1
|
Leedale AE, Vullioud P, Seager D, Zöttl M, Glauser G, Clutton-Brock T. Kin recognition for incest avoidance in Damaraland mole-rats, Fukomys damarensis. Proc Biol Sci 2024; 291:20241138. [PMID: 39471090 DOI: 10.1098/rspb.2024.1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 09/11/2024] [Indexed: 11/01/2024] Open
Abstract
Across taxa, breeding among close relatives is usually avoided because it incurs fitness costs to offspring. Incest is often averted through the dispersal of either sex from the natal area to breed. In some philopatric species, association among relatives extends into adulthood, and an ability to discriminate kin may be required for individuals to reduce inbreeding risk. Here, we aim to determine the mechanism of kin recognition for incest avoidance in the Damaraland mole-rat Fukomys damarensis, a cooperative breeder characterized by extreme reproductive skew. Pairs of opposite-sex adults were formed in the laboratory and, within pairs, genetic relatedness and degree of familiarity were manipulated through cross-fostering experiments. We found that unfamiliar pairs were more likely to engage in sexual behaviours and bred more successfully than familiar pairs, regardless of their genetic similarity. Females paired with unfamiliar males were also more likely to exhibit reproductive activation, characterized by increased levels of oestradiol and progesterone. This study shows that in Damaraland mole-rats, inbreeding avoidance can be achieved through a discrimination mechanism that relies on association during rearing, and that ovulation is induced by mating. This study advances our understanding of incest avoidance in species with constrained dispersal.
Collapse
Affiliation(s)
- Amy E Leedale
- Department of Zoology, University of Cambridge, Cambridge, UK
- Kalahari Research Centre, Kuruman River Reserve, Northern Cape, South Africa
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Philippe Vullioud
- Department of Zoology, University of Cambridge, Cambridge, UK
- Kalahari Research Centre, Kuruman River Reserve, Northern Cape, South Africa
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - David Seager
- Department of Zoology, University of Cambridge, Cambridge, UK
- Kalahari Research Centre, Kuruman River Reserve, Northern Cape, South Africa
| | - Markus Zöttl
- Department of Biology and Environmental Science, Linnaeus University, Växjö, Sweden
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Tim Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, UK
- Kalahari Research Centre, Kuruman River Reserve, Northern Cape, South Africa
- Department of Biology and Environmental Science, Linnaeus University, Växjö, Sweden
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Uenoyama R, Zhu W, Miura M, Miyazaki T, Miyazaki M. Sprayed Urine Emits a Pungent Odor due to its Increased Adhesion to Vertical Objects via Urinary Proteins Rather Than to Changes in its Volatile Chemical Profile in Domestic Cats. J Chem Ecol 2024:10.1007/s10886-024-01490-1. [PMID: 38600408 DOI: 10.1007/s10886-024-01490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Spraying urine on vertical objects by raising the tail is a commonly observed functional behavior for chemical communication in Felidae species, including domestic cats (Felis silvestris catus). The sprayed urine is recognized as a chemical signal for territorial ownership of their habitats. Previous studies reported that sprayed urine emits a more pungent odor than urine excreted from a squatting position. However, little is known about how sprayed urine acts as a strong scent mark in the environment. Here, we showed that sprayed urine originates only from bladder urine without any secretions, such as anal sac secretions, but it can effectively emit volatile organic compounds (VOCs) when smeared on vertical objects due to its strong adhesion. Chemical profiles of VOCs and odor qualities were similar between fresh sprayed urine and bladder urine sampled immediately after spraying from the same individuals. Meanwhile, feline-specific proteinuria arising from excretion of a carboxylesterase that produces a precursor of cat-specific odorants resulted in reduced surface tension of the urine and increased adhesion to vertical surfaces, which kept sprayed urine on the surfaces and led to the emission of large amounts of VOCs. In conclusion, proteinuria contributes to the emission of a strong odor through its enhanced adhesion to vertical objects without other secretions containing malodorous substances. These findings improve our understanding of the mechanism of scent marking via the spraying of urine for chemical communication in cats.
Collapse
Affiliation(s)
- Reiko Uenoyama
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Wenrui Zhu
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Makoto Miura
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Tamako Miyazaki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Masao Miyazaki
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
| |
Collapse
|
3
|
Coombes HA, Prescott MC, Stockley P, Beynon RJ, Hurst JL. The role of male scent in female attraction in the bank vole, Myodes glareolus. Sci Rep 2024; 14:4812. [PMID: 38413659 PMCID: PMC10899570 DOI: 10.1038/s41598-024-55235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Chemical signals are frequently utilised by male mammals for intersexual communication and females are often attracted to male scent. However, the mechanism underlying female attraction has only been identified in a small number of mammalian species. Mammalian scents contain airborne volatiles, that are detected by receivers at a distance from the scent source, as well as non-volatile molecules, such as proteins, that require physical contact for detection. Lipocalin proteins, produced within the scent secretions of many terrestrial mammals, are thought to be particularly important in chemical signalling. Here, we explore if the male-specific protein, glareosin, expressed by adult male bank voles, Myodes glareolus, stimulates female attraction to male scent. We show that female bank voles are more attracted to male compared to female scent, supporting the results of previous studies. Increased investigation and attraction to male scent occurred to both airborne volatiles and non-volatile proteins when they were presented separately. However, we found no evidence that attraction to male scent was driven by glareosin. Our results differ from those previously described in house mice, where a single protein induces female attraction to male scent, suggesting the mechanism underlying female attraction to male scent differs between species.
Collapse
Affiliation(s)
- Holly A Coombes
- Mammalian Behaviour and Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- Department of Biology, University of Oxford, Oxford, UK.
| | - Mark C Prescott
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Paula Stockley
- Mammalian Behaviour and Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jane L Hurst
- Mammalian Behaviour and Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Kitamura T, Ramesh K, Terranova JI. Understanding Others' Distress Through Past Experiences: The Role of Memory Engram Cells in Observational Fear. ADVANCES IN NEUROBIOLOGY 2024; 38:215-234. [PMID: 39008018 DOI: 10.1007/978-3-031-62983-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
For individuals to survive and function in society, it is essential that they recognize, interact with, and learn from other conspecifics. Observational fear (OF) is the well-conserved empathic ability of individuals to understand the other's aversive situation. While it is widely known that factors such as prior similar aversive experience and social familiarity with the demonstrator facilitate OF, the neural circuit mechanisms that explicitly regulate experience-dependent OF (Exp OF) were unclear. In this review, we examine the neural circuit mechanisms that regulate OF, with an emphasis on rodent models, and then discuss emerging evidence for the role of fear memory engram cells in the regulation of Exp OF. First, we examine the neural circuit mechanisms that underlie Naive OF, which is when an observer lacks prior experiences relevant to OF. In particular, the anterior cingulate cortex to basolateral amygdala (BLA) neural circuit is essential for Naive OF. Next, we discuss a recent study that developed a behavioral paradigm in mice to examine the neural circuit mechanisms that underlie Exp OF. This study found that fear memory engram cells in the BLA of observers, which form during a prior similar aversive experience with shock, are reactivated by ventral hippocampal neurons in response to shock delivery to the familiar demonstrator to elicit Exp OF. Finally, we discuss the implications of fear memory engram cells in Exp OF and directions of future research that are of both translational and basic interest.
Collapse
Affiliation(s)
- Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kritika Ramesh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
5
|
Green JP, Franco C, Davidson AJ, Lee V, Stockley P, Beynon RJ, Hurst JL. Cryptic kin discrimination during communal lactation in mice favours cooperation between relatives. Commun Biol 2023; 6:734. [PMID: 37454193 PMCID: PMC10349843 DOI: 10.1038/s42003-023-05115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Breeding females can cooperate by rearing their offspring communally, sharing synergistic benefits of offspring care but risking exploitation by partners. In lactating mammals, communal rearing occurs mostly among close relatives. Inclusive fitness theory predicts enhanced cooperation between related partners and greater willingness to compensate for any partner under-investment, while females are less likely to bias investment towards own offspring. We use a dual isotopic tracer approach to track individual milk allocation when familiar pairs of sisters or unrelated house mice reared offspring communally. Closely related pairs show lower energy demand and pups experience better access to non-maternal milk. Lactational investment is more skewed between sister partners but females pay greater energetic costs per own offspring reared with an unrelated partner. The choice of close kin as cooperative partners is strongly favoured by these direct as well as indirect benefits, providing a driver to maintain female kin groups for communal breeding.
Collapse
Affiliation(s)
- Jonathan P Green
- Mammalian Behaviour & Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Catarina Franco
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Amanda J Davidson
- Mammalian Behaviour & Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Vicki Lee
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Paula Stockley
- Mammalian Behaviour & Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Jane L Hurst
- Mammalian Behaviour & Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK.
| |
Collapse
|
6
|
Stopková R, Matějková T, Dodoková A, Talacko P, Zacek P, Sedlacek R, Piálek J, Stopka P. Variation in mouse chemical signals is genetically controlled and environmentally modulated. Sci Rep 2023; 13:8573. [PMID: 37237091 DOI: 10.1038/s41598-023-35450-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In most mammals and particularly in mice, chemical communication relies on the detection of ethologically relevant fitness-related cues from other individuals. In mice, urine is the primary source of these signals, so we employed proteomics and metabolomics to identify key components of chemical signalling. We show that there is a correspondence between urinary volatiles and proteins in the representation of genetic background, sex and environment in two house mouse subspecies Mus musculus musculus and M. m. domesticus. We found that environment has a strong influence upon proteomic and metabolomic variation and that volatile mixtures better represent males while females have surprisingly more sex-biased proteins. Using machine learning and combined-omics techniques, we identified mixtures of metabolites and proteins that are associated with biological features.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Alica Dodoková
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Pavel Talacko
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Petr Zacek
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic.
| |
Collapse
|
7
|
Brown bear skin-borne secretions display evidence of individuality and age-sex variation. Sci Rep 2023; 13:3163. [PMID: 36823208 PMCID: PMC9950453 DOI: 10.1038/s41598-023-29479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Scent originates from excretions and secretions, and its chemical complexity in mammals translates into a diverse mode of signalling. Identifying how information is encoded can help to establish the mechanisms of olfactory communication and the use of odours as chemical signals. Building upon existing behavioural and histological literature, we examined the chemical profile of secretions used for scent marking by a solitary, non-territorial carnivore, the brown bear (Ursus arctos). We investigated the incidence, abundance, and uniqueness of volatile organic compounds (VOCs) from cutaneous glandular secretions of 12 wild brown bears collected during late and post-breeding season, and assessed whether age-sex class, body site, and individual identity explained profile variation. VOC profiles varied in the average number of compounds, compound incidence, and compound abundance by age-sex class and individual identity (when individuals were grouped by sex), but not by body site. Mature males differed from other age-sex classes, secreting fewer compounds on average with the least variance between individuals. Compound uniqueness varied by body site and age for both males and females and across individuals. Our results indicate that brown bear skin-borne secretions may facilitate age-sex class and individual recognition, which can contribute towards further understanding of mating systems and social behaviour.
Collapse
|
8
|
Component-Resolved Diagnosis Based on a Recombinant Variant of Mus m 1 Lipocalin Allergen. Int J Mol Sci 2023; 24:ijms24021193. [PMID: 36674705 PMCID: PMC9862564 DOI: 10.3390/ijms24021193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Exposure to the Mus m 1 aeroallergen is a significant risk factor for laboratory animal allergy. This allergen, primarily expressed in mouse urine where it is characterized by a marked and dynamic polymorphism, is also present in epithelium and dander. Considering the relevance of sequence/structure assessment in protein antigenic reactivity, we compared the sequence of the variant Mus m 1.0102 to other members of the Mus m 1 allergen, and used Discotope 2.0 to predict conformational epitopes based on its 3D-structure. Conventional diagnosis of mouse allergy is based on serum IgE testing, using an epithelial extract as the antigen source. Given the heterogeneous and variable composition of extracts, we developed an indirect ELISA assay based on the recombinant component Mus m 1.0102. The assay performed with adequate precision and reasonable diagnostic accuracy (AUC = 0.87) compared to a routine clinical diagnostic test that exploits the native allergen. Recombinant Mus m 1.0102 turned out to be a valuable tool to study the fine epitope mapping of specific IgE reactivity to the major allergen responsible for mouse allergy. We believe that advancing in its functional characterization will lead to the standardization of murine lipocalins and to the development of allergen-specific immunotherapy.
Collapse
|
9
|
de la Zerda SH, Netser S, Magalnik H, Briller M, Marzan D, Glatt S, Abergel Y, Wagner S. Social recognition in laboratory mice requires integration of behaviorally-induced somatosensory, auditory and olfactory cues. Psychoneuroendocrinology 2022; 143:105859. [PMID: 35816892 DOI: 10.1016/j.psyneuen.2022.105859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
In humans, discrimination between individuals, also termed social recognition, can rely on a single sensory modality, such as vision. By analogy, social recognition in rodents is thought to be based upon olfaction. Here, we hypothesized that social recognition in rodents relies upon integration of olfactory, auditory and somatosensory cues, hence requiring active behavior of social stimuli. Using distinct social recognition tests, we demonstrated that adult male mice do not exhibit recognition of familiar stimuli or learn the identity of novel stimuli that are inactive due to anesthesia. We further revealed that impairing the olfactory, somatosensory or auditory systems prevents behavioral recognition of familiar stimuli. Finally, we found that familiar and novel stimuli generate distinct movement patterns during social discrimination and that subjects react differentially to the movement of these stimuli. Thus, unlike what occurs in humans, social recognition in mice relies on integration of information from several sensory modalities.
Collapse
Affiliation(s)
- Shani Haskal de la Zerda
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Hen Magalnik
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Mayan Briller
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Dan Marzan
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Sigal Glatt
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Yasmin Abergel
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel.
| |
Collapse
|
10
|
Janssen-Weets B, Kerff F, Swiontek K, Kler S, Czolk R, Revets D, Kuehn A, Bindslev-Jensen C, Ollert M, Hilger C. Mammalian derived lipocalin and secretoglobin respiratory allergens strongly bind ligands with potentially immune modulating properties. FRONTIERS IN ALLERGY 2022; 3:958711. [PMID: 35991307 PMCID: PMC9385959 DOI: 10.3389/falgy.2022.958711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Allergens from furry animals frequently cause sensitization and respiratory allergic diseases. Most relevant mammalian respiratory allergens belong either to the protein family of lipocalins or secretoglobins. Their mechanism of sensitization remains largely unresolved. Mammalian lipocalin and secretoglobin allergens are associated with a function in chemical communication that involves abundant secretion into the environment, high stability and the ability to transport small volatile compounds. These properties are likely to contribute concomitantly to their allergenic potential. In this study, we aim to further elucidate the physiological function of lipocalin and secretoglobin allergens and link it to their sensitizing capacity, by analyzing their ligand-binding characteristics. We produced eight major mammalian respiratory allergens from four pet species in E.coli and compared their ligand-binding affinities to forty-nine ligands of different chemical classes by using a fluorescence-quenching assay. Furthermore, we solved the crystal-structure of the major guinea pig allergen Cav p 1, a typical lipocalin. Recombinant lipocalin and secretoglobin allergens are of high thermal stability with melting temperatures ranging from 65 to 90°C and strongly bind ligands with dissociation constants in the low micromolar range, particularly fatty acids, fatty alcohols and the terpene alcohol farnesol, that are associated with potential semiochemical and/or immune-modulating functions. Through the systematic screening of respiratory mammalian lipocalin and secretoglobin allergens with a large panel of potential ligands, we observed that total amino acid composition, as well as cavity shape and volume direct affinities to ligands of different chemical classes. Therefore, we were able to categorize lipocalin allergens over their ligand-binding profile into three sub-groups of a lipocalin clade that is associated with functions in chemical communication, thus strengthening the function of major mammalian respiratory allergens as semiochemical carriers. The promiscuous binding capability of hydrophobic ligands from environmental sources warrants further investigation regarding their impact on a molecule's allergenicity.
Collapse
Affiliation(s)
- Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Frédéric Kerff
- Laboratory of Crystallography, Center for Protein Engineering-InBioS, University of Liège, Liège, Belgium
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Stéphanie Kler
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dominique Revets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- *Correspondence: Christiane Hilger
| |
Collapse
|
11
|
Harmonizing Labeling and Analytical Strategies to Obtain Protein Turnover Rates in Intact Adult Animals. Mol Cell Proteomics 2022; 21:100252. [PMID: 35636728 PMCID: PMC9249856 DOI: 10.1016/j.mcpro.2022.100252] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/29/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Changes in the abundance of individual proteins in the proteome can be elicited by modulation of protein synthesis (the rate of input of newly synthesized proteins into the protein pool) or degradation (the rate of removal of protein molecules from the pool). A full understanding of proteome changes therefore requires a definition of the roles of these two processes in proteostasis, collectively known as protein turnover. Because protein turnover occurs even in the absence of overt changes in pool abundance, turnover measurements necessitate monitoring the flux of stable isotope–labeled precursors through the protein pool such as labeled amino acids or metabolic precursors such as ammonium chloride or heavy water. In cells in culture, the ability to manipulate precursor pools by rapid medium changes is simple, but for more complex systems such as intact animals, the approach becomes more convoluted. Individual methods bring specific complications, and the suitability of different methods has not been comprehensively explored. In this study, we compare the turnover rates of proteins across four mouse tissues, obtained from the same inbred mouse strain maintained under identical husbandry conditions, measured using either [13C6]lysine or [2H2]O as the labeling precursor. We show that for long-lived proteins, the two approaches yield essentially identical measures of the first-order rate constant for degradation. For short-lived proteins, there is a need to compensate for the slower equilibration of lysine through the precursor pools. We evaluate different approaches to provide that compensation. We conclude that both labels are suitable, but careful determination of precursor enrichment kinetics in amino acid labeling is critical and has a considerable influence on the numerical values of the derived protein turnover rates. Controlled comparison of heavy water or amino acid labeling for protein turnover. Delays in amino acid precursor labeling mostly affect high turnover proteins Both methods produced similar turnover rates after adjustment of precursor kinetics. Recommendations for analytical workflows for protein turnover studies in animals.
Collapse
|
12
|
Terranova JI, Yokose J, Osanai H, Marks WD, Yamamoto J, Ogawa SK, Kitamura T. Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron 2022; 110:1416-1431.e13. [PMID: 35139362 PMCID: PMC9035063 DOI: 10.1016/j.neuron.2022.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
The empathic ability to vicariously experience the other's fearful situation, a process called observational fear (OF), is critical to survive in nature and function in society. OF can be facilitated by both prior similar fear experience in the observer and social familiarity with the demonstrator. However, the neural circuit mechanisms of experience-dependent OF (Exp OF) remain unknown. Here, we demonstrate that hippocampal-basolateral amygdala (HPC-BLA) circuits in mice without involving the anterior cingulate cortex, considered a center of OF, mediate Exp OF. Dorsal HPC neurons generate fear memory engram cells in BLA encoding prior similar fear experiences, which are essential for Exp OF. On the other hand, ventral HPC neurons respond to the familiar demonstrator's aversive situation during Exp OF, which reactivates the fear memory engram cells in BLA to elicit Exp OF. Our study provides new insights into the memory engram-dependent perception-action coupling that underlies empathic behaviors like Exp OF.
Collapse
Affiliation(s)
- Joseph I Terranova
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - William D Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sachie K Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Pelosi P, Knoll W. Odorant-binding proteins of mammals. Biol Rev Camb Philos Soc 2022; 97:20-44. [PMID: 34480392 DOI: 10.1111/brv.12787] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Odorant-binding proteins (OBPs) of vertebrates belong to the lipocalin superfamily and perform a dual function: solubilizing and ferrying volatile pheromones to the olfactory receptors, and complexing the same molecules in specialized glands and assisting their release into the environment. Within vertebrates, to date they have been reported only in mammals, apart from two studies on amphibians. Based on the small number of OBPs expressed in each species, on their sites of production outside the olfactory area and their presence in biological fluids known to be pheromone carriers, such as urine, saliva and sexual secretions, we conclude that OBPs of mammals are specifically dedicated to pheromonal communication. This assumption is further supported by the observation that some OBPs present in biological secretions are endowed with their own pheromonal activity, adding renewed interest to these proteins. Another novel piece of evidence is the recent discovery that glycosylation and phosphorylation can modulate the binding activity of these proteins, improving their affinity to pheromones and narrowing their specificity. A comparison with insects and other arthropods shows a completely different scenario. While mammalian OBPs are specifically tuned to pheromones, those of insects, which are completely different in sequence and structure, include carriers for general odorants in addition to those dedicated to pheromones. Additionally, whereas mammals adopted a single family of carrier proteins for chemical communication, insects and other arthropods are endowed with several families of semiochemical-binding proteins. Here, we review the literature on the structural and functional properties of vertebrate OBPs, summarize the most interesting new findings and suggest possible exciting future developments.
Collapse
Affiliation(s)
- Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| |
Collapse
|
14
|
Stopková R, Otčenášková T, Matějková T, Kuntová B, Stopka P. Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota. Front Physiol 2021; 12:740006. [PMID: 34594242 PMCID: PMC8476925 DOI: 10.3389/fphys.2021.740006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
Major evolutionary transitions were always accompanied by genetic remodelling of phenotypic traits. For example, the vertebrate transition from water to land was accompanied by rapid evolution of olfactory receptors and by the expansion of genes encoding lipocalins, which - due to their transporting functions - represent an important interface between the external and internal organic world of an individual and also within an individual. Similarly, some lipocalin genes were lost along other genes when this transition went in the opposite direction leading, for example, to cetaceans. In terrestrial vertebrates, lipocalins are involved in the transport of lipophilic substances, chemical signalling, odour reception, antimicrobial defence and background odour clearance during ventilation. Many ancestral lipocalins have clear physiological functions across the vertebrate taxa while many other have - due to pleiotropic effects of their genes - multiple or complementary functions within the body homeostasis and development. The aim of this review is to deconstruct the physiological functions of lipocalins in light of current OMICs techniques. We concentrated on major findings in the house mouse in comparison to other model taxa (e.g., voles, humans, and birds) in which all or most coding genes within their genomes were repeatedly sequenced and their annotations are sufficiently informative.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Otčenášková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Barbora Kuntová
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| |
Collapse
|
15
|
Janssenswillen S, Roelants K, Carpentier S, de Rooster H, Metzemaekers M, Vanschoenwinkel B, Proost P, Bossuyt F. Odorant-binding proteins in canine anal sac glands indicate an evolutionarily conserved role in mammalian chemical communication. BMC Ecol Evol 2021; 21:182. [PMID: 34565329 PMCID: PMC8474896 DOI: 10.1186/s12862-021-01910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/10/2021] [Indexed: 11/29/2022] Open
Abstract
Background Chemical communication is an important aspect of the behavioural ecology of a wide range of mammals. In dogs and other carnivores, anal sac glands are thought to convey information to conspecifics by secreting a pallet of small volatile molecules produced by symbiotic bacteria. Because these glands are unique to carnivores, it is unclear how their secretions relate to those of other placental mammals that make use of different tissues and secretions for chemical communication. Here we analyse the anal sac glands of domestic dogs to verify the secretion of proteins and infer their evolutionary relationship to those involved in the chemical communication of non-carnivoran mammals. Results Proteomic analysis of anal sac gland secretions of 17 dogs revealed the consistently abundant presence of three related proteins. Homology searches against online databases indicate that these proteins are evolutionary related to ‘odorant binding proteins’ (OBPs) found in a wide range of mammalian secretions and known to contribute to chemical communication. Screening of the dog’s genome sequence show that the newly discovered OBPs are encoded by a single cluster of three genes in the pseudoautosomal region of the X-chromosome. Comparative genomic screening indicates that the same locus is shared by a wide range of placental mammals and that it originated at least before the radiation of extant placental orders. Phylogenetic analyses suggest a dynamic evolution of gene duplication and loss, resulting in large gene clusters in some placental taxa and recurrent loss of this locus in others. The homology of OBPs in canid anal sac glands and those found in other mammalian secretions implies that these proteins maintained a function in chemical communication throughout mammalian evolutionary history by multiple shifts in expression between secretory tissues involved in signal release and nasal mucosa involved in signal reception. Conclusions Our study elucidates a poorly understood part of the biology of a species that lives in close association with humans. In addition, it shows that the protein repertoire underlying chemical communication in mammals is more evolutionarily stable than the variation of involved glands and tissues would suggest. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01910-w.
Collapse
Affiliation(s)
- Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Sebastien Carpentier
- Proteomics Core - SyBioMa, Katholieke Universiteit Leuven, Herestraat 49 - 03.313, 3000, Leuven, Belgium
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Mieke Metzemaekers
- Rega Institute, Molecular Immunology, Katholieke Universiteit Leuven, Herestraat 49 - Bus1042, 3000, Leuven, Belgium
| | - Bram Vanschoenwinkel
- Community Ecology Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Center for Environmental Management, University of the Free State, Bloemfontein, 9030, South Africa
| | - Paul Proost
- Rega Institute, Molecular Immunology, Katholieke Universiteit Leuven, Herestraat 49 - Bus1042, 3000, Leuven, Belgium
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
16
|
Leedale AE, Thorley J, Clutton-Brock T. Odour-based social recognition in Damaraland mole-rats, Fukomys damarensis. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Neural and Hormonal Basis of Opposite-Sex Preference by Chemosensory Signals. Int J Mol Sci 2021; 22:ijms22158311. [PMID: 34361077 PMCID: PMC8347621 DOI: 10.3390/ijms22158311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian reproduction, sexually active males seek female conspecifics, while estrous females try to approach males. This sex-specific response tendency is called sexual preference. In small rodents, sexual preference cues are mainly chemosensory signals, including pheromones. In this article, we review the physiological mechanisms involved in sexual preference for opposite-sex chemosensory signals in well-studied laboratory rodents, mice, rats, and hamsters of both sexes, especially an overview of peripheral sensory receptors, and hormonal and central regulation. In the hormonal regulation section, we discuss potential rodent brain bisexuality, as it includes neural substrates controlling both masculine and feminine sexual preferences, i.e., masculine preference for female odors and the opposite. In the central regulation section, we show the substantial circuit regulating sexual preference and also the influence of sexual experience that innate attractants activate in the brain reward system to establish the learned attractant. Finally, we review the regulation of sexual preference by neuropeptides, oxytocin, vasopressin, and kisspeptin. Through this review, we clarified the contradictions and deficiencies in our current knowledge on the neuroendocrine regulation of sexual preference and sought to present problems requiring further study.
Collapse
|
18
|
Bansal R, Nagel M, Stopkova R, Sofer Y, Kimchi T, Stopka P, Spehr M, Ben-Shaul Y. Do all mice smell the same? Chemosensory cues from inbred and wild mouse strains elicit stereotypic sensory representations in the accessory olfactory bulb. BMC Biol 2021; 19:133. [PMID: 34182994 PMCID: PMC8240315 DOI: 10.1186/s12915-021-01064-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background For many animals, chemosensory cues are vital for social and defensive interactions and are primarily detected and processed by the vomeronasal system (VNS). These cues are often inherently associated with ethological meaning, leading to stereotyped behaviors. Thus, one would expect consistent representation of these stimuli across different individuals. However, individuals may express different arrays of vomeronasal sensory receptors and may vary in the pattern of connections between those receptors and projection neurons in the accessory olfactory bulb (AOB). In the first part of this study, we address the ability of individuals to form consistent representations despite these potential sources of variability. The second part of our study is motivated by the fact that the majority of research on VNS physiology involves the use of stimuli derived from inbred animals. Yet, it is unclear whether neuronal representations of inbred-derived stimuli are similar to those of more ethologically relevant wild-derived stimuli. Results First, we compared sensory representations to inbred, wild-derived, and wild urine stimuli in the AOBs of males from two distinct inbred strains, using them as proxies for individuals. We found a remarkable similarity in stimulus representations across the two strains. Next, we compared AOB neuronal responses to inbred, wild-derived, and wild stimuli, again using male inbred mice as subjects. Employing various measures of neuronal activity, we show that wild-derived and wild stimuli elicit responses that are broadly similar to those from inbred stimuli: they are not considerably stronger or weaker, they show similar levels of sexual dimorphism, and when examining population-level activity, cluster with inbred mouse stimuli. Conclusions Despite strain-specific differences and apparently random connectivity, the AOB can maintain stereotypic sensory representations for broad stimulus categories, providing a substrate for common stereotypical behaviors. In addition, despite many generations of inbreeding, AOB representations capture the key ethological features (i.e., species and sex) of wild-derived and wild counterparts. Beyond these broad similarities, representations of stimuli from wild mice are nevertheless distinct from those elicited by inbred mouse stimuli, suggesting that laboratory inbreeding has indeed resulted in marked modifications of urinary secretions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01064-7.
Collapse
Affiliation(s)
- Rohini Bansal
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Romana Stopkova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Yizhak Sofer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
19
|
Lymphocytic Choriomeningitis Virus Alters the Expression of Male Mouse Scent Proteins. Viruses 2021; 13:v13061180. [PMID: 34205512 PMCID: PMC8234142 DOI: 10.3390/v13061180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Mature male mice produce a particularly high concentration of major urinary proteins (MUPs) in their scent marks that provide identity and status information to conspecifics. Darcin (MUP20) is inherently attractive to females and, by inducing rapid associative learning, leads to specific attraction to the individual male’s odour and location. Other polymorphic central MUPs, produced at much higher abundance, bind volatile ligands that are slowly released from a male’s scent marks, forming the male’s individual odour that females learn. Here, we show that infection of C57BL/6 males with LCMV WE variants (v2.2 or v54) alters MUP expression according to a male’s infection status and ability to clear the virus. MUP output is substantially reduced during acute adult infection with LCMV WE v2.2 and when males are persistently infected with LCMV WE v2.2 or v54. Infection differentially alters expression of darcin and, particularly, suppresses expression of a male’s central MUP signature. However, following clearance of acute v2.2 infection through a robust virus-specific CD8 cytotoxic T cell response that leads to immunity to the virus, males regain their normal mature male MUP pattern and exhibit enhanced MUP output by 30 days post-infection relative to uninfected controls. We discuss the likely impact of these changes in male MUP signals on female attraction and mate selection. As LCMV infection during pregnancy can substantially reduce embryo survival and lead to lifelong infection in surviving offspring, we speculate that females use LCMV-induced changes in MUP expression both to avoid direct infection from a male and to select mates able to develop immunity to local variants that will be inherited by their offspring.
Collapse
|
20
|
McLean S, Nichols DS, Davies NW. Volatile scent chemicals in the urine of the red fox, Vulpes vulpes. PLoS One 2021; 16:e0248961. [PMID: 33784329 PMCID: PMC8009367 DOI: 10.1371/journal.pone.0248961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
The red fox is a highly adaptable mammal that has established itself world-wide in many different environments. Contributing to its success is a social structure based on chemical signalling between individuals. Urine scent marking behaviour has long been known in foxes, but there has not been a recent study of the chemical composition of fox urine. We have used solid-phase microextraction and gas chromatography-mass spectrometry to analyze the urinary volatiles in 15 free-ranging wild foxes (2 female) living in farmlands and bush in Victoria, Australia. Foxes here are routinely culled as feral pests, and the urine was collected by bladder puncture soon after death. Compounds were identified from their mass spectra and Kovats retention indices. There were 53 possible endogenous scent compounds, 10 plant-derived compounds and 5 anthropogenic xenobiotics. Among the plant chemicals were several aromatic apocarotenoids previously found in greater abundance in the fox tail gland. They reflect the dietary consumption of carotenoids, essential for optimal health. One third of all the endogenous volatiles were sulfur compounds, a highly odiferous group which included thiols, methylsulfides and polysulfides. Five of the sulfur compounds (3-isopentenyl thiol, 1- and 2-phenylethyl methyl sulfide, octanethiol and benzyl methyl sulfide) have only been found in foxes, and four others (isopentyl methyl sulfide, 3-isopentenyl methyl sulfide, and 1- and 2-phenylethane thiol) only in some canid, mink and skunk species. This indicates that they are not normal mammalian metabolites and have evolved to serve a specific role. This role is for defence in musteloids and most likely for chemical communication in canids. The total production of sulfur compounds varied greatly between foxes (median 1.2, range 0.4–32.3 μg ‘acetophenone equivalents’/mg creatinine) as did the relative abundance of different chemical types. The urinary scent chemistry may represent a highly evolved system of semiochemicals for communication between foxes.
Collapse
Affiliation(s)
- Stuart McLean
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Noel W. Davies
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
21
|
Tirindelli R. Coding of pheromones by vomeronasal receptors. Cell Tissue Res 2021; 383:367-386. [PMID: 33433690 DOI: 10.1007/s00441-020-03376-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
Communication between individuals is critical for species survival, reproduction, and expansion. Most terrestrial species, with the exception of humans who predominantly use vision and phonation to create their social network, rely on the detection and decoding of olfactory signals, which are widely known as pheromones. These chemosensory cues originate from bodily fluids, causing attractive or avoidance behaviors in subjects of the same species. Intraspecific pheromone signaling is then crucial to identify sex, social ranking, individuality, and health status, thus establishing hierarchies and finalizing the most efficient reproductive strategies. Indeed, all these features require fine tuning of the olfactory systems to detect molecules containing this information. To cope with this complexity of signals, tetrapods have developed dedicated olfactory subsystems that refer to distinct peripheral sensory detectors, called the main olfactory and the vomeronasal organ, and two minor structures, namely the septal organ of Masera and the Grueneberg ganglion. Among these, the vomeronasal organ plays the most remarkable role in pheromone coding by mediating several behavioral outcomes that are critical for species conservation and amplification. In rodents, this organ is organized into two segregated neuronal subsets that express different receptor families. To some extent, this dichotomic organization is preserved in higher projection areas of the central nervous system, suggesting, at first glance, distinct functions for these two neuronal pathways. Here, I will specifically focus on this issue and discuss the role of vomeronasal receptors in mediating important innate behavioral effects through the recognition of pheromones and other biological chemosignals.
Collapse
Affiliation(s)
- Roberto Tirindelli
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
22
|
Processing of intraspecific chemical signals in the rodent brain. Cell Tissue Res 2021; 383:525-533. [PMID: 33404846 DOI: 10.1007/s00441-020-03383-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/06/2020] [Indexed: 12/24/2022]
Abstract
In the rodent brain, the central processing of ecologically relevant chemical stimuli involves many different areas located at various levels within the neuraxis: the main and accessory olfactory bulbs, some nuclei in the amygdala, the hypothalamus, and brainstem. These areas allow the integration of the chemosensory stimuli with other sensory information and the selection of the appropriate neurohormonal and behavioral response. This review is a brief introduction to the processing of intraspecific chemosensory stimuli beyond the secondary projection, focusing on the activity of the relevant amygdala and hypothalamic nuclei, namely the medial amygdala and ventromedial hypothalamus. These areas are involved in the appropriate interpretation of chemosensory information and drive the selection of the proper response, which may be behavioral or hormonal and may affect the neural activity of other areas in the telencephalon and brainstem.Recent data support the notion that the processing of intraspecific chemical signals is not unique to one chemosensory system and some molecules may activate both the main and the accessory olfactory system. Moreover, both these systems have mixed projections and cooperate for the correct identification of the stimuli and selection of relevant responses.
Collapse
|
23
|
Chung M, Wang M, Huang Z, Okuyama T. Diverse sensory cues for individual recognition. Dev Growth Differ 2020; 62:507-515. [DOI: 10.1111/dgd.12697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Myung Chung
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Mu‐Yun Wang
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Ziyan Huang
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Teruhiro Okuyama
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
- JST, PRESTO Tokyo Japan
| |
Collapse
|
24
|
Abstract
Most mammals rely on chemosensory cues for individual recognition, which is essential to many aspects of social behavior, such as maternal bonding, mate recognition, and inbreeding avoidance. Both volatile molecules and nonvolatile peptides secreted by individual conspecifics are detected by olfactory sensory neurons in the olfactory epithelium and the vomeronasal organ. The pertinent cues used for individual recognition remain largely unidentified. Here we show that nonformylated, but not N-formylated, mitochondrially encoded peptides-that is, the nine N-terminal amino acids of NADH dehydrogenases 1 and 2-can be used to convey strain-specific information among individual mice. We demonstrate that these nonformylated peptides are sufficient to induce a strain-selective pregnancy block. We also observed that the pregnancy block by an unfamiliar peptide derived from a male of a different strain was prevented by a memory formed at the time of mating with that male. Our findings also demonstrate that pregnancy-blocking chemosignals in the urine are maternally inherited, as evidenced by the production of reciprocal sons from two inbred strains and our test of their urine's ability to block pregnancy. We propose that this link between polymorphic mitochondrial peptides and individual recognition provides the molecular means to communicate an individual's maternal lineage and strain.
Collapse
|
25
|
Miller CH, Campbell P, Sheehan MJ. Distinct evolutionary trajectories of V1R clades across mouse species. BMC Evol Biol 2020; 20:99. [PMID: 32770934 PMCID: PMC7414754 DOI: 10.1186/s12862-020-01662-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many animals rely heavily on olfaction to navigate their environment. Among rodents, olfaction is crucial for a wide range of social behaviors. The vomeronasal olfactory system in particular plays an important role in mediating social communication, including the detection of pheromones and recognition signals. In this study we examine patterns of vomeronasal type-1 receptor (V1R) evolution in the house mouse and related species within the genus Mus. We report the extent of gene repertoire turnover and conservation among species and clades, as well as the prevalence of positive selection on gene sequences across the V1R tree. By exploring the evolution of these receptors, we provide insight into the functional roles of receptor subtypes as well as the dynamics of gene family evolution. RESULTS We generated transcriptomes from the vomeronasal organs of 5 Mus species, and produced high quality V1R repertoires for each species. We find that V1R clades in the house mouse and relatives exhibit distinct evolutionary trajectories. We identify putative species-specific gene expansions, including a large clade D expansion in the house mouse. While gene gains are abundant, we detect very few gene losses. We describe a novel V1R clade and highlight candidate receptors for future study. We find evidence for distinct evolutionary processes across different clades, from largescale turnover to highly conserved repertoires. Patterns of positive selection are similarly variable, as some clades exhibit abundant positive selection while others display high gene sequence conservation. Based on clade-level evolutionary patterns, we identify receptor families that are strong candidates for detecting social signals and predator cues. Our results reveal clades with receptors detecting female reproductive status are among the most conserved across species, suggesting an important role in V1R chemosensation. CONCLUSION Analysis of clade-level evolution is critical for understanding species' chemosensory adaptations. This study provides clear evidence that V1R clades are characterized by distinct evolutionary trajectories. As receptor evolution is shaped by ligand identity, these results provide a framework for examining the functional roles of receptors.
Collapse
Affiliation(s)
| | - Polly Campbell
- Evolution, Ecology and Organismal Biology, University of California-Riverside, Riverside, USA
| | | |
Collapse
|
26
|
Termignoni-Garcia F, Louder MIM, Balakrishnan CN, O’Connell L, Edwards SV. Prospects for sociogenomics in avian cooperative breeding and parental care. Curr Zool 2020; 66:293-306. [PMID: 32440290 PMCID: PMC7233861 DOI: 10.1093/cz/zoz057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023] Open
Abstract
For the last 40 years, the study of cooperative breeding (CB) in birds has proceeded primarily in the context of discovering the ecological, geographical, and behavioral drivers of helping. The advent of molecular tools in the early 1990s assisted in clarifying the relatedness of helpers to those helped, in some cases, confirming predictions of kin selection theory. Methods for genome-wide analysis of sequence variation, gene expression, and epigenetics promise to add new dimensions to our understanding of avian CB, primarily in the area of molecular and developmental correlates of delayed breeding and dispersal, as well as the ontogeny of achieving parental status in nature. Here, we outline key ways in which modern -omics approaches, in particular genome sequencing, transcriptomics, and epigenetic profiling such as ATAC-seq, can be used to add a new level of analysis of avian CB. Building on recent and ongoing studies of avian social behavior and sociogenomics, we review how high-throughput sequencing of a focal species or clade can provide a robust foundation for downstream, context-dependent destructive and non-destructive sampling of specific tissues or physiological states in the field for analysis of gene expression and epigenetics. -Omics approaches have the potential to inform not only studies of the diversification of CB over evolutionary time, but real-time analyses of behavioral interactions in the field or lab. Sociogenomics of birds represents a new branch in the network of methods used to study CB, and can help clarify ways in which the different levels of analysis of CB ultimately interact in novel and unexpected ways.
Collapse
Affiliation(s)
- Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew I M Louder
- International Research Center for Neurointelligence, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Lauren O’Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
27
|
Ferrari E, Corsini R, Burastero SE, Tanfani F, Spisni A. The allergen Mus m 1.0102: Cysteine residues and molecular allergology. Mol Immunol 2020; 120:1-12. [PMID: 32044430 DOI: 10.1016/j.molimm.2020.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Mus m 1.0102 is a member of the mouse Major Urinary Protein family, belonging to the Lipocalins superfamily. Major Urinary Proteins (MUPs) are characterized by highly conserved structural motifs. These include a disulphide bond, involved in protein oxidative folding and protein structure stabilization, and a free cysteine residue, substituted by serine only in the pheromonal protein Darcin (MUP20). The free cysteine is recognized as responsible for the onset of inter- or intramolecular thiol/disulphide exchange, an event that favours protein aggregation. Here we show that the substitution of selected cysteine residues modulates Mus m 1.0102 protein folding, fold stability and unfolding reversibility, while maintaining its allergenic potency. Recombinant allergens used for immunotherapy or employed in allergy diagnostic kits require, as essential features, conformational stability, sample homogeneity and proper immunogenicity. In this perspective, recombinant Mus m 1.0102 might appear reasonably adequate as lead molecule because of its allergenic potential and thermal stability. However, its modest resistance to aggregation renders the protein unsuitable for pharmacological preparations. Point mutation is considered a winning strategy. We report that, among the tested mutants, C138A mutant acquires a structure more resistant to thermal stress and less prone to aggregation, two events that act positively on the protein shelf life. Those features make that MUP variant an attractive lead molecule for the development of a diagnostic kit and/or a vaccine.
Collapse
Affiliation(s)
- Elena Ferrari
- Dept. Medicine and Surgery, University of Parma, via Gramsci 14, 43126, Parma, Italy.
| | - Romina Corsini
- Dept. Medicine and Surgery, University of Parma, via Gramsci 14, 43126, Parma, Italy.
| | - Samuele E Burastero
- Div. Immunology, IRCCS San Raffaele, Via Olgettina 60, 20132, Milano, Italy.
| | - Fabio Tanfani
- Dept. Life and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, 60131, Ancona, Italy.
| | - Alberto Spisni
- Dept. Medicine and Surgery, University of Parma, via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
28
|
Kollikowski A, Zimmermann E, Radespiel U. First experimental evidence for olfactory species discrimination in two nocturnal primate species (Microcebus lehilahytsara and M. murinus). Sci Rep 2019; 9:20386. [PMID: 31892739 PMCID: PMC6938479 DOI: 10.1038/s41598-019-56893-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022] Open
Abstract
Olfactory communication is highly important for nocturnal mammals, especially for solitary foragers, but knowledge is still limited for nocturnal primates. Mouse lemurs (Microcebus spp.) are nocturnal solitary foragers with a dispersed lifestyle and frequently use chemo-sensory signalling behaviour for governing social interactions. Different mouse lemur species can co-occur in a given forest but it is unknown whether olfaction is involved in species recognition. We first screened 24 captive mouse lemurs (9 M. murinus, 15 M. lehilahytsara) for their olfactory learning potential in an experimental arena and then tested the species discrimination ability with urine odour in an operant conditioning paradigm in four individuals. The majority of the screened animals (75%) did not pass the screening criteria within a 2-week test period. However, all four final test animals, two M. murinus and two M. lehilahytsara, were successfully trained in a 5-step-conditioning process to reliably discriminate conspecific from heterospecific urine odour (requiring an overall median of 293 trials). Findings complement previous studies on the role of acoustic signalling and suggest that olfaction may be an important additional mechanism for species discrimination.
Collapse
Affiliation(s)
- Annika Kollikowski
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
29
|
Barabas AJ, Aryal UK, Gaskill BN. Proteome characterization of used nesting material and potential protein sources from group housed male mice, Mus musculus. Sci Rep 2019; 9:17524. [PMID: 31772257 PMCID: PMC6879570 DOI: 10.1038/s41598-019-53903-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/04/2019] [Indexed: 01/10/2023] Open
Abstract
Laboratory mice (Mus musculus) communicate a variety of social messages through olfactory cues and it is often speculated that these cues are preserved in nesting material. Based on these speculations, a growing number of husbandry recommendations support preserving used nests at cage cleaning to maintain familiar odors in the new cage. However, the content of used nesting material has never been chemically analyzed. Here we present the first comprehensive proteome profile of used nesting material. Nests from cages of group housed male mice contain a variety of proteins that primarily originate from saliva, plantar sweat, and urine sources. Most notably, a large proportion of proteins found in used nesting material belong to major urinary protein (“MUP”) and odorant binding protein (“OBP”) families. Both protein families send messages about individual identity and bind volatile compounds that further contribute to identity cues. Overall, this data supports current recommendations to preserve used nesting material at cage cleaning to maintain odor familiarity.
Collapse
Affiliation(s)
- Amanda J Barabas
- Department of Animal Science, Purdue University, West Lafayette, IN, 47907, USA.
| | - Uma K Aryal
- Purdue Proteomics Facility, Purdue University, West Lafayette, IN, 47907, USA
| | - Brianna N Gaskill
- Department of Animal Science, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
30
|
A unique variant of lymphocytic choriomeningitis virus that induces pheromone binding protein MUP: Critical role for CTL. Proc Natl Acad Sci U S A 2019; 116:18001-18008. [PMID: 31427525 DOI: 10.1073/pnas.1907070116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) WE variant 2.2 (v2.2) generated a high level of the major mouse urinary protein: MUP. Mice infected with LCMV WE v54, which differed from v2.2 by a single amino acid in the viral glycoprotein, failed to generate MUP above baseline levels found in uninfected controls. Variant 54 bound at 2.5 logs higher affinity to the LCMV receptor α-dystroglycan (α-DG) than v2.2 and entered α-DG-expressing but not α-DG-null cells. Variant 2.2 infected both α-DG-null or -expressing cells. Variant 54 infected more dendritic cells, generated a negligible CD8 T cell response, and caused a persistent infection, while v2.2 generated cytotoxic T lymphocytes (CTLs) and cleared virus within 10 days. By 20 days postinfection and through the 80-day observation period, significantly higher amounts of MUP were found in v2.2-infected mice. Production of MUP was dependent on virus-specific CTL as deletion of such cells aborted MUP production. Furthermore, MUP production was not elevated in v2.2 persistently infected mice unless virus was cleared following transfer of virus-specific CTL.
Collapse
|
31
|
Sheehan MJ, Campbell P, Miller CH. Evolutionary patterns of major urinary protein scent signals in house mice and relatives. Mol Ecol 2019; 28:3587-3601. [DOI: 10.1111/mec.15155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/04/2023]
Affiliation(s)
| | - Polly Campbell
- Evolution, Ecology and Organismal Biology University of California – Riverside Riverside CA USA
| | | |
Collapse
|
32
|
Gómez-Baena G, Armstrong SD, Halstead JO, Prescott M, Roberts SA, McLean L, Mudge JM, Hurst JL, Beynon RJ. Molecular complexity of the major urinary protein system of the Norway rat, Rattus norvegicus. Sci Rep 2019; 9:10757. [PMID: 31341188 PMCID: PMC6656916 DOI: 10.1038/s41598-019-46950-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/03/2019] [Indexed: 01/19/2023] Open
Abstract
Major urinary proteins (MUP) are the major component of the urinary protein fraction in house mice (Mus spp.) and rats (Rattus spp.). The structure, polymorphism and functions of these lipocalins have been well described in the western European house mouse (Mus musculus domesticus), clarifying their role in semiochemical communication. The complexity of these roles in the mouse raises the question of similar functions in other rodents, including the Norway rat, Rattus norvegicus. Norway rats express MUPs in urine but information about specific MUP isoform sequences and functions is limited. In this study, we present a detailed molecular characterization of the MUP proteoforms expressed in the urine of two laboratory strains, Wistar Han and Brown Norway, and wild caught animals, using a combination of manual gene annotation, intact protein mass spectrometry and bottom-up mass spectrometry-based proteomic approaches. Cluster analysis shows the existence of only 10 predicted mup genes. Further, detailed sequencing of the urinary MUP isoforms reveals a less complex pattern of primary sequence polymorphism in the rat than the mouse. However, unlike the mouse, rat MUPs exhibit added complexity in the form of post-translational modifications, including the phosphorylation of Ser4 in some isoforms, and exoproteolytic trimming of specific isoforms. Our results raise the possibility that urinary MUPs may have different roles in rat chemical communication than those they play in the house mouse. Shotgun proteomics data are available via ProteomExchange with identifier PXD013986.
Collapse
Affiliation(s)
- Guadalupe Gómez-Baena
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, L697ZB, Liverpool, United Kingdom
| | - Stuart D Armstrong
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, L697ZB, Liverpool, United Kingdom
| | - Josiah O Halstead
- Mammalian Behaviour and Evolution Group, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Mark Prescott
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, L697ZB, Liverpool, United Kingdom
| | - Sarah A Roberts
- Mammalian Behaviour and Evolution Group, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Lynn McLean
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, L697ZB, Liverpool, United Kingdom
| | - Jonathan M Mudge
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Jane L Hurst
- Mammalian Behaviour and Evolution Group, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, L697ZB, Liverpool, United Kingdom.
| |
Collapse
|
33
|
GC × GC-MS-Based Volatile Profiling of Male Domestic Cat Urine and the Olfactory Abilities of Cats to Discriminate Temporal Changes and Individual Differences in Urine. J Chem Ecol 2019; 45:579-587. [DOI: 10.1007/s10886-019-01083-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 01/17/2023]
|
34
|
Communal breeding affects offspring behaviours associated with a competitive social environment. Sci Rep 2018; 8:16850. [PMID: 30443002 PMCID: PMC6237865 DOI: 10.1038/s41598-018-35089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/30/2018] [Indexed: 01/12/2023] Open
Abstract
Communal breeding is characterised by shared care of offspring produced by more than one female, and can affect the behavioural development of young. The decision to care communally can vary according to local conditions, and has been hypothesised to occur more frequently when social competition is intense. However, it is unknown whether communal rearing of young influences adult behaviours likely to be adaptive under competitive conditions. Here, using a controlled experimental approach, we investigate effects of communal rearing on competitive and exploratory behaviours of adult male house mice. In tests of competitive scent marking, only communally-reared subjects discriminated between related and unrelated rivals, depositing more scent marks in close proximity to unrelated males. Communally-reared subjects also displayed higher exploratory tendencies, with an increased probability of crossing a water barrier, while not exhibiting higher activity levels in an open field test. Since exploration tendencies and discrimination between kin and non-kin are likely to be advantageous when dispersing from the natal territory or in a high density population, our findings suggest that communal rearing prepares male house mice for a competitive social environment. Our results add to growing evidence that the early social environment influences development of important behavioural competences to cope with social challenges later in life.
Collapse
|
35
|
Hurst J. Communicating through scents: an interview with Jane Hurst. BMC Biol 2018; 16:126. [PMID: 30382918 PMCID: PMC6211507 DOI: 10.1186/s12915-018-0596-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 11/10/2022] Open
Abstract
Jane Hurst is a William Prescott Professor of Animal Science at the University of Liverpool, UK, studying scent communication in mammals and its role in behaviours. In this interview, Jane discusses how scents encode complex information in rodents, driving behaviours such as kinship interactions and choosing a mate, how understanding natural behaviours of animals can inform experimental designs, and what is the connection between Jane Austin and pheromones.
Collapse
Affiliation(s)
- Jane Hurst
- Mammalian Behaviour & Evolution Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
36
|
Male Scent Gland Signals Mating Status in Greater Spear-Nosed Bats, Phyllostomus hastatus. J Chem Ecol 2018; 44:975-986. [DOI: 10.1007/s10886-018-1003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/24/2022]
|