1
|
Jiang Y, Tu X, Guo J, Zheng J, Liao X, He Y, Xie Y, Zhang Q, Qing Y. DcR3 suppresses the NF-κB pathway and the NLRP3 inflammasome activation in gouty inflammation. Chin Med J (Engl) 2024:00029330-990000000-01232. [PMID: 39294866 DOI: 10.1097/cm9.0000000000003274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Indexed: 09/21/2024] Open
Affiliation(s)
- Yi Jiang
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xin Tu
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Jianwei Guo
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Jianxiong Zheng
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xia Liao
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yixi He
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yan Xie
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Quanbo Zhang
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yufeng Qing
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| |
Collapse
|
2
|
Liu YC, Liu SY, Lin YC, Liu CJ, Chang KW, Lin SC. The disruption of NEAT1-miR-125b-5p-SLC1A5 cascade defines the oncogenicity and differential immune profile in head and neck squamous cell carcinoma. Cell Death Discov 2024; 10:392. [PMID: 39223142 PMCID: PMC11369192 DOI: 10.1038/s41420-024-02158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming sustains malignant head and neck squamous cell carcinoma (HNSCC) to overcome stressful microenvironments, and increased glutamine uptake is a common metabolic hallmark in cancers. Since metabolic reprogramming has been recognized as a new therapeutic target for tumor cells, understanding the regulatory axis of glutamine uptake in HNSCC and its potential downstream effects in its pathogenesis of HNSCC would be incredibly beneficial. Bioinformatic analysis of the Cancer Genome Atlas (TCGA)-HNSCC dataset and RNAseq analysis performed on HNSCC indicated that SLC1A5 was the most dysregulated transporter among the seven homologous glutamate or neutral amino acid transporters in the SLC1A family. To further clarify the role of SLC1A5 in HNSCC, we knocked down SLC1A5 expression. This knockdown decelerated cell growth, induced G0/G1 arrest, diminished tumorigenicity, and increased cleavage caspase3, LC3B, and intracellular Fe2+. Inhibitors against apoptosis, autophagy, or ferroptosis rescued the cell viability repressed by SLC1A5 knockdown. SLC1A5 knockdown also suppressed glutamine uptake, enhanced oxidative stress, and increased sensitivity to cisplatin. CRISPR/dCas9-mediated SLC1A5 induction conferred cisplatin resistance and reduced apoptosis, autophagy, and ferroptosis. Reporter assays and western blot data demonstrated that miR-125b-5p targets and attenuates SLC1A5, while the si-NEAT1 increases miR-125b-5p expression. Analysis of the TCGA-HNSCC databases showed concordant upregulation of NEAT1 and downregulation of miR-125b-5p, along with SLC1A5 upregulation in tumors. Analysis of transcriptomic data revealed that tumors harboring higher SLC1A5 expression had significantly lower immune scores in CD8+, monocytes, and dendritic cells, and higher scores in M0 and M1 macrophages. Disruptions in immune modulation, metabolism, and oxidative stress components were associated with SLC1A5 aberrations in HNSCC. This study concludes that the NEAT1/miR-125b-5p/SLC1A5 cascade modulates diverse activities in oncogenicity, treatment efficacy, and immune cell profiles in head and neck/oral carcinoma.
Collapse
Affiliation(s)
- Ying-Chieh Liu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - So-Yu Liu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Cheng Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
4
|
Su J, Tong Z, Feng Z, Wu S, Zhou F, Li R, Chen W, Ye Z, Guo Y, Yao S, Yu X, Chen Q, Chen L. Protective effects of DcR3-SUMO on lipopolysaccharide-induced inflammatory cells and septic mice. Int J Biol Macromol 2024; 275:133703. [PMID: 38986982 DOI: 10.1016/j.ijbiomac.2024.133703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Despite the high mortality rate associated with sepsis, no specific drugs are available. Decoy receptor 3 (DcR3) is now considered a valuable biomarker and therapeutic target for managing inflammatory conditions. DcR3-SUMO, an analog of DcR3, has a simple production process and high yield. However, its precise underlying mechanisms in sepsis remain unclear. This study investigated the protective effects of DcR3-SUMO on lipopolysaccharide (LPS)-induced inflammatory cells and septic mice. We evaluated the effects of DcR3 intervention and overexpression on intracellular inflammatory cytokine levels in vitro. DcR3-SUMO significantly reduced cytokine levels within inflammatory cells, and notably increased DcR3 protein and mRNA levels in LPS-induced septic mice, confirming its anti-inflammatory efficacy. Our in vitro and in vivo results demonstrated comparable anti-inflammatory effects between DcR3-SUMO and native DcR3. DcR3-SUMO protein administration in septic mice notably enhanced tissue morphology, decreased sepsis scores, and elevated survival rates. Furthermore, DcR3-SUMO treatment effectively lowered inflammatory cytokine levels in the serum, liver, and lung tissues, and mitigated the extent of tissue damage. AlphaFold3 structural predictions indicated that DcR3-SUMO, similar to DcR3, effectively interacts with the three pro-apoptotic ligands, namely TL1A, LIGHT, and FasL. Collectively, DcR3-SUMO and DcR3 exhibit comparable anti-inflammatory effects, making DcR3-SUMO a promising therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China.
| | - Zhiyong Tong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Rui Li
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Zhen Ye
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Guo
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shun Yao
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xing Yu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China.
| | - Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
5
|
Zoccali C, Tripepi G, Stel V, Fu EL, Mallamaci F, Dekker F, Jager KJ. Decoy receptors as biomarkers for exploring aetiology and designing new therapies. Clin Kidney J 2024; 17:sfae222. [PMID: 39184952 PMCID: PMC11341986 DOI: 10.1093/ckj/sfae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 08/27/2024] Open
Abstract
Soluble decoy receptors (DR) are circulating proteins that act as molecular traps for ligands that modulate various signalling pathways. These proteins can be exploited as biomarkers and, in some cases, as drugs in various disease contexts. Inflammation is a key area where DRs have shown significant potential. By binding to pro-inflammatory cytokines, inflammatory DRs, such as soluble tumour necrosis factor receptors (sTNFRs), can inhibit downstream inflammatory signalling. This modulation of the inflammatory response holds promise for therapeutic interventions in various inflammatory conditions, including cardiovascular and chronic kidney diseases. Soluble DRs for advanced glycation end products (sRAGE) bind to advanced glycation end products (AGEs), reducing their detrimental effects on vascular function and atherosclerosis. High circulating sRAGE levels are associated with a lower risk for CV events, highlighting the potential of these soluble receptors for assessing the role of AGEs in CV diseases and managing the attendant risk. DRs may serve as biomarkers and therapeutic agents to advance our understanding of disease mechanisms and improve patients' outcomes. Their ability to modulate signalling pathways in a controlled manner opens up new opportunities for therapeutic interventions in various diseases, ranging from inflammation to cardiovascular and renal disorders.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute, NY, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Giovanni Tripepi
- CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology, Reggio Calabria, Italy
| | - Vianda Stel
- ERA Registry, Amsterdam UMC location and the University of Amsterdam, Department of Medical Informatics, Amsterdam, the Netherlands
- Amsterdam Public Health, Quality of Care, Amsterdam, the Netherlands
| | - Edouard L Fu
- Fresenius Medical Care, Global Medical Office, Crema, Italy
| | - Francesca Mallamaci
- CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology, Reggio Calabria, Italy
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Friedo Dekker
- Fresenius Medical Care, Global Medical Office, Crema, Italy
| | - Kitty J Jager
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Nephrology, Dialysis and Transplantation Unit, Azienda Ospedaliera “Bianchi-Melacrino-Morelli” Grande Ospedale Metropolitano of Reggio Calabria, Italy
| |
Collapse
|
6
|
Li B, Hu P, Liang H, Zhao X, Zhang A, Xu Y, Zhang B, Zhang J. Evaluating the causal effect of circulating proteome on the risk of inflammatory bowel disease-related traits using Mendelian randomization. Front Immunol 2024; 15:1434369. [PMID: 39144148 PMCID: PMC11321985 DOI: 10.3389/fimmu.2024.1434369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Objective This study sought to identify circulating proteins causally linked to Inflammatory Bowel Disease (IBD) traits through a Mendelian Randomization (MR) analytical framework. Methods Using a large-scale, two-sample MR approach, we estimated the genetic links of numerous plasma proteins with IBD and its subtypes, leveraging information from the Inflammatory Bowel Disease Genetics Consortium. To assess the robustness of MR findings, methods like Bayesian colocalization, and Steiger filtering analysis, evaluation of protein-altering variants. Further insights into IBD's underlying mechanisms and therapeutic targets were gleaned from single-cell sequencing analyses, protein-protein interaction assessments, pathway enrichment analyses, and evaluation of drug targets. Results By cis-only MR analysis, we identified 83 protein-phenotype associations involving 27 different proteins associated with at least one IBD subtype. Among these proteins, DAG1, IL10, IL12B, IL23R, MST1, STAT3 and TNFRSF6B showed overlapping positive or negative associations in all IBD phenotypes. Extending to cis + trans MR analysis, we further identified 117 protein-feature associations, including 44 unique proteins, most of which were not detected in the cis-only analysis. In addition, by performing co-localization analysis and Steiger filtering analysis on the prioritized associations, we further confirmed the causal relationship between these proteins and the IBD phenotype and verified the exact causal direction from the protein to the IBD-related feature. Conclusion MR analysis facilitated the identification of numerous circulating proteins associated with IBD traits, unveiling protein-mediated mechanisms and promising therapeutic targets.
Collapse
Affiliation(s)
- Beining Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ping Hu
- Department of Orthopedic, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyan Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xingliang Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Aiting Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yingchong Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bin Zhang
- Department of Orthopedic, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
7
|
Bai W, Yang L, Qiu J, Zhu Z, Wang S, Li P, Zhou D, Wang H, Liao Y, Yu Y, Yang Z, Wen P, Zhang D. Single-cell analysis of CD4+ tissue residency memory cells (TRMs) in adult atopic dermatitis: A new potential mechanism. Genomics 2024; 116:110870. [PMID: 38821220 DOI: 10.1016/j.ygeno.2024.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The pathophysiology of atopic dermatitis (AD) is complex. CD4+ T cells play an essential role in the development of lesions in AD. However, the underlying mechanism remains unclear. In the present study, we investigated the differentially expressed genes (DEGs) between adult AD lesioned and non-lesioned skin using two datasets from the Gene Expression Omnibus (GEO) database. 62 DEGs were shown to be related to cytokine response. Compared to non-lesioned skin, lesioned skin showed immune infiltration with increased numbers of activated natural killer (NK) cells and CD4+ T memory cells (p < 0.01). We then identified 13 hub genes with a strong association with CD4+ T cells using weighted correlation network analysis. Single-cell analysis of AD detected a novel CD4+ T subcluster, CD4+ tissue residency memory cells (TRMs), which were verified through immunohistochemistry (IHC) to be increased in the dermal area of AD. The significant relationship between CD4+ TRM and AD was assessed through further analyses. FOXO1 and SBNO2, two of the 13 hub genes, were characteristically expressed in the CD4+ TRM, but down-regulated in IFN-γ/TNF-α-induced HaCaT cells, as shown using quantitative polymerase chain reaction (qPCR). Moreover, SBNO2 expression was associated with increased Th1 infiltration in AD (p < 0.05). In addition, genes filtered using Mendelian randomization were positively correlated with CD4+ TRM and were highly expressed in IFN-γ/TNF-α-induced HaCaT cells, as determined using qPCR and western blotting. Collectively, our results revealed that the newly identified CD4+ TRM may be involved in the pathogenesis of adult AD.
Collapse
Affiliation(s)
- Wenxuan Bai
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Le Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Qiu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zihan Zhu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuxing Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Peidi Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Dawei Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hongyi Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxuan Liao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao Yu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zijiang Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Puqiao Wen
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Di Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Duan Y, Fang H, Wang J, Ruan B, Yang J, Liu J, Gou S, Li Y, Cheng Z. DcR3-associated risk score: correlating better prognosis and enhanced predictive power in colorectal cancer. Discov Oncol 2024; 15:233. [PMID: 38890197 PMCID: PMC11189376 DOI: 10.1007/s12672-024-01082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Decoy receptor 3 (DcR3), a novel soluble protein belonging to the tumor necrosis factor receptor (TNFR) family, has been previously associated with tumorigenesis in various cancers. However, in our study, we unexpectedly found that DcR3 may promote patient survival time in colorectal cancer (CRC). Through an analysis of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, we discovered that high levels of DcR3 are associated with improved overall survival (OS) and disease-free survival (DFS) in CRC patients. Further investigation revealed that DcR3 is correlated with favorable clinical features in Metastasis 0 (M0) and stage I/II CRC patients, suggesting it may act as a suppressive factor in CRC. Gene Set Enrichment Analysis (GSEA) demonstrated that the high DcR3 group is enriched in the IL-17 signaling pathway and other immune-related pathways, and Single Sample Gene Set Enrichment Analysis (ssGSEA) revealed a higher abundance of Tumor Infiltrating Lymphocytes (TIL) in the DcR3 high group. To better understand the function of DcR3, we constructed a DcR3-associated riskscore (DARS) model using machine learning, comprising three genes (DPP7, KDM3A, and TMEM86B). The DARS model indicated that high riskscore patients have an unfavorable prognosis, and it is associated with advanced stages (III/IV), T3/4 tumors, and N1/2 lymph node involvement. Additionally, high riskscore group exhibited more frequent gene mutations, such as TTN, MUC16, and SYNE1, with SYNE1 mutation being related to poor prognosis. Intriguingly, DcR3 showed higher expression in the low riskscore group. These results suggest that DcR3 could serve as a potential prognostic biomarker in CRC and may play a crucial role in favorably modulating the immune response in this malignancy.
Collapse
Affiliation(s)
- Ying Duan
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China.
| | - Hangrong Fang
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China
| | - Juanhong Wang
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China
| | - Banlai Ruan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Advanced Technology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, China
| | - Juan Yang
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China
| | - Jie Liu
- Medical Research Center, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Siqi Gou
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China
| | - Yijie Li
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China
| | - Zhengyi Cheng
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, People's Republic of China
| |
Collapse
|
9
|
Su J, Chen W, Zhou F, Li R, Tong Z, Wu S, Ye Z, Zhang Y, Lin B, Yu X, Guan B, Feng Z, Chen K, Chen Q, Chen L. Inhibitory mechanisms of decoy receptor 3 in cecal ligation and puncture-induced sepsis. mBio 2024; 15:e0052124. [PMID: 38700314 PMCID: PMC11237498 DOI: 10.1128/mbio.00521-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Despite its high mortality, specific and effective drugs for sepsis are lacking. Decoy receptor 3 (DcR3) is a potential biomarker for the progression of inflammatory diseases. The recombinant human DcR3-Fc chimera protein (DcR3.Fc) suppresses inflammatory responses in mice with sepsis, which is critical for improving survival. The Fc region can exert detrimental effects on the patient, and endogenous peptides are highly conducive to clinical application. However, the mechanisms underlying the effects of DcR3 on sepsis are unknown. Herein, we aimed to demonstrate that DcR3 may be beneficial in treating sepsis and investigated its mechanism of action. Recombinant DcR3 was obtained in vitro. Postoperative DcR3 treatment was performed in mouse models of lipopolysaccharide- and cecal ligation and puncture (CLP)-induced sepsis, and their underlying molecular mechanisms were explored. DcR3 inhibited sustained excessive inflammation in vitro, increased the survival rate, reduced the proinflammatory cytokine levels, changed the circulating immune cell composition, regulated the gut microbiota, and induced short-chain fatty acid synthesis in vivo. Thus, DcR3 protects against CLP-induced sepsis by inhibiting the inflammatory response and apoptosis. Our study provides valuable insights into the molecular mechanisms associated with the protective effects of DcR3 against sepsis, paving the way for future clinical studies. IMPORTANCE Sepsis affects millions of hospitalized patients worldwide each year, but there are no sepsis-specific drugs, which makes sepsis therapies urgently needed. Suppression of excessive inflammatory responses is important for improving the survival of patients with sepsis. Our results demonstrate that DcR3 ameliorates sepsis in mice by attenuating systematic inflammation and modulating gut microbiota, and unveil the molecular mechanism underlying its anti-inflammatory effect.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Rui Li
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Tong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhen Ye
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Ben Lin
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Xing Yu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Guan J, Huang X, Zhou Z, Li S, Wang F, Han Y, Yin N. HIF-1α regulates DcR3 to promote the development of endometriosis. Eur J Obstet Gynecol Reprod Biol 2024; 296:185-193. [PMID: 38458034 DOI: 10.1016/j.ejogrb.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the expression and clinical significance of HIF-1α and DcR3 in endometriosis by analysing clinical case data. Tissue samples were collected for tissue chip analysis and staining, and human endometrial stromal cells were isolated and cultured for cell experiments. Additionally, experiments were conducted on collected peritoneal fluid to explore the association and role of HIF-1α and DcR3 in endometriosis. STUDY DESIGN Patients who visited the Department of Obstetrics and Gynaecology at Central Hospital in Fengxian District, Shanghai, from January 2018 to December 2021 were recruited for this controlled study. Clinical data and tissue chip staining results were collected for multiple regression analysis on the clinical significance of HIF-1α and DcR3. Endometrial tissue, ovarian cysts, and pelvic fluid were collected, and human endometrial stromal cells were cultured. The impact of HIF-1α on DcR3 in different oxygen environments and its role in endometriosis were investigated through PCR, Western blotting, enzyme-linked immunosorbent assay, as well as adhesion and migration assays. RESULTS In patients with endometriosis, the expression of DcR3 and HIF-1α was found to be upregulated and correlated in ectopic endometrium. The expression of DcR3 served as an indicator of the severity of endometriosis. Hypoxia induced the expression of DcR3, which was regulated by HIF-1α and promoted migration and adhesion. CONCLUSION DcR3 can be used as a clinical indicator to assess the severity of endometriosis. The hypoxic environment in endometriosis enhances disease progression by regulating DcR3 through HIF-1α.
Collapse
Affiliation(s)
- Jianhua Guan
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Xuhong Huang
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Ziyang Zhou
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Shaojing Li
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Fengmian Wang
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Yuhong Han
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Nuo Yin
- Department of Gynecology, Shanghai Fengxian District Central Hospital, Shanghai 201499, China.
| |
Collapse
|
11
|
Bao S, Yi M, Xiang B, Chen P. Antitumor mechanisms and future clinical applications of the natural product triptolide. Cancer Cell Int 2024; 24:150. [PMID: 38678240 PMCID: PMC11055311 DOI: 10.1186/s12935-024-03336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Triptolide (TPL) is a compound sourced from Tripterygium wilfordii Hook. F., a traditional Chinese medicinal herb recognized for its impressive anti-inflammatory, anti-angiogenic, immunosuppressive, and antitumor qualities. Notwithstanding its favorable attributes, the precise mechanism through which TPL influences tumor cells remains enigmatic. Its toxicity and limited water solubility significantly impede the clinical application of TPL. We offer a comprehensive overview of recent research endeavors aimed at unraveling the antitumor mechanism of TPL in this review. Additionally, we briefly discuss current strategies to effectively manage the challenges associated with TPL in future clinical applications. By compiling this information, we aim to enhance the understanding of the underlying mechanisms involved in TPL and identify potential avenues for further advancement in antitumor therapy.
Collapse
Affiliation(s)
- Shiwei Bao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
12
|
Naeem A, Noureen N, Al-Naemi SK, Al-Emadi JA, Khan MJ. Computational design of anti-cancer peptides tailored to target specific tumor markers. BMC Chem 2024; 18:39. [PMID: 38388460 PMCID: PMC10882887 DOI: 10.1186/s13065-024-01143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Anti-cancer peptides (ACPs) are short peptides known for their ability to inhibit tumor cell proliferation, migration, and the formation of tumor blood vessels. In this study, we designed ACPs to target receptors often overexpressed in cancer using a systematic in silico approach. Three target receptors (CXCR1, DcR3, and OPG) were selected for their significant roles in cancer pathogenesis and tumor cell proliferation. Our peptide design strategy involved identifying interacting residues (IR) of these receptors, with their natural ligands serving as a reference for designing peptides specific to each receptor. The natural ligands of these receptors, including IL8 for CXCR1, TL1A for DcR3, and RANKL for OPG, were identified from the literature. Using the identified interacting residues (IR), we generated a peptide library through simple permutation and predicted the structure of each peptide. All peptides were analyzed using the web-based prediction server for Anticancer peptides, AntiCP. Docking simulations were then conducted to analyze the binding efficiencies of peptides with their respective target receptors, using VEGA ZZ and Chimera for interaction analysis. Our analysis identified HPKFIKELR as the interacting residues (IR) of CXCR-IL8. For DcR3, we utilized three domains from TL1A (TDSYPEP, TKEDKTF, LGLAFTK) as templates, along with two regions (SIKIPSS and PDQDATYP) from RANKL, to generate a library of peptide analogs. Subsequently, peptides for each receptor were shortlisted based on their predicted anticancer properties as determined by AntiCP and were subjected to docking analysis. After docking, peptides that exhibited the least binding energy were further analyzed for their detailed interaction with their respective receptors. Among these, peptides C9 (HPKFELY) and C7 (HPKFEWL) for CXCR1, peptides D6 (ADSYPQP) and D18 (AFSYPFP) for DcR3, and peptides P19 (PDTYPQDP) and p16 (PDQDATYP) for OPG, demonstrated the highest affinity and stronger interactions compared to the other peptides. Although in silico predictions indicated a favorable binding affinity of the designed peptides with target receptors, further experimental validation is essential to confirm their binding affinity, stability and pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Aisha Naeem
- QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Nighat Noureen
- Cancer Center and Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, 79430, USA.
| | | | | | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| |
Collapse
|
13
|
Chen H, Wang X, Liu M, Yang J, Kuang Y, Wei R, Tai Z, Zhu Q, Chen Z, Chen J, Wu X. Synergism and attenuation of triptolide through prodrug engineering combined with liposomal scaffold strategy to enhance inhibition in pancreatic cancer. Int J Pharm 2023; 648:123623. [PMID: 37989402 DOI: 10.1016/j.ijpharm.2023.123623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
The prognosis of pancreatic cancer (PCa) is extremely poor because of its resistance to conventional therapies. Many previous studies have demonstrated that triptolide (TPL) has a potent tumoricidal activity on PCa. However, the clinical application of TPL in tumor therapy has been greatly limited by its poor aqueous solubility, short half-time, high toxicity and inefficient delivery. Here, through the engineering of prodrug technology combined with the nanodrug-delivery system (NDDS) strategy, we modified the main active site of TPL C14-OH by esterification reaction to obtain a highly lipophilic prodrug, and then encapsulated the drug in a phospholipid bilayer in liposomal vehicles through the thin-film hydration method for efficient delivery. A delivery system based on TPL lignocerate liposomes (TPL-LA-lip) for drug loading for targeted therapy against PCa was established. Our results showed that TPL-LA demonstrates exceptional compatibility with the phospholipid layer of liposomes, thereby enhancing drug retention in liposomal vehicle and improving tumor targeting and cellular uptake. Moreover, The system of TPL-LA-lip exhibited a sustained drug release profile in vitro, and intravenous administration significantly impedes tumor progression while reducing the toxicity of TPL in the PCa mouse model. These results demonstrated that the prodrug-loaded liposomes could significantly reduce the toxicity of TPL and enhance the biosafety. Overall, this prodrug approach is a simple and effective method to transform the highly toxic TPL into a safe and efficacious nanomedicine with excellent in vivo tolerability for PCa treatment.
Collapse
Affiliation(s)
- Hang Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Shanghai WeiEr Lab, Shanghai 201707, China
| | - Xinyu Wang
- Shanghai WeiEr Lab, Shanghai 201707, China
| | - Mengmeng Liu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jiefen Yang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yanting Kuang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Ruting Wei
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Jianming Chen
- Shanghai WeiEr Lab, Shanghai 201707, China; Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Xin Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Shanghai WeiEr Lab, Shanghai 201707, China; Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
14
|
Su J, Tong Z, Wu S, Zhou F, Chen Q. Research Progress of DcR3 in the Diagnosis and Treatment of Sepsis. Int J Mol Sci 2023; 24:12916. [PMID: 37629097 PMCID: PMC10454171 DOI: 10.3390/ijms241612916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Decoy receptor 3 (DcR3), a soluble glycosylated protein in the tumor necrosis factor receptor superfamily, plays a role in tumor and inflammatory diseases. Sepsis is a life-threatening organ dysfunction caused by the dysregulation of the response to infection. Currently, no specific drug that can alleviate or even cure sepsis in a comprehensive and multi-level manner has been found. DcR3 is closely related to sepsis and considerably upregulated in the serum of those patients, and its upregulation is positively correlated with the severity of sepsis and can be a potential biomarker for diagnosis. DcR3 alone or in combination with other markers has shown promising results in the early diagnosis of sepsis. Furthermore, DcR3 is a multipotent immunomodulator that can bind FasL, LIGHT, and TL1A through decoy action, and block downstream apoptosis and inflammatory signaling. It also regulates T-cell and macrophage differentiation and modulates immune status through non-decoy action; therefore, DcR3 could be a potential drug for the treatment of sepsis. The application of DcR3 in the treatment of a mouse model of sepsis also achieved good efficacy. Here, we introduce and discuss the progress in, and suggest novel ideas for, research regarding DcR3 in the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Z.T.); (S.W.); (F.Z.)
| |
Collapse
|
15
|
Shuptrine CW, Perez VM, Selitsky SR, Schreiber TH, Fromm G. Shining a LIGHT on myeloid cell targeted immunotherapy. Eur J Cancer 2023; 187:147-160. [PMID: 37167762 DOI: 10.1016/j.ejca.2023.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Despite over a decade of clinical trials combining inhibition of emerging checkpoints with a PD-1/L1 inhibitor backbone, meaningful survival benefits have not been shown in PD-1/L1 inhibitor resistant or refractory solid tumours, particularly tumours dominated by a myelosuppressive microenvironment. Achieving durable anti-tumour immunity will therefore likely require combination of adaptive and innate immune stimulation, myeloid repolarisation, enhanced APC activation and antigen processing/presentation, lifting of the CD47/SIRPα (Cluster of Differentiation 47/signal regulatory protein alpha) 'do not eat me' signal, provision of an apoptotic 'pro-eat me' or 'find me' signal, and blockade of immune checkpoints. The importance of effectively targeting mLILRB2 and SIRPAyeloid cells to achieve improved response rates has recently been emphasised, given myeloid cells are abundant in the tumour microenvironment of most solid tumours. TNFSF14, or LIGHT, is a tumour necrosis superfamily ligand with a broad range of adaptive and innate immune activities, including (1) myeloid cell activation through Lymphotoxin Beta Receptor (LTβR), (2) T/NK (T cell and natural killer cell) induced anti-tumour immune activity through Herpes virus entry mediator (HVEM), (3) potentiation of proinflammatory cytokine/chemokine secretion through LTβR on tumour stromal cells, (4) direct induction of tumour cell apoptosis in vitro, and (5) the reorganisation of lymphatic tissue architecture, including within the tumour microenvironment (TME), by promoting high endothelial venule (HEV) formation and induction of tertiary lymphoid structures. LTBR (Lymphotoxin beta receptor) and HVEM rank highly amongst a range of costimulatory receptors in solid tumours, which raises interest in considering how LIGHT-mediated costimulation may be distinct from a growing list of immunotherapy targets which have failed to provide survival benefit as monotherapy or in combination with PD-1 inhibitors, particularly in the checkpoint acquired resistant setting.
Collapse
Affiliation(s)
- Casey W Shuptrine
- Shattuck Labs Inc., Austin, TX, USA; Shattuck Labs Inc., Durham, NC, USA
| | | | | | - Taylor H Schreiber
- Shattuck Labs Inc., Austin, TX, USA; Shattuck Labs Inc., Durham, NC, USA
| | - George Fromm
- Shattuck Labs Inc., Austin, TX, USA; Shattuck Labs Inc., Durham, NC, USA.
| |
Collapse
|
16
|
Dey S, Ghosh A, Banerjee M. A mathematical modeling technique to understand the role of decoy receptors in ligand-receptor interaction. Sci Rep 2023; 13:6523. [PMID: 37085701 PMCID: PMC10121693 DOI: 10.1038/s41598-023-33596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023] Open
Abstract
The ligand-receptor interaction is fundamental to many cellular processes in eukaryotic cells such as cell migration, proliferation, adhesion, signaling and so on. Cell migration is a central process in the development of organisms. Receptor induced chemo-tactic sensitivity plays an important role in cell migration. However, recently some receptors identified as decoy receptors, obstruct some mechanisms of certain regular receptors. DcR3 is one such important decoy receptor, generally found in glioma cell, RCC cell and many various malignant cells which obstruct some mechanism including apoptosis cell-signaling, cell inflammation, cell migration. The goal of our work is to mathematically formulate ligand-receptor interaction induced cell migration in the presence of decoy receptors. We develop here a novel mathematical model, consisting of four coupled partial differential equations which predict the movement of glioma cells due to the reaction-kinetic mechanism between regular receptors CD95, its ligand CD95L and decoy receptors DcR3 as obtained in experimental results. The aim is to measure the number of cells in the chamber's filter for different concentrations of ligand in presence of decoy receptors and compute the distance travelled by the cells inside filter due to cell migration. Using experimental results, we validate our model which suggests that the concentration of ligands plays an important role in cell migration.
Collapse
Affiliation(s)
- Subrata Dey
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Aditi Ghosh
- Department of Mathematics, Texas A &M Commerce, Commerce, TX, USA.
| | - Malay Banerjee
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
17
|
Zwolak A, Chan SR, Harvilla P, Mahady S, Armstrong AA, Luistro L, Tamot N, Yamada D, Derebe M, Pomerantz S, Chiu M, Ganesan R, Chowdhury P. A stable, engineered TL1A ligand co-stimulates T cells via specific binding to DR3. Sci Rep 2022; 12:20538. [PMID: 36446890 PMCID: PMC9709071 DOI: 10.1038/s41598-022-24984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
TL1A (TNFSF15) is a TNF superfamily ligand which can bind the TNFRSF member death receptor 3 (DR3) on T cells and the soluble decoy receptor DcR3. Engagement of DR3 on CD4+ or CD8+ effector T cells by TL1A induces downstream signaling, leading to proliferation and an increase in secretion of inflammatory cytokines. We designed a stable recombinant TL1A molecule that (1) displays high monodispersity and stability, (2) displays the ability to activate T cells in vitro and in vivo, and (3) lacks binding to DcR3 while retaining functional activity via DR3. Together these results suggest the TL1A ligand can be amenable to therapeutic development on its own or paired with a tumor-targeting moiety.
Collapse
Affiliation(s)
- Adam Zwolak
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Szeman Ruby Chan
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Paul Harvilla
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Sally Mahady
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Anthony A. Armstrong
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Leopoldo Luistro
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Ninkka Tamot
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Douglas Yamada
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Mehabaw Derebe
- grid.417993.10000 0001 2260 0793Merck Research Laboratories, Discovery Biologics, Protein Sciences, South San Francisco, CA USA
| | - Steven Pomerantz
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Mark Chiu
- Tavotek Biotherapeutics, Spring House, PA USA
| | - Rajkumar Ganesan
- grid.417886.40000 0001 0657 5612Immunotherapeutics, Amgen, South San Francisco, CA USA
| | - Partha Chowdhury
- grid.497530.c0000 0004 0389 4927Cell Engineering and Early Development, Janssen Research & Development, Spring House, PA USA
| |
Collapse
|
18
|
Imran S, Neeland MR, Peng S, Vlahos A, Martino D, Dharmage SC, Tang MLK, Sawyer S, Dang TD, McWilliam V, Peters RL, Koplin JJ, Perrett KP, Novakovic B, Saffery R. Immuno-epigenomic analysis identifies attenuated interferon responses in naïve CD4 T cells of adolescents with peanut and multi-food allergy. Pediatr Allergy Immunol 2022; 33:e13890. [PMID: 36433861 DOI: 10.1111/pai.13890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND IgE-mediated food allergies have been linked to suboptimal naïve CD4 T (nCD4T) cell activation in infancy, underlined by epigenetic and transcriptomic variation. Similar attenuated nCD4T cell activation in adolescents with food allergy have also been reported, but these are yet to be linked to specific epigenetic or transcriptional changes. METHODS We generated genome-wide DNA methylation data in purified nCD4 T cells at quiescence and following activation in a cohort of adolescents (aged 10-15 years old) with peanut allergy (peanut only or peanut + ≥1 additional food allergy) (FA, n = 29), and age-matched non-food allergic controls (NA, n = 18). Additionally, we assessed transcriptome-wide gene expression and cytokine production in these cells following activation. RESULTS We found widespread changes in DNA methylation in both NA and FA nCD4T cells in response to activation, associated with the T cell receptor signaling pathway. Adolescents with FA exhibit unique DNA methylation signatures at quiescence and post-activation at key genes involved in Th1/Th2 differentiation (RUNX3, RXRA, NFKB1A, IL4R), including a differentially methylated region (DMR) at the TNFRSF6B promoter, linked to Th1 proliferation. Combined analysis of DNA methylation, transcriptomic data and cytokine output in the same samples identified an attenuated interferon response in nCD4T cells from FA individuals following activation, with decreased expression of several interferon genes, including IFN-γ and a DMR at a key downstream gene, BST2. CONCLUSION We find that attenuated nCD4T cell responses from adolescents with food allergy are associated with specific epigenetic variation, including disruption of interferon responses, indicating dysregulation of key immune pathways that may contribute to a persistent FA phenotype. However, we recognize the small sample size, and the consequent restraint on reporting adjusted p-value statistics as limitations of the study. Further study is required to validate these findings.
Collapse
Affiliation(s)
- Samira Imran
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Melanie R Neeland
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Stephen Peng
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Amanda Vlahos
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - David Martino
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Telethon Kids Institute, University of Western, Perth, Nedlands, Australia
| | - Shyamali C Dharmage
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Susan Sawyer
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Centre for Adolescent Health, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Thanh D Dang
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Vicki McWilliam
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Rachel L Peters
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jennifer J Koplin
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Zhu JJ, Stenfeldt C, Bishop EA, Canter JA, Eschbaumer M, Rodriguez LL, Arzt J. Inferred Causal Mechanisms of Persistent FMDV Infection in Cattle from Differential Gene Expression in the Nasopharyngeal Mucosa. Pathogens 2022; 11:pathogens11080822. [PMID: 35894045 PMCID: PMC9329776 DOI: 10.3390/pathogens11080822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) can persistently infect pharyngeal epithelia in ruminants but not in pigs. Our previous studies demonstrated that persistent FMDV infection in cattle was associated with under-expression of several chemokines that recruit immune cells. This report focuses on the analysis of differentially expressed genes (DEG) identified during the transitional phase of infection, defined as the period when animals diverge between becoming carriers or terminators. During this phase, Th17-stimulating cytokines (IL6 and IL23A) and Th17-recruiting chemokines (CCL14 and CCL20) were upregulated in animals that were still infected (transitional carriers) compared to those that had recently cleared infection (terminators), whereas chemokines recruiting neutrophils and CD8+ T effector cells (CCL3 and ELR+CXCLs) were downregulated. Upregulated Th17-specific receptor, CCR6, and Th17-associated genes, CD146, MIR155, and ThPOK, suggested increased Th17 cell activity in transitional carriers. However, a complex interplay of the Th17 regulatory axis was indicated by non-significant upregulation of IL17A and downregulation of IL17F, two hallmarks of TH17 activity. Other DEG suggested that transitional carriers had upregulated aryl hydrocarbon receptor (AHR), non-canonical NFκB signaling, and downregulated canonical NFκB signaling. The results described herein provide novel insights into the mechanisms of establishment of FMDV persistence. Additionally, the fact that ruminants, unlike pigs, produce a large amount of AHR ligands suggests a plausible explanation of why FMDV persists in ruminants, but not in pigs.
Collapse
Affiliation(s)
- James J. Zhu
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
- Correspondence: (J.J.Z.); (J.A.); Tel.: +1-631-323-3340 (J.J.Z.); +1-631-323-4421 (J.A.); Fax: +1-631-323-3006 (J.A.)
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Elizabeth A. Bishop
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
| | - Jessica A. Canter
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
- Plum Island Animal Disease Center Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
- Correspondence: (J.J.Z.); (J.A.); Tel.: +1-631-323-3340 (J.J.Z.); +1-631-323-4421 (J.A.); Fax: +1-631-323-3006 (J.A.)
| |
Collapse
|
20
|
Xu WD, Li R, Huang AF. Role of TL1A in Inflammatory Autoimmune Diseases: A Comprehensive Review. Front Immunol 2022; 13:891328. [PMID: 35911746 PMCID: PMC9329929 DOI: 10.3389/fimmu.2022.891328] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 01/10/2023] Open
Abstract
TL1A, also called TNFSF15, is a member of tumor necrosis factor family. It is expressed in different immune cell, such as monocyte, macrophage, dendritic cell, T cell and non-immune cell, for example, synovial fibroblast, endothelial cell. TL1A competitively binds to death receptor 3 or decoy receptor 3, providing stimulatory signal for downstream signaling pathways, and then regulates proliferation, activation, apoptosis of and cytokine, chemokine production in effector cells. Recent findings showed that TL1A was abnormally expressed in autoimmune diseases, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, primary biliary cirrhosis, systemic lupus erythematosus and ankylosing spondylitis. In vivo and in vitro studies further demonstrated that TL1A was involved in development and pathogenesis of these diseases. In this study, we comprehensively discussed the complex immunological function of TL1A and focused on recent findings of the pleiotropic activity conducted by TL1A in inflammatory autoimmune disease. Finish of the study will provide new ideas for developing therapeutic strategies for these diseases by targeting TL1A.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Rong Li
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: An-Fang Huang,
| |
Collapse
|
21
|
Lagou S, Grapsa D, Syrigos N, Bamias G. The Role of Decoy Receptor DcR3 in Gastrointestinal Malignancy. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:411-421. [PMID: 35813013 PMCID: PMC9254098 DOI: 10.21873/cdp.10124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Malignancies are among the leading causes of mortality worldwide. Early detection and treatment are the primary targets of clinical and translational research, and may be facilitated by the recognition of novel diagnostic and prognostic biomarkers. Decoy receptor 3 (DcR3) is a soluble receptor of the tumor necrosis factor receptor superfamily of proteins (TNFRSF), which associates with its respective TNF-like ligands, Fas-L, LIGHT, and TL1A. DcR3 has been recognised as a significant anti-apoptotic factor with prominent involvement in various inflammatory and neoplastic conditions. Increased intratumor expression of DcR3 and elevated soluble DcR3 protein content in the sera of patients has been reported for various malignancies. Recent published work has suggested that monitoring of local and systemic DcR3 may provide an attractive biomarker, mainly for defining subgroups of patients with aggressive tumor behaviour and poor prognosis. The aim of the present review is to summarize and critically present existing evidence regarding the potential clinical importance of monitoring DcR3 expression in patients with malignancies of the gastrointestinal tract, as well as liver and pancreatic cancer. We also present a detailed description of the pathophysiological basis that may underlie the involvement of DcR3 in gastrointestinal carcinogenesis. Based on these data, we comment on the potential applicability of DcR3 monitoring in the diagnosis and, most importantly, the prognostic stratification of patients.
Collapse
Affiliation(s)
- Styliani Lagou
- Oncology Unit, 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Grapsa
- Oncology Unit, 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Syrigos
- Oncology Unit, 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Bamias
- GI Unit, 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Weng SC, Wen MC, Hsieh SL, Chen NJ, Tarng DC. Decoy Receptor 3 Suppresses T-Cell Priming and Promotes Apoptosis of Effector T-Cells in Acute Cell-Mediated Rejection: The Role of Reverse Signaling. Front Immunol 2022; 13:879648. [PMID: 35720343 PMCID: PMC9201909 DOI: 10.3389/fimmu.2022.879648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background Decoy receptor 3 (DcR3) belongs to the tumor necrosis factor (TNF) receptor superfamily and neutralizes TNF ligands, including FasL and TRAIL, to prevent T activation during T-cell priming. However, the cellular mechanisms underlying acute cell-mediated rejection (ACMR) remain unknown. Methods We generated DcR3 transgenic (Tg) mice and mice with high DcR3 expression (HDE) to study both in vivo and in vitro. FasR RNA knockdown in immortalized CD4+CD8+ T-cells was used to survey the role of DcR3 on FasR/Fas-associated protein with death domain (FADD)/caspase 8 pathway and its cross-link to TNF receptor-associated factor 1 (TNFR1)-associated death domain protein (TRADD) in suppressing TNFR1. TNF/TRADD knockout mice were used to show the importance of TNF adaptor protein. Results DcR3.Fc suppressed C57BL/6 female T-cell activation and transformation into CD4+CD69+, CD4+CD44+, and CD4+CD25+Foxp3+ when compared with isotype IgG1 and its co-treatment with FasL/TRAIL after exposing to bone marrow-derived dendritic cells (BMDCs) that carried alloantigen with male H-Y and minor antigenic determinant. Interleukin-17 and interferon-γ productions by BMDC-activated T-cells were lowered after co-treating with DcR3.Fc. DcR3.Fc induced effector T-cells (Teffs) and was susceptible to FasR-mediated apoptosis through the FADD/TRADD/caspase 8 pathway. After exposing to DcR3.Fc, TRADD was silenced, likely turning down the inflammatory response. The systemic effects of DcR3 Tg mice and HDE phenotype induced by the promoter of cytomegalovirus not only attenuated ACMR severity but also ameliorated the high serum creatinine and blood urea nitrogen levels even with high T-cell exposure frequencies. Besides this, DcR3 has minor biological effects on both MHC-matched and MHC-mismatched models. Conclusions High DcR3 doses protect renal tubular epithelial cells from acute T-cell attack during the T-cell priming stage via interfering with TNF ligand-mediated reverse signaling and possibly promoting Teff apoptosis through FasR upregulation. Our findings supported that the decoy receptor is involved in T-cell modulation in kidney transplant rejection.
Collapse
Affiliation(s)
- Shuo-Chun Weng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.,Institute of Clinical Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center for Geriatrics and Gerontology, Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Mei-Chin Wen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shie-Liang Hsieh
- Institute of Clinical Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Nien-Jung Chen
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Inflammation and Immunity Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Der-Cherng Tarng
- Institute of Clinical Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
23
|
Tamura I, Tamura H, Kawamoto-Jozaki M, Shirafuta Y, Fujimura T, Doi-Tanaka Y, Mihara Y, Taketani T, Sugino N. Effects of Melatonin on the Transcriptome of Human Granulosa Cells, Fertilization and Blastocyst Formation. Int J Mol Sci 2022; 23:ijms23126731. [PMID: 35743171 PMCID: PMC9223589 DOI: 10.3390/ijms23126731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 01/25/2023] Open
Abstract
Melatonin is a promising reagent that can improve assisted reproductive technology (ART) outcomes in infertility patients. However, melatonin is not effective for all infertile patients, and it remains unclear for which patients melatonin would be effective. This study examined the effects of melatonin on ART outcomes and examined its mechanisms. Melatonin increased the fertilization rate in patients whose fertilization rates in the previous cycle were less than 50%, but not in patients whose fertilization rates were more than 50% in the previous cycle. Melatonin increased the blastocyst formation rate in patients whose embryo development rates in the previous cycle were less than 50%, but not in patients whose embryo development rates were more than 50% in the previous cycle. To clarify its mechanisms, transcriptome changes by melatonin treatment in granulosa cells (GCs) of the patients were examined by RNA-sequence. Melatonin treatment altered the transcriptomes of GCs of patients with poor ART outcomes so that they were similar to the transcriptomes of patients with good ART outcomes. The altered genes were associated with the inhibition of cell death and T-cell activity, and the activation of steroidogenesis and angiogenesis. Melatonin treatment was effective for patients with poor fertilization rates and poor embryo development rates in the previous ART cycle. Melatonin alters the GCs transcriptome and, thus, their functions, and this could improve the oocyte quality, leading to good ART outcomes.
Collapse
Affiliation(s)
| | - Hiroshi Tamura
- Correspondence: ; Tel.: +81-836-22-2288; Fax: +81-836-22-2287
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Transcriptomics analysis reveals key lncRNAs and genes related to the infection of porcine lung macrophages by Glaesserella parasuis. Microb Pathog 2022; 169:105617. [DOI: 10.1016/j.micpath.2022.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
|
25
|
Wu NL, Huang DY, Hsieh SL, Dai YS, Lin WW. Decoy receptor 3 is involved in epidermal keratinocyte commitment to terminal differentiation via EGFR and PKC activation. Exp Mol Med 2022; 54:542-551. [PMID: 35478210 PMCID: PMC9076855 DOI: 10.1038/s12276-022-00762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/04/2021] [Accepted: 01/09/2022] [Indexed: 11/30/2022] Open
Abstract
Decoy receptor 3 (DcR3) is a soluble receptor for Fas ligand, LIGHT and TL1A, but it also exerts effector functions. Previously, we found that DcR3 is upregulated in the serum and lesional skin of patients with psoriasis and is upregulated by EGFR activation in proliferating primary human epidermal keratinocytes. However, the functional role of intracellular DcR3 in keratinocyte differentiation is still incompletely defined. Herein, primary cultured human epidermal keratinocytes were differentiated by phorbol 12-myristate 13-acetate (PMA) treatment, calcium treatment and cell confluence, which are three standard in vitro differentiation models. We found that the constitutive expression of the DcR3 gene and protein was progressively suppressed during terminal differentiation of keratinocytes. These changes were correlated with downregulation of EGFR activation during keratinocyte differentiation. EGFR inhibition by gefitinib further decreased confluence-induced suppression of DcR3 mRNA expression, and, vice versa, knocking down DcR3 expression attenuated EGFR and EGFR ligand expression as well as EGFR activation. Under conditions without a change in cell growth, DcR3 silencing reduced the expression of involucrin and transglutaminase 1 but enhanced the induction of the terminal differentiation markers keratin 10 and loricrin. Of note, DcR3 interacted with PKCα and PKCδ and enhanced PKC activity. In keratinocytes with PKCα and PKCδ silencing, differentiation markers were differentially affected. In conclusion, DcR3 expression in keratinocytes is regulated by EGFR and forms a positive feedback loop to orchestrate constitutive EGFR and PKC activity. During differentiation, DcR3 is downregulated and involved in modulating the pattern of terminal differentiation. A protein linked to cancer and various inflammatory diseases may also be an important driver for the skin condition in psoriasis. The outer surface of the skin is formed by cells called keratinocytes, which transition from a highly proliferative state to a fully mature state where they no longer divide. This developmental process is disrupted in psoriasis. Researchers led by Wan-Wan Lin at National Taiwan University, Taipei, have now identified a prominent role for a protein called decoy receptor 3 (DcR3), which is a biomarker for a variety of disorders and is also abnormally expressed in keratinocytes in psoriatic lesions. Lin and colleagues demonstrated that DcR3 interacts with multiple cellular signaling pathways that coordinate cell differentiation. These findings reveal how aberrant DcR3 activity might lead to the abnormal keratinocyte developmental behavior observed in psoriasis.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan, ROC.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan, ROC.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, ROC.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan, ROC
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | - Yang-Shia Dai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC. .,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
26
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
27
|
Kefaloyianni E. Soluble forms of cytokine and growth factor receptors: Mechanisms of generation and modes of action in the regulation of local and systemic inflammation. FEBS Lett 2022; 596:589-606. [PMID: 35113454 DOI: 10.1002/1873-3468.14305] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022]
Abstract
Cytokine and growth factor receptors are usually transmembrane proteins but they can also exist in soluble forms, either through cleavage and release of their ligand-binding extracellular domain, or through secretion of a soluble isoform. As an extension of this concept, transmembrane receptors on exosomes released into the circulation may act similarly to circulating soluble receptors. These soluble receptors add to the complexity of cytokine and growth factor signalling: they can function as decoy receptor that compete for ligand binding with their respective membrane-bound forms thereby attenuating signalling, or stabilize their ligands, or activate additional signalling events through interactions with other cell-surface proteins. Their soluble nature allows for a functional role away from the production sites, in remote cell types and organs. Accumulating evidence demonstrates that soluble receptors participate in the regulation and orchestration of various key cellular processes, particularly inflammatory responses. In this review, we will discuss release mechanisms of soluble cytokine and growth factor receptors, their mechanisms of action, as well as strategies for targeting their pathways in disease.
Collapse
Affiliation(s)
- Eirini Kefaloyianni
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
28
|
Chua ZMX, Fletcher AL. The LIGHT switch: mechanisms of fibroblast pathology in eosinophilic esophagitis. Mucosal Immunol 2022; 15:195-197. [PMID: 35197559 PMCID: PMC8866120 DOI: 10.1038/s41385-022-00486-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Zoe M. X. Chua
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia
| | - Anne L. Fletcher
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia ,grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, B16 2TT UK
| |
Collapse
|
29
|
Brégeon M, Tomas D, Bernay B, Zatylny-Gaudin C, Georgeault S, Labas V, Réhault-Godbert S, Guyot N. Multifaceted roles of the egg perivitelline layer in avian reproduction: Functional insights from the proteomes of chicken egg inner and outer sublayers. J Proteomics 2022; 258:104489. [DOI: 10.1016/j.jprot.2022.104489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
|
30
|
Abstract
DNA mutation is a common event in the human body, but in most situations, it is fixed right away by the DNA damage response program. In case the damage is too severe to repair, the programmed cell death system will be activated to get rid of the cell. However, if the damage affects some critical components of this system, the genetic scars are kept and multiply through mitosis, possibly leading to cancer someday. There are many forms of programmed cell death, but apoptosis and necroptosis represent the default and backup strategy, respectively, in the maintenance of optimal cell population as well as in cancer prevention. For the same reason, the ideal approach for cancer treatment is to induce apoptosis in the cancer cells because it proceeds 20 times faster than tumor cell proliferation and leaves no mess behind. Induction of necroptosis can be the second choice in case apoptosis becomes hard to achieve, however, necroptosis finishes the job at a cost-inflammation.
Collapse
Affiliation(s)
- Xianmei Meng
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, Inner Mongolia University of Science and Technology, 74506The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Tong Dang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, Inner Mongolia University of Science and Technology, 74506The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, Inner Mongolia University of Science and Technology, 74506The Second Affiliated Hospital of Baotou Medical College, Baotou, China.,Laboratory of Gastrointestinal Injury and Cancer, VA Long Beach Healthcare System, Long Beach, CA, USA.,College of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
31
|
Suri GS, Kaur G, Jha CK, Tiwari M. Understanding idiopathic pulmonary fibrosis - Clinical features, molecular mechanism and therapies. Exp Gerontol 2021; 153:111473. [PMID: 34274426 DOI: 10.1016/j.exger.2021.111473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung fibrosing disease with high prevalence that has a prognosis worse than many cancers. There has been a recent influx of new observations aimed at explaining the mechanisms responsible for the initiation and progression of pulmonary fibrosis. However, despite this, the pathogenesis of the disease is largely unclear. Recent progress has been made in the characterization of specific pathologic and clinical features that have enhanced the understanding of pathologically activated molecular pathways during the onset and progression of IPF. This review highlights several of the advances that have been made and focus on the pathobiology of IPF. The work also details the different factors that are responsible for the disposition of the disease - these may be internal factors such as cellular mechanisms and genetic alterations, or they may be external factors from the environment. The changes that primarily occur in epithelial cells and fibroblasts that lead to the activation of profibrotic pathways are discussed in depth. Finally, a complete repertoire of the treatment therapies that have been used in the past as well as future medications and therapies is provided.
Collapse
|
32
|
Waker CA, Kaufman MR, Brown TL. Current State of Preeclampsia Mouse Models: Approaches, Relevance, and Standardization. Front Physiol 2021; 12:681632. [PMID: 34276401 PMCID: PMC8284253 DOI: 10.3389/fphys.2021.681632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a multisystemic, pregnancy-specific disorder and a leading cause of maternal and fetal death. PE is also associated with an increased risk for chronic morbidities later in life for mother and offspring. Abnormal placentation or placental function has been well-established as central to the genesis of PE; yet much remains to be determined about the factors involved in the development of this condition. Despite decades of investigation and many clinical trials, the only definitive treatment is parturition. To better understand the condition and identify potential targets preclinically, many approaches to simulate PE in mice have been developed and include mixed mouse strain crosses, genetic overexpression and knockout, exogenous agent administration, surgical manipulation, systemic adenoviral infection, and trophoblast-specific gene transfer. These models have been useful to investigate how biological perturbations identified in human PE are involved in the generation of PE-like symptoms and have improved the understanding of the molecular mechanisms underpinning the human condition. However, these approaches were characterized by a wide variety of physiological endpoints, which can make it difficult to compare effects across models and many of these approaches have aspects that lack physiological relevance to this human disorder and may interfere with therapeutic development. This report provides a comprehensive review of mouse models that exhibit PE-like symptoms and a proposed standardization of physiological characteristics for analysis in murine models of PE.
Collapse
Affiliation(s)
- Christopher A Waker
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R Kaufman
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
33
|
Min D, Wu B, Chen L, Chen R, Wang J, Zhang H, Chen J, Kim S, Zhang L, Xia Z, Lin J. Level of Decoy Receptor 3 for Monitoring Clinical Progression of Severe Burn Patients. J Burn Care Res 2021; 42:925-933. [PMID: 34213565 DOI: 10.1093/jbcr/irz170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The clinical value of Decoy receptor 3 (DcR3) in severe burn is investigated. Ten patients with severe burns were monitored for DcR3, PCT, CRP, IL6, SOFA score, white blood cell (WBC), and platelet. The correlations were analyzed. DcR3 increased on day 1. The nonsurvivors had a steady high level of DcR3 while the survivors had a relatively low level of DcR3. The peak magnitude of DcR3 was high in five nonsurvivors and low in five survivors without overlap. Three patients had a continuously increasing DcR3 level and then died. In the other two nonsurvivors, DcR3 reached the peak and then decreased before death. DcR3 correlated well with PCT (ρ = 0.4469, P < .0001), less with CRP, platelet, IL6, SOFA score and WBC (ρ = 0.4369, 0.4078, 0.3995, 0.2631, 0.1504, respectively, all P < .001). To explore the mechanisms, the HaCaT or THP-1 cells were stimulated by the plasma of burn patients, 45°C, LPS or stimulators of TLRs or NOD2 (PGN, CL264, MDP, iE-DAP, Gardiquimod), and their DcR3 was increased, which could be reduced by GDC-0941 or BEZ235 (inhibitors of PI3K and mTOR). The levels of DcR3 appeared to be a useful biomarker for monitoring the clinical severity and a predictor of mortality of severe burns.
Collapse
Affiliation(s)
- Dong Min
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Bing Wu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Long Chen
- Division of Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqin Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiling Wang
- Department of Oncology, Putian First Hospital, China
| | - Hailong Zhang
- Hailong Zhang Fujian Center for Disease Control and Prevention, Fuzhou, China
| | - Jinrong Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | | | - Lurong Zhang
- Department of Radiation Biology, Fujian Cancer Hospital, Fuzhou, China
| | - Zhaofan Xia
- Brun Center, Shanghai Changhai Hospital, China
| | - Jianhua Lin
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
34
|
A structural perspective on the design of decoy immune modulators. Pharmacol Res 2021; 170:105735. [PMID: 34146695 DOI: 10.1016/j.phrs.2021.105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/23/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Therapeutic mAbs have dominated the class of immunotherapeutics in general and immune checkpoint inhibitors in particular. The high specificity of mAbs to the target molecule as well as their extended half-life and (or) the effector functions raised by the Fc part are some of the important aspects that contribute to the success of this class of therapeutics. Equally potential candidates are decoys and their fusions that can address some of the inherent limitations of mAbs, like immunogenicity, resistance development, low bio-availability and so on, besides maintaining the advantages of mAbs. The decoys are molecules that trap the ligands and prevent them from interacting with the signaling receptors. Although a few FDA-approved decoy immune modulators are very successful, the potential of this class of drugs is yet to be fully realized. Here, we review various strategies employed in fusion protein therapeutics with a focus on the design of decoy immunomodulators from the structural perspective and discuss how the information on protein structure and function can strategically guide the development of next-generation immune modulators.
Collapse
|
35
|
Zolfaghari MA, Arefnezhad R, Parhizkar F, Hejazi MS, Motavalli Khiavi F, Mahmoodpoor A, Yousefi M. T lymphocytes and preeclampsia: The potential role of T-cell subsets and related MicroRNAs in the pathogenesis of preeclampsia. Am J Reprod Immunol 2021; 86:e13475. [PMID: 34043850 DOI: 10.1111/aji.13475] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Innate and adaptive immune systems have a crucial role in initiating and progressing some pregnancy disorders such as preeclampsia (PE), which is one of the pregnancy-specific disorders that could result in neonatal and maternal morbidity and mortality. The dysregulation of the spiral artery and inadequate trophoblast invasion lead to PE symptoms through producing various inflammatory cytokines and anti-angiogenic factors from the placenta. T lymphocytes play a special role in the epithelium and stroma of the human endometrium. CD4+ T helper (Th) cells, Th1/Th2, and Th17/T regulatory (Treg) balance mainly contribute to the establishment of a pregnancy-favorable environment. This review examined the dysregulation of some cytokines produced from T cells, the dysregulation of the transcription factors of Th cells, the expression of chemokine receptors on T cells, as well as the effects of some factors including vitamin D on the activity of T cells, and finally, the dysregulation of various miRNAs related to T cells, which could cause PE.
Collapse
Affiliation(s)
- Mohammad Ali Zolfaghari
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Arefnezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forough Parhizkar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Department of Molecular Medicine, Faculty of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Motavalli Khiavi
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran.,Pasteur Institute of Iran, Department of Virology, Tehran, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Riffelmacher T, Giles DA, Zahner S, Dicker M, Andreyev AY, McArdle S, Perez-Jeldres T, van der Gracht E, Murray MP, Hartmann N, Tumanov AV, Kronenberg M. Metabolic activation and colitis pathogenesis is prevented by lymphotoxin β receptor expression in neutrophils. Mucosal Immunol 2021; 14:679-690. [PMID: 33568785 PMCID: PMC8075978 DOI: 10.1038/s41385-021-00378-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 02/04/2023]
Abstract
Inflammatory bowel disease is characterized by an exacerbated intestinal immune response, but the critical mechanisms regulating immune activation remain incompletely understood. We previously reported that the TNF-superfamily molecule TNFSF14 (LIGHT) is required for preventing severe disease in mouse models of colitis. In addition, deletion of lymphotoxin beta receptor (LTβR), which binds LIGHT, also led to aggravated colitis pathogenesis. Here, we aimed to determine the cell type(s) requiring LTβR and the mechanism critical for exacerbation of colitis. Specific deletion of LTβR in neutrophils (LTβRΔN), but not in several other cell types, was sufficient to induce aggravated colitis and colonic neutrophil accumulation. Mechanistically, RNA-Seq analysis revealed LIGHT-induced suppression of cellular metabolism, and mitochondrial function, that was dependent on LTβR. Functional studies confirmed increased mitochondrial mass and activity, associated with excessive mitochondrial ROS production and elevated glycolysis at steady-state and during colitis. Targeting these metabolic changes rescued exacerbated disease severity. Our results demonstrate that LIGHT signals to LTβR on neutrophils to suppress metabolic activation and thereby prevents exacerbated immune pathogenesis during colitis.
Collapse
Affiliation(s)
- Thomas Riffelmacher
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Sonja Zahner
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Alexander Y Andreyev
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | | | | | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, USA
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
Schranz D, Molnar T, Erdo‐Bonyar S, Simon D, Berki T, Nagy C, Czeiter E, Buki A, Lenzser G, Csecsei P. Increased level of LIGHT/TNFSF14 is associated with survival in aneurysmal subarachnoid hemorrhage. Acta Neurol Scand 2021; 143:530-537. [PMID: 33492677 DOI: 10.1111/ane.13394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Multiple cytokines have been implicated in aneurysmal subarachnoid hemorrhage (aSAH), but tumor necrosis factor superfamily 14 (LIGHT/TNFSF14) and oncostatin-M (OSM) have not been previously explored. AIMS OF THE STUDY The primary objective of this study was to examine the relationship between TNFSF14 and OSM levels and survival. Our secondary goal was to investigate a potential association between these markers and the incidence of delayed cerebral ischemia (DCI). MATERIALS & METHODS We consecutively recruited 60 patients with a clinical diagnosis of aSAH. LIGHT/TNFSF14 and OSM serum concentrations were determined by ELISA. The primary endpoint was survival at Day 30, while development of DCI was assessed as secondary outcome. RESULTS Patients had significantly higher levels of both markers than the control group (median of LIGHT: 18.1 pg/ml vs. 7 pg/ml; p = 0.01; median of OSM: 10.3 pg/ml vs. 2.8 pg/ml, p < 0.001). Significantly lower serum level of LIGHT/TNFSF14 was found in nonsurviving patients (n = 9) compared with survivors (n = 51; p = 0.011). Based on ROC analysis, serum LIGHT/TNFSF14 with a cutoff value of >7.95 pg/ml predicted 30-day survival with a sensitivity of 71% and specificity of 78% (Area: 0.763; 95% CI: 0.604-0.921, p = 0.013). In addition, it was also a predictor of DCI with a sensitivity of 72.7% and a specificity of 62.5% (AUC: 0.702; 95% CI: 0.555-0.849, p = 0.018). Based on binary logistic regression analysis, LIGHT/TNFSF14 was found to be independently associated with 30-day mortality, but not with DCI. CONCLUSION In this cohort, a higher serum level of LIGHT/TNFSF14 was associated with increased survival of patients with aSAH.
Collapse
Affiliation(s)
- Daniel Schranz
- Department of Neurology University of PecsMedical School Pecs Hungary
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Care University of PecsMedical School Pecs Hungary
| | - Szabina Erdo‐Bonyar
- Department of Immunology and Biotechnology University of PecsMedical School Pecs Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology University of PecsMedical School Pecs Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology University of PecsMedical School Pecs Hungary
| | - Csaba Nagy
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
| | - Endre Czeiter
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
- Neurotrauma Research Group Szentágothai Research Centre University of Pécs Pécs Hungary
- MTA‐PTE Clinical Neuroscience MR Research Group Pécs Hungary
| | - Andras Buki
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
| | - Gabor Lenzser
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
| | - Peter Csecsei
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
| |
Collapse
|
38
|
Sood N, Verma DK, Paria A, Yadav SC, Yadav MK, Bedekar MK, Kumar S, Swaminathan TR, Mohan CV, Rajendran KV, Pradhan PK. Transcriptome analysis of liver elucidates key immune-related pathways in Nile tilapia Oreochromis niloticus following infection with tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2021; 111:208-219. [PMID: 33577877 DOI: 10.1016/j.fsi.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most important aquaculture species farmed worldwide. However, the recent emergence of tilapia lake virus (TiLV) disease, also known as syncytial hepatitis of tilapia, has threatened the global tilapia industry. To gain more insight regarding the host response against the disease, the transcriptional profiles of liver in experimentally-infected and control tilapia were compared. Analysis of RNA-Seq data identified 4640 differentially expressed genes (DEGs), which were involved among others in antigen processing and presentation, MAPK, apoptosis, necroptosis, chemokine signaling, interferon, NF-kB, acute phase response and JAK-STAT pathways. Enhanced expression of most of the DEGs in the above pathways suggests an attempt by tilapia to resist TiLV infection. However, upregulation of some of the key genes such as BCL2L1 in apoptosis pathway; NFKBIA in NF-kB pathway; TRFC in acute phase response; and SOCS, EPOR, PI3K and AKT in JAK-STAT pathway and downregulation of the genes, namely MAP3K7 in MAPK pathway; IFIT1 in interferon; and TRIM25 in NF-kB pathway suggested that TiLV was able to subvert the host immune response to successfully establish the infection. The study offers novel insights into the cellular functions that are affected following TiLV infection and will serve as a valuable genomic resource towards our understanding of susceptibility of tilapia to TiLV infection.
Collapse
Affiliation(s)
- Neeraj Sood
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Dev Kumar Verma
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Anutosh Paria
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Shrish Chandra Yadav
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Manoj Kumar Yadav
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Megha Kadam Bedekar
- ICAR-Central Institute of Fisheries Education, Versova, Andheri (W), Mumbai, 400 061, Maharashtra, India
| | - Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Versova, Andheri (W), Mumbai, 400 061, Maharashtra, India
| | - Thangaraj Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-NBFGR, CMFRI Campus, Kochi, 682 018, Kerala, India
| | | | - K V Rajendran
- ICAR-Central Institute of Fisheries Education, Versova, Andheri (W), Mumbai, 400 061, Maharashtra, India
| | - Pravata Kumar Pradhan
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
39
|
Apoptosis-Inducing TNF Superfamily Ligands for Cancer Therapy. Cancers (Basel) 2021; 13:cancers13071543. [PMID: 33801589 PMCID: PMC8036978 DOI: 10.3390/cancers13071543] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a complex disease with apoptosis evasion as one of its hallmarks; therefore, apoptosis induction in transformed cells seems a promising approach as a cancer treatment. TNF apoptosis-inducing ligands, which are naturally present in the body and possess tumoricidal activity, are attractive candidates. The most studied proteins are TNF-α, FasL, and TNF-related apoptosis-inducing ligand (TRAIL). Over the years, different recombinant TNF family-derived apoptosis-inducing ligands and agonists have been designed. Their stability, specificity, and half-life have been improved because most of the TNF ligands have the disadvantages of having a short half-life and affinity to more than one receptor. Here, we review the outlook on apoptosis-inducing ligands as cancer treatments in diverse preclinical and clinical stages and summarize strategies of overcoming their natural limitations to improve their effectiveness.
Collapse
|
40
|
Wolk K, Brembach T, Šimaitė D, Bartnik E, Cucinotta S, Pokrywka A, Irmer M, Triebus J, Witte‐Händel E, Salinas G, Leeuw T, Volk H, Ghoreschi K, Sabat R. Activity and components of the granulocyte colony‐stimulating factor pathway in hidradenitis suppurativa*. Br J Dermatol 2021; 185:164-176. [DOI: 10.1111/bjd.19795] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Affiliation(s)
- K. Wolk
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
- Inflammation and Regeneration of Skin BIH Center for Regenerative Therapies Charité – Universitätsmedizin Berlin Berlin Germany
| | - T.‐C. Brembach
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
- University of PotsdamInstitute of Nutritional ScienceDepartment of Food Chemistry Potsdam Germany
| | - D. Šimaitė
- Data and Data Sciences Sanofi‐Aventis Deutschland GmbH FrankfurtGermany
| | - E. Bartnik
- Immunology and Inflammation Research Sanofi‐Aventis Deutschland GmbH Frankfurt Germany
| | - S. Cucinotta
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
| | - A. Pokrywka
- Department of Dermatology, Venereology and Allergology Charité – Universitätsmedizin Berlin Germany
| | - M.L. Irmer
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
| | - J. Triebus
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
| | - E. Witte‐Händel
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
| | - G. Salinas
- Transcriptome and Genome Core Unit University Medical Center Göttingen Göttingen Germany
| | - T. Leeuw
- Immunology and Inflammation Research Sanofi‐Aventis Deutschland GmbH Frankfurt Germany
| | - H.‐D. Volk
- BIH Center for Regenerative Therapies Charité – Universitätsmedizin Berlin Berlin Germany
- Institute of Medical Immunology Charité – Universitätsmedizin Berlin Germany
| | - K. Ghoreschi
- Department of Dermatology, Venereology and Allergology Charité – Universitätsmedizin Berlin Germany
| | - R. Sabat
- Psoriasis Research and Treatment Centre Charité – Universitätsmedizin Berlin Berlin Germany
- Interdisciplinary group Molecular Immunopathology Dermatology/Medical Immunology Charité – Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
41
|
Pan YG, Huang MT, Sekar P, Huang DY, Lin WW, Hsieh SL. Decoy Receptor 3 Inhibits Monosodium Urate-Induced NLRP3 Inflammasome Activation via Reduction of Reactive Oxygen Species Production and Lysosomal Rupture. Front Immunol 2021; 12:638676. [PMID: 33746978 PMCID: PMC7966727 DOI: 10.3389/fimmu.2021.638676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Gout is a common inflammatory arthritis caused by the deposition of monosodium urate (MSU) crystals in the joints. This activates the macrophages into a proinflammatory state by inducing NLRP3-dependent interleukin-1β (IL-1β) secretion, resulting in neutrophil recruitment. Soluble decoy receptor 3 (DcR3) is an immune modulator and can exert biological functions via decoy and non-decoy actions. Previously, we showed that DcR3 suppresses lipopolysaccharides (LPS)- and virus-induced inflammatory responses in the macrophages and promotes the macrophages into the M2 phenotype. In this study, we clarified the actions of DcR3 and its non-decoy action motif heparin sulfate proteoglycan (HSPG) binding domain (HBD) in the MSU crystal-induced NLRP3 inflammasome activation in the macrophages and in mice. In bone marrow-derived macrophages, THP-1 and U937 cells, we found that the MSU crystal-induced secretion of IL-1β and activation of NLRP3 were suppressed by both DcR3.Fc and HBD.Fc. The suppression of the MSU-induced NLRP3 inflammasome activation is accompanied by the inhibition of lysosomal rupture, mitochondrial production of the reactive oxygen species (ROS), expression of cathepsins, and activity of cathepsin B, without affecting the crystal uptake and the expression of NLRP3 or pro-IL-1β. In the air pouch mice model of gout, MSU induced less amounts of IL-1β and chemokines secretion, an increased M2/M1 macrophage ratio, and a reduction of neutrophil recruitment in DcR3-transgenic mice, which expresses DcR3 in myeloid cells. Similarly, the mice intravenously treated with DcR3.Fc or HBD.Fc displayed less inflammation response. These findings indicate that HBD of DcR3 can reduce MSU crystal-induced NLRP3 inflammasome activation via modulation of mitochondrial and lysosomal functions. Therefore, we, for the first time, demonstrate a new therapeutic potential of DcR3 for the treatment of gout.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Ponarulselvam Sekar
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Clinical Medicine & Immunology Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
42
|
Zhong M, Qiu X, Liu Y, Yang Y, Gu L, Wang C, Chen H, Liu Z, Miao J, Zhuang G. TIPE Regulates DcR3 Expression and Function by Activating the PI3K/AKT Signaling Pathway in CRC. Front Oncol 2021; 10:623048. [PMID: 33718119 PMCID: PMC7943851 DOI: 10.3389/fonc.2020.623048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor-induced protein-8 (TIPE) is highly expressed in colorectal cancer (CRC). Decoy receptor 3 (DcR3) is a soluble secreted protein that can antagonize Fas ligand (FasL)-induced apoptosis and promote tumorigenesis. It remains unclear whether TIPE can regulate DcR3 expression. In this study, we examined this question by analyzing the relationship between these factors in CRC. Bioinformatics and tissue microarrays were used to determine the expression of TIPE and DcR3 and their correlation in CRC. The expression of TIPE and DcR3 in colon cancer cells was detected. Plasma samples were collected from CRC patients, and DcR3 secretion was measured. Then, dual-luciferase reporter gene analysis was performed to assess the interaction between TIPE and DcR3. We exogenously altered TIPE expression and analyzed its function and influence on DcR3 secretion. Lipopolysaccharide (LPS) was used to stimulate TIPE-overexpressing HCT116 cells, and alterations in signaling pathways were detected. Additionally, inhibitors were used to confirm molecular mechanisms. We found that TIPE and DcR3 were highly expressed in CRC patients and that their expression levels were positively correlated. DcR3 was highly expressed in the plasma of cancer patients. We confirmed that TIPE and DcR3 were highly expressed in HCT116 cells. TIPE overexpression enhanced the transcriptional activity of the DcR3 promoter. TIPE activated the PI3K/AKT signaling pathway to regulate the expression of DcR3, thereby promoting cell proliferation and migration and inhibiting apoptosis. In summary, TIPE and DcR3 are highly expressed in CRC, and both proteins are associated with poor prognosis. TIPE regulates DcR3 expression by activating the PI3K/AKT signaling pathway in CRC, thus promoting cell proliferation and migration and inhibiting apoptosis. These findings may have clinical significance and promise for applications in the treatment or prognostication of CRC.
Collapse
Affiliation(s)
- Mengya Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Xingfeng Qiu
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yu Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China.,General Surgery Center of Bazhong Central Hospital, Bazhong, China
| | - Yan Yang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Chenxi Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Huiyu Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongchen Liu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Jiayin Miao
- Department of Neurology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Guohong Zhuang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
43
|
Oriol-Tordera B, Olvera A, Duran-Castells C, Llano A, Mothe B, Massanella M, Dalmau J, Ganoza C, Sanchez J, Calle ML, Clotet B, Martinez-Picado J, Negredo E, Blanco J, Hartigan-O'Connor D, Brander C, Ruiz-Riol M. TL1A-DR3 Plasma Levels Are Predictive of HIV-1 Disease Control, and DR3 Costimulation Boosts HIV-1-Specific T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:3348-3357. [PMID: 33177161 PMCID: PMC7725879 DOI: 10.4049/jimmunol.2000933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Relative control of HIV-1 infection has been linked to genetic and immune host factors. In this study, we analyzed 96 plasma proteome arrays from chronic untreated HIV-1-infected individuals using the classificatory random forest approach to discriminate between uncontrolled disease (plasma viral load [pVL] >50,000 RNA copies/ml; CD4 counts 283 cells/mm3, n = 47) and relatively controlled disease (pVL <10,000 RNA copies/ml; CD4 counts 657 cells/mm3, n = 49). Our analysis highlighted the TNF molecule's relevance, in particular, TL1A (TNFSF15) and its cognate DR3 (TNFSRF25), both of which increased in the relative virus control phenotype. DR3 levels (in plasma and PBMCs) were validated in unrelated cohorts (including long-term nonprogressors), thus confirming their independence from CD4 counts and pVL. Further analysis in combined antiretroviral treatment (cART)-treated individuals with a wide range of CD4 counts (137-1835 cells/mm3) indicated that neither TL1A nor DR3 levels reflected recovery of CD4 counts with cART. Interestingly, in cART-treated individuals, plasma TL1A levels correlated with regulatory T cell frequencies, whereas soluble DR3 was strongly associated with the abundance of effector HLA-DR+CD8+ T cells. A positive correlation was also observed between plasma DR3 levels and the HIV-1-specific T cell responses. In vitro, costimulation of PBMC with DR3-specific mAb increased the magnitude of HIV-1-specific responses. Finally, in splenocytes of DNA.HTI-vaccinated mice, costimulation of HTI peptides and a DR3 agonist (4C12) intensified the magnitude of T cell responses by 27%. These data describe the role of the TL1A-DR3 axis in the natural control of HIV-1 infection and point to the use of DR3 agonists in HIV-1 vaccine regimens.
Collapse
Affiliation(s)
- Bruna Oriol-Tordera
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Alex Olvera
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
| | - Clara Duran-Castells
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Anuska Llano
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Beatriz Mothe
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
- Fundació Lluita contra la Sida i les Malalties Infeccioses, Servei de Malalties Infecciones Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Marta Massanella
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Judith Dalmau
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Carmela Ganoza
- Asociación Civil Impacta Salud y Educacion, Lima 15063, Peru
- Facultad de Medicina Alberto Hurtado de la Universidad Peruana Cayetano Heredia, San Martín de Porres, Lima 15102, Peru
| | - Jorge Sanchez
- Asociación Civil Impacta Salud y Educacion, Lima 15063, Peru
- Department of Global Health, University of Washington, Seattle, WA 98195
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Bellavista, Lima 07006, Peru
| | - Maria Luz Calle
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
| | - Bonaventura Clotet
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
- Fundació Lluita contra la Sida i les Malalties Infeccioses, Servei de Malalties Infecciones Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Javier Martinez-Picado
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Eugènia Negredo
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
- Fundació Lluita contra la Sida i les Malalties Infeccioses, Servei de Malalties Infecciones Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Julià Blanco
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
| | - Dennis Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616
- California National Primate Research Center, University of California, Davis, Davis, CA 95616; and
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110
| | - Christian Brander
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Marta Ruiz-Riol
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain;
| |
Collapse
|
44
|
Guo L, Huang W, Tong F, Chen X, Cao S, Xu H, Luo W, Li Z, Nie Q. Whole Transcriptome Analysis of Chicken Bursa Reveals Candidate Gene That Enhances the Host's Immune Response to Coccidiosis. Front Physiol 2020; 11:573676. [PMID: 33192575 PMCID: PMC7662072 DOI: 10.3389/fphys.2020.573676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Coccidiosis is a major hazard to the chicken industry, but the host’s immune response to coccidiosis remains unclear. Here, we performed Eimeria coccidia challenge in 28-day-old ROSS 308 broilers and selected the bursa from the three most severely affected individuals and three healthy individuals for RNA sequencing. We obtained 347 DEGs from RNA-seq and found that 7 upregulated DEGs were enriched in Cytokine-cytokine receptor interaction pathway. As the DEGs with the highest expression abundance in these 7 genes, TNFRSF6B was speculated to participate in the process of host’s immune response to coccidiosis. It is showed that TNFRSF6B can polarize macrophages to M1 subtype and promote inflammatory cytokines expression. In addition, the expression of TNFRSF6B suppressed HD11 cells apoptosis by downregulating Fas signal pathway. Besides, TNFRSF6B-mediated macrophages immunity activation can be reversed by apoptosis. Overall, our study indicates that TNFRSF6B upregulated in BAE, is capable of aggravating the inflammatory response by inhibiting macrophages apoptosis via downregulating Fas signal pathway, which may participate in host’s immune response to coccidiosis.
Collapse
Affiliation(s)
- Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Weiling Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Feng Tong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Sen Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Wei Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
45
|
Zhang C, Zhang Z, Sun N, Zhang Z, Zhang G, Wang F, Luo Y, Che Y, He J. Identification of a costimulatory molecule-based signature for predicting prognosis risk and immunotherapy response in patients with lung adenocarcinoma. Oncoimmunology 2020; 9:1824641. [PMID: 33457102 PMCID: PMC7781839 DOI: 10.1080/2162402x.2020.1824641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Costimulatory molecules play significant roles in mounting anti-tumor immune responses, and antibodies targeting these molecules are recognized as promising adjunctive cancer immunotherapies. Here, we aim to conduct a first full-scale exploration of costimulatory molecules from the B7-CD28 and TNF families in patients with lung adenocarcinoma (LUAD) and generated a costimulatory molecule-based signature (CMS) to predict survival and response to immunotherapy. Methods We enrolled 1549 LUAD cases across 10 different cohorts and included 502 samples from TCGA for discovery. The validation set included 970 cases from eight different Gene Expression Omnibus (GEO) datasets and 77 frozen tumor tissues with qPCR data. The underlying mechanisms and predictive immunotherapy capabilities of the CMS were also explored. Results A five gene-based CMS (CD40LG, TNFRSF6B, TNFSF13, TNFRSF13C, and TNFRSF19) was initially constructed using the bioinformatics method from TCGA that classifies cases as high- vs. low-risk groups per OS. Multivariable Cox regression analysis confirmed that the CMS was an independent prognostic factor. As expected, CMS exhibited prognostic significance in the stratified cohorts and different validation cohorts. Additionally, the prognostic meta-analysis revealed that CMS was superior to the previous signature. Samples in high- and low-risk groups exhibited significantly different tumor-infiltrating leukocytes and inflammatory activities. Importantly, we found that the CMS scores were closely related to multiple immunotherapy biomarkers. Conclusion We conducted the first and most comprehensive costimulatory molecule landscape analysis of patients with LUAD and built a clinically feasible CMS for prognosis and immunotherapy response prediction, which will be helpful for further optimize immunotherapies for cancer.
Collapse
Affiliation(s)
- Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Comprehensive molecular analyses of a TNF family-based signature with regard to prognosis, immune features, and biomarkers for immunotherapy in lung adenocarcinoma. EBioMedicine 2020; 59:102959. [PMID: 32853987 PMCID: PMC7452643 DOI: 10.1016/j.ebiom.2020.102959] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Background Tumour Necrosis Factor (TNF) family members play important roles in mounting anti-tumour immune responses, and clinical trials targeting these molecules are ongoing. However, the expression patterns and clinical significance of TNF members in lung adenocarcinoma (LUAD) remain unrevealed. This study aimed to explore the gene expression profiles of TNF family members in LUAD and constructed a TNF family-based prognosis signature. Methods In total, 1300 LUAD cases from seven different cohorts were collected. Samples from The Cancer Genome Atlas (TCGA) were used as the training set, and the RNA data from five Gene Expression Omnibus (GEO) datasets and qPCR data from 102 samples were used for validation. The immune profiles and potential immunotherapy response prediction value of the signature were also explored. Findings After univariate Cox proportional hazards regression and stepwise multivariable Cox analysis, a TNF family-based signature was constructed in the TCGA dataset that significantly stratified cases into high- and low-risk groups in terms of OS. This signature remained an independent prognostic factor in multivariate analyses. Moreover, the clinical significance of the signature was well validated in different clinical subgroups and independent validation cohorts. Further analysis revealed that signature high-risk patients were characterized by distinctive immune cell proportions and immune-suppressive states. Additionally, signature scores were positively related to multiple immunotherapy biomarkers. Interpretation This was the first TNF family-based model for predicting outcomes and immune landscapes for patients with LUAD. The capability of this signature for predicting immunotherapy response needs further validation.
Collapse
|
47
|
Ghobadi H, Hosseini N, Aslani MR. Correlations Between Serum Decoy Receptor 3 and Airflow Limitation and Quality of Life in Male Patients with Stable Stage and Acute Exacerbation of COPD. Lung 2020; 198:515-523. [PMID: 32211977 DOI: 10.1007/s00408-020-00348-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Serum decoy receptor 3 (DcR3) level increases in chronic inflammatory diseases. The present study aimed to examine serum DcR3 and IL-6 levels in male patients with stable chronic obstructive pulmonary disease (COPD) and acute exacerbation of the disease and correlations between these markers and airflow limitation. METHODS We measured serum DcR3 and IL-6 levels in 60 COPD patients [30 stable COPD (SCOPD), and 30 acute exacerbation of COPD (AECOPD)], and 30 control subjects and assessed their correlations with airflow limitation according to the COPD stage indicated by the global initiative for chronic obstructive pulmonary disease (GOLD) criteria, peripheral O2 saturation (SpO2), and COPD assessment test (CAT) score. We also tested associations between serum DcR3 levels and COPD patients' clinical parameters. RESULTS Both serum DcR3 and IL-6 levels increased with increasing severity of airflow limitation in SCOPD and AECOPD groups (P < 0.01 to 0.001). These markers also increased in patients with AECOPD compared with subjects in SCOPD group in GOLD stages III-IV (P < 0.05 to 0.001). In addition, there was a significant positive correlation between serum DcR3 level and IL-6, CAT score and smoking history (per year). CONCLUSION The study revealed that serum DcR3 level elevated with increasing severity of airflow limitation in male COPD patients, particularly in acute exacerbation phase. This increase was associated with a reduced quality of life and increased severity of hypoxia. These results suggest that DcR3 may be associated with the underlying pathophysiology of COPD in male patients.
Collapse
Affiliation(s)
- Hassan Ghobadi
- Internal Medicine Department (Pulmonary Division), Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Hosseini
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Aslani
- Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran. .,Neurogenetic Inflammation Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
48
|
Su Z, Wu Y. A Systematic Test of Receptor Binding Kinetics for Ligands in Tumor Necrosis Factor Superfamily by Computational Simulations. Int J Mol Sci 2020; 21:ijms21051778. [PMID: 32150842 PMCID: PMC7084274 DOI: 10.3390/ijms21051778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/29/2023] Open
Abstract
Ligands in the tumor necrosis factor (TNF) superfamily are one major class of cytokines that bind to their corresponding receptors in the tumor necrosis factor receptor (TNFR) superfamily and initiate multiple intracellular signaling pathways during inflammation, tissue homeostasis, and cell differentiation. Mutations in the genes that encode TNF ligands or TNFR receptors result in a large variety of diseases. The development of therapeutic treatment for these diseases can be greatly benefitted from the knowledge on binding properties of these ligand–receptor interactions. In order to complement the limitations in the current experimental methods that measure the binding constants of TNF/TNFR interactions, we developed a new simulation strategy to computationally estimate the association and dissociation between a ligand and its receptor. We systematically tested this strategy to a comprehensive dataset that contained structures of diverse complexes between TNF ligands and their corresponding receptors in the TNFR superfamily. We demonstrated that the binding stabilities inferred from our simulation results were compatible with existing experimental data. We further compared the binding kinetics of different TNF/TNFR systems, and explored their potential functional implication. We suggest that the transient binding between ligands and cell surface receptors leads into a dynamic nature of cross-membrane signal transduction, whereas the slow but strong binding of these ligands to the soluble decoy receptors is naturally designed to fulfill their functions as inhibitors of signal activation. Therefore, our computational approach serves as a useful addition to current experimental techniques for the quantitatively comparison of interactions across different members in the TNF and TNFR superfamily. It also provides a mechanistic understanding to the functions of TNF-associated cell signaling pathways.
Collapse
|
49
|
Yeh CC, Yang MJ, Lussier EC, Tsai HW, Lo PF, Hsieh SL, Wang PH. Low plasma levels of decoy receptor 3 (DcR3) in the third trimester of pregnancy with preeclampsia. Taiwan J Obstet Gynecol 2019; 58:349-353. [PMID: 31122523 DOI: 10.1016/j.tjog.2019.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The pathophysiology of preeclampsia, a major threat during pregnancy characterized by excessive inflammatory status, remains unclear. Decoy receptor 3 (DcR3), a soluble member of the tumor necrosis factor receptor (TNFR) superfamily, is capable of inducing anti-apoptosis via binding with TL1A and anti-inflammation by driving Th2 immune reactions. DcR3 may, therefore, play a role in immune modulation during pregnancy. The purpose of this study is to explore the role of DcR3 in normal and preeclamptic pregnancies. MATERIALS AND METHODS Plasma samples from 104 normal pregnant women (26, 42, and 36 in the first, second, and third trimester, respectively) and 10 patients with preeclampsia in the third trimester were collected. Plasma DcR3 levels were determined by using commercial ELISA kits. ANOVA and linear regression analysis were performed to analyze the relationship between gestational age and DcR3 levels. After adjusting for gestational days, the levels of plasma DcR3 in preeclamptic and non-preeclamptic women in the third trimester were compared. RESULTS The plasma levels of DcR3 gradually decreased as the gestational days increased during pregnancy (p < 0.05). In the third trimester, pregnant women with preeclampsia had significantly lower plasma DcR3 levels compared to non-preeclamptic women (p < 0.05). CONCLUSIONS We found that plasma DcR3 levels gradually decreased as gestation progressed. The levels of plasma DcR3 in preeclamptic women were significantly lower than those of normal pregnant women, suggesting that a potential involvement of DcR3 in normal pregnancy and decreased levels of DcR3 may be related to preeclampsia.
Collapse
Affiliation(s)
- Chang-Ching Yeh
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Jie Yang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Hsiao-Wen Tsai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Fen Lo
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
50
|
Wei Y, Chen X, Yang J, Yao J, Yin N, Zhang Z, Li D, Zhu D, Zhou J. DcR3 promotes proliferation and invasion of pancreatic cancer via a DcR3/STAT1/IRF1 feedback loop. Am J Cancer Res 2019; 9:2618-2633. [PMID: 31911850 PMCID: PMC6943350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common gastrointestinal malignancies that are highly aggressive with a low 5-year survival rate. Accumulated evidence has indicated that decoy receptor 3 (DcR3) is involved in several pathologic processes and various cancers. However, the mechanisms underlying dysregulated DcR3 expression and activation in PC remain to be fully established. In this study, we investigate the function and regulatory network of DcR3 in PC. We found that DcR3 was upregulated in PC tissues and serum. High DcR3 expression was associated with aggressive clinicopathological features and poor prognosis. Functionally, DcR3 not only increased cell migration and invasion in vitro but also promoted tumour growth both in vitro and in vivo by loss-of-function and gain-of-function experiments. Mechanistically, DcR3 promoted the phosphorylation of signal transducers and activators of transcription 1 (STAT1), leading to a dramatic increase in interferon regulatory factor 1 (IRF1). IRF1 then increased the transcriptional activity of DcR3, forming a positive feedback loop to reinforce DcR3 expression. In addition, DcR3 promoted carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) expression through activated IRF1. In conclusion, our findings provided novel insights into the function and mechanism of DcR3 in the pathogenesis of PC, which may be a potential therapeutic target for PC.
Collapse
Affiliation(s)
- Yijun Wei
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Xingyu Chen
- Taizhou Fourth People’s HospitalTaizhou 225300, Jiangsu, China
| | - Jian Yang
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Jun Yao
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Ni Yin
- Department of Oncology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Zixiang Zhang
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Dechun Li
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Dongming Zhu
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Jian Zhou
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| |
Collapse
|