup TM, Afshar S, Kang HJ, Zhang Z, El Fakhri G, Normandin MD, Brownell AL. Synthesis and Characterization of [ 18F]JNJ-46356479 as the First 18F-Labeled PET Imaging Ligand for Metabotropic Glutamate Receptor 2. Mol Imaging Biol 2021; 23:527-536. [PMID: 33559035 DOI: 10.1007/s11307-021-01586-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Metabotropic glutamate receptor 2 (mGluR2) has been implicated in various psychiatric and neurological disorders, such as schizophrenia and Alzheimer's disease. We have previously developed [11C]7 as a PET radioligand for imaging mGluR2. Herein, [18F]JNJ-46356479 ([18F]8) was synthesized and characterized as the first 18F-labeled mGluR2 imaging ligand to enhance diagnostic approaches for mGluR2-related disorders. PROCEDURES JNJ-46356479 (8) was radiolabeled via the copper (I)-mediated radiofluorination of organoborane 9. In vivo PET imaging experiments with [18F]8 were conducted first in C57BL/6 J mice and Sprague-Dawley rats to obtain whole body biodistribution and brain uptake profile. Subsequent PET studies were done in a cynomolgus monkey (Macaca fascicularis) to investigate the uptake of [18F]8 in the brain, its metabolic stability, as well as pharmacokinetic properties. RESULTS JNJ-46356479 (8) exhibited excellent selectivity against other mGluRs. In vivo PET imaging studies showed reversible and specific binding characteristic of [18F]8 in rodents. In the non-human primate, [18F]8 displayed good in vivo metabolic stability, excellent brain permeability, fast and reversible kinetics with moderate heterogeneity across brain regions. Pre-treatment studies with compound 7 revealed time-dependent decrease of [18F]8 accumulation in mGluR2 rich regions based on SUV values with the highest decrease in the nucleus accumbens (18.7 ± 5.9%) followed by the cerebellum (18.0 ± 7.9%), the parietal cortex (16.9 ± 7.8%), and the hippocampus (16.8 ± 6.9%), similar to results obtained in the rat studies. However, the volume of distribution (VT) results derived from 2T4k model showed enhanced VT from a blocking study with compound 7. This is probably because of the potentiating effect of compound 7 as an mGluR2 PAM as well as related non-specific binding in the tissue data. CONCLUSIONS [18F]8 readily crosses the blood-brain barrier and demonstrates fast and reversible kinetics both in rodents and in a non-human primate. Further investigation of [18F]8 on its binding specificity would warrant translational study in human.
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA.
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Baohui Zheng
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Xiying Qu
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Timothy M Shoup
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - Zhaoda Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA.
| |
Collapse
|
32
|
Sonnenschein SF, Grace AA. Emerging therapeutic targets for schizophrenia: a framework for novel treatment strategies for psychosis. Expert Opin Ther Targets 2021; 25:15-26. [PMID: 33170748 PMCID: PMC7855878 DOI: 10.1080/14728222.2021.1849144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023]
Abstract
Introduction: Antipsychotic drugs are central to the treatment of schizophrenia, but their limitations necessitate improved treatment strategies. Multiple lines of research have implicated glutamatergic dysfunction in the hippocampus as an early source of pathophysiology in schizophrenia. Novel compounds have been designed to treat glutamatergic dysfunction, but they have produced inconsistent results in clinical trials. Areas covered: This review discusses how the hippocampus is thought to drive psychotic symptoms through its influence on the dopamine system. It offers the reader an evaluation of proposed treatment strategies including direct modulation of GABA or glutamate neurotransmission or reducing the deleterious impact of stress on circuit development. Finally, we offer a perspective on aspects of future research that will advance our knowledge and may create new therapeutic opportunities. PubMed was searched for relevant literature between 2010 and 2020 and related studies. Expert opinion: Targeting aberrant excitatory-inhibitory neurotransmission in the hippocampus and its related circuits has the potential to alleviate symptoms and reduce the risk of transition to psychosis if implemented as an early intervention. Longitudinal multimodal brain imaging combined with mechanistic theories generated from animal models can be used to better understand the progression of hippocampal-dopamine circuit dysfunction and heterogeneity in treatment response.
Collapse
Affiliation(s)
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Koola MM. Alpha7 nicotinic-N-methyl-D-aspartate hypothesis in the treatment of schizophrenia and beyond. Hum Psychopharmacol 2021; 36:1-16. [PMID: 32965756 DOI: 10.1002/hup.2758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Development of novel treatments for positive, cognitive, and negative symptoms continue to be a high-priority area of schizophrenia research and a major unmet clinical need. Given that all randomized controlled trials (RCTs) conducted to date failed with one add-on medication/mechanism of action, future RCTs with the same approach are not warranted. Even if the field develops a medication for cognition, others are still needed to treat negative and positive symptoms. Therefore, fixing one domain does not completely solve the problem. Also, targeting the cholinergic system, glutamatergic system, and cholinergic plus alpha7 nicotinic and N-methyl-D-aspartate (NMDA) receptors failed independently. Hence, targeting other less important pathophysiological mechanisms/targets is unlikely to be successful. Meta-analyses of RCTs targeting major pathophysiological mechanisms have found some efficacy signal in schizophrenia; thus, combination treatments with different mechanisms of action may enhance the efficacy signal. The objective of this article is to highlight the importance of conducting RCTs with novel combination treatments in schizophrenia to develop antischizophrenia treatments. Positive RCTs with novel combination treatments that target the alpha7 nicotinic and NMDA receptors simultaneously may lead to a disease-modifying therapeutic armamentarium in schizophrenia. Novel combination treatments that concurrently improve the three domains of psychopathology and several prognostic and theranostic biomarkers may facilitate therapeutic discovery in schizophrenia.
Collapse
Affiliation(s)
- Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| |
Collapse
|
34
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
35
|
Zink CF, Barker PB, Sawa A, Weinberger DR, Wang M, Quillian H, Ulrich WS, Chen Q, Jaffe AE, Kleinman JE, Hyde TM, Prettyman GE, Giegerich M, Carta K, van Ginkel M, Bigos KL. Association of Missense Mutation in FOLH1 With Decreased NAAG Levels and Impaired Working Memory Circuitry and Cognition. Am J Psychiatry 2020; 177:1129-1139. [PMID: 33256444 DOI: 10.1176/appi.ajp.2020.19111152] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Altering the metabotropic glutamate receptor 3 (mGluR3) by pharmacology or genetics is associated with differences in learning and memory in animals and humans. GRM3 (the gene coding for mGluR3) is also genome-wide associated with risk for schizophrenia. The neurotransmitter N-acetyl-aspartyl-glutamate (NAAG) is the selective endogenous agonist of mGluR3, and increasing NAAG may improve cognition. Glutamate carboxypeptidase II (GCPII), coded by the gene folate hydrolase 1 (FOLH1), regulates the amount of NAAG in the synapse. The goal of this study was to determine the relationship between FOLH1, NAAG levels, measures of human cognition, and neural activity associated with cognition. METHODS The effects of genetic variation in FOLH1 on mRNA expression in human brain and NAAG levels using 7-T magnetic resonance spectroscopy (MRS) were measured. NAAG levels and FOLH1 genetic variation were correlated with measures of cognition in subjects with psychosis and unaffected subjects. Additionally, FOLH1 genetic variation was correlated with neural activity during working memory, as measured by functional MRI (fMRI). RESULTS A missense mutation in FOLH1 (rs202676 G allele) was associated with increased FOLH1 mRNA in the dorsolateral prefrontal cortex of brains from unaffected subjects and schizophrenia patients. This FOLH1 variant was associated with decreased NAAG levels in unaffected subjects and patients with psychosis. NAAG levels were positively correlated with visual memory performance. Carriers of the FOLH1 variant associated with lower NAAG levels had lower IQ scores. Carriers of this FOLH1 variant had less efficient cortical activity during working memory. CONCLUSIONS These data show that higher NAAG levels are associated with better cognition, suggesting that increasing NAAG levels through FOLH1/GCPII inhibition may improve cognition. Additionally, NAAG levels measured by MRS and cortical efficiency during working memory measured by fMRI have the potential to be neuroimaging biomarkers for future clinical trials.
Collapse
Affiliation(s)
- Caroline F Zink
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Peter B Barker
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Akira Sawa
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Daniel R Weinberger
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Min Wang
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Henry Quillian
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - William S Ulrich
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Qiang Chen
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Andrew E Jaffe
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Joel E Kleinman
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Thomas M Hyde
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Greer E Prettyman
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Mellissa Giegerich
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Kayla Carta
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Marcus van Ginkel
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Kristin L Bigos
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| |
Collapse
|
36
|
Kätzel D, Wolff AR, Bygrave AM, Bannerman DM. Hippocampal Hyperactivity as a Druggable Circuit-Level Origin of Aberrant Salience in Schizophrenia. Front Pharmacol 2020; 11:486811. [PMID: 33178010 PMCID: PMC7596262 DOI: 10.3389/fphar.2020.486811] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/18/2020] [Indexed: 01/21/2023] Open
Abstract
The development of current neuroleptics was largely aiming to decrease excessive dopaminergic signaling in the striatum. However, the notion that abnormal dopamine creates psychotic symptoms by causing an aberrant assignment of salience that drives maladaptive learning chronically during disease development suggests a therapeutic value of early interventions that correct salience-related neural processing. The mesolimbic dopaminergic output is modulated by several interconnected brain-wide circuits centrally involving the hippocampus and key relays like the ventral and associative striatum, ventral pallidum, amygdala, bed nucleus of the stria terminalis, nucleus reuniens, lateral and medial septum, prefrontal and cingulate cortex, among others. Unraveling the causal relationships between these circuits using modern neuroscience techniques holds promise for identifying novel cellular-and ultimately molecular-treatment targets for reducing transition to psychosis and symptoms of schizophrenia. Imaging studies in humans have implicated a hyperactivity of the hippocampus as a robust and early endophenotype in schizophrenia. Experiments in rodents, in turn, suggested that the activity of its output region-the ventral subiculum-may modulate dopamine release from ventral tegmental area (VTA) neurons in the ventral striatum. Even though these observations suggested a novel circuit-level target for anti-psychotic action, no therapy has yet been developed along this rationale. Recently evaluated treatment strategies-at least in part-target excess glutamatergic activity, e.g. N-acetyl-cysteine (NAC), levetiracetam, and mGluR2/3 modulators. We here review the evidence for the central implication of the hippocampus-VTA axis in schizophrenia-related pathology, discuss its symptom-related implications with a particular focus on aberrant assignment of salience, and evaluate some of its short-comings and prospects for drug discovery.
Collapse
Affiliation(s)
- Dennis Kätzel
- Institute for Applied Physiology, Ulm University, Ulm, Germany
| | - Amy R. Wolff
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Alexei M. Bygrave
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Yuan G, Qu X, Zheng B, Neelamegam R, Afshar S, Iyengar S, Pan C, Wang J, Kang HJ, Ondrechen MJ, Poutiainen P, El Fakhri G, Zhang Z, Brownell AL. Design, Synthesis, and Characterization of Benzimidazole Derivatives as Positron Emission Tomography Imaging Ligands for Metabotropic Glutamate Receptor 2. J Med Chem 2020; 63:12060-12072. [PMID: 32981322 DOI: 10.1021/acs.jmedchem.0c01394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three benzimidazole derivatives (13-15) have been synthetized as potential positron emission tomography (PET) imaging ligands for mGluR2 in the brain. Of these compounds, 13 exhibits potent binding affinity (IC50 = 7.6 ± 0.9 nM), positive allosteric modulator (PAM) activity (EC50 = 51.2 nM), and excellent selectivity against other mGluR subtypes (>100-fold). [11C]13 was synthesized via O-[11C]methylation of its phenol precursor 25 with [11C]methyl iodide. The achieved radiochemical yield was 20 ± 2% (n = 10, decay-corrected) based on [11C]CO2 with a radiochemical purity of >98% and molar activity of 98 ± 30 GBq/μmol EOS. Ex vivo biodistribution studies revealed reversible accumulation of [11C]13 and hepatobiliary and urinary excretions. PET imaging studies in rats demonstrated that [11C]13 accumulated in the mGluR2-rich brain regions. Pre-administration of mGluR2-selective PAM, 17 reduced the brain uptake of [11C]13, indicating a selective binding. Therefore, [11C]13 is a potential PET imaging ligand for mGluR2 in different central nervous system-related conditions.
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Xiying Qu
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Baohui Zheng
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Ramesh Neelamegam
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Suhasini Iyengar
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Chuzhi Pan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Junfeng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina 27514, United States
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Pekka Poutiainen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio 70210, Finland
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Zhaoda Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
38
|
Martínez-Pinteño A, García-Cerro S, Mas S, Torres T, Boloc D, Rodríguez N, Lafuente A, Gassó P, Arnaiz JA, Parellada E. The positive allosteric modulator of the mGlu2 receptor JNJ-46356479 partially improves neuropathological deficits and schizophrenia-like behaviors in a postnatal ketamine mice model. J Psychiatr Res 2020; 126:8-18. [PMID: 32407891 DOI: 10.1016/j.jpsychires.2020.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/30/2022]
Abstract
Current antipsychotics have limited efficacy in controlling cognitive and negative symptoms of schizophrenia (SZ). Glutamatergic dysregulation has been implicated in the pathophysiology of SZ, based on the capacity of N-methyl-D-aspartate receptor (NMDAR) antagonists such as ketamine (KET) to induce SZ-like behaviors. This could be related to their putative neuropathological effect on gamma-aminobutyric (GABAergic) interneurons expressing parvalbumin (PV), which would lead to a hyperglutamatergic condition. Metabotropic glutamate receptor 2 (mGluR2) negatively modulates glutamate release and has been considered a potential clinical target for novel antipsychotics drugs. Our aim was to evaluate the efficacy of JNJ-46356479 (JNJ), a positive allosteric modulator (PAM) of the mGluR2, in reversing neuropathological and behavioral deficits induced in a postnatal KET mice model of SZ. These animals presented impaired spontaneous alternation in the Y-maze test, suggesting deficits in spatial working memory, and a decrease in social motivation and memory, assessed in both the Three-Chamber and the Five Trial Social Memory tests. Interestingly, JNJ treatment of adult mice partially reversed these deficits. Mice treated with KET also showed a reduction in PV+ in the mPFC and dentate gyrus together with an increase in c-Fos expression in this hippocampal area. Compared to the control group, mice treated with KET + JNJ showed a similar PV density and c-Fos activity pattern. Our results suggest that pharmacological treatment with a PAM of the mGluR2 such as JNJ could help improve cognitive and negative symptoms related to SZ.
Collapse
Affiliation(s)
| | - Susana García-Cerro
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Teresa Torres
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Daniel Boloc
- Department of Medicine, University of Barcelona, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Amalia Lafuente
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Patricia Gassó
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Joan Albert Arnaiz
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Clinical Pharmacology Department, Hospital Clínic de Barcelona, Spain.
| | - Eduard Parellada
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Department of Medicine, University of Barcelona, Spain; Barcelona Clinic Schizophrenia Unit (BCSU), Institute of Neuroscience, Hospital Clinic of Barcelona, University of Barcelona, Spain.
| |
Collapse
|
39
|
Powell SK, O'Shea CP, Shannon SR, Akbarian S, Brennand KJ. Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. ADVANCES IN NEUROBIOLOGY 2020; 25:155-206. [PMID: 32578147 DOI: 10.1007/978-3-030-45493-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a chronic and severe neuropsychiatric condition manifested by cognitive, emotional, affective, perceptual, and behavioral abnormalities. Despite decades of research, the biological substrates driving the signs and symptoms of the disorder remain elusive, thus hampering progress in the development of treatments aimed at disease etiologies. The recent emergence of human induced pluripotent stem cell (hiPSC)-based models has provided the field with a highly innovative approach to generate, study, and manipulate living neural tissue derived from patients, making possible the exploration of fundamental roles of genes and early-life stressors in disease-relevant cell types. Here, we begin with a brief overview of the clinical, epidemiological, and genetic aspects of the condition, with a focus on schizophrenia as a neurodevelopmental disorder. We then highlight relevant technical advancements in hiPSC models and assess novel findings attained using hiPSC-based approaches and their implications for disease biology and treatment innovation. We close with a critical appraisal of the developments necessary for both further expanding knowledge of schizophrenia and the translation of new insights into therapeutic innovations.
Collapse
Affiliation(s)
- Samuel K Powell
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Callan P O'Shea
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Rose Shannon
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
40
|
Watanabe M, Marcy B, Kinoshita K, Fukasawa M, Hikichi H, Chaki S, Okuyama S, Gevorkyan H, Yoshida S. Safety and pharmacokinetic profiles of MGS0274 besylate (TS-134), a novel metabotropic glutamate 2/3 receptor agonist prodrug, in healthy subjects. Br J Clin Pharmacol 2020; 86:2286-2301. [PMID: 32353162 PMCID: PMC7576618 DOI: 10.1111/bcp.14331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Aims The safety and pharmacokinetics of single and multiple doses of a novel mGlu2/3 receptor agonist prodrug, MGS0274 besylate (TS‐134), were investigated in healthy subjects. Methods Phase 1 single‐ascending dose (5–20 mg) and multiple‐ascending dose titration (5–80 mg) studies were conducted in healthy male and female subjects. Both studies were randomized, double‐blinded and placebo‐controlled. In one cohort of single‐ascending dose study (10 mg), concentrations of MGS0008, the active compound, in the cerebrospinal fluid (CSF) were measured for up to 24 hours postdose. Results Following single and multiple oral administrations, MGS0274 was rapidly absorbed and extensively converted into MGS0008, which reached a maximum concentration (Cmax) in plasma within 4 hours postdose and declined with a terminal half‐life (t1/2) of around 10 hours. Plasma exposure to MGS0274 was minimal, accounting for approximately 3% of the area under the concentration–time curve (AUC) of MGS0008. Plasma Cmax and AUC of MGS0008 at steady state increased dose proportionally (5–80 mg). MGS0008 penetrated into CSF, with a CSF‐to‐plasma Cmax ratio of 3.66%, and was eliminated with a t1/2 of approximately 16 hours. The most frequent treatment‐emergent adverse events observed following single and multiple oral administration included headache, nausea, somnolence, dizziness and vomiting. Conclusion TS‐134 is orally bioavailable in humans and converts rapidly and extensively to MGS0008, which exhibits good CSF penetration. Orally administered TS‐134 was safe and generally well‐tolerated; hence, TS‐134 is a promising candidate for further clinical development for the treatment of disorders in which glutamatergic abnormalities are involved, such as schizophrenia.
Collapse
|
41
|
Provenzano FA, Guo J, Wall MM, Feng X, Sigmon HC, Brucato G, First MB, Rothman DL, Girgis RR, Lieberman JA, Small SA. Hippocampal Pathology in Clinical High-Risk Patients and the Onset of Schizophrenia. Biol Psychiatry 2020; 87:234-242. [PMID: 31771861 DOI: 10.1016/j.biopsych.2019.09.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND We examined neuroimaging-derived hippocampal biomarkers in subjects at clinical high risk (CHR) for psychosis to further characterize the pathophysiology of early psychosis. We hypothesized that glutamate hyperactivity, reflected by increased metabolic activity derived from functional magnetic resonance imaging in the CA1 hippocampal subregion and from proton magnetic resonance spectroscopy-derived hippocampal levels of glutamate/glutamine, represents early hippocampal dysfunction in CHR subjects and is predictive of conversion to syndromal psychosis. METHODS We enrolled 75 CHR individuals with attenuated positive symptom psychosis-risk syndrome as defined by the Structured Interview for Psychosis-risk Syndromes. We used optimized magnetic resonance imaging techniques to measure 3 validated in vivo pathologies of hippocampal dysfunction-focal cerebral blood volume, focal atrophy, and evidence of elevated glutamate concentrations. All patients were imaged at baseline and were followed for up to 2 years to assess for conversion to psychosis. RESULTS At baseline, compared with control subjects, CHR individuals had high glutamate/glutamine and elevated focal cerebral blood volume on functional magnetic resonance imaging, but only baseline focal hippocampal atrophy predicted progression to syndromal psychosis. CONCLUSIONS These findings provide evidence that CHR patients with attenuated psychotic symptoms have glutamatergic abnormalities, although only CHR patients who develop syndromal psychosis exhibit focal hippocampal atrophy. Furthermore, these results support the growing evidence that hippocampal dysfunction is an early feature of schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, New York
| | - Melanie M Wall
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Xinyang Feng
- Department of Neurology, Columbia University, New York, New York; Department of Biomedical Engineering, Columbia University, New York, New York
| | - Hannah C Sigmon
- University of Virginia School of Medicine, Charlottesville, Virginia
| | - Gary Brucato
- Department of Psychiatry, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York
| | | | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Ragy R Girgis
- Department of Psychiatry, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Jeffrey A Lieberman
- Department of Psychiatry, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York.
| | - Scott A Small
- Department of Neurology, Columbia University, New York, New York.
| |
Collapse
|
42
|
Cieślik P, Domin H, Chocyk A, Gruca P, Litwa E, Płoska A, Radulska A, Pelikant-Małecka I, Brański P, Kalinowski L, Wierońska JM. Simultaneous activation of mGlu 2 and muscarinic receptors reverses MK-801-induced cognitive decline in rodents. Neuropharmacology 2019; 174:107866. [PMID: 31785263 DOI: 10.1016/j.neuropharm.2019.107866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/09/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022]
Abstract
The activity of an allosteric agonist of muscarinic M1 receptor, VU0357017, and a positive allosteric modulator (PAM) of M5 receptor, VU0238429, were investigated alone or in combination with the mGlu2 receptor PAM, LY487379 using the following behavioural tests: prepulse inhibition (PPI), novel object recognition (NOR), and spatial delayed alternation (SDA). VU0357017 (10 and 20 mg/kg) and VU0238429 (5 and 10 mg/kg) reversed deficits in PPI while VU0238429 (2.5 and 5 mg/kg) was effective in SDA. The simultaneous administration of subeffective doses of M1 or M5 activators (5, 1, or 0.25 mg/kg) with LY487379 (0.5 mg/kg) induced the same effect as that observed for the active dose of each compound. Selective M1 or M5 receptor blockers antagonized the effect exerted by these combinations, and pharmacokinetic studies confirmed independent transport through the blood-brain barrier. The expression of both receptors (M1 and M5) was established in brain structures involved in cognition (neocortex, hippocampus, and entorhinal cortex) in both the rat and the mouse brains by immunofluorescence staining. Specifically, double neuronal staining of mGlu2-M1 and mGlu2-M5 receptors was observed in many areas of the rat brain, while the number of double-stained mGlu2-M1 receptors was moderate in the mouse brain with no mGlu2-M5 colocalization. Finally, the combined administration of subeffective doses of the compounds did not alter prolactin levels or motor coordination, in contrast to the compounds given alone at the highest dose or in combination with standard neuroleptics.
Collapse
Affiliation(s)
- Paulina Cieślik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Helena Domin
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Agnieszka Chocyk
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Piotr Gruca
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Ewa Litwa
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland.
| |
Collapse
|
43
|
Jankowska A, Satała G, Partyka A, Wesołowska A, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Curr Med Chem 2019; 26:4885-4913. [PMID: 31291870 DOI: 10.2174/0929867326666190710172002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder that affects about 1 in 100 people around the world and results in persistent emotional and cognitive impairments. Untreated schizophrenia leads to deterioration in quality of life and premature death. Although the clinical efficacy of dopamine D2 receptor antagonists against positive symptoms of schizophrenia supports the dopamine hypothesis of the disease, the resistance of negative and cognitive symptoms to these drugs implicates other systems in its pathophysiology. Many studies suggest that abnormalities in glutamate homeostasis may contribute to all three groups of schizophrenia symptoms. Scientific considerations also include disorders of gamma-aminobutyric acid-ergic and serotonergic neurotransmissions as well as the role of the immune system. The purpose of this review is to update the most recent reports on the discovery and development of non-dopaminergic agents that may reduce positive, negative, and cognitive symptoms of schizophrenia, and may be alternative to currently used antipsychotics. This review collects the chemical structures of representative compounds targeting metabotropic glutamate receptor, gamma-aminobutyric acid type A receptor, alpha 7 nicotinic acetylcholine receptor, glycine transporter type 1 and glycogen synthase kinase 3 as well as results of in vitro and in vivo studies indicating their efficacy in schizophrenia. Results of clinical trials assessing the safety and efficacy of the tested compounds have also been presented. Finally, attention has been paid to multifunctional ligands with serotonin receptor affinity or phosphodiesterase inhibitory activity as novel strategies in the search for dedicated medicines for patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
44
|
Hao J, Chen Q. Insights into the Structural Aspects of the mGlu Receptor Orthosteric Binding Site. Curr Top Med Chem 2019; 19:2421-2446. [PMID: 31660833 DOI: 10.2174/1568026619666191011094935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
The amino terminal domain (ATD) of the metabotropic glutamate (mGlu) receptors contains the orthosteric glutamate recognition site, which is highly conserved across the eight mGlu receptor subtypes. In total, 29 X-ray crystal structures of the mGlu ATD proteins have been reported to date. These structures span across 3 subgroups and 6 subtypes, and include apo, agonist- and antagonist-bound structures. We will discuss the insights gained from the analysis of these structures with the focus on the interactions contributing to the observed group and subtype selectivity for select agonists. Furthermore, we will define the full expanded orthosteric ligand binding pocket (LBP) of the mGlu receptors, and discuss the macroscopic features of the mGlu ATD proteins.
Collapse
Affiliation(s)
- Junliang Hao
- Discovery Chemistry Research and Technologies, Lilly Research Laboratory, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| | - Qi Chen
- Discovery Chemistry Research and Technologies, Lilly Research Laboratory, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| |
Collapse
|
45
|
|
46
|
Zhand N, Attwood DG, Harvey PD. Glutamate modulators for treatment of schizophrenia. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.pmip.2019.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Matsusaki A, Kaneko M, Narukawa M. Meta-analysis of Dropout Rates in Placebo-Controlled Randomized Clinical Trials of Atypical Antipsychotics Assessed by PANSS. Clin Drug Investig 2019; 39:917-926. [PMID: 31250403 DOI: 10.1007/s40261-019-00813-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Subject dropout rates in placebo-controlled randomized clinical trials (RCTs) of antipsychotics are high. The missing values due to dropout represent a potential source of bias in clinical trials. We aimed to identify the potential factors affecting subject dropout in atypical antipsychotics RCTs by conducting a meta-analysis. METHODS Placebo-controlled RCTs for atypical antipsychotics using positive and negative syndrome scale (PANSS) as a psychiatric assessment scale were selected by database search. The potential factors affecting subject dropout, such as publication year, study design, and operational factors, were analyzed by meta-regression. RESULTS Forty-seven placebo controlled RCTs of atypical antipsychotics of which results were published between 1993 and 2018 were identified through the database search. In the multivariate meta-regression analysis, earlier publication year, older age of subjects, and longer study duration were significantly associated with high subject dropout rates in placebo-controlled clinical trials of atypical antipsychotics. CONCLUSION Subject dropout rates in clinical trials of atypical antipsychotics published between 1993 and 2018 year decreased over time. Study duration should be taken into consideration when designing future studies, where short study periods yet appropriate for evaluating the efficacy of new atypical antipsychotics are preferable. Additionally, previous medications and the degree of subject satisfaction with antipsychotics might affect subject dropout rate.
Collapse
Affiliation(s)
- Akiko Matsusaki
- Department of Clinical Medicine (Pharmaceutical Medicine), Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Masayuki Kaneko
- Department of Clinical Medicine (Pharmaceutical Medicine), Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mamoru Narukawa
- Department of Clinical Medicine (Pharmaceutical Medicine), Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
48
|
Cieślik P, Radulska A, Pelikant-Małecka I, Płoska A, Kalinowski L, Wierońska JM. Reversal of MK-801-Induced Disruptions in Social Interactions and Working Memory with Simultaneous Administration of LY487379 and VU152100 in Mice. Int J Mol Sci 2019; 20:ijms20112781. [PMID: 31174329 PMCID: PMC6600181 DOI: 10.3390/ijms20112781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/25/2023] Open
Abstract
Negative and cognitive symptoms of schizophrenia contribute to an impaired social and professional life for schizophrenic patients, and in most cases, these symptoms are treatment resistant. Therefore, identification of new treatment strategies is sorely needed. Metabotropic glutamate receptors (mGlu) and muscarinic (M) receptors for acetylcholine have been considered promising targets for novel antipsychotics. Among them, mGlu2 and M4 subtypes seem to be of particular importance. In the present study, the effect of mutual activation of mGlu2 and M4 receptors was assessed in MK-801-based animal models of negative and cognitive symptoms of schizophrenia, that is, social interaction and novel object recognition tests. Low sub-effective doses of LY487379 (0.5 mg/kg), a positive allosteric activator of the mGlu2 receptor, and VU152100 (0.25−0.5 mg/kg), a positive allosteric modulator of the M4 receptor, were simultaneously administered in the aforementioned tests. Combined administration of these compounds prevented MK-801-induced disturbances in social interactions and object recognition when acutely administered 30 min before MK-801. Prolonged (7 days) administration of these compounds resulted in the loss of effectiveness in preventing MK-801-induced disruptions in the novel object recognition test but not in the social interaction test. In the next set of experiments, MK-801 (0.3 mg/kg) was administered for seven consecutive days, and the activity of the compounds was investigated on day eight, during which time MK-801 was not administered. In this model, based on prolonged MK-801 administration, the effectiveness of the compounds to treat MK-801-induced disruptions was evident at low doses which were ineffective in preventing the behavioural disturbances induced by an acute MK-801 injection. Combined administration of the compounds did not exert better efficacy than each compound given alone. Pharmacokinetic analysis confirmed a lack of possible drug–drug interactions after combined administration of LY487379 and VU152100. Our data show that modulation of M4 and mGlu2 receptors may potentially be beneficial in the treatment of negative and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| |
Collapse
|
49
|
Insights on current and novel antipsychotic mechanisms from the MAM model of schizophrenia. Neuropharmacology 2019; 163:107632. [PMID: 31077730 DOI: 10.1016/j.neuropharm.2019.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/25/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Current antipsychotic drugs (APDs) act on D2 receptors, and preclinical studies demonstrate that repeated D2 antagonist administration downregulates spontaneously active DA neurons by producing overexcitation-induced inactivation of firing (depolarization block). Animal models of schizophrenia based on the gestational MAM administration produces offspring with adult phenotypes consistent with schizophrenia, including ventral hippocampal hyperactivity and a DA neuron overactivity. The MAM model reveals that APDs act differently in a hyperdopamineregic system compared to a normal one, including rapid onset of depolarization block in response to acute D2 antagonist administration and downregulation of DA neuron population activity following acute and repeated D2 partial agonist administration, none of which are observed in normal rats. Novel target compounds have been developed based on the theory that glutamatergic dysfunction is central to schizophrenia pathology. Despite showing promise in preclinical research, none of the novel drugs succeeded in clinical trials. However, preclinical research is generally performed in normal, drug-naïve rats, whereas models with disease-relevant pathology and prior APD exposure may improve the predictive validity of preclinical research. Indeed, in MAM rats, chronic D2 antagonist treatment leads to persistent DA supersensitivity that interferes with the response to drugs that target upstream pathology. Moreover, MAM rats revealed that the peri-pubertal period is a stress-sensitive window that can be targeted to prevent the development of MAM pathology in adulthood. Neurodevelopmental models, such as the MAM model, can thus be used to test potential pharmacotherapies that may be able to treat schizophrenia in early stages of the disease. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
|
50
|
Specific activation of mGlu2 induced IGF-1R transactivation in vitro through FAK phosphorylation. Acta Pharmacol Sin 2019; 40:460-467. [PMID: 29946167 DOI: 10.1038/s41401-018-0033-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/20/2018] [Indexed: 01/17/2023] Open
Abstract
Metabotropic glutamate receptor 2 (mGlu2) belongs to the group-II metabotropic glutamate (mGlu) receptors and is a neurotransmitter G protein-coupled receptor. The group-II mGlu receptors are promising antipsychotic targets, but the specific role of mGlu2 signaling remains unclear. Receptor tyrosine kinases (RTKs) are also believed to participate in brain pathogenesis. To investigate whether there is any communication between mGlu2 and RTKs, we generated a CHO-mGlu2 cell line that stably expresses mGlu2 and showed that activation of mGlu2 by LY379268, a group II mGlu agonist, was able to transactivate insulin-like growth factor 1 receptor (IGF-1R). We further determined that the Gi/o protein, Gβγ subunits, phospholipase C, and focal adhesion kinase (FAK) were involved in the IGF-1R transactivation signaling axis, which further induced the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and cAMP response element-binding protein. In primary mouse cortical neurons, similar signaling pathways were observed when mGlu2 were stimulated by LY487379, an mGlu2 positive allosteric modulator. Transactivation of IGF-1R through FAK in response to mGlu2 should provide a better understanding of the association of mGlu2 with brain disease.
Collapse
|