1
|
Gore M, Kabekkodu SP, Chakrabarty S. Exploring the metabolic alterations in cervical cancer induced by HPV oncoproteins: From mechanisms to therapeutic targets. Biochim Biophys Acta Rev Cancer 2025:189292. [PMID: 40037419 DOI: 10.1016/j.bbcan.2025.189292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
The role of human Papillomavirus (HPV) in metabolic reprogramming is implicated in the development and progression of cervical cancer. During carcinogenesis, cancer cells modify various metabolic pathways to generate energy and sustain their growth and development. Cervical cancer, one of the most prevalent malignancies affecting women globally, involves metabolic alterations such as increased glycolysis, elevated lactate production, and lipid accumulation. The oncoproteins, primarily E6 and E7, which are encoded by high-risk HPVs, facilitate the accumulation of several cancer markers, promoting not only the growth and development of cancer but also metastasis, immune evasion, and therapy resistance. HPV oncoproteins interact with cellular MYC (c-MYC), retinoblastoma protein (pRB), p53, and hypoxia-inducible factor 1α (HIF-1α), leading to the induction of metabolic reprogramming and favour the Warburg effect. Metabolic reprogramming enables HPV to persist for an extended period and accelerates the progression of cervical cancer. This review summarizes the role of HPV oncoproteins in metabolic reprogramming and their contributions to the development and progression of cervical cancer. Additionally, this review provides insights into how metabolic reprogramming opens avenues for novel therapeutic strategies, including the discovery of new and repurposed drugs that could be applied to treat cervical cancer.
Collapse
Affiliation(s)
- Mrudula Gore
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
2
|
Wang Y, Fu Q, Sha S, Yoon S. Interferon inhibitors increase rAAV production in HEK293 cells. J Biotechnol 2025; 399:9-18. [PMID: 39824361 DOI: 10.1016/j.jbiotec.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Recombinant adeno-associated viruses (rAAVs) comprise a promising viral vector for therapeutic gene delivery to treat disease. However, the current manufacturing capability of rAAVs must be improved to meet commercial demand. Previously published omics studies indicate that rAAV production through transient transfection triggers antiviral responses and endoplasmic reticulum stress responses in the host cell. Both responses negatively regulate viral production. We demonstrate that the modulation of the antiviral immune response (by blocking interferon signaling pathways) can effectively lower the production of interferon and enhance viral genome production. The use of interferon inhibitors before transfection can significantly increase rAAV production in HEK293 cells, with up to a 2-fold increase in productivity and up to a 6-fold increase in specific productivity. Compared to the untreated groups, the addition of these small molecules generally reduced viable cell density but increased vector productivity. The positive candidates were BX795 (a TBK inhibitor), TPCA-1 (an IKK2 inhibitor), Cyt387 (a JAK1 inhibitor), and ruxolitinib (another JAK1 inhibitor). These candidates were identified using deep well screening, and reproducible titer improvement was achieved in a 30 mL shake flask scale. Additionally, genome titer improvement is feasible and scalable in two different media, but the extent of improvement may vary.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01854, United States
| | - Sha Sha
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States.
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States.
| |
Collapse
|
3
|
Rosales JJ, Brunner MB, Rodríguez M, Marin M, Maldonado EN, Pérez S. Reactive oxygen species favors Varicellovirus bovinealpha 5 (BoAHV-5) replication in neural cells. Mitochondrion 2025; 81:102005. [PMID: 39778729 DOI: 10.1016/j.mito.2025.102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Varicellovirus bovinealpha (BoAHV) 1 and 5 are closely related neurotropic alphaherpesviruses with distinct neuropathogenic potential. BoAHV-5 causes meningoencephalitis in calves whereas encephalitis by BoAHV-1 infection is sporadic. the mechanisms underlying the differences in tropism and clinical outcomes of the infections are not yet completely understood. Here, we used neuroblastoma SH-SY5Y cells as non-differentiated in comparison with the SH-SY5Y neuronal-like cells obtained after exposing SH-SY5Y undifferentiated cells to trans-retinoic acid. We aimed to establish whether there was a relationship between the production of reactive oxygen species (ROS) and the kinetics of virus replication. We demonstrated that ROS production after BoAHV infection was higher in differentiated cells. Generation of ROS was also dependent on the infecting BoAHV strain. Higher ROS levels were produced during BoAHV-5 infection concomitantly with enhanced viral replication. We propose that increased ROS production mechanistically contributes to the tissue damage and neuroinflammation induced by BoAHV-5 infection. Future studies will determine specific targets of ROS that mediate the effects on viral replication.
Collapse
Affiliation(s)
- Juan José Rosales
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - María Belén Brunner
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Marcelo Rodríguez
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Maia Marin
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Eduardo Néstor Maldonado
- Department of Drug Discovery & Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Sandra Pérez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Dsouza L, Pant A, Pope B, Yang Z. Vaccinia growth factor-dependent modulation of the mTORC1-CAD axis upon nutrient restriction. J Virol 2025; 99:e0211024. [PMID: 39817770 PMCID: PMC11852859 DOI: 10.1128/jvi.02110-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
The molecular mechanisms by which vaccinia virus (VACV), the prototypical member of the poxviridae family, reprograms host cell metabolism remain largely unexplored. Additionally, cells sense and respond to fluctuating nutrient availability, thereby modulating metabolic pathways to ensure cellular homeostasis. Understanding how VACV modulates metabolic pathways in response to nutrient signals is crucial for understanding viral replication mechanisms, with the potential for developing antiviral therapies. In this study, we establish the importance of de novo pyrimidine synthesis during VACV infection. We report the significance of vaccinia growth factor (VGF), a viral early protein and a homolog of cellular epidermal growth factor (EGF), in enabling VACV to phosphorylate the key enzyme CAD of the de novo pyrimidine pathway at serine 1859, a site known to positively regulate CAD activity. Although nutrient-poor conditions typically inhibit mTORC1 activation, VACV activates CAD via the mTORC1-S6K1 signaling axis in a VGF-dependent manner, especially upon glutamine and asparagine limitation. However, unlike its cellular homolog EGF, the VGF peptide alone, in the absence of VACV infection, has minimal ability to activate CAD. This suggests the involvement of other viral factors yet to be identified. Our research provides a foundation for understanding the regulation of a significant metabolic pathway, de novo pyrimidine synthesis during VACV infection, shedding new light on viral regulation under distinct nutritional environments. This study not only has the potential to contribute to the advancement of antiviral treatments but also improve the development of VACV as an oncolytic agent and vaccine vector.IMPORTANCEViruses often reprogram host cell metabolism to facilitate replication. How poxviruses, such as the prototype member, vaccinia virus (VACV), modulate host cell metabolism is not well understood. Understanding how VACV affects these metabolic pathways is key to learning about viral replication and developing antiviral treatments. This study highlights the importance of de novo pyrimidine synthesis during VACV infection. We found that the vaccinia growth factor (VGF), a viral protein similar to the cellular epidermal growth factor (EGF), helps VACV activate the enzyme CAD of the de novo pyrimidine pathway. Upon nutrient limitation, VGF is needed for the activation of CAD through mTORC1-S6K signaling. VGF peptide alone is unable to activate this pathway independent of infection, suggesting the involvement of other viral factor(s). Our research not only sheds light on how VACV regulates metabolism but also holds promise for improving VACV as a cancer treatment and vaccine.
Collapse
Affiliation(s)
- Lara Dsouza
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Anil Pant
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Blake Pope
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Loveday EK, Welhaven H, Erdogan AE, Hain KS, Domanico LF, Chang CB, June RK, Taylor MP. Starve a cold or feed a fever? Identifying cellular metabolic changes following infection and exposure to SARS-CoV-2. PLoS One 2025; 20:e0305065. [PMID: 39937842 PMCID: PMC11819565 DOI: 10.1371/journal.pone.0305065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/03/2024] [Indexed: 02/14/2025] Open
Abstract
Viral infections induce major shifts in cellular metabolism elicited by active viral replication and antiviral responses. For the virus, harnessing cellular metabolism and evading changes that limit replication are essential for productive viral replication. In contrast, the cellular response to infection disrupts metabolic pathways to prevent viral replication and promote an antiviral state in the host cell and neighboring bystander cells. This competition between the virus and cell results in measurable shifts in cellular metabolism that differ depending on the virus, cell type, and extracellular environment. The resulting metabolic shifts can be observed and analyzed using global metabolic profiling techniques to identify pathways that are critical for either viral replication or cellular defense. SARS-CoV-2 is a respiratory virus that can exhibit broad tissue tropism and diverse, yet inconsistent, symptomatology. While the factors that determine the presentation and severity of SARS-CoV-2 infection remain unclear, metabolic syndromes are associated with more severe manifestations of SARS-CoV-2 disease. Despite these observations a critical knowledge gap remains between cellular metabolic responses and SARS-CoV-2 infection. Using a well-established untargeted metabolomics analysis workflow, we compared SARS-CoV-2 infection of human lung carcinoma cells. We identified significant changes in metabolic pathways that correlate with either productive or non-productive viral infection. This information is critical for characterizing the factors that contribute to SARS-CoV-2 replication that could be targeted for therapeutic interventions to limit viral disease.
Collapse
Affiliation(s)
- Emma K. Loveday
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Hope Welhaven
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Ayten Ebru Erdogan
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Kyle S. Hain
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Luke F. Domanico
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Connie B. Chang
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Matthew P. Taylor
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
6
|
Nunes-Alves AK, Abrahão JS, de Farias ST. Yaravirus brasiliense genomic structure analysis and its possible influence on the metabolism. Genet Mol Biol 2025; 48:e20240139. [PMID: 39918235 PMCID: PMC11803573 DOI: 10.1590/1678-4685-gmb-2024-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/11/2024] [Indexed: 02/11/2025] Open
Abstract
Here we analyze the Yaravirus brasiliense, an amoeba-infecting 80-nm-sized virus with a 45-kbp dsDNA, using structural molecular modeling. Almost all of its 74 genes were previously identified as ORFans. Considering its unprecedented genetic content, we analyzed Yaravirus genome to understand its genetic organization, its proteome, and how it interacts with its host. We reported possible functions for all Yaravirus proteins. Our results suggest the first ever report of a fragment proteome, in which the proteins are separated in modules and joined together at a protein level. Given the structural resemblance between some Yaravirus proteins and proteins related to tricarboxylic acid cycle (TCA), glyoxylate cycle, and the respiratory complexes, our work also allows us to hypothesize that these viral proteins could be modulating cell metabolism by upregulation. The presence of these TCA cycle-related enzymes specifically could be trying to overcome the cycle's control points, since they are strategic proteins that maintain malate and oxaloacetate levels. Therefore, we propose that Yaravirus proteins are redirecting energy and resources towards viral production, and avoiding TCA cycle control points, "unlocking" the cycle. Altogether, our data helped understand a previously almost completely unknown virus, and a little bit more of the incredible diversity of viruses.
Collapse
Affiliation(s)
- Ana Karoline Nunes-Alves
- Universidade Federal da Paraíba, Departamento de Biologia Molecular,
Laboratório de Genética Evolutiva Paulo Leminski, João Pessoa, PB, Brazil
| | - Jônatas Santos Abrahão
- Universidade Federal de Minas Gerais, Instituto de Ciências
Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Belo Horizonte, MG,
Brazil
| | - Sávio Torres de Farias
- Universidade Federal da Paraíba, Departamento de Biologia Molecular,
Laboratório de Genética Evolutiva Paulo Leminski, João Pessoa, PB, Brazil
- Network of Researchers on the Chemical Evolution of Life (NoRCEL),
Leeds, United Kingdom
| |
Collapse
|
7
|
Lin DW, Khattar S, Chandrasekaran S. Metabolic Objectives and Trade-Offs: Inference and Applications. Metabolites 2025; 15:101. [PMID: 39997726 PMCID: PMC11857637 DOI: 10.3390/metabo15020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Determining appropriate cellular objectives is crucial for the system-scale modeling of biological networks for metabolic engineering, cellular reprogramming, and drug discovery applications. The mathematical representation of metabolic objectives can describe how cells manage limited resources to achieve biological goals within mechanistic and environmental constraints. While rapidly proliferating cells like tumors are often assumed to prioritize biomass production, mammalian cell types can exhibit objectives beyond growth, such as supporting tissue functions, developmental processes, and redox homeostasis. Methods: This review addresses the challenge of determining metabolic objectives and trade-offs from multiomics data. Results: Recent advances in single-cell omics, metabolic modeling, and machine/deep learning methods have enabled the inference of cellular objectives at both the transcriptomic and metabolic levels, bridging gene expression patterns with metabolic phenotypes. Conclusions: These in silico models provide insights into how cells adapt to changing environments, drug treatments, and genetic manipulations. We further explore the potential application of incorporating cellular objectives into personalized medicine, drug discovery, tissue engineering, and systems biology.
Collapse
Affiliation(s)
- Da-Wei Lin
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA;
- Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saanjh Khattar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Sriram Chandrasekaran
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA;
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Marcos M, Salete-Granado D, Chacón-Arnaude M, Pérez-Nieto MÁ, Kemmerling U, Concepción JL, Michels PAM, Quiñones W. Exploring glycolytic enzymes in disease: potential biomarkers and therapeutic targets in neurodegeneration, cancer and parasitic infections. Open Biol 2025; 15:240239. [PMID: 39904372 PMCID: PMC11793985 DOI: 10.1098/rsob.240239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Glycolysis, present in most organisms, is evolutionarily one of the oldest metabolic pathways. It has great relevance at a physiological level because it is responsible for generating ATP in the cell through the conversion of glucose into pyruvate and reducing nicotinamide adenine dinucleotide (NADH) (that may be fed into the electron chain in the mitochondria to produce additional ATP by oxidative phosphorylation), as well as for producing intermediates that can serve as substrates for other metabolic processes. Glycolysis takes place through 10 consecutive chemical reactions, each of which is catalysed by a specific enzyme. Although energy transduction by glucose metabolism is the main function of this pathway, involvement in virulence, growth, pathogen-host interactions, immunomodulation and adaptation to environmental conditions are other functions attributed to this metabolic pathway. In humans, where glycolysis occurs mainly in the cytosol, the mislocalization of some glycolytic enzymes in various other subcellular locations, as well as alterations in their expression and regulation, has been associated with the development and progression of various diseases. In this review, we describe the role of glycolytic enzymes in the pathogenesis of diseases of clinical interest. In addition, the potential role of these enzymes as targets for drug development and their potential for use as diagnostic and prognostic markers of some pathologies are also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso2373223, Chile
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
| | - Marirene Chacón-Arnaude
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - María Á. Pérez-Nieto
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, Soria42002, Spain
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile8380453, Chile
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Paul A. M. Michels
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, EdinburghEH9 3FL, UK
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| |
Collapse
|
9
|
Popović ME, Tadić V, Popović M. (R)evolution of Viruses: Introduction to biothermodynamics of viruses. Virology 2025; 603:110319. [PMID: 39642612 DOI: 10.1016/j.virol.2024.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
As of 26 April 2024, the International Committee on Taxonomy of Viruses has registered 14690 virus species. Of these, only several dozen have been chemically and thermodynamically characterized. Every virus species is characterized by a specific empirical formula and thermodynamic properties - enthalpy, entropy and Gibbs energy. These physical properties are used in a mechanistic model of virus-host interactions at the cell membrane and in the cytoplasm. This review article presents empirical formulas and Gibbs energies for all major variants of SARS-CoV-2. This article also reports and suggests a mechanistic model of evolutionary changes, with the example of time evolution of SARS-CoV-2 from 2019 to 2024.
Collapse
Affiliation(s)
- Marko E Popović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000, Belgrade, Serbia.
| | - Vojin Tadić
- Department for Experimental Testing of Precious Metals, Mining and Metallurgy Institute, Zeleni Bulevar 35, 19210, Bor, Serbia
| | - Marta Popović
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
| |
Collapse
|
10
|
Wei ML, Li YN, Wang JL, Ma CP, Kang HG, Li PJ, Zhang X, Huang BW, Bai CM. Mechanisms of HAHV-1 Interaction with Hemocytes in Haliotis diversicolor supertexta: An In Vitro Study. BIOLOGY 2025; 14:121. [PMID: 40001889 PMCID: PMC11851962 DOI: 10.3390/biology14020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Haliotid herpesvirus 1 (HAHV-1) causes significant damage to the abalone aquaculture industry. Knowledge of HAHV-1 invasion and host defense mechanisms is limited due to the lack of stable molluscan cell lines. The present study established an in vitro infection model of HAHV-1 using the primary suspension cultures of hemocytes from Haliotis diversicolor supertexta and Haliotis discus hannai. The cytopathic effects of HAHV-1 on adherent-cultured hemocytes of both species were also investigated. The HAHV-1 DNA loads were firstly monitored by means of quantitative PCR during the development of viral infection, and subsequently the mechanism of interaction between HAHV-1 and hemocytes was explored by means of a transcriptome analysis. H. diversicolor supertexta hemocytes exhibited a high degree of susceptibility to HAHV-1, with viral loads reaching a peak of 4.0 × 10⁷ copies/ng DNA. In contrast, no significant replication was observed in H. discus hannai hemocytes. Transcriptome analysis revealed that HAHV-1 evades the host immune response in the early stages of infection, and hijacks the host's energy and redox metabolism to promote its replication at the late stages. Consequently, this study provides a valuable reference point for the investigation of virus-host interaction between HAHV-1 and abalone in vitro.
Collapse
Affiliation(s)
- Mao-Le Wei
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.-L.W.); (J.-L.W.); (C.-P.M.); (H.-G.K.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-N.L.); (P.-J.L.); (X.Z.)
| | - Ya-Nan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-N.L.); (P.-J.L.); (X.Z.)
- College of Ocean and Biology Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Jing-Li Wang
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.-L.W.); (J.-L.W.); (C.-P.M.); (H.-G.K.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-N.L.); (P.-J.L.); (X.Z.)
| | - Cui-Ping Ma
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.-L.W.); (J.-L.W.); (C.-P.M.); (H.-G.K.)
| | - Hui-Gang Kang
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.-L.W.); (J.-L.W.); (C.-P.M.); (H.-G.K.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-N.L.); (P.-J.L.); (X.Z.)
| | - Pei-Jun Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-N.L.); (P.-J.L.); (X.Z.)
| | - Xiang Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-N.L.); (P.-J.L.); (X.Z.)
| | - Bo-Wen Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-N.L.); (P.-J.L.); (X.Z.)
| | - Chang-Ming Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-N.L.); (P.-J.L.); (X.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao 266105, China
| |
Collapse
|
11
|
Kostas JC, Brainard CS, Cristea IM. A Primer on Proteomic Characterization of Intercellular Communication in a Virus Microenvironment. Mol Cell Proteomics 2025; 24:100913. [PMID: 39862905 DOI: 10.1016/j.mcpro.2025.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME). Mechanisms employed by viruses to condition their VMEs are emerging and are critical for understanding the biology and pathologies of viral infections. Recent advances in experimental approaches, including proteomic methods, have enabled study of the VME in unprecedented detail. In this review article, we provide a primer on proteomic approaches used to study how viral infections alter intercellular communication, highlighting the ways in which these approaches have been implemented and the exciting biology they have uncovered. First, we consider the different molecules secreted by an infected cell, including proteins, either soluble or contained within extracellular vesicles, and metabolites. We further discuss the modalities of interactions facilitated by alteration at the cell surface of infected cells, including immunopeptide presentation and interactions with the extracellular matrix. Finally, we review spatial profiling approaches that have allowed distinguishing how specific subpopulations of cells within a VME respond to infection and alter their protein composition, discussing valuable insights these methods have offered.
Collapse
Affiliation(s)
- James C Kostas
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Colter S Brainard
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
12
|
Chu X, Ge S, Li Y, Zhang Q, Cui X, Zuo Y, Li R, Sun H, Yin L, Wang Z, Li J, Xiao Y, Wang Z. ASFV infection induces lipid metabolic disturbances and promotes viral replication. Front Microbiol 2025; 15:1532678. [PMID: 39872814 PMCID: PMC11771140 DOI: 10.3389/fmicb.2024.1532678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction African swine fever is a highly transmissible and lethal infectious disease caused by the African swine fever virus (ASFV), which has considerably impacted the global swine industry. Lipid metabolism plays a vital role in sustaining lipid and energy homeostasis within cells and influences the viral life cycle. Methods and results In this study, we found that ASFV infection disrupts lipid metabolism in the host. Transcriptomic analysis of cells infected with ASFV revealed that the levels of lipid metabolism significantly changed as the duration of the infection progressed. The intracellular cholesterol levels of the host exhibited a pattern similar to the viral growth curve during the course of infection. Notably, increased cholesterol levels promoted ASFV replication in host cells, whereas inhibition of the cholesterol biosynthesis pathway markedly reduced intracellular ASFV replication. Discussion The findings of this study showed that ASFV led to lipid metabolism disturbances to facilitate its replication, which is useful for revealing the mechanism underlying ASFV infection.
Collapse
Affiliation(s)
- Xuefei Chu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Center, Qingdao, China
- Qingdao Key Laboratory of Modern Bioengineering and Animal Disease Research, Qingdao, China
- Key Laboratory of Animal Biosafety Risk Warning Prevention and Control (South China), Ministry of Agriculture and Rural Affairs, Qingdao, Shandong, China
| | - Yingchao Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qin Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xinyu Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuanyuan Zuo
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Ruihong Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Hongtao Sun
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Lei Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhenzhong Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinming Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yihong Xiao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Campbell SL, Christofk HR. Lessons Learned from Cancer Metabolism for Physiology and Disease. Cold Spring Harb Perspect Med 2025; 15:a041554. [PMID: 38858085 PMCID: PMC11694740 DOI: 10.1101/cshperspect.a041554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Tumor cells divide rapidly and dramatically alter their metabolism to meet biosynthetic and bioenergetic needs. Through studying the aberrant metabolism of cancer cells, other contexts in which metabolism drives cell state transitions become apparent. In this work, we will discuss how principles established by the field of cancer metabolism have led to discoveries in the contexts of physiology and tissue injury, mammalian embryonic development, and virus infection. We present specific examples of findings from each of these fields that have been shaped by the study of cancer metabolism. We also discuss the next important scientific questions facing these subject areas collectively. Altogether, these examples demonstrate that the study of "cancer metabolism" is indeed the study of cell metabolism in the context of a tumor, and undoubtedly discoveries from each of the fields discussed here will continue to build on each other in the future.
Collapse
Affiliation(s)
- Sydney L Campbell
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
14
|
Bonnac LF, Dreis CD, Rai M, Geraghty RJ. Purine but Not Pyrimidine De Novo Nucleotide Biosynthesis Inhibitors Strongly Enhance the Antiviral Effect of Corresponding Nucleobases Against Dengue Virus. Molecules 2025; 30:210. [PMID: 39860080 PMCID: PMC11767801 DOI: 10.3390/molecules30020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Every year, dengue virus affects hundreds of millions of individuals worldwide. To date, there is no specific medication to treat dengue virus infections. Nucleobases, the base of a nucleoside without ribose, are understudied as potential treatments for viral infections. Antiviral nucleobases are converted in infected cells to their corresponding nucleoside triphosphate active form. Importantly, the conversion of nucleobases to their active nucleotide form and their antiviral effect can be enhanced when combined with de novo nucleotide biosynthesis inhibitors. In this work, we evaluated seven purine and pyrimidine nucleobases alone or combined with six purine or pyrimidine de novo nucleotide biosynthesis inhibitors, including novel prodrugs. Our study revealed that while a strong potentiation of purine nucleobases by purine de novo nucleotide biosynthesis inhibitors was observed, the pyrimidine nucleobases were not potentiated by pyrimidine de novo nucleotide biosynthesis inhibitors, possibly highlighting a significant difference between the modulation of purine versus pyrimidine de novo pathways and their impact on nucleobase potentiation. Most significant antiviral effects and potentiation were observed for Favipiravir, T-1105, and ribavirin nucleobases combined with purine nucleotide de novo synthesis inhibitors. These results are significant because drug combinations may solve the limited efficacy observed for some antiviral nucleobase drugs such as Favipiravir.
Collapse
Affiliation(s)
- Laurent F. Bonnac
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Petersen JM, Bryon A, Bézier A, Drezen JM, van Oers MM. Transcriptional dynamics during Heliothis zea nudivirus 1 infection in an ovarian cell line from Helicoverpa zea. J Gen Virol 2025; 106:002066. [PMID: 39804289 PMCID: PMC11728702 DOI: 10.1099/jgv.0.002066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Nudiviruses (family Nudiviridae) are double-stranded DNA viruses that infect various insects and crustaceans. Among them, Heliothis zea nudivirus 1 (HzNV-1) represents the rare case of a lepidopteran nudivirus inducing a sexual pathology. Studies about molecular pathological dynamics of HzNV-1 or other nudiviruses are scarce. Hence, this study aims to provide a transcriptomic profile of HzNV-1 in an ovary-derived cell line of Helicoverpa zea (HZ-AM1), during early (3, 6 and 9 h post-infection) and advanced (12 and 24 h post-infection) stages of infection. Total RNA was extracted from both virus- and mock-infected cells, and RNA-seq analysis was performed to examine both virus and host transcriptional dynamics. Hierarchical clustering was used to categorize viral genes, while differential gene expression analysis was utilized to pinpoint host genes that are significantly affected by the infection. Hierarchical clustering classified the 154 HzNV-1 genes into four temporal phases, with early phases mainly involving transcription and replication genes and later phases including genes for virion assembly. In addition, a novel viral promoter motif was identified in the upstream region of early-expressed genes. Host gene analysis revealed significant upregulation of heat shock protein genes and downregulation of histone genes. The identification of temporal patterns in viral gene expression enhances the molecular understanding of nudivirus pathology, while the identified differentially expressed host genes highlight the key pathways most hijacked by HzNV-1 infection.
Collapse
Affiliation(s)
- Jirka Manuel Petersen
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Astrid Bryon
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| |
Collapse
|
16
|
Greene KS, Choi A, Yang N, Chen M, Li R, Qiu Y, Ezzatpour S, Rojas KS, Shen J, Wilson KF, Katt WP, Aguilar HC, Lukey MJ, Whittaker GR, Cerione RA. Glutamine metabolism is essential for coronavirus replication in host cells and in mice. J Biol Chem 2025; 301:108063. [PMID: 39662828 PMCID: PMC11750454 DOI: 10.1016/j.jbc.2024.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024] Open
Abstract
Understanding the fundamental biochemical and metabolic requirements for the replication of coronaviruses within infected cells is of notable interest for the development of broad-based therapeutic strategies, given the likelihood of the emergence of new pandemic-potential virus species, as well as future variants of SARS-CoV-2. Here we demonstrate members of the glutaminase family of enzymes (GLS and GLS2), which catalyze the hydrolysis of glutamine to glutamate (i.e., the first step in glutamine metabolism), play key roles in coronavirus replication in host cells. Using a range of human seasonal and zoonotic coronaviruses, we show three examples where GLS expression increases during coronavirus infection of host cells, and another where GLS2 is upregulated. The viruses hijack the metabolic machinery responsible for glutamine metabolism to generate the building blocks for biosynthetic processes and satisfy the bioenergetic requirements demanded by the "glutamine addiction" of virus-infected cells. We demonstrate that genetic silencing of glutaminase enzymes reduces coronavirus infection and that newer members of two classes of allosteric inhibitors targeting these enzymes, designated as SU1, a pan-GLS/GLS2 inhibitor, and UP4, a specific GLS inhibitor, block viral replication in epithelial cells. Moreover, treatment of SARS-CoV-2 infected K18-human ACE2 transgenic mice with SU1 resulted in their complete survival compared to untreated control animals, which succumbed within 10 days post-infection. Overall, these findings highlight the importance of glutamine metabolism for coronavirus replication in human cells and mice and show that glutaminase inhibitors can block coronavirus infection and thereby may represent a novel class of broad-based anti-viral drug candidates.
Collapse
Affiliation(s)
- Kai Su Greene
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Nianhui Yang
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Matthew Chen
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Ruizhi Li
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Yijian Qiu
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Katherine S Rojas
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Jonathan Shen
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Kristin F Wilson
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Michael J Lukey
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA; Public & Ecosystem Health, Cornell University, Ithaca, New York, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
17
|
Yin S, Tao Y, Li T, Li C, Cui Y, Zhang Y, Yin S, Zhao L, Hu P, Cui L, Wu Y, He Y, Yu S, Chen J, Lu S, Qiu G, Song M, Hou Q, Qian C, Zou Z, Xu S, Yu Y. Itaconate facilitates viral infection via alkylating GDI2 and retaining Rab GTPase on the membrane. Signal Transduct Target Ther 2024; 9:371. [PMID: 39730330 DOI: 10.1038/s41392-024-02077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/29/2024] Open
Abstract
Metabolic reprogramming of host cells plays critical roles during viral infection. Itaconate, a metabolite produced from cis-aconitate in the tricarboxylic acid cycle (TCA) by immune responsive gene 1 (IRG1), is involved in regulating innate immune response and pathogen infection. However, its involvement in viral infection and underlying mechanisms remain incompletely understood. Here, we demonstrate that the IRG1-itaconate axis facilitates the infections of VSV and IAV in macrophages and epithelial cells via Rab GTPases redistribution. Mechanistically, itaconate promotes the retention of Rab GTPases on the membrane via directly alkylating Rab GDP dissociation inhibitor beta (GDI2), the latter of which extracts Rab GTPases from the membrane to the cytoplasm. Multiple alkylated residues by itaconate, including cysteines 203, 335, and 414 on GDI2, were found to be important during viral infection. Additionally, this effect of itaconate needs an adequate distribution of Rab GTPases on the membrane, which relies on Rab geranylgeranyl transferase (GGTase-II)-mediated geranylgeranylation of Rab GTPases. The single-cell RNA sequencing data revealed high expression of IRG1 primarily in neutrophils during viral infection. Co-cultured and in vivo animal experiments demonstrated that itaconate produced by neutrophils plays a dominant role in promoting viral infection. Overall, our study reveals that neutrophils-derived itaconate facilitates viral infection via redistribution of Rab GTPases, suggesting potential targets for antiviral therapy.
Collapse
Affiliation(s)
- Shulei Yin
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Yijie Tao
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Tianliang Li
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Chunzhen Li
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Yani Cui
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Yunyan Zhang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200433, China
| | - Shenhui Yin
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Liyuan Zhao
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Panpan Hu
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Likun Cui
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Yunyang Wu
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yixian He
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Shu Yu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Jie Chen
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Shaoteng Lu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Guifang Qiu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Mengqi Song
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Qianshan Hou
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Cheng Qian
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zui Zou
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Sheng Xu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Yizhi Yu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
18
|
Xu JQ, Zhang WY, Fu JJ, Fang XZ, Gao CG, Li C, Yao L, Li QL, Yang XB, Ren LH, Shu HQ, Peng K, Wu Y, Zhang DY, Qiu Y, Zhou X, Yao YM, Shang Y. Viral sepsis: diagnosis, clinical features, pathogenesis, and clinical considerations. Mil Med Res 2024; 11:78. [PMID: 39676169 PMCID: PMC11648306 DOI: 10.1186/s40779-024-00581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Sepsis, characterized as life-threatening organ dysfunction resulting from dysregulated host responses to infection, remains a significant challenge in clinical practice. Despite advancements in understanding host-bacterial interactions, molecular responses, and therapeutic approaches, the mortality rate associated with sepsis has consistently ranged between 10 and 16%. This elevated mortality highlights critical gaps in our comprehension of sepsis etiology. Traditionally linked to bacterial and fungal pathogens, recent outbreaks of acute viral infections, including Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), among other regional epidemics, have underscored the role of viral pathogenesis in sepsis, particularly when critically ill patients exhibit classic symptoms indicative of sepsis. However, many cases of viral-induced sepsis are frequently underdiagnosed because standard evaluations typically exclude viral panels. Moreover, these viruses not only activate conventional pattern recognition receptors (PRRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) but also initiate primary antiviral pathways such as cyclic guanosine monophosphate adenosine monophosphate (GMP-AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling and interferon response mechanisms. Such activations lead to cellular stress, metabolic disturbances, and extensive cell damage that exacerbate tissue injury while leading to a spectrum of clinical manifestations. This complexity poses substantial challenges for the clinical management of affected cases. In this review, we elucidate the definition and diagnosis criteria for viral sepsis while synthesizing current knowledge regarding its etiology, epidemiology, and pathophysiology, molecular mechanisms involved therein as well as their impact on immune-mediated organ damage. Additionally, we discuss clinical considerations related to both existing therapies and advanced treatment interventions, aiming to enhance the comprehensive understanding surrounding viral sepsis.
Collapse
Affiliation(s)
- Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Ying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng-Gang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chang Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi-Lan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Bo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Le-Hao Ren
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Qing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, 430072, China
| | - Ding-Yu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Qiu
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Xi Zhou
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Morris DR, Qu Y, de Mello AH, Jones-Hall YL, Liu T, Weglarz M, Ivanciuc T, Garofalo RP, Casola A. Hypoxia-inducible-factors differentially contribute to clinical disease and viral replication during RSV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553422. [PMID: 37645750 PMCID: PMC10461990 DOI: 10.1101/2023.08.15.553422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hypoxia-inducible-factors (HIF) are transcription factors that regulate cellular adaptation to hypoxic conditions, enabling cells to survive in low-oxygen environments. Viruses have evolved to activate this pathway to promote successful viral infection, therefore modulation of HIFs could represent a novel antiviral strategy. In previous in vitro studies, we found that respiratory syncytial virus (RSV), a leading cause of respiratory illness, stabilizes HIFs under normoxic conditions, with inhibition of HIF-1α resulting in reduced viral replication. Despite several HIF modulating compounds being tested/approved for use in other non-infectious models, little is known about their efficacy against respiratory viruses using relevant animal models. This study aimed to characterize the disease modulating properties and antiviral potential of HIF-1α (PX478) and HIF-2α (PT2385) inhibitors in RSV-infected BALB/c mice. We found that inhibition of HIF-1α worsen clinical disease parameters, while simultaneously improving lung inflammation and airway function. Additionally, blocking HIF-1α resulted in significantly reduced viral titer at early and peak time points of RSV replication. In contrast, inhibition of HIF-2α was associated with improved clinical parameters, with no changes in airway function, enhanced immune responses and reduced early and peak lung viral replication. Analysis of lung cells found significant modification in the T-cell compartment that correlated with changes in lung pathology and viral titers in response to each HIF inhibitor administration. This study underscores the differential roles of HIF proteins in RSV infection and highlights the need for further characterization of the compounds that are currently in use or under therapeutic consideration.
Collapse
Affiliation(s)
- Dorothea R. Morris
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- School of Population & Public Health, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yue Qu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yava L. Jones-Hall
- School of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX, USA
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Meredith Weglarz
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Teodora Ivanciuc
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Roberto P. Garofalo
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Antonella Casola
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
20
|
Pérez-Rubio P, Romero EL, Cervera L, Gòdia F, Nielsen LK, Lavado-García J. Systematic insights into cell density-dependent transcriptional responses upon medium replacements. Biomed Pharmacother 2024; 181:117640. [PMID: 39486366 DOI: 10.1016/j.biopha.2024.117640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Understanding the molecular mechanisms governing transfection efficiency and particle secretion in high cell density cultures is critical to overcome the cell density effect upon transient gene expression. The effect of different conditioned media in HEK293 transcriptome at low and high cell density is explored. A systematic pair-wise comparative study was performed to shed light on the effect on previous phenotypical characteristics of different media conditions: fresh, exhausted and media depleted from extracellular vesicles (EVs) as well as associated proteins and RNAs. The obtained results suggest that restorative effects observed in transfection efficiency when employing EV-depleted media may arise predominantly from physicochemical alterations rather than cellular processes. A significant downregulation of genes associated with nucleocytoplasmic transport for the conditions involving the use of exhausted or EV-depleted media was observed. Moreover, upregulation of histone-related genes in EV-depleted media suggest a role for histone signaling in response to cellular stress or growth limitations, thereby highlighting the potential of manipulating histone levels as a promising strategy to enhance transient transfection. It was also corroborated that the accumulation of extracellular matrix proteins upon cell growth may inhibit transfection by an already-known competitive effect between cell membrane-bound and free proteoglycans. Proteomic characterization of EV-depleted media further unveiled enrichment of pathways associated with infection response and double-strand DNA breaks, suggesting that HEK293 cells undergo an induced infection-like state that disrupts cellular processes. Importantly, the study reveals that EV-depleted media stimulates virion release pathways underscoring the complex interplay between extracellular vesicles and viral budding.
Collapse
Affiliation(s)
- Pol Pérez-Rubio
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain.
| | - Elianet Lorenzo Romero
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Laura Cervera
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Lars Keld Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia
| | - Jesús Lavado-García
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
21
|
Jindal J, Hill J, Harte J, Dunachie SJ, Kronsteiner B. Starvation and infection: The role of sickness-associated anorexia in metabolic adaptation during acute infection. Metabolism 2024; 161:156035. [PMID: 39326837 DOI: 10.1016/j.metabol.2024.156035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Sickness-associated anorexia, the reduction in appetite seen during infection, is a widely conserved and well-recognized symptom of acute infection, yet there is very little understanding of its functional role in recovery. Anorexic sickness behaviours can be understood as an evolutionary strategy to increase tolerance to pathogen-mediated illness. In this review we explore the evidence for mechanisms and potential metabolic benefits of sickness-associated anorexia. Energy intake can impact on the immune response, control of inflammation and tissue stress, and on pathogen fitness. Fasting mediators including hormone-sensitive lipase, peroxisome proliferator-activated receptor-alpha (PPAR-α) and ketone bodies are potential facilitators of infection recovery through multiple pathways including suppression of inflammation, adaptation to lipid utilising pathways, and resistance to pathogen-induced cellular stress. However, the effect and benefit of calorie restriction is highly heterogeneous depending on both the infection and the metabolic status of the host, which has implications regarding clinical recommendations for feeding during different infections.
Collapse
Affiliation(s)
- Jessy Jindal
- The Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Jennifer Hill
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jodie Harte
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| | - Barbara Kronsteiner
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Singh RK, Torne AS, Robertson ES. Hypoxic reactivation of Kaposi's sarcoma associated herpesvirus. CELL INSIGHT 2024; 3:100200. [PMID: 39391006 PMCID: PMC11466537 DOI: 10.1016/j.cellin.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Hypoxic reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) refers to the phenomenon under low oxygen where the virus goes from latent to lytic replication. Typically, healthy cells generally cease cell division and DNA replication under hypoxic conditions due to limited resources, and the presence of physiological inhibitors. This restricted replication under hypoxic conditions is considered an employed strategy of the cell to minimize energy consumption. However, cancerous cells continuously replicate and divide in hypoxic conditions by reprogramming several aspects of their cell physiology, including but not limited to metabolism, cell cycle, DNA replication, transcription, translation, and the epigenome. KSHV infection, similar to cancerous cells, is known to bypass hypoxia-induced restrictions and undergo reactivation to produce progeny viruses. In previous studies we have mapped several aspects of cell physiology that are manipulated by KSHV through its latent antigens during hypoxic conditions, which allows for a permissive environment for its replication. We discuss the major strategies utilized by KSHV to bypass hypoxia-induced repression. We also describe the KSHV-encoded antigens responsible for modulating these cellular processes important for successful viral replication and persistence in hypoxia.
Collapse
Affiliation(s)
- Rajnish Kumar Singh
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Atharva S Torne
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
23
|
Pant A, Brahim Belhaouari D, Dsouza L, Yang Z. Stimulation of neutral lipid synthesis via viral growth factor signaling and ATP citrate lyase during vaccinia virus infection. J Virol 2024; 98:e0110324. [PMID: 39475274 DOI: 10.1128/jvi.01103-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024] Open
Abstract
Fatty acid metabolism can provide various products essential for viral infections. How vaccinia virus (VACV), the prototype of poxviruses, modulates fatty acid metabolism is not well understood. Here, we show that VACV infection results in increased neutral lipid droplet synthesis, the organelles that play a crucial role in storing and mobilizing fatty acids for energy production via β-oxidation. Citrate is the first tricarboxylic acid (TCA) cycle intermediate that can be transported to the cytosol to be converted to acetyl-CoA for de novo fatty acid biosynthesis. We found that VACV infection stimulates the S455 phosphorylation of ATP citrate lyase (ACLY), a pivotal enzyme that links citrate metabolism with lipid metabolism. We demonstrate that the inhibition of neutral lipid droplet synthesis and ACLY severely suppresses VACV replication. Remarkably, we found that virus growth factor (VGF)-induced signaling is essential for the VACV-mediated upregulation of ACLY phosphorylation and neutral lipid droplets. Finally, we report that VGF-induced EGFR-Akt pathway and ACLY phosphorylation are important for VACV stimulation of neutral lipid synthesis. These findings identified a new way of rewiring cell metabolism by a virus and a novel function for VGF in the governance of virus-host interactions through the induction of a key enzyme at the crossroads of the TCA cycle and fatty acid metabolism. Our study also provides a mechanism for the role played by VGF and its downstream signaling cascades in the modulation of lipid metabolism in VACV-infected cells.IMPORTANCENeutral lipid droplets are vital players in cellular metabolism. Here, we showed that VACV induces neutral lipid droplet synthesis in infected primary human foreskin fibroblasts and identified the cellular and viral factors needed. We identified VACV encoded growth factor (VGF) as an essential viral factor that induces cellular EGFR-Akt signaling to increase lipid droplets. Interestingly, VACV increases the S455 phosphorylation of ACLY, a key metabolic enzyme that sits at the crossroads of carbohydrate and lipid metabolism in a VGF-EGFR-Akt-dependent manner. We also found that ACLY is vital for VACV-induced lipid droplet synthesis. Our findings identified the modulation of ACLY by a virus and identified it as a potential target for antiviral development against pathogenic poxviruses. Our study also expands the role of growth factor signaling in boosting VACV replication by targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Anil Pant
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Djamal Brahim Belhaouari
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lara Dsouza
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
24
|
Doyle A, Goodson BA, Kolaczkowski OM, Liu R, Jia J, Wang H, Han X, Ye C, Bradfute SB, Kell AM, Lemus MR, Pu J. Manipulation of Host Cholesterol by SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623299. [PMID: 39605369 PMCID: PMC11601339 DOI: 10.1101/2024.11.13.623299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
SARS-CoV-2 infection is associated with alterations in host lipid metabolism, including disruptions in cholesterol homeostasis. However, the specific mechanisms by which viral proteins influence cholesterol remain incompletely understood. Here, we report that SARS-CoV-2 infection induces cholesterol sequestration within lysosomes, with the viral protein ORF3a identified as the primary driver of this effect. Mechanistically, we found that ORF3a interacts directly with the HOPS complex subunit VPS39 through a hydrophobic interface formed by residues W193 and Y184. A W193A mutation in ORF3a significantly rescues cholesterol egress and corrects the mislocalization of the lysosomal cholesterol transporter NPC2, which is caused by defective trafficking of the trans-Golgi network (TGN) sorting receptor, the cation-independent mannose-6-phosphate receptor (CI-MPR). We further observed a marked reduction in bis(monoacylglycero)phosphate (BMP), a lipid essential for lysosomal cholesterol egress, in both SARS-CoV-2-infected cells and ORF3a-expressing cells, suggesting BMP reduction as an additional mechanism of SARS-CoV-2-caused cholesterol sequestration. Inhibition of lysosomal cholesterol egress using the compound U18666A significantly decreased SARS-CoV-2 infection, highlighting a potential viral strategy of manipulating lysosomal cholesterol to modulate host cell susceptibility. Our findings reveal that SARS-CoV-2 ORF3a disrupts cellular cholesterol transport by altering lysosomal protein trafficking and BMP levels, providing new insights into virus-host interactions that contribute to lipid dysregulation in infected cells.
Collapse
Affiliation(s)
- Aliza Doyle
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Baley A. Goodson
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Oralia M. Kolaczkowski
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Jingyue Jia
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Hu Wang
- Department of Medicine, UT Health San Antonio Long School of Medicine, San Antonio, Texas 78229, USA
| | - Xianlin Han
- Department of Medicine, UT Health San Antonio Long School of Medicine, San Antonio, Texas 78229, USA
| | - Chunyan Ye
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Steven B. Bradfute
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Monica Rosas Lemus
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
25
|
Praharaj MR, Budamgunta H, Ambati T, Khan RIN, Dey B, Gandham RK, Sharma GT, Majumdar SS. Proteome modulation triggers potent antiviral response in Japanese Encephalitis Virus infected human macrophages. Arch Microbiol 2024; 206:464. [PMID: 39520552 DOI: 10.1007/s00203-024-04167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne neurotropic virus that claims thousands of children's lives globally every year, causing neuropsychiatric sequelae. While neuronal cell pathogenesis is a terminal consequence of JEV infection, the virus hijacks macrophages during initial replication and propagation, making macrophages critical cells of host immune defense that dictate the outcomes of infection. Though a plethora of studies have been reported using various neuronal and immune cells, a global response of human macrophages to JEV infection is yet to be explored. In this study, we assessed the kinetics of global proteome dysregulation employing an in vitro JEV infection model using human monocyte-derived macrophages (THP-1). A comparative assessment of the proteome of the infected THP-1 cells revealed differential regulation of 428 proteins at 24 h post-infection (hpi), which was later increased to 443 by 48 h post-infection. Global gene ontology analysis of the differentially expressed proteins highlighted several critical pathways related to immune and metabolic processes that are known to play either proviral or antiviral effects during infection. Notably, several antiviral proteins, including STAT2, OAS1, MX1, MX2, RIG-I, ISG15, and ISG20, were significantly upregulated at both time points post-infection. In contrast, a considerable downregulation of BCL-2, an anti-apoptotic protein at 48hpi indicates the activation of cell death pathways. Further, gene set enrichment analysis identified the type I interferon signaling pathway as one of the top upregulated pathways following JEV infection in human macrophages. Altogether, this study demonstrates human macrophage responses to JEV infection at the proteome level for the first time, highlighting several critical and novel antiviral proteins and pathways that not only advance our understanding of anti-JEV immunity but also aid in developing strategies to control this acute global public health menace.
Collapse
Affiliation(s)
- Manas Ranjan Praharaj
- DBT-National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Tejaswi Ambati
- DBT-National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Raja Ishaq Nabi Khan
- DBT-National Institute of Animal Biotechnology, Hyderabad, India
- Washington University School of Medicine, St. Louis, USA
| | - Bappaditya Dey
- DBT-National Institute of Animal Biotechnology, Hyderabad, India.
- Regional Centre for Biotechnology, Faridabad, India.
| | - Ravi Kumar Gandham
- DBT-National Institute of Animal Biotechnology, Hyderabad, India.
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - G Taru Sharma
- DBT-National Institute of Animal Biotechnology, Hyderabad, India.
- Regional Centre for Biotechnology, Faridabad, India.
| | - Subeer S Majumdar
- DBT-National Institute of Animal Biotechnology, Hyderabad, India.
- Gujarat Biotechnology University, Gandhinagar, India.
| |
Collapse
|
26
|
Li C, Shi Y, Chen S, Chen L, Zeng L, Xiang L, Li Y, Sun W, Zhang H, Wen S, Lin J. Metabolomic profiling reveals new insights into human adenovirus type 7 infection. Microb Pathog 2024; 197:107048. [PMID: 39505087 DOI: 10.1016/j.micpath.2024.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024]
Abstract
Human adenovirus type 7 (HAdV-7) is a prominent pathogen that causes severe pneumonia in children in China. However, the interaction between HAdV-7 infection and host metabolism is still poorly understood. To gain a comprehensive understanding of the metabolic interplay between host cells and the virus, we analysed the energy and lipid metabolism profiles of the HAdV-7-infected lung cancer cell line A549 by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (ESI-QTRAP-MS/MS). Our study revealed significant alterations in various metabolic processes, including the tricarboxylic acid cycle, purine and pyrimidine metabolism, amino acid metabolism, nucleotide metabolism, and lipid metabolism, in A549 cells after HAdV-7 infection. Moreover, HAdV-7 infection stimulated enhanced synthesis of membrane lipids in A549 cells. These findings emphasize the crucial role of metabolism in viral infection and suggest that modulating host cell metabolism could be a promising approach for targeted drug development and infection control.
Collapse
Affiliation(s)
- Chengkai Li
- Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yaokai Shi
- Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Siyue Chen
- Wenzhou Medical University, Wenzhou, 325006, China
| | - Lin Chen
- Wenzhou Medical University, Wenzhou, 325006, China
| | - Luyao Zeng
- Wenzhou Medical University, Wenzhou, 325006, China
| | - Liyan Xiang
- Wenzhou Medical University, Wenzhou, 325006, China
| | - Yuying Li
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Hailin Zhang
- Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Shunhang Wen
- Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jian Lin
- Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
27
|
Park ES, Shin CY, Jeon SJ, Ham BJ. Is There such a Thing as Post-Viral Depression?: Implications for Precision Medicine. Biomol Ther (Seoul) 2024; 32:659-684. [PMID: 39428555 PMCID: PMC11535299 DOI: 10.4062/biomolther.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Viral infections are increasingly recognized as triggers for depressive disorders, particularly following the SARS-CoV-2 pandemic and the rise of long COVID. Viruses such as Herpes Simplex Virus (HSV), Epstein-Barr Virus (EBV), Cytomegalovirus (CMV), and Human Immunodeficiency Virus (HIV) are linked to depression through complex neurobiological mechanisms. These include immune system dysregulation, chronic inflammation, and neurotransmitter imbalances that affect brain function and mood regulation. Viral activation of the immune system leads to the release of pro-inflammatory cytokines, resulting in neuroinflammation and associated depressive symptoms. Furthermore, specific viruses can disrupt neurotransmitter systems, including serotonin, dopamine, and glutamate, all of which are essential for mood stabilization. The unique interactions of different viruses with these systems underscore the need for virus-specific therapeutic approaches. Current broad-spectrum treatments often overlook the precise neurobiological pathways involved in post-viral depression, reducing their efficacy. This review emphasizes the need to understand these virus-specific interactions to create tailored interventions that directly address the neurobiological effects induced by each type of virus. These interventions may include immunomodulatory treatments that target persistent inflammation, antiviral therapies to reduce the viral load, or neuroprotective strategies that restore neurotransmitter balance. Precision medicine offers promising avenues for the effective management of virus-induced depression, providing patient-specific approaches that address the specific biological mechanisms involved. By focusing on the development of these targeted treatments, this review aims to pave the way for a new era in psychiatric care that fully addresses the root causes of depression induced by viral infections.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
28
|
Xin Q, Liang X, Yang J, Wang X, Hu F, Jiang M, Liu Y, Gong J, Pan Y, Liu L, Xu J, Cui Y, Qin H, Bai H, Li Y, Ma J, Zhang C, Shi B. Metabolomic alterations in the plasma of patients with various clinical manifestations of COVID-19. Virol J 2024; 21:266. [PMID: 39468659 PMCID: PMC11520427 DOI: 10.1186/s12985-024-02523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The metabolomic profiles of individuals with different clinical manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have not been clearly characterized. METHODS We performed metabolomics analysis of 166 individuals, including 62 healthy controls, 16 individuals with asymptomatic SARS-CoV-2 infection, and 88 patients with moderate (n = 42) and severe (n = 46) symptomatic 2019 coronavirus disease (COVID-19; 17 with short-term and 34 with long-term nucleic-acid test positivity). By examining differential expression, we identified candidate metabolites associated with different SARS-CoV-2 infection presentations. Functional and machine learning analyses were performed to explore the metabolites' functions and verify their candidacy as biomarkers. RESULTS A total of 417 metabolites were detected. We discovered 70 differentially expressed metabolites that may help differentiate asymptomatic infections from healthy controls and COVID-19 patients with different disease severity. Cyclamic acid and N-Acetylneuraminic Acid were identified to distinguish symptomatic infected patients and asymptomatic infected patients. Shikimic Acid, Glycyrrhetinic acid and 3-Hydroxybutyrate can supply significant insights for distinguishing short-term and long-term nucleic-acid test positivity. CONCLUSION Metabolomic profiling may highlight novel biomarkers for the identification of individuals with asymptomatic SARS-CoV-2 infection and further our understanding of the molecular pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Qi Xin
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xiao Liang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaorui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Fang Hu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Meng Jiang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yijia Liu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jin Gong
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yiwen Pan
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Lijuan Liu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yuxin Cui
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Hongyu Qin
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Han Bai
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China
| | - Yixin Li
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China
| | - Junpeng Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Chengsheng Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China.
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
29
|
Hofmann N, Bartkuhn M, Becker S, Biedenkopf N, Böttcher-Friebertshäuser E, Brinkrolf K, Dietzel E, Fehling SK, Goesmann A, Heindl MR, Hoffmann S, Karl N, Maisner A, Mostafa A, Kornecki L, Müller-Kräuter H, Müller-Ruttloff C, Nist A, Pleschka S, Sauerhering L, Stiewe T, Strecker T, Wilhelm J, Wuerth JD, Ziebuhr J, Weber F, Schmitz ML. Distinct negative-sense RNA viruses induce a common set of transcripts encoding proteins forming an extensive network. J Virol 2024; 98:e0093524. [PMID: 39283124 PMCID: PMC11494938 DOI: 10.1128/jvi.00935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 10/23/2024] Open
Abstract
The large group of negative-strand RNA viruses (NSVs) comprises many important pathogens. To identify conserved patterns in host responses, we systematically compared changes in the cellular RNA levels after infection of human hepatoma cells with nine different NSVs of different virulence degrees. RNA sequencing experiments indicated that the amount of viral RNA in host cells correlates with the number of differentially expressed host cell transcripts. Time-resolved differential gene expression analysis revealed a common set of 178 RNAs that are regulated by all NSVs analyzed. A newly developed open access web application allows downloads and visualizations of all gene expression comparisons for individual viruses over time or between several viruses. Most of the genes included in the core set of commonly differentially expressed genes (DEGs) encode proteins that serve as membrane receptors, signaling proteins and regulators of transcription. They mainly function in signal transduction and control immunity, metabolism, and cell survival. One hundred sixty-five of the DEGs encode host proteins from which 47 have already been linked to the regulation of viral infections in previous studies and 89 proteins form a complex interaction network that may function as a core hub to control NSV infections.IMPORTANCEThe infection of cells with negative-strand RNA viruses leads to the differential expression of many host cell RNAs. The differential spectrum of virus-regulated RNAs reflects a large variety of events including anti-viral responses, cell remodeling, and cell damage. Here, these virus-specific differences and similarities in the regulated RNAs were measured in a highly standardized model. A newly developed app allows interested scientists a wide range of comparisons and visualizations.
Collapse
Affiliation(s)
- Nina Hofmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Karina Brinkrolf
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Erik Dietzel
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Simone Hoffmann
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Nadja Karl
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Laura Kornecki
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Helena Müller-Kräuter
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Christin Müller-Ruttloff
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Jennifer D. Wuerth
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
30
|
Monaco V, Iacobucci I, Canè L, Cipollone I, Ferrucci V, de Antonellis P, Quaranta M, Pascarella S, Zollo M, Monti M. SARS-CoV-2 uses Spike glycoprotein to control the host's anaerobic metabolism by inhibiting LDHB. Int J Biol Macromol 2024; 278:134638. [PMID: 39147351 DOI: 10.1016/j.ijbiomac.2024.134638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
The SARS-CoV-2 pandemic, responsible for approximately 7 million deaths worldwide, highlights the urgent need to understand the molecular mechanisms of the virus in order to prevent future outbreaks. The Spike glycoprotein of SARS-CoV-2, which is critical for viral entry through its interaction with ACE2 and other host cell receptors, has been a focus of this study. The present research goes beyond receptor recognition to explore Spike's influence on cellular metabolism. AP-MS interactome analysis revealed an interaction between the Spike S1 domain and lactate dehydrogenase B (LDHB), which was further confirmed by co-immunoprecipitation and immunofluorescence, indicating colocalisation in cells expressing the S1 domain. The study showed that Spike inhibits the catalytic activity of LDHB, leading to increased lactate levels in HEK-293T cells overexpressing the S1 subunit. In the hypothesised mechanism, Spike deprives LDHB of NAD+, facilitating a metabolic switch from aerobic to anaerobic energy production during infection. The Spike-NAD+ interacting region was characterised and mainly involves the W436 within the RDB domain. This novel hypothesis suggests that the Spike protein may play a broader role in altering host cell metabolism, thereby contributing to the pathophysiology of viral infection.
Collapse
Affiliation(s)
- Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Luisa Canè
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Irene Cipollone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Veronica Ferrucci
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Pasqualino de Antonellis
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Miriana Quaranta
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Stefano Pascarella
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Massimo Zollo
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy.
| |
Collapse
|
31
|
Willenbockel HF, Dowerg B, Cordes T. Multifaceted metabolic role of infections in the tumor microenvironment. Curr Opin Biotechnol 2024; 89:103183. [PMID: 39197341 DOI: 10.1016/j.copbio.2024.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
The impact of bacteria and viruses on tumor growth has long been recognized. In recent decades, interest in the role of microorganisms in the tumor microenvironment (TME) has expanded. Infections induce metabolic reprogramming and influence immune responses within the TME that may either support proliferation and metastasis or limit tumor growth. The natural ability to infect cells and alter the TME is also utilized for cancer detection and treatment. In this review, we discuss recent discoveries about the mechanisms of bacteria and viruses affecting TME, as well as strategies in cancer therapy focusing on metabolic alterations. Infections with engineered bacteria and viruses represent promising therapeutic approaches to develop novel and more effective therapies to constrain tumor growth.
Collapse
Affiliation(s)
- Hanna F Willenbockel
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany; Research Group Cellular Metabolism in Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Birte Dowerg
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany; Research Group Cellular Metabolism in Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thekla Cordes
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany; Research Group Cellular Metabolism in Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
32
|
Thom RE, D’Elia RV. Future applications of host direct therapies for infectious disease treatment. Front Immunol 2024; 15:1436557. [PMID: 39411713 PMCID: PMC11473292 DOI: 10.3389/fimmu.2024.1436557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
New and emerging pathogens, such as SARS-CoV2 have highlighted the requirement for threat agnostic therapies. Some antibiotics or antivirals can demonstrate broad-spectrum activity against pathogens in the same family or genus but efficacy can quickly reduce due to their specific mechanism of action and for the ability of the disease causing agent to evolve. This has led to the generation of antimicrobial resistant strains, making infectious diseases more difficult to treat. Alternative approaches therefore need to be considered, which include exploring the utility of Host-Directed Therapies (HDTs). This is a growing area with huge potential but difficulties arise due to the complexity of disease profiles. For example, a HDT given early during infection may not be appropriate or as effective when the disease has become chronic or when a patient is in intensive care. With the growing understanding of immune function, a new generation of HDT for the treatment of disease could allow targeting specific pathways to augment or diminish the host response, dependent upon disease profile, and allow for bespoke therapeutic management plans. This review highlights promising and approved HDTs that can manipulate the immune system throughout the spectrum of disease, in particular to viral and bacterial pathogens, and demonstrates how the advantages of HDT will soon outweigh the potential side effects.
Collapse
Affiliation(s)
- Ruth E. Thom
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - R V. D’Elia
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
33
|
Ma B, Li F, Fu X, Luo X, Lin Q, Liang H, Niu Y, Li N. Asparagine Availability Is a Critical Limiting Factor for Infectious Spleen and Kidney Necrosis Virus Replication. Viruses 2024; 16:1540. [PMID: 39459874 PMCID: PMC11512393 DOI: 10.3390/v16101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) has brought huge economic loss to the aquaculture industry. Through interfering with the viral replication and proliferation process that depends on host cells, its pathogenicity can be effectively reduced. In this study, we investigated the role of asparagine metabolites in ISKNV proliferation. The results showed that ISKNV infection up-regulated the expression of some key enzymes of the asparagine metabolic pathway in Chinese perch brain (CPB) cells. These key enzymes, including glutamic oxaloacetic transaminase 1/2 (GOT1/2) and malate dehydrogenase1/2 (MDH1/2) associated with the malate-aspartate shuttle (MAS) pathway and asparagine synthetase (ASNS) involved in the asparagine biosynthesis pathway, were up-regulated during ISKNV replication and release stages. In addition, results showed that the production of ISKNV was significantly reduced by inhibiting the MAS pathway or reducing the expression of ASNS by 1.3-fold and 0.6-fold, respectively, indicating that asparagine was a critical limiting metabolite for ISKNV protein synthesis. Furthermore, when asparagine was added to the medium without glutamine, ISKNV copy number was restored to 92% of that in the complete medium, indicating that ISKNV could be fully rescued from the absence of glutamine by supplementing asparagine. The above results indicated that asparagine was a critical factor in limiting the effective replication of ISKNV, which provided a new idea for the treatment of aquatic viral diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune and Sustainable Aquaculture, Guangzhou 510380, China
| |
Collapse
|
34
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
35
|
Zhang H, Hu F, Peng O, Huang Y, Hu G, Ashraf U, Cen M, Wang X, Xu Q, Zou C, Wu Y, Zhu B, Li W, Li Q, Li C, Xue C, Cao Y. Multi-Omics Analysis by Machine Learning Identified Lysophosphatidic Acid as a Biomarker and Therapeutic Target for Porcine Reproductive and Respiratory Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402025. [PMID: 38976572 PMCID: PMC11425916 DOI: 10.1002/advs.202402025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/16/2024] [Indexed: 07/10/2024]
Abstract
As a significant infectious disease in livestock, porcine reproductive and respiratory syndrome (PRRS) imposes substantial economic losses on the swine industry. Identification of diagnostic markers and therapeutic targets has been a focal challenge in PPRS prevention and control. By integrating metabolomic and lipidomic serum analyses of clinical pig cohorts through a machine learning approach with in vivo and in vitro infection models, lysophosphatidic acid (LPA) is discovered as a serum metabolic biomarker for PRRS virus (PRRSV) clinical diagnosis. PRRSV promoted LPA synthesis by upregulating the autotaxin expression, which causes innate immunosuppression by dampening the retinoic acid-inducible gene I (RIG-I) and type I interferon responses, leading to enhanced virus replication. Targeting LPA demonstrated protection against virus infection and associated disease outcomes in infected pigs, indicating that LPA is a novel antiviral target against PRRSV. This study lays a foundation for clinical prevention and control of PRRSV infections.
Collapse
Affiliation(s)
- Hao Zhang
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fangyu Hu
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ouyang Peng
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yihui Huang
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guangli Hu
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Usama Ashraf
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94305, USA
| | - Meifeng Cen
- Bioinformatics and Omics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaojuan Wang
- Bioinformatics and Omics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chuangchao Zou
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Wu
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd, Yunfu, 527439, China
| | - Bibo Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qunhui Li
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd, Yunfu, 527439, China
| | - Chujun Li
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunyi Xue
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongchang Cao
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
36
|
Jiang J, Meng X, Wang Y, Zhuang Z, Du T, Yan J. Effect of aberrant fructose metabolism following SARS-CoV-2 infection on colorectal cancer patients' poor prognosis. PLoS Comput Biol 2024; 20:e1012412. [PMID: 39331675 PMCID: PMC11463760 DOI: 10.1371/journal.pcbi.1012412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/09/2024] [Accepted: 08/13/2024] [Indexed: 09/29/2024] Open
Abstract
Most COVID-19 patients have a positive prognosis, but patients with additional underlying diseases are more likely to have severe illness and increased fatality rates. Numerous studies indicate that cancer patients are more prone to contract SARS-CoV-2 and develop severe COVID-19 or even dying. In the recent transcriptome investigations, it is demonstrated that the fructose metabolism is altered in patients with SARS-CoV-2 infection. However, cancer cells can use fructose as an extra source of energy for growth and metastasis. Furthermore, enhanced living conditions have resulted in a notable rise in fructose consumption in individuals' daily dietary habits. We therefore hypothesize that the poor prognosis of cancer patients caused by SARS-CoV-2 may therefore be mediated through fructose metabolism. Using CRC cases from four distinct cohorts, we built and validated a predictive model based on SARS-CoV-2 producing fructose metabolic anomalies by coupling Cox univariate regression and lasso regression feature selection algorithms to identify hallmark genes in colorectal cancer. We also developed a composite prognostic nomogram to improve clinical practice by integrating the characteristics of aberrant fructose metabolism produced by this novel coronavirus with age and tumor stage. To obtain the genes with the greatest potential prognostic values, LASSO regression analysis was performed, In the TCGA training cohort, patients were randomly separated into training and validation sets in the ratio of 4: 1, and the best risk score value for each sample was acquired by lasso regression analysis for further analysis, and the fifteen genes CLEC4A, FDFT1, CTNNB1, GPI, PMM2, PTPRD, IL7, ALDH3B1, AASS, AOC3, SEPINE1, PFKFB1, FTCD, TIMP1 and GATM were finally selected. In order to validate the model's accuracy, ROC curve analysis was performed on an external dataset, and the results indicated that the model had a high predictive power for the prognosis prediction of patients. Our study provides a theoretical foundation for the future targeted regulation of fructose metabolism in colorectal cancer patients, while simultaneously optimizing dietary guidance and therapeutic care for colorectal cancer patients in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jiaxin Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Xiaona Meng
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Yibo Wang
- Department of Bioinformatics, China Medical University, Shenyang, China
| | - Ziqian Zhuang
- Department of Bioinformatics, China Medical University, Shenyang, China
| | - Ting Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
37
|
Lebeau G, Paulo-Ramos A, Hoareau M, El Safadi D, Meilhac O, Krejbich-Trotot P, Roche M, Viranaicken W. Metabolic Dependency Shapes Bivalent Antiviral Response in Host Cells in Response to Poly:IC: The Role of Glutamine. Viruses 2024; 16:1391. [PMID: 39339867 PMCID: PMC11436187 DOI: 10.3390/v16091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The establishment of effective antiviral responses within host cells is intricately related to their metabolic status, shedding light on immunometabolism. In this study, we investigated the hypothesis that cellular reliance on glutamine metabolism contributes to the development of a potent antiviral response. We evaluated the antiviral response in the presence or absence of L-glutamine in the culture medium, revealing a bivalent response hinging on cellular metabolism. While certain interferon-stimulated genes (ISGs) exhibited higher expression in an oxidative phosphorylation (OXPHOS)-dependent manner, others were surprisingly upregulated in a glycolytic-dependent manner. This metabolic dichotomy was influenced in part by variations in interferon-β (IFN-β) expression. We initially demonstrated that the presence of L-glutamine induced an enhancement of OXPHOS in A549 cells. Furthermore, in cells either stimulated by poly:IC or infected with dengue virus and Zika virus, a marked increase in ISGs expression was observed in a dose-dependent manner with L-glutamine supplementation. Interestingly, our findings unveiled a metabolic dependency in the expression of specific ISGs. In particular, genes such as ISG54, ISG12 and ISG15 exhibited heightened expression in cells cultured with L-glutamine, corresponding to higher OXPHOS rates and IFN-β signaling. Conversely, the expression of viperin and 2'-5'-oligoadenylate synthetase 1 was inversely related to L-glutamine concentration, suggesting a glycolysis-dependent regulation, confirmed by inhibition experiments. This study highlights the intricate interplay between cellular metabolism, especially glutaminergic and glycolytic, and the establishment of the canonical antiviral response characterized by the expression of antiviral effectors, potentially paving the way for novel strategies to modulate antiviral responses through metabolic interventions.
Collapse
Affiliation(s)
- Grégorie Lebeau
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| | - Aurélie Paulo-Ramos
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| | - Mathilde Hoareau
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| | - Daed El Safadi
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
| | - Olivier Meilhac
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| | - Pascale Krejbich-Trotot
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
| | - Marjolaine Roche
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
| | - Wildriss Viranaicken
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| |
Collapse
|
38
|
Wu R, Zimmerman AE, Hofmockel KS. The direct and indirect drivers shaping RNA viral communities in grassland soils. mSystems 2024; 9:e0009924. [PMID: 38980057 PMCID: PMC11334463 DOI: 10.1128/msystems.00099-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
Recent studies have revealed diverse RNA viral communities in soils. Yet, how environmental factors influence soil RNA viruses remains largely unknown. Here, we recovered RNA viral communities from bulk metatranscriptomes sequenced from grassland soils managed for 5 years under multiple environmental conditions including water content, plant presence, cultivar type, and soil depth. More than half of the unique RNA viral contigs (64.6%) were assigned with putative hosts. About 74.7% of these classified RNA viral contigs are known as eukaryotic RNA viruses suggesting eukaryotic RNA viruses may outnumber prokaryotic RNA viruses by nearly three times in this grassland. Of the identified eukaryotic RNA viruses and the associated eukaryotic species, the most dominant taxa were Mitoviridae with an average relative abundance of 72.4%, and their natural hosts, Fungi with an average relative abundance of 56.6%. Network analysis and structural equation modeling support that soil water content, plant presence, and type of cultivar individually demonstrate a significant positive impact on eukaryotic RNA viral richness directly as well as indirectly on eukaryotic RNA viral abundance via influencing the co-existing eukaryotic members. A significant negative influence of soil depth on soil eukaryotic richness and abundance indirectly impacts soil eukaryotic RNA viral communities. These results provide new insights into the collective influence of multiple environmental and community factors that shape soil RNA viral communities and offer a structured perspective of how RNA virus diversity and ecology respond to environmental changes. IMPORTANCE Climate change has been reshaping the soil environment as well as the residing microbiome. This study provides field-relevant information on how environmental and community factors collectively shape soil RNA communities and contribute to ecological understanding of RNA viral survival under various environmental conditions and virus-host interactions in soil. This knowledge is critical for predicting the viral responses to climate change and the potential emergence of biothreats.
Collapse
Affiliation(s)
- Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Amy E. Zimmerman
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S. Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
39
|
Laybourn HA, Hellemann Polhaus C, Kristensen C, Lyngfeldt Henriksen B, Zhang Y, Brogaard L, Larsen CA, Trebbien R, Larsen LE, Kalogeropoulos K, Auf dem Keller U, Skovgaard K. Multi-omics analysis reveals the impact of influenza a virus host adaptation on immune signatures in pig tracheal tissue. Front Immunol 2024; 15:1432743. [PMID: 39247193 PMCID: PMC11378526 DOI: 10.3389/fimmu.2024.1432743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Influenza A virus (IAV) infection is a global respiratory disease, which annually leads to 3-5 million cases of severe illness, resulting in 290,000-650,000 deaths. Additionally, during the past century, four global IAV pandemics have claimed millions of human lives. The epithelial lining of the trachea plays a vital role during IAV infection, both as point of viral entry and replication as well as in the antiviral immune response. Tracheal tissue is generally inaccessible from human patients, which makes animal models crucial for the study of the tracheal host immune response. Method In this study, pigs were inoculated with swine- or human-adapted H1N1 IAV to gain insight into how host adaptation of IAV shapes the innate immune response during infection. In-depth multi-omics analysis (global proteomics and RNA sequencing) of the host response in upper and lower tracheal tissue was conducted, and results were validated by microfluidic qPCR. Additionally, a subset of samples was selected for histopathological examination. Results A classical innate antiviral immune response was induced in both upper and lower trachea after infection with either swine- or human-adapted IAV with upregulation of genes and higher abundance of proteins associated with viral infection and recognition, accompanied by a significant induction of interferon stimulated genes with corresponding higher proteins concentrations. Infection with the swine-adapted virus induced a much stronger immune response compared to infection with a human-adapted IAV strain in the lower trachea, which could be a consequence of a higher viral load and a higher degree of inflammation. Discussion Central components of the JAK-STAT pathway, apoptosis, pyrimidine metabolism, and the cytoskeleton were significantly altered depending on infection with swine- or human-adapted virus and might be relevant mechanisms in relation to antiviral immunity against putative zoonotic IAV. Based on our findings, we hypothesize that during host adaptation, IAV evolve to modulate important host cell elements to favor viral infectivity and replication.
Collapse
Affiliation(s)
- Helena Aagaard Laybourn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Charlotte Kristensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Yaolei Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI-Qingdao, Qingdao, China
| | - Louise Brogaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cathrine Agnete Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ramona Trebbien
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
40
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
41
|
Fanelli M, Petrone V, Chirico R, Radu CM, Minutolo A, Matteucci C. Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:417-437. [PMID: 39697632 PMCID: PMC11648478 DOI: 10.20517/evcna.2024.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 12/20/2024]
Abstract
Infection with SARS-CoV-2, the virus responsible for COVID-19 diseases, can impact different tissues and induce significant cellular alterations. The production of extracellular vesicles (EVs), which are physiologically involved in cell communication, is also altered during COVID-19, along with the dysfunction of cytoplasmic organelles. Since circulating EVs reflect the state of their cells of origin, they represent valuable tools for monitoring pathological conditions. Despite challenges in detecting EVs due to their size and specific cellular compartment origin using different methodologies, flow cytometry has proven to be an effective method for assessing the role of EVs in COVID-19. This review summarizes the involvement of plasmatic EVs in COVID-19 patients and individuals with Long COVID (LC) affected by post-acute sequelae of SARS-CoV-2 infection (PASC), highlighting their dual role in exerting both pro- and antiviral effects. We also emphasize how flow cytometry, with its multiparametric approach, can be employed to characterize circulating EVs, particularly in infectious diseases such as COVID-19, and suggest their potential role in chronic impairments during post-infection.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Claudia Maria Radu
- Department of Medicine - DIMED, Thrombotic and Hemorrhagic Diseases Unit, University of Padua, Padua 35128 Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| |
Collapse
|
42
|
Ogire E, Perrin-Cocon L, Figl M, Kundlacz C, Jacquemin C, Hubert S, Aublin-Gex A, Toesca J, Ramière C, Vidalain PO, Mathieu C, Lotteau V, Diaz O. Dengue Virus dependence on glucokinase activity and glycolysis Confers Sensitivity to NAD(H) biosynthesis inhibitors. Antiviral Res 2024; 228:105939. [PMID: 38909960 DOI: 10.1016/j.antiviral.2024.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Viruses have developed sophisticated strategies to control metabolic activity of infected cells in order to supply replication machinery with energy and metabolites. Dengue virus (DENV), a mosquito-borne flavivirus responsible for dengue fever, is no exception. Previous reports have documented DENV interactions with metabolic pathways and shown in particular that glycolysis is increased in DENV-infected cells. However, underlying molecular mechanisms are still poorly characterized and dependence of DENV on this pathway has not been investigated in details yet. Here, we identified an interaction between the non-structural protein 3 (NS3) of DENV and glucokinase regulator protein (GCKR), a host protein that inhibits the liver-specific hexokinase GCK. NS3 expression was found to increase glucose consumption and lactate secretion in hepatic cell line expressing GCK. Interestingly, we observed that GCKR interaction with GCK decreases DENV replication, indicating the dependence of DENV to GCK activity and supporting the role of NS3 as an inhibitor of GCKR function. Accordingly, in the same cells, DENV replication both induces and depends on glycolysis. By targeting NAD(H) biosynthesis with the antimetabolite 6-Amino-Nicotinamide (6-AN), we decreased cellular glycolytic activity and inhibited DENV replication in hepatic cells. Infection of primary organotypic liver cultures (OLiC) from hamsters was also inhibited by 6-AN. Altogether, our results show that DENV has evolved strategies to control glycolysis in the liver, which could account for hepatic dysfunctions associated to infection. Besides, our findings suggest that lowering intracellular availability of NAD(H) could be a valuable therapeutic strategy to control glycolysis and inhibit DENV replication in the liver.
Collapse
Affiliation(s)
- Eva Ogire
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Marianne Figl
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Cindy Kundlacz
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Clémence Jacquemin
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Sophie Hubert
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Anne Aublin-Gex
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Johan Toesca
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Christophe Ramière
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France; Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France; Laboratoire P4-Jean Mérieux, INSERM, Lyon, France
| | - Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France.
| |
Collapse
|
43
|
Wang Q, Zhang Q, Shi X, Yang N, Zhang Y, Li S, Zhao Y, Zhang S, Xu X. ACADM inhibits AMPK activation to modulate PEDV-induced lipophagy and β-oxidation for impairing viral replication. J Biol Chem 2024; 300:107549. [PMID: 39002673 PMCID: PMC11342783 DOI: 10.1016/j.jbc.2024.107549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus within the Coronavirus family, causing severe watery diarrhea in piglets and resulting in significant economic losses. Medium-chain acyl-CoA dehydrogenase (ACADM) is an enzyme participating in lipid metabolism associated with metabolic diseases and pathogen infections. Nonetheless, the precise role of ACADM in regulating PEDV replication remains uncertain. In this study, we identified ACADM as the host binding partner of NSP4 via immunoprecipitation-mass spectrometry analysis. The interaction between ACADM and NSP4 was subsequently corroborated through coimmunoprecipitation and laser confocal microscopy. Following this, a notable upsurge in ACADM expression was observed during PEDV infection. ACADM overexpression effectively inhibited virus replication, whereas ACADM knockdown facilitated virus replication, suggesting ACADM has negative regulation effect on PEDV infection. Furthermore, we demonstrated fatty acid β-oxidation affected PEDV replication for the first time, inhibition of fatty acid β-oxidation reduced PEDV replication. ACADM decreased PEDV-induced β-oxidation to suppress PEDV replication. Mechanistically, ACADM reduced cellular free fatty acid levels and subsequent β-oxidation by hindering AMPK-mediated lipophagy. In summary, our results reveal that ACADM plays a negative regulatory role in PEDV replication by regulating lipid metabolism. The present study introduces a novel approach for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shifan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yina Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
44
|
Papaneophytou C. Breaking the Chain: Protease Inhibitors as Game Changers in Respiratory Viruses Management. Int J Mol Sci 2024; 25:8105. [PMID: 39125676 PMCID: PMC11311956 DOI: 10.3390/ijms25158105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Respiratory viral infections (VRTIs) rank among the leading causes of global morbidity and mortality, affecting millions of individuals each year across all age groups. These infections are caused by various pathogens, including rhinoviruses (RVs), adenoviruses (AdVs), and coronaviruses (CoVs), which are particularly prevalent during colder seasons. Although many VRTIs are self-limiting, their frequent recurrence and potential for severe health complications highlight the critical need for effective therapeutic strategies. Viral proteases are crucial for the maturation and replication of viruses, making them promising therapeutic targets. This review explores the pivotal role of viral proteases in the lifecycle of respiratory viruses and the development of protease inhibitors as a strategic response to these infections. Recent advances in antiviral therapy have highlighted the effectiveness of protease inhibitors in curtailing the spread and severity of viral diseases, especially during the ongoing COVID-19 pandemic. It also assesses the current efforts aimed at identifying and developing inhibitors targeting key proteases from major respiratory viruses, including human RVs, AdVs, and (severe acute respiratory syndrome coronavirus-2) SARS-CoV-2. Despite the recent identification of SARS-CoV-2, within the last five years, the scientific community has devoted considerable time and resources to investigate existing drugs and develop new inhibitors targeting the virus's main protease. However, research efforts in identifying inhibitors of the proteases of RVs and AdVs are limited. Therefore, herein, it is proposed to utilize this knowledge to develop new inhibitors for the proteases of other viruses affecting the respiratory tract or to develop dual inhibitors. Finally, by detailing the mechanisms of action and therapeutic potentials of these inhibitors, this review aims to demonstrate their significant role in transforming the management of respiratory viral diseases and to offer insights into future research directions.
Collapse
Affiliation(s)
- Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| |
Collapse
|
45
|
Ming S, Zhang S, Xing J, Yang G, Zeng L, Wang J, Chu B. Alphaherpesvirus manipulates retinoic acid metabolism for optimal replication. iScience 2024; 27:110144. [PMID: 38989466 PMCID: PMC11233922 DOI: 10.1016/j.isci.2024.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
Retinoic acid (RA), derived from retinol (ROL), is integral to cell growth, differentiation, and organogenesis. It is known that RA can inhibit herpes simplex virus (HSV) replication, but the interactions between alphaherpesviruses and RA metabolism are unclear. Our present study revealed that alphaherpesvirus (HSV-1 and Pseudorabies virus, PRV) infections suppressed RA synthesis from ROL by activating P53, which increased retinol reductase 3 (DHRS3) expression-an enzyme that converts retinaldehyde back to ROL. This process depended on the virus-triggered DNA damage response, the degradation of class I histone deacetylases, and the subsequent hyperacetylation of histones H3 and H4. Counteracting DHRS3 or P53 enabled higher RA synthesis and reduced viral growth. RA enhanced antiviral defenses by promoting ABCA1- and ABCG1-mediated lipid efflux. Treatment with the retinoic acid receptor (RAR) agonist palovarotene protected mice from HSV-1 infection, thus providing a potential therapeutic strategy against viral infections.
Collapse
Affiliation(s)
- Shengli Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Shijun Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Jiayou Xing
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Guoyu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan Province, China
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan Province, China
| |
Collapse
|
46
|
Sheikhrobat SB, Mahmoudvand S, Kazemipour-Khabbazi S, Ramezannia Z, Baghi HB, Shokri S. Understanding lactate in the development of Hepatitis B virus-related hepatocellular carcinoma. Infect Agent Cancer 2024; 19:31. [PMID: 39010155 PMCID: PMC11247867 DOI: 10.1186/s13027-024-00593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Hepatitis B Virus (HBV) is a hepatotropic virus that can establish a persistent and chronic infection in humans. Chronic hepatitis B (CHB) infection is associated with an increased risk of hepatic decompensation, cirrhosis, and hepatocellular carcinoma (HCC). Lactate level, as the end product of glycolysis, plays a substantial role in metabolism beyond energy production. Emerging studies indicate that lactate is linked to patient mortality rates, and HBV increases overall glucose consumption and lactate production in hepatocytes. Excessive lactate plays a role in regulating the tumor microenvironment (TME), immune cell function, autophagy, and epigenetic reprogramming. The purpose of this review is to gather and summarize the existing knowledge of the lactate's functions in the dysregulation of the immune system, which can play a crucial role in the development of HBV-related HCC. Therefore, it is reasonable to hypothesize that lactate with intriguing functions can be considered an immunomodulatory metabolite in immunotherapy.
Collapse
Affiliation(s)
- Sheida Behzadi Sheikhrobat
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salva Kazemipour-Khabbazi
- Department of English Language and Persian Literature, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Ramezannia
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayeh Shokri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
47
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
48
|
Dsouza L, Pant A, Pope B, Yang Z. Role of vaccinia virus growth factor in stimulating the mTORC1-CAD axis of the de novo pyrimidine pathway under different nutritional cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601567. [PMID: 39005450 PMCID: PMC11245005 DOI: 10.1101/2024.07.02.601567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Vaccinia virus (VACV), the prototype poxvirus, actively reprograms host cell metabolism upon infection. However, the nature and molecular mechanisms remain largely elusive. Given the diverse nutritional exposures of cells in different physiological contexts, it is essential to understand how VACV may alter various metabolic pathways in different nutritional conditions. In this study, we established the importance of de novo pyrimidine biosynthesis in VACV infection. We elucidated the significance of vaccinia growth factor (VGF), a viral early protein and a homolog of cellular epidermal growth factor, in enabling VACV to phosphorylate the key enzyme CAD of the de novo pyrimidine pathway at serine 1859, a site known to positively regulate CAD activity. While nutrient-poor conditions typically inhibit mTORC1 activation, VACV activates CAD via mTORC1-S6K1 signaling axis, in conditions where glutamine and asparagine are absent. However, unlike its cellular homolog, epidermal growth factor (EGF), VGF peptide alone in the absence of VACV infection has minimal ability to activate CAD, suggestive of the involvement of other viral factor(s) and differential functions to EGF acquired during poxvirus evolution. Our research provides a foundation for understanding the regulation of a significant metabolic pathway, namely, de novo pyrimidine synthesis during VACV infection, shedding new light on viral regulation under distinct nutritional environments. This study not only has the potential to contribute to the advancement of antiviral treatments but also improve the development of VACV as an oncolytic agent and vaccine vector.
Collapse
Affiliation(s)
- Lara Dsouza
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Anil Pant
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Blake Pope
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
49
|
Shen D, Zhang G, Weng X, Liu R, Liu Z, Sheng X, Zhang Y, Liu Y, Mu Y, Zhu Y, Sun E, Zhang J, Li F, Xia C, Ge J, Liu Z, Bu Z, Zhao D. A genome-wide CRISPR/Cas9 knockout screen identifies TMEM239 as an important host factor in facilitating African swine fever virus entry into early endosomes. PLoS Pathog 2024; 20:e1012256. [PMID: 39024394 PMCID: PMC11288436 DOI: 10.1371/journal.ppat.1012256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/30/2024] [Accepted: 05/13/2024] [Indexed: 07/20/2024] Open
Abstract
African swine fever (ASF) is a highly contagious, fatal disease of pigs caused by African swine fever virus (ASFV). The complexity of ASFV and our limited understanding of its interactions with the host have constrained the development of ASFV vaccines and antiviral strategies. To identify host factors required for ASFV replication, we developed a genome-wide CRISPR knockout (GeCKO) screen that contains 186,510 specific single guide RNAs (sgRNAs) targeting 20,580 pig genes and used genotype II ASFV to perform the GeCKO screen in wild boar lung (WSL) cells. We found that knockout of transmembrane protein 239 (TMEM239) significantly reduced ASFV replication. Further studies showed that TMEM239 interacted with the early endosomal marker Rab5A, and that TMEM239 deletion affected the co-localization of viral capsid p72 and Rab5A shortly after viral infection. An ex vivo study showed that ASFV replication was significantly reduced in TMEM239-/- peripheral blood mononuclear cells from TMEM239 knockout piglets. Our study identifies a novel host factor required for ASFV replication by facilitating ASFV entry into early endosomes and provides insights for the development of ASF-resistant breeding.
Collapse
Affiliation(s)
- Dongdong Shen
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guigen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Renqiang Liu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhiheng Liu
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Xiangpeng Sheng
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuting Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yuanmao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Encheng Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiwen Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
50
|
Hafner A, Meurs N, Garner A, Azar E, Kannan A, Passalacqua KD, Nagrath D, Wobus CE. Norovirus NS1/2 protein increases glutaminolysis for efficient viral replication. PLoS Pathog 2024; 20:e1011909. [PMID: 38976719 PMCID: PMC11257395 DOI: 10.1371/journal.ppat.1011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/18/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Viruses are obligate intracellular parasites that rely on host cell metabolism for successful replication. Thus, viruses rewire host cell pathways involved in central carbon metabolism to increase the availability of building blocks for successful propagation. However, the underlying mechanisms of virus-induced alterations to host metabolism are largely unknown. Noroviruses (NoVs) are highly prevalent pathogens that cause sporadic and epidemic viral gastroenteritis. In the present study, we uncovered several strain-specific and shared host cell metabolic requirements of three murine norovirus (MNV) strains, MNV-1, CR3, and CR6. While all three strains required glycolysis, glutaminolysis, and the pentose phosphate pathway for optimal infection of macrophages, only MNV-1 relied on host oxidative phosphorylation. Furthermore, the first metabolic flux analysis of NoV-infected cells revealed that both glycolysis and glutaminolysis are upregulated during MNV-1 infection of macrophages. Glutamine deprivation affected the viral lifecycle at the stage of genome replication, resulting in decreased non-structural and structural protein synthesis, viral assembly, and egress. Mechanistic studies further showed that MNV infection and overexpression of the non-structural protein NS1/2 increased the enzymatic activity of the rate-limiting enzyme glutaminase. In conclusion, the inaugural investigation of NoV-induced alterations to host glutaminolysis identified NS1/2 as the first viral molecule for RNA viruses that regulates glutaminolysis either directly or indirectly. This increases our fundamental understanding of virus-induced metabolic alterations and may lead to improvements in the cultivation of human NoVs.
Collapse
Affiliation(s)
- Adam Hafner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Noah Meurs
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ari Garner
- Department of Microbiology, Immunology, and Inflammation, University of Illinois, Chicago, Illinois, United States of America
| | - Elaine Azar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aditya Kannan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karla D. Passalacqua
- Graduate Medical Education, Henry Ford Health, Detroit, Michigan, United States of America
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|