1
|
Reynoso-Cereceda GI, Valdez-Cruz NA, Pérez NO, Trujillo-Roldán MA. A comprehensive study of glucose and oxygen gradients in a scaled-down model of recombinant HuGM-CSF production in thermoinduced Escherichia coli fed-batch cultures. Prep Biochem Biotechnol 2024; 54:1263-1274. [PMID: 38701182 DOI: 10.1080/10826068.2024.2347403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The effect of gradients of elevated glucose and low dissolved oxygen in the addition zone of fed-batch E. coli thermoinduced recombinant high cell density cultures can be evaluated through two-compartment scale-down models. Here, glucose was fed in the inlet of a plug flow bioreactor (PFB) connected to a stirred tank bioreactor (STB). E. coli cells diminished growth from 48.2 ± 2.2 g/L in the stage of RP production if compared to control (STB) with STB-PFB experiments, when residence time inside the PFB was 25 s (34.1 ± 3.5 g/L) and 40 s (25.6 ± 5.1 g/L), respectively. The recombinant granulocyte-macrophage colony-stimulating factor (rHuGM-CSF) production decreased from 34 ± 7% of RP in inclusion bodies (IB) in control cultures to 21 ± 8%, and 7 ± 4% during the thermoinduction production phase when increasing residence time inside the PFB to 25 s and 40 s, respectively. This, along with the accumulation of acetic and formic acid (up to 4 g/L), indicates metabolic redirection of central carbon routes through metabolic flow and mixed acid fermentation. Special care must be taken when producing a recombinant protein in heat-induced E. coli, because the yield and productivity of the protein decreases as the size of the bioreactors increases, especially if they are carried at high cell density.
Collapse
Affiliation(s)
- Greta I Reynoso-Cereceda
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de México, México
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, México. Unidad de Posgrado, CDMX, México
| | - Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de México, México
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Baja California, Mexico
| | - Nestor O Pérez
- Probiomed S.A. de C.V. Planta Tenancingo, Cruce de Carreteras Acatzingo- Zumpahuacan SN, Tenancingo, México
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de México, México
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Baja California, Mexico
| |
Collapse
|
2
|
Fritzsche S, Hübner H, Oldiges M, Castiglione K. Comparative evaluation of the extracellular production of a polyethylene terephthalate degrading cutinase by Corynebacterium glutamicum and leaky Escherichia coli in batch and fed-batch processes. Microb Cell Fact 2024; 23:274. [PMID: 39390488 PMCID: PMC11468216 DOI: 10.1186/s12934-024-02547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND With a growing global population, the generation of plastic waste and the depletion of fossil resources are major concerns that need to be addressed by developing sustainable and efficient plastic recycling methods. Biocatalytic recycling is emerging as a promising ecological alternative to conventional processes, particularly in the recycling of polyethylene terephthalate (PET). However, cost-effective production of the involved biocatalyst is essential for the transition of enzymatic PET recycling to a widely used industrial technology. Extracellular enzyme production using established organisms such as Escherichia coli or Corynebacterium glutamicum offers a promising way to reduce downstream processing costs. RESULTS In this study, we compared extracellular recombinant protein production by classical secretion in C. glutamicum and by membrane leakage in E. coli. A superior extracellular release of the cutinase ICCGDAQI was observed with E. coli in batch and fed-batch processes on a litre-scale. This phenomenon in E. coli, in the absence of a signal peptide, might be associated with membrane-destabilizing catalytic properties of the expressed cutinase. Optimisations regarding induction, expression temperature and duration as well as carbon source significantly enhanced extracellular cutinase activity. In particular, in fed-batch cultivation of E. coli at 30 °C with lactose as carbon source and inducer, a remarkable extracellular activity (137 U mL-1) and cutinase titre (660 mg L-1) were achieved after 48 h. Literature values obtained with other secretory organisms, such as Bacillus subtilis or Komagataella phaffii were clearly outperformed. The extracellular ICCGDAQI produced showed high efficacy in the hydrolysis of PET textile fibres, either chromatographically purified or unpurified as culture supernatant. In less than 18 h, 10 g L-1 substrate was hydrolysed using supernatant containing 3 mg cutinase ICCGDAQI at 70 °C, pH 9 with terephthalic acid yields of up to 97.8%. CONCLUSION Extracellular production can reduce the cost of recombinant proteins by simplifying downstream processing. In the case of the PET-hydrolysing cutinase ICCGDAQI, it was even possible to avoid chromatographic purification and still achieve efficient PET hydrolysis. With such production approaches and their further optimisation, enzymatic recycling of PET can contribute to a more efficient and environmentally friendly solution to the industrial recycling of plastics in the future.
Collapse
Affiliation(s)
- Stefanie Fritzsche
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Holger Hübner
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany.
| |
Collapse
|
3
|
de Andrade B, Renard G, Gennari A, Artico LL, Júnior JR, Kuhn D, Salles PPZ, Volken de Souza CF, Roth G, Chies JM, Yunes JA, Basso LA. Production Process Optimization of Recombinant Erwinia carotovoral-Asparaginase II in Escherichia coli Fed-Batch Cultures and Analysis of Antileukemic Potential. ACS OMEGA 2024; 9:34951-34963. [PMID: 39157126 PMCID: PMC11325515 DOI: 10.1021/acsomega.4c04711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
The aims of this work were to optimize the production of Erwinia carotovoral-asparaginase II enzyme in Escherichia coli by different fed-batch cultivation strategies using a benchtop bioreactor and to evaluate the therapeutic potential of the recombinant enzyme against different acute lymphoblastic leukemia cell lines. The highest enzyme activities (∼98,000 U/L) were obtained in cultures using the DO-stat feeding strategy with induction in 18 h of culture. Under these experimental conditions, the maximum values for recombinant l-asparaginase II (rASNase) yield per substrate, rASNase yield per biomass, and productivity were approximately 1204 U/gglucose, 3660 U/gcells, and 3260 U/(L·h), respectively. This condition was efficient for achieving high yields of the recombinant enzyme, which was purified and used in in vitro antileukemic potential tests. Of all the leukemic cell lines tested, RS4;11 showed the highest sensitivity to rASNase, with an IC50 value of approximately 0.0006 U/mL and more than 70% apoptotic cells. The study demonstrated that the cultivation strategies used were efficient for obtaining high yield and productivity of rASNase with therapeutic potential inasmuch as cytotoxic activity and induction of apoptosis were demonstrated for this protein.
Collapse
Affiliation(s)
- Bruna
Coelho de Andrade
- National
Institute of Science and Technology in Tuberculosis, Research Center
for Molecular and Functional Biology, Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate
Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Gaby Renard
- Quatro
G Pesquisa & Desenvolvimento Ltd., Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Adriano Gennari
- Food
Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari (UNIVATES), Lajeado, Rio Grande do Sul 95914-014, Brazil
| | - Leonardo Luís Artico
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Graduate
Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - José Ricardo
Teixeira Júnior
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Graduate
Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Daniel Kuhn
- Food
Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari (UNIVATES), Lajeado, Rio Grande do Sul 95914-014, Brazil
| | - Priscila Pini Zenatti Salles
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Graduate
Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Claucia Fernada Volken de Souza
- Food
Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari (UNIVATES), Lajeado, Rio Grande do Sul 95914-014, Brazil
| | - Gustavo Roth
- Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Jocelei Maria Chies
- Quatro
G Pesquisa & Desenvolvimento Ltd., Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - José Andrés Yunes
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Department
of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Luiz Augusto Basso
- National
Institute of Science and Technology in Tuberculosis, Research Center
for Molecular and Functional Biology, Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate
Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
- Graduate
Program in Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| |
Collapse
|
4
|
Bianchi G, Pessina A, Ami D, Signorelli S, de Divitiis M, Natalello A, Lotti M, Brambilla L, Brocca S, Mangiagalli M. Sustainable production of a biotechnologically relevant β-galactosidase in Escherichia coli cells using crude glycerol and cheese whey permeate. BIORESOURCE TECHNOLOGY 2024; 406:131063. [PMID: 38964512 DOI: 10.1016/j.biortech.2024.131063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Responsible use of natural resources and waste reduction are key concepts in bioeconomy. This study demonstrates that agro-food derived-biomasses from the Italian food industry, such as crude glycerol and cheese whey permeate (CWP), can be combined in a high-density fed-batch culture to produce a recombinant β-galactosidase from Marinomonas sp. ef1 (M-βGal). In a small-scale process (1.5 L) using 250 mL of crude glycerol and 300 mL of lactose-rich CWP, approximately 2000 kU of recombinant M-βGal were successfully produced along with 30 g of galactose accumulated in the culture medium. The purified M-βGal exhibited high hydrolysis efficiency in lactose-rich matrices, with hydrolysis yields of 82 % in skimmed milk at 4 °C and 94 % in CWP at 50 °C, highlighting its biotechnological potential. This approach demonstrates the effective use of crude glycerol and CWP in sustainable and cost-effective high-density Escherichia coli cultures, potentially applicable to recombinant production of various proteins.
Collapse
Affiliation(s)
- Greta Bianchi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Alex Pessina
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Samuele Signorelli
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Marcella de Divitiis
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Luca Brambilla
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| |
Collapse
|
5
|
Gecse G, Labunskaite R, Pedersen M, Kilstrup M, Johanson T. Minimizing acetate formation from overflow metabolism in Escherichia coli: comparison of genetic engineering strategies to improve robustness toward sugar gradients in large-scale fermentation processes. Front Bioeng Biotechnol 2024; 12:1339054. [PMID: 38419731 PMCID: PMC10899681 DOI: 10.3389/fbioe.2024.1339054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction: Escherichia coli, a well characterized workhorse in biotechnology, has been used to produce many recombinant proteins and metabolites, but have a major drawback in its tendency to revert to overflow metabolism. This phenomenon occurs when excess sugar triggers the production of mainly acetate under aerobic conditions, a detrimental by-product that reduces carbon efficiency, increases cell maintenance, and ultimately inhibits growth. Although this can be prevented by controlled feeding of the sugar carbon source to limit its availability, gradients in commercial-scale bioreactors can still induce it in otherwise carbon-limited cells. While the underlying mechanisms have been extensively studied, these have mostly used non-limited cultures. In contrast, industrial production typically employs carbon-limited processes, which results in a substantially different cell physiology. Objective: The objective of this study was to evaluate and compare the efficiency of different metabolic engineering strategies with the aim to reduce overflow metabolism and increase the robustness of an industrial 2'-O-fucosyllactose producing strain under industrially relevant conditions. Methods: Three distinct metabolic engineering strategies were compared: i) alterations to pathways leading to and from acetate, ii) increased flux towards the tricarboxylic acid (TCA) cycle, and iii) reduced glucose uptake rate. The engineered strains were evaluated for growth, acetate formation, and product yield under non-limiting batch conditions, carbon limited fed-batch conditions, and after a glucose pulse in fed-batch mode. Results and Discussion: The findings demonstrated that blockage of the major acetate production pathways by deletion of the pta and poxB genes or increased carbon flux into the TCA cycle by overexpression of the gltA and deletion of the iclR genes, were efficient ways to reduce acetate accumulation. Surprisingly, a reduced glucose uptake rate did not reduce acetate formation despite it having previously been shown as a very effective strategy. Interestingly, overexpression of gltA was the most efficient way to reduce acetate accumulation in non-limited cultures, whereas disruption of the poxB and pta genes was more effective for carbon-limited cultures exposed to a sudden glucose shock. Strains from both strategies showed increased tolerance towards a glucose pulse during carbon-limited growth indicating feasible ways to engineer industrial E. coli strains with enhanced robustness.
Collapse
Affiliation(s)
| | | | | | - Mogens Kilstrup
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
6
|
Abedin S, Ranjbari J, Haeri A, Vahidi H, Moghimi HR. Design and Characterization of an Osmotic Pump System for Optimal Feeding and pH Control in E. coli Culture to Increase Biomass. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e138677. [PMID: 39005735 PMCID: PMC11246646 DOI: 10.5812/ijpr-138677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 07/16/2024]
Abstract
Background Batch cultures used for various purposes, such as expression screening and recombinant protein production in laboratories, usually have some drawbacks due to the bolus addition of carbon sources, such as glucose and buffers, that lead to overflow metabolism, decreased pH, high osmolality, low biomass yield, and low protein production. Objectives This study aimed to overcome the problems of batch culture using the controlled release concept by a controlled porosity osmotic pump (CPOP) system. Methods The CPOP was formulated with glucose as a carbon source feeding and sodium carbonate as a pH modifier in the core of the tablet that was coated with a semipermeable membrane containing cellulose acetate and polyethylene glycol (PEG) 400. The release rate was regulated with Eudragit L100 as a retardant agent in the core and PEG 400 as a pore-former agent in the coating membrane. Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were used to elucidate compatibility between components and release mechanism, respectively. The in-vitro release of glucose and Na2CO3 studies were performed for 24 hours in a mineral culture medium (M9). Then, the effectiveness of CPOP in the growth of Escherichia coli (E. coli BL21) as a microorganism model was evaluated. Glucose consumption, changes in medium's pH, and acetate concentration as a by-product were also monitored during the bacterial growth. Results Fourier-transform infrared spectroscopy confirmed the compatibility between the components in the osmotic pump, and SEM elucidated the release mechanism due to in-situ delivery pores created by dissolving soluble components (PEG 400) on the coated membrane upon contact with the dissolution medium. The in-vitro release studies indicated that the osmotic pump was able to deliver glucose and sodium carbonate in a zero-order manner. The use of CPOP in E. coli (BL21) cultivation resulted in a statistically significant improvement in biomass (over 80%), maintaining the pH of the medium (above 6.8) during the exponential phase, and reducing metabolic by-product formation (acetate), compared to bolus feeding (P < 0.05). Conclusions The use of CPOP, which is capable of controlled release of glucose as a carbon source and sodium carbonate as a pH modifier, can overcome the drawbacks of bolus feeding, such as decreased pH, increased acetate concentration, and low productivity. It has a good potential for commercialization.
Collapse
Affiliation(s)
- Saeedeh Abedin
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vahidi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Kurnia F, Novirani G, Khairunnisa F, Meidianto VF, Ismaya WT, Tjandrawinata RR. An elevated OmpA expression during the production of a recombinant protein in Escherichia coli. Braz J Microbiol 2023; 54:2755-2763. [PMID: 37880563 PMCID: PMC10689305 DOI: 10.1007/s42770-023-01152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Escherichia coli cells rapidly respond to changes in the environment. Such response must be anticipated upon development of fermentation strategy for commercial purposes. The response may signal changes in cell physiology, which is critical for the cell growth and the level of the target protein production. One of the responses is the elevated expression of membrane proteins to tightly control the trafficking of molecules into and out from the cells. Normally, the expression level of the membrane protein is basal as the fermentation is carried out in physiological conditions. Here, we reported an elevated expression of the outer membrane protein A (OmpA) during a series of fermentation conduct, starting from the shake flask, 1-L to finally 10-L fermentor. The incidence led to a lower expression of the target protein and thereby resulting in lower process efficiency. OmpA expression was concomitant to the bacterial growth and already observed in the early exponential phase. Despite the drawback, this phenomenon actually inspires the observation of OmpA expression as one of the indicators for the E. coli cells response to the fermentation conditions. This auxiliary check would prevent the higher OmpA expression that led to the low expression of the target protein.
Collapse
Affiliation(s)
- Frans Kurnia
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka 2 Industrial Estate, Cikarang, 17550, Indonesia
| | - Gestria Novirani
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka 2 Industrial Estate, Cikarang, 17550, Indonesia
| | - Fatiha Khairunnisa
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka 2 Industrial Estate, Cikarang, 17550, Indonesia
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Kampus C Mulyorejo, Surabaya, 60115, Indonesia
| | - Vincencius F Meidianto
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka 2 Industrial Estate, Cikarang, 17550, Indonesia
| | - Wangsa T Ismaya
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka 2 Industrial Estate, Cikarang, 17550, Indonesia
| | - Raymond R Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka 2 Industrial Estate, Cikarang, 17550, Indonesia.
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, South Jakarta, 12930, Indonesia.
| |
Collapse
|
8
|
Schollmeyer J, Waldburger S, Njo K, Yehia H, Kurreck A, Neubauer P, Riedel SL. Bioprocess development to produce a hyperthermostable S-methyl-5'-thioadenosine phosphorylase in Escherichia coli. Biotechnol Bioeng 2023; 120:3322-3334. [PMID: 37574915 DOI: 10.1002/bit.28526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Nucleoside phosphorylases are important biocatalysts for the chemo-enzymatic synthesis of nucleosides and their analogs which are, among others, used for the treatment of viral infections or cancer. S-methyl-5'-thioadenosine phosphorylases (MTAP) are a group of nucleoside phosphorylases and the thermostable MTAP of Aeropyrum pernix (ApMTAP) was described to accept a wide range of modified nucleosides as substrates. Therefore, it is an interesting biocatalyst for the synthesis of nucleoside analogs for industrial and therapeutic applications. To date, thermostable nucleoside phosphorylases were produced in shake flask cultivations using complex media. The drawback of this approach is low volumetric protein yields which hamper the wide-spread application of the thermostable nucleoside phosphorylases in large scale. High cell density (HCD) cultivations allow the production of recombinant proteins with high volumetric yields, as final optical densities >100 can be achieved. Therefore, in this study, we developed a suitable protocol for HCD cultivations of ApMTAP. Initially, optimum expression conditions were determined in 24-well plates using a fed-batch medium. Subsequently, HCD cultivations were performed using E. coli BL21-Gold cells, by employing a glucose-limited fed-batch strategy. Comparing different growth rates in stirred-tank bioreactors, cultivations revealed that growth at maximum growth rates until induction resulted in the highest yields of ApMTAP. On a 500-mL scale, final cell dry weights of 87.1-90.1 g L-1 were observed together with an overproduction of ApMTAP in a 1.9%-3.8% ratio of total protein. Compared to initially applied shake flask cultivations with terrific broth (TB) medium the volumetric yield increased by a factor of 136. After the purification of ApMTAP via heat treatment and affinity chromatography, a purity of more than 90% was determined. Activity testing revealed specific activities in the range of 0.21 ± 0.11 (low growth rate) to 3.99 ± 1.02 U mg-1 (growth at maximum growth rate). Hence, growth at maximum growth rate led to both an increased expression of the target protein and an increased specific enzyme activity. This study paves the way towards the application of thermostable nucleoside phosphorylases in industrial applications due to an improved heterologous expression in Escherichia coli.
Collapse
Affiliation(s)
- Julia Schollmeyer
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
- BioNukleo GmbH, Berlin, Germany
| | - Saskia Waldburger
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Kendra Njo
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
- BioNukleo GmbH, Berlin, Germany
| | - Heba Yehia
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Anke Kurreck
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
- BioNukleo GmbH, Berlin, Germany
| | - Peter Neubauer
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Sebastian L Riedel
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
- Berliner Hochschule für Technik, Department VIII - Mechanical Engineering, Event Technology and Process Engineering, Environmental and Bioprocess Engineering Laboratory, Berlin, Germany
| |
Collapse
|
9
|
Sun M, Gao AX, Liu X, Yang Y, Ledesma-Amaro R, Bai Z. High-throughput process development from gene cloning to protein production. Microb Cell Fact 2023; 22:182. [PMID: 37715258 PMCID: PMC10503041 DOI: 10.1186/s12934-023-02184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/19/2023] [Indexed: 09/17/2023] Open
Abstract
In the post-genomic era, the demand for faster and more efficient protein production has increased, both in public laboratories and industry. In addition, with the expansion of protein sequences in databases, the range of possible enzymes of interest for a given application is also increasing. Faced with peer competition, budgetary, and time constraints, companies and laboratories must find ways to develop a robust manufacturing process for recombinant protein production. In this review, we explore high-throughput technologies for recombinant protein expression and present a holistic high-throughput process development strategy that spans from genes to proteins. We discuss the challenges that come with this task, the limitations of previous studies, and future research directions.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
10
|
Sparviero S, Barth L, Keil T, Dinter C, Berg C, Lattermann C, Büchs J. Black glucose-releasing silicon elastomer rings for fed-batch operation allow measurement of the oxygen transfer rate from the top and optical signals from the bottom for each well of a microtiter plate. BMC Biotechnol 2023; 23:5. [PMID: 36864427 PMCID: PMC9983259 DOI: 10.1186/s12896-023-00775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND In industrial microbial biotechnology, fed-batch processes are frequently used to avoid undesirable biological phenomena, such as substrate inhibition or overflow metabolism. For targeted process development, fed-batch options for small scale and high throughput are needed. One commercially available fed-batch fermentation system is the FeedPlate®, a microtiter plate (MTP) with a polymer-based controlled release system. Despite standardisation and easy incorporation into existing MTP handling systems, FeedPlates® cannot be used with online monitoring systems that measure optically through the transparent bottom of the plate. One such system that is broadly used in biotechnological laboratories, is the commercial BioLector. To allow for BioLector measurements, while applying the polymer-based feeding technology, positioning of polymer rings instead of polymer disks at the bottom of the well has been proposed. This strategy has a drawback: measurement requires an adjustment of the software settings of the BioLector device. This adjustment modifies the measuring position relative to the wells, so that the light path is no longer blocked by the polymer ring, but, traverses through the inner hole of the ring. This study aimed at overcoming that obstacle and allowing for measurement of fed-batch cultivations using a commercial BioLector without adjustment of the relative measurement position within each well. RESULTS Different polymer ring heights, colours and positions in the wells were investigated for their influence on maximum oxygen transfer capacity, mixing time and scattered light measurement. Several configurations of black polymer rings were identified that allow measurement in an unmodified, commercial BioLector, comparable to wells without rings. Fed-batch experiments with black polymer rings with two model organisms, E. coli and H. polymorpha, were conducted. The identified ring configurations allowed for successful cultivations, measuring the oxygen transfer rate and dissolved oxygen tension, pH, scattered light and fluorescence. Using the obtained online data, glucose release rates of 0.36 to 0.44 mg/h could be determined. They are comparable to formerly published data of the polymer matrix. CONCLUSION The final ring configurations allow for measurements of microbial fed-batch cultivations using a commercial BioLector without requiring adjustments of the instrumental measurement setup. Different ring configurations achieve similar glucose release rates. Measurements from above and below the plate are possible and comparable to measurements of wells without polymer rings. This technology enables the generation of a comprehensive process understanding and target-oriented process development for industrial fed-batch processes.
Collapse
Affiliation(s)
- Sarah Sparviero
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Laura Barth
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Timm Keil
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Carl Dinter
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Christoph Berg
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | | | - Jochen Büchs
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany.
| |
Collapse
|
11
|
Aida H, Uchida K, Nagai M, Hashizume T, Masuo S, Takaya N, Ying BW. Machine learning-assisted medium optimization revealed the discriminated strategies for improved production of the foreign and native metabolites. Comput Struct Biotechnol J 2023; 21:2654-2663. [PMID: 37138901 PMCID: PMC10149329 DOI: 10.1016/j.csbj.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
The composition of medium components is crucial for achieving the best performance of synthetic construction in genetically engineered cells. Which and how medium components determine the performance, e.g., productivity, remain poorly investigated. To address the questions, a comparative survey with two genetically engineered Escherichia coli strains was performed. As a case study, the strains carried the synthetic pathways for producing the aromatic compounds of 4-aminophenylalanine (4APhe) or tyrosine (Tyr), common in the upstream but differentiated in the downstream metabolism. Bacterial growth and compound production were examined in hundreds of medium combinations that comprised 48 pure chemicals. The resultant data sets linking the medium composition to bacterial growth and production were subjected to machine learning for improved production. Intriguingly, the primary medium components determining the production of 4PheA and Tyr were differentiated, which were the initial resource (glucose) of the synthetic pathway and the inducer (IPTG) of the synthetic construction, respectively. Fine-tuning of the primary component significantly increased the yields of 4APhe and Tyr, indicating that a single component could be crucial for the performance of synthetic construction. Transcriptome analysis observed the local and global changes in gene expression for improved production of 4APhe and Tyr, respectively, revealing divergent metabolic strategies for producing the foreign and native metabolites. The study demonstrated that ML-assisted medium optimization could provide a novel point of view on how to make the synthetic construction meet the designed working principle and achieve the expected biological function.
Collapse
Affiliation(s)
- Honoka Aida
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
| | - Keisuke Uchida
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
| | - Motoki Nagai
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
| | - Takamasa Hashizume
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
| | - Shunsuke Masuo
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
| | - Naoki Takaya
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
- Corresponding author at: School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan.
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
- Corresponding author.
| |
Collapse
|
12
|
Zhang J, Luo W, Wang Z, Chen Y, Fu J, Xu J, Lv P. High-Level Production of Recombinant Lipase by Fed-Batch Fermentation in Escherichia coli and Its Application in Biodiesel Synthesis from Waste Cooking Oils. Appl Biochem Biotechnol 2023; 195:432-450. [PMID: 36087232 DOI: 10.1007/s12010-022-04146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
The enzymatic production of biodiesel from waste cooking oils (WCOs) offers a green and sustainable solution for the liquid fuel manufacture as well as waste resource recovery. In present study, liquid lipase was used to simplify the catalysis process, thereby reducing biodiesel production costs. An engineered Escherichia coli expressing Geobacillus thermocatenulatus lipase 2 (GTL2) was screened at an enzyme activity of 6.96 U/mg, after evaluating the propagating stability of the recombinant plasmids exceeding 86.11%. Through the beneficial feeding strategy and effective pH control, high-level production of GTL2 by fed-batch fermentation was achieved with an enzyme activity of 434.32 U/mg, which was almost 62 times that of shake flask fermentation. In addition, liquid GTL2 was used to prepare fatty acid methyl esters (FAMEs) using WCOs. The effects of the reaction time, catalyst loading, temperature, and methanol-to-oil molar ratio on FAMEs production using WCOs were explored, and a maximum FAMEs yield of 96.62% was achieved under optimized conditions. These results indicate that liquid GTL2 is a promising biocatalyst for efficient utilization of WCOs in the synthesis of biodiesel and provide a novel enzymatic process for biodiesel reducing the cost of production.
Collapse
Affiliation(s)
- Jun Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, 510640, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Wen Luo
- Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhiyuan Wang
- Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Yiaoyan Chen
- Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Junying Fu
- Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Pengmei Lv
- Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
13
|
β-glucosidase production by recombinant Pichia pastoris strain Y1433 under optimal feed profiles of fed-batch cultivation. Folia Microbiol (Praha) 2022; 68:245-256. [PMID: 36241938 DOI: 10.1007/s12223-022-01008-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/02/2022] [Indexed: 11/04/2022]
Abstract
Pichia pastoris, a methylotrophic yeast, is known to be an efficient host for heterologous proteins production. In this study, a recombinant P. pastoris Y11430 was found better for β-glucosidase activity in comparison with a wild type P. pastoris Y11430 strain, and thereby, subjected to methanol intermittent feed profiling for β-glucosidase production. The results showed that at 72 h of cultivation time, the cultures with 16.67% and 33.33% methanol feeding with constant rate could produce the total dry cell weight of 52.23 and 118.55 g/L, respectively, while the total mutant β-glucosidase activities were 1001.59 and 3259.82 units, respectively. The methanol feeding profile was kept at 33% with three methanol feeding strategies such as constant feed rate, linear feed rate, and exponential feed rate which were used in fed-batch fermentation. At 60 h of cultivation, the highest total mutant β-glucosidase activity was 2971.85 units for exponential feed rate culture. On the other hand, total mutant β-glucosidase activity of the constant feed rate culture and linear feed rate culture were 1682.25 and 1975.43 units, respectively. The kinetic parameters of exponential feed rate culture were specific growth rate on glycerol 0.228/h, specific growth of methanol 0.061/h, maximum total dry cell weight 196.73 g, yield coefficient biomass per methanol ([Formula: see text]) 0.57 gcell/gMeOH, methanol consumption rate ([Formula: see text]) 5.76 gMeOH/h, and enzyme productivity ([Formula: see text]) 75.96 units/h. In conclusion, higher cell mass and β- glucosidase activity were produced under exponential feed rate than constant and linear feed rates.
Collapse
|
14
|
Fan Q, Waldburger S, Neubauer P, Riedel SL, Gimpel M. Implementation of a high cell density fed-batch for heterologous production of active [NiFe]-hydrogenase in Escherichia coli bioreactor cultivations. Microb Cell Fact 2022; 21:193. [PMID: 36123684 PMCID: PMC9484157 DOI: 10.1186/s12934-022-01919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background O2-tolerant [NiFe]-hydrogenases offer tremendous potential for applications in H2-based technology. As these metalloenzymes undergo a complicated maturation process that requires a dedicated set of multiple accessory proteins, their heterologous production is challenging, thus hindering their fundamental understanding and the development of related applications. Taking these challenges into account, we selected the comparably simple regulatory [NiFe]-hydrogenase (RH) from Cupriavidus necator as a model for the development of bioprocesses for heterologous [NiFe]-hydrogenase production. We already reported recently on the high-yield production of catalytically active RH in Escherichia coli by optimizing the culture conditions in shake flasks. Results In this study, we further increase the RH yield and ensure consistent product quality by a rationally designed high cell density fed-batch cultivation process. Overall, the bioreactor cultivations resulted in ˃130 mg L−1 of catalytically active RH which is a more than 100-fold increase compared to other RH laboratory bioreactor scale processes with C. necator. Furthermore, the process shows high reproducibility of the previously selected optimized conditions and high productivity. Conclusions This work provides a good opportunity to readily supply such difficult-to-express complex metalloproteins economically and at high concentrations to meet the demand in basic and applied studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01919-w.
Collapse
Affiliation(s)
- Qin Fan
- Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK24, D-13355, Berlin, Germany
| | - Saskia Waldburger
- Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK24, D-13355, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK24, D-13355, Berlin, Germany
| | - Sebastian L Riedel
- Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK24, D-13355, Berlin, Germany
| | - Matthias Gimpel
- Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK24, D-13355, Berlin, Germany.
| |
Collapse
|
15
|
Enhanced Production Process of Recombinant Mature Serratiopeptidase in Escherichia coli Using Fed-Batch Culture by Self-Proteolytic Activity of Fusion Protein. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial enzymes are increasingly finding applications as therapeutics due to their targeted activity and minimal side effects. Serratiopeptidase, also known as a miracle enzyme, has already proved its potential as an anti-inflammatory, mucolytic, fibrinolytic, analgesic in many studies. A cost effective, bioreactor level production process has been described here comprising of the fed-batch fermentation to produce recombinant serratiopeptidase protein expressed as a fusion construct. High yield of cell mass as well as protein was obtained by the optimization of bioreactor parameters. The downstream solubilization and purification processes were also optimized to achieve maximum yield of pure, active serratiopeptidase protein. A final yield of 2.5 ± 0.764 g L−1 of protein was obtained, having 8382 ± 291 U mg−1 of specific caseinolytic activity. Additionally, a novel, unexpected self-proteolytic activity of the enzyme that cleaves the N-terminal 6× His-SUMO fusion tag along with the enzyme propeptide, thus yielding a mature serratiopeptidase, was also found.
Collapse
|
16
|
Hansen S, Gumprecht A, Micheel L, Hennemann HG, Enzmann F, Blümke W. Implementation of Perforated Concentric Ring Walls Considerably Improves Gas-Liquid Mass Transfer of Shaken Bioreactors. Front Bioeng Biotechnol 2022; 10:894295. [PMID: 35646878 PMCID: PMC9135409 DOI: 10.3389/fbioe.2022.894295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Since their first use in the 1930s, shake flasks have been a widely used bioreactor type for screening and process development due to a number of advantages. However, the limited gas-liquid mass transfer capacities—resulting from practical operation limits regarding shaking frequency and filling volumes—are a major drawback. The common way to increase the gas-liquid mass transfer in shake flasks with the implementation of baffles is generally not recommended as it comes along with several severe disadvantages. Thus, a new design principle for shaken bioreactors that aims for improving the gas-liquid mass transfer without losing the positive characteristics of unbaffled shake flasks is introduced. The flasks consist of cylindrical glass vessels with implemented perforated concentric ring walls. The ring walls improve the gas-liquid mass transfer via the formation of additional liquid films on both of its sides, whereas the perforations allow for mixing between the compartments. Sulfite oxidation experiments revealed over 200% higher maximum oxygen transfer capacities (OTRmax) compared to conventional shake flasks. In batch cultivations of Escherichia coli BL21 in mineral media, unlimited growth until glucose depletion and oxygen transfer rates (OTR) of up to 138 mmol/L/h instead of an oxygen limitation at 57 mmol/L/h as in normal shake flasks under comparable conditions could be achieved. Even overflow metabolism could be prevented due to sufficient oxygen supply without the use of unconventional shaking conditions or oxygen enrichment. Therefore, we believe that the new perforated ring flask principle has a high potential to considerably improve biotechnological screening and process development steps.
Collapse
Affiliation(s)
- Sven Hansen
- Evonik Operations GmbH, Marl, Germany
- *Correspondence: Sven Hansen,
| | | | | | | | | | | |
Collapse
|
17
|
Teworte S, Malcı K, Walls LE, Halim M, Rios-Solis L. Recent advances in fed-batch microscale bioreactor design. Biotechnol Adv 2021; 55:107888. [PMID: 34923075 DOI: 10.1016/j.biotechadv.2021.107888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022]
Abstract
Advanced fed-batch microbioreactors mitigate scale up risks and more closely mimic industrial cultivation practices. Recently, high throughput microscale feeding strategies have been developed which improve the accessibility of microscale fed-batch cultivation irrespective of experimental budget. This review explores such technologies and their role in accelerating bioprocess development. Diffusion- and enzyme-controlled feeding achieve a continuous supply of substrate while being simple and affordable. More complex feed profiles and greater process control require additional hardware. Automated liquid handling robots may be programmed to predefined feed profiles and have the sensitivity to respond to deviations in process parameters. Microfluidic technologies have been shown to facilitate both continuous and precise feeding. Holistic approaches, which integrate automated high-throughput fed-batch cultivation with strategic design of experiments and model-based optimisation, dramatically enhance process understanding whilst minimising experimental burden. The incorporation of real-time data for online optimisation of feed conditions can further refine screening. Although the technologies discussed in this review hold promise for efficient, low-risk bioprocess development, the expense and complexity of automated cultivation platforms limit their widespread application. Future attention should be directed towards the development of open-source software and reducing the exclusivity of hardware.
Collapse
Affiliation(s)
- Sarah Teworte
- Institute for Bioengineering, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom; Centre for Synthetic and Systems Biology, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom
| | - Laura E Walls
- Institute for Bioengineering, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom; Centre for Synthetic and Systems Biology, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom; Centre for Synthetic and Systems Biology, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom.
| |
Collapse
|
18
|
Karyolaimos A, de Gier JW. Strategies to Enhance Periplasmic Recombinant Protein Production Yields in Escherichia coli. Front Bioeng Biotechnol 2021; 9:797334. [PMID: 34970535 PMCID: PMC8712718 DOI: 10.3389/fbioe.2021.797334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
Main reasons to produce recombinant proteins in the periplasm of E. coli rather than in its cytoplasm are to -i- enable disulfide bond formation, -ii- facilitate protein isolation, -iii- control the nature of the N-terminus of the mature protein, and -iv- minimize exposure to cytoplasmic proteases. However, hampered protein targeting, translocation and folding as well as protein instability can all negatively affect periplasmic protein production yields. Strategies to enhance periplasmic protein production yields have focused on harmonizing secretory recombinant protein production rates with the capacity of the secretory apparatus by transcriptional and translational tuning, signal peptide selection and engineering, increasing the targeting, translocation and periplasmic folding capacity of the production host, preventing proteolysis, and, finally, the natural and engineered adaptation of the production host to periplasmic protein production. Here, we discuss these strategies using notable examples as a thread.
Collapse
Affiliation(s)
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
19
|
Hanyu Y, Kato M. High-yield expression of periplasmic single-chain variable fragments by solid Escherichia coli cultures. Biotechniques 2021; 72:29-32. [PMID: 34841891 DOI: 10.2144/btn-2021-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
High-yield expression of quality antibody fragments is indispensable for research and diagnosis. Most recombinant antibody fragments are expressed in Escherichia coli using liquid cultures; however, their yields and quality are often poor. Here the authors expressed a single-chain variable fragment in E. coli cultivated on the wet surface of a solid support. Compared with a liquid culture, the authors obtained 2.5-times more single-chain variable fragments with membrane-cultivated E. coli. This method has two important advantages: it enables high yields of periplasmic single-chain variable fragments compared with liquid culture and offers simple and rapid expression and extraction.
Collapse
Affiliation(s)
- Yoshiro Hanyu
- Biomaterials Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Mieko Kato
- Department of Biochemistry, Bio-Peak Co., Ltd., 584-70 Shimonojo, Takasaki, 370-0854, Japan
| |
Collapse
|
20
|
Zhang J, Chen H, Wang Z, Xu H, Luo W, Xu J, Lv P. Heat-induced overexpression of the thermophilic lipase from Bacillus thermocatenulatus in Escherichia coli by fermentation and its application in preparation biodiesel using rapeseed oil. Biotechnol Appl Biochem 2021; 69:1812-1820. [PMID: 34486738 DOI: 10.1002/bab.2247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/30/2021] [Indexed: 11/12/2022]
Abstract
Due to its simple, less by-product and environment friendly properties, enzymatic transesterification of oil with short-chain alcohol to biodiesel, fatty acid methyl esters (FAMEs) is considered to be a promising way of green production and has attracted much attention. In this study, FAMEs were synthesized by an enzymatic method with recombinant lipase as catalysts. A thermophilic Bacillus thermocatenulatus lipase 2 (BTL2) was overexpressed in Escherichia coli BL21(DE3) through relative and quantitative analysis using real-time quantitative PCR. The results suggested that the BTL2 gene was overexpressed in E. coli at the mRNA level, and the recombinant strain harboring a high-copy number vectors was selected and applied to fermentation to produce BTL2 with enzyme activity of 35.54 U/mg cells. The recombinant BTL2 solution exhibited excellent resistance to neutral pH, high temperature, and organic solvents after a certain treatment. Finally, the effects of enzymatic transesterification for preparing biodiesel were studied, using rapeseed oil as raw material, as well as BTL2 solution as catalysts, which resulted in 86.04% yield of FAMEs under 50°C for 36 h. The liquid BTL2 was directly used to prepare FAMEs at a higher temperature efficiently, making the thermophilic BTL2 had the potential application value in biodiesel reproduction subsequently.
Collapse
Affiliation(s)
- Jun Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huanjun Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Huijuan Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Wen Luo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Jingliang Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Pengmei Lv
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| |
Collapse
|
21
|
Naseri G, Prause K, Hamdo HH, Arenz C. Artificial Transcription Factors for Tuneable Gene Expression in Pichia pastoris. Front Bioeng Biotechnol 2021; 9:676900. [PMID: 34434924 PMCID: PMC8381338 DOI: 10.3389/fbioe.2021.676900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has become a powerful eukaryotic expression platform for biopharmaceutical and biotechnological applications on both laboratory and industrial scales. Despite the fundamental role that artificial transcription factors (ATFs) play in the orthogonal control of gene expression in synthetic biology, a limited number of ATFs are available for P. pastoris. To establish orthogonal regulators for use in P. pastoris, we characterized ATFs derived from Arabidopsis TFs. The plant-derived ATFs contain the binding domain of TFs from the plant Arabidopsis thaliana, in combination with the activation domains of yeast GAL4 and plant EDLL and a synthetic promoter harboring the cognate cis-regulatory motifs. Chromosomally integrated ATFs and their binding sites (ATF/BSs) resulted in a wide spectrum of inducible transcriptional outputs in P. pastoris, ranging from as low as 1- to as high as ∼63-fold induction with only small growth defects. We demonstrated the application of ATF/BSs by generating P. pastoris cells that produce β-carotene. Notably, the productivity of β-carotene in P. pastoris was ∼4.8-fold higher than that in S. cerevisiae, reaching ∼59% of the β-carotene productivity obtained in a S. cerevisiae strain optimized for the production of the β-carotene precursor, farnesyl diphosphate, by rewiring the endogenous metabolic pathways using plant-derived ATF/BSs. Our data suggest that plant-derived regulators have a high degree of transferability from S. cerevisiae to P. pastoris. The plant-derived ATFs, together with their cognate binding sites, powerfully increase the repertoire of transcriptional regulatory modules for the tuning of protein expression levels required in metabolic engineering or synthetic biology in P. pastoris.
Collapse
Affiliation(s)
- Gita Naseri
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Kevin Prause
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Housam Haj Hamdo
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
22
|
Moriwaki-Takano M, Asada C, Nakamura Y. Production of spiculisporic acid by Talaromyces trachyspermus in fed-batch bioreactor culture. BIORESOUR BIOPROCESS 2021; 8:59. [PMID: 38650186 PMCID: PMC10991155 DOI: 10.1186/s40643-021-00414-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
Spiculisporic acid (SA) is a fatty acid-type biosurfactant with one lactone ring and two carboxyl groups. It has been used in metal removers and cosmetics, because of its low propensity to cause irritation to the skin, its anti-bacterial properties, and high surface activity. In the present study, we report an effective method for producing SA by selecting a high-producing strain and investigating the effective medium components, conditions, and environments for its culture. Among the 11 kinds of Talaromyces species, T. trachyspermus NBRC 32238 showed the highest production of a crystalline substance, which was determined to be SA using NMR. The strain was able to produce SA under acidic conditions from hexoses, pentoses, and disaccharides, with glucose and sucrose serving as the most appropriate substrates. Investigation of nitrogen sources and trace metal ions revealed meat extract and FeCl3 as components that promoted SA production. Upon comparing the two types of cultures with glucose in a baffle flask or aeration bioreactor, SA production was found to be slightly higher in the flask than in the reactor. In the bioreactor culture, sucrose was found to be an appropriate substrate for SA production, as compared to glucose, because with sucrose, the lag time until the start of SA production was shortened. Finally, fed-batch culture with sucrose resulted in 60 g/L of SA, with a total yield of 0.22 g SA/g sucrose and a productivity of 6.6 g/L/day.
Collapse
Affiliation(s)
- Maki Moriwaki-Takano
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan.
| | - Chikako Asada
- Department of Bioscience and Bioindustry, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Yoshitosi Nakamura
- Department of Bioscience and Bioindustry, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| |
Collapse
|
23
|
Method for high-efficiency fed-batch cultures of recombinant Escherichia coli. Methods Enzymol 2021; 659:189-217. [PMID: 34752285 DOI: 10.1016/bs.mie.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fed-batch processes are commonly used in industry to obtain sufficient biomass and associated recombinant protein or plasmids. In research laboratories, it is more common to use batch cultures, as the setup of fed-batch processes can be challenging. This method outlines a robust and reliable means to generate Escherichia coli biomass in a minimum amount of fermentation time using a standardized fed-batch process. Final cell densities can reach over 50g dry cell weight per liter (gdcw/L) depending on the strain. This method uses a predefined exponential feeding strategy and conservative induction protocol to achieve these targets without multiple trial and error studies. If desired, productivity can be optimized by balancing the induction time and feed rates. This method utilizes cost-efficient defined media, minimizes process control complexity, and potentially aids downstream purification.
Collapse
|
24
|
Khanchezar S, Hashemi-Najafabadi S, Shojaosadati SA, Babaeipour V. High cell density culture of recombinant E. coli in the miniaturized bubble columns. Bioprocess Biosyst Eng 2021; 44:2075-2085. [PMID: 34061248 DOI: 10.1007/s00449-021-02584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Miniaturized bubble columns (MBCs) can provide mass transfer characteristics similar to stirred tank bioreactors. In this study, a new application was developed for MBCs to investigate the effect of feeding strategy and medium type on the fed-batch culture of recombinant E. coli. The results showed that the exponential feeding strategy and defined M9 medium were more suitable to achieve the high cell density culture (HCDC). The maximum obtained cell concentration in exponential feeding strategy in the defined medium without induction, was at OD600 of 169, while glucose concentration was maintained under 2 g/L. To the best of our knowledge, this cell concentration cannot be achieved in lab or pilot scale bubble columns. At the end of the process, adverse effect of the metabolic burden due to induction and mass transfer limitations decreased the obtained final cell concentration to OD600 of 116. Finally, a comparison of the results for fed-batch culture in the stirred tank bioreactor with those of the MBCs showed that their lower cell concentrations were due to the hydrodynamics limitations of MBCs. Yet, it was found that the MBCs are efficient tools in development of feeding strategies and evaluation of medium components for HCDC of recombinant E. coli.
Collapse
Affiliation(s)
- Sirwan Khanchezar
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Abbas Shojaosadati
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
25
|
Duarte LS, Matte CR, Dall Cortivo PR, Nunes JES, Barsé LQ, Bizarro CV, Ayub MAZ. Expression of Bacillus amyloliquefaciens transglutaminase in recombinant E. coli under the control of a bicistronic plasmid system in DO-stat fed-batch bioreactor cultivations. Braz J Microbiol 2021; 52:1225-1233. [PMID: 34008152 DOI: 10.1007/s42770-021-00521-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
We studied the expression of Bacillus amyloliquefaciens transglutaminase cloned in Escherichia coli BL21(DE3)pLysS harboring the plasmid pBAD/3C/bTGase, a bicistronic expression system, in bioreactor cultivation. Batch and fed-batch controlled as DO-stat strategies were employed for the production of the recombinant enzyme. In 30 h-batch cultivations using Terrific broth (TB), 6 g/L of biomass and 3.12 U/mgprotein of transglutaminase activity were obtained. DO-stat fed-batch cultivations under the control of oxygen concentration (DO-stat) using TB as medium but fed with glucose allowed the increment in biomass formation (17.5 g/L) and enzyme activity (6.43 U/mgprotein). DO-stat fed-batch using mineral medium (M9) and fed with glucose under the same conditions produced even higher enzymatic activity (9.14 U/mgprotein). The pH effect was investigated, and the best enzymatic activity could be observed at pH 8. In all cultivations, the bicistronic system remained stable, with 100% of plasmid-bearing cells. These results show that E. coli bearing bicistronic plasmid constructs to express recombinant TGase could be cultivated in bioreactors under DO-stat fed-batch using mineral medium and it is a promising strategy in future optimizations to produce this important enzyme.
Collapse
Affiliation(s)
- Lovaine Silva Duarte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | - Carla Roberta Matte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | - Paulo Roberto Dall Cortivo
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | - José Eduardo Sacconi Nunes
- Centro de Pesquisas Em Biologia Molecular E Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 92A TECNOPUC Building, 4592 Av. Bento Gonçalves, Porto Alegre, ZC 90650-001, Brazil
| | - Laisa Quadros Barsé
- Centro de Pesquisas Em Biologia Molecular E Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 92A TECNOPUC Building, 4592 Av. Bento Gonçalves, Porto Alegre, ZC 90650-001, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas Em Biologia Molecular E Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 92A TECNOPUC Building, 4592 Av. Bento Gonçalves, Porto Alegre, ZC 90650-001, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil.
| |
Collapse
|
26
|
Tahara N, Tachibana I, Takeo K, Yamashita S, Shimada A, Hashimoto M, Ohno S, Yokogawa T, Nakagawa T, Suzuki F, Ebihara A. Boosting Auto-Induction of Recombinant Proteins in Escherichia coli with Glucose and Lactose Additives. Protein Pept Lett 2021; 28:1180-1190. [PMID: 34353248 PMCID: PMC8811614 DOI: 10.2174/0929866528666210805120715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Auto-induction is a convenient way to produce recombinant proteins without inducer addition using lac operon-controlled Escherichia coli expression systems. Auto-induction can occur unintentionally using a complex culture medium prepared by mixing culture substrates. The differences in culture substrates sometimes lead to variations in the induction level. OBJECTIVES In this study, we investigated the feasibility of using glucose and lactose as boosters of auto-induction with a complex culture medium. METHODS First, auto-induction levels were assessed by quantifying recombinant GFPuv expression under the control of the T7 lac promoter. Effectiveness of the additive-containing medium was examined using ovine angiotensinogen (tac promoter-based expression) and Thermus thermophilus manganese-catalase (T7 lac promoter-based expression). RESULTS Auto-induced GFPuv expression was observed with the enzymatic protein digest Polypepton, but not with another digest tryptone. Regardless of the type of protein digest, supplementing Terrific Broth medium with glucose (at a final concentration of 2.9 g/L) and lactose (at a final concentration of 7.6 g/L) was successful in obtaining an induction level similar to that achieved with a commercially available auto-induction medium. The two recombinant proteins were produced in milligram quantity of purified protein per liter of culture. CONCLUSION The medium composition shown in this study would be practically useful for attaining reliable auto-induction for E. coli-based recombinant protein production.
Collapse
Affiliation(s)
- Nariyasu Tahara
- Graduate School of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Itaru Tachibana
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuyo Takeo
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shinji Yamashita
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Atsuhiro Shimada
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Misuzu Hashimoto
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Satoshi Ohno
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takashi Yokogawa
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tsutomu Nakagawa
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Fumiaki Suzuki
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
27
|
Schipp CJ, Ma Y, Al‐Shameri A, D'Alessio F, Neubauer P, Contestabile R, Budisa N, di Salvo ML. An Engineered Escherichia coli Strain with Synthetic Metabolism for in-Cell Production of Translationally Active Methionine Derivatives. Chembiochem 2020; 21:3525-3538. [PMID: 32734669 PMCID: PMC7756864 DOI: 10.1002/cbic.202000257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Indexed: 01/26/2023]
Abstract
In the last decades, it has become clear that the canonical amino acid repertoire codified by the universal genetic code is not up to the needs of emerging biotechnologies. For this reason, extensive genetic code re-engineering is essential to expand the scope of ribosomal protein translation, leading to reprogrammed microbial cells equipped with an alternative biochemical alphabet to be exploited as potential factories for biotechnological purposes. The prerequisite for this to happen is a continuous intracellular supply of noncanonical amino acids through synthetic metabolism from simple and cheap precursors. We have engineered an Escherichia coli bacterial system that fulfills these requirements through reconfiguration of the methionine biosynthetic pathway and the introduction of an exogenous direct trans-sulfuration pathway. Our metabolic scheme operates in vivo, rescuing intermediates from core cell metabolism and combining them with small bio-orthogonal compounds. Our reprogrammed E. coli strain is capable of the in-cell production of l-azidohomoalanine, which is directly incorporated into proteins in response to methionine codons. We thereby constructed a prototype suitable for economic, versatile, green sustainable chemistry, pushing towards enzyme chemistry and biotechnology-based production.
Collapse
Affiliation(s)
- Christian Johannes Schipp
- Chair of Bioprocess Engineering, Institute of BiotechnologyTechnische Universität Berlin ACK 24Ackerstraße 7613355BerlinGermany
| | - Ying Ma
- Paraxel International GmbH, Berlin, Campus DRK Kliniken Berlin Westend Haus 18Spandauer Damm 13014050BerlinGermany
| | - Ammar Al‐Shameri
- Institut für ChemieTechnische Universität BerlinMüller-Breslau-Straße. 1010623BerlinGermany
| | - Federico D'Alessio
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaPiazzale Aldo Moro, 5 – Edificio CU2000185RomaItaly
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of BiotechnologyTechnische Universität Berlin ACK 24Ackerstraße 7613355BerlinGermany
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaPiazzale Aldo Moro, 5 – Edificio CU2000185RomaItaly
| | - Nediljko Budisa
- Institut für ChemieTechnische Universität BerlinMüller-Breslau-Straße. 1010623BerlinGermany
- Department of ChemistryUniversity of ManitobaWinnipegMB, R3T 2N2Canada
| | - Martino Luigi di Salvo
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaPiazzale Aldo Moro, 5 – Edificio CU2000185RomaItaly
| |
Collapse
|
28
|
Takahashi M, Aoyagi H. Analysis of porous breathable stopper and development of PID control for gas phase during shake-flask culture with microorganisms. Appl Microbiol Biotechnol 2020; 104:8925-8936. [PMID: 32870338 DOI: 10.1007/s00253-020-10847-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
We evaluated the ventilation ability of two types (plug-type and cap-type) of culture-stoppers having standard air permeability. The culture-stoppers were evaluated using the circulation direct monitoring and sampling system with CO2 concentration in the gas phase of a shake-flask culture as an index. The half-lives of CO2 in the headspace of the shake flask with the plug-type and cap-type stoppers were about 51.5 min and about 30.3 min, respectively. Based on these half-lives, we formulated a model equation to simulate the behaviour of CO2 with different culture-stoppers. After validating the model equation by shake-flask culture with Saccharomyces cerevisiae, we investigated the effect of different ventilation abilities of the culture-stoppers on the growth of Pelomonas saccharophila and Escherichia coli: the sensitivity of the culture-stopper to the ventilation ability was dependent on the microorganism species. In the case of P. saccharophila, when the plug-type culture-stopper was combined with controlled CO2 concentration (6%) in the flask, the maximum yield increased by twofold compared to that of the control. This study shows the importance of ventilation in headspace and conventional culture-stoppers during the shake-flask culture of microorganisms. The problems that may occur between the conventional shake-flask culture approach using a breathable culture-stopper and the next-generation shake-flask culture without a conventional culture-stopper were clarified from the evaluation of gas-permeable culture-stoppers. The importance of controlled gaseous phase in the headspace during shake-flask culture of the microorganisms was also elucidated. KEY POINTS: • Ventilation capacity of culture-stoppers was evaluated using the CO2 half-life concentration. • Behaviour of microorganisms varies with the type of culture-stopper. • Developed a PID system for control of CO2 in flask gas phase to enhance the shake-flask culture.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hideki Aoyagi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
29
|
Takahashi M, Honzawa T, Tominaga R, Aoyagi H. Analysis of the influence of flame sterilization included in sampling operations on shake-flask cultures of microorganisms. Sci Rep 2020; 10:10385. [PMID: 32606322 PMCID: PMC7326993 DOI: 10.1038/s41598-020-66810-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
Shake-flask cultures of microorganisms involve flame sterilization during sampling, which produces combustion gas with high CO2 concentrations. The gaseous destination has not been deeply analyzed. Our aim was to investigate the effect of flame sterilization on the headspace of the flask and on the shake-flask culture. In this study, the headspace CO2 concentration was found to increase during flame sterilization ~0.5–2.0% over 5–20 s empirically using the Circulation Direct Monitoring and Sampling System. This CO2 accumulation was confirmed theoretically using Computational Fluid Dynamics; it was 9% topically. To evaluate the influence of CO2 accumulation without interference from other sampling factors, the flask gas phase formed by flame sterilization was reproduced by aseptically supplying 99.8% CO2 into the headspace, without sampling. We developed a unit that can be sampled in situ without interruption of shaking, movement to a clean bench, opening of the culture-plug, and flame sterilization. We observed that the growth behaviour of Escherichia coli, Pelomonas saccharophila, Acetobacter pasteurianus, and Saccharomyces cerevisiae was different depending on the CO2 aeration conditions. These results are expected to contribute to improving microbial cell culture systems.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Takafumi Honzawa
- Combustion of Thermo and Fluid Dynamics, Department of Fundamental Technology, Tokyo Gas Co. Ltd., Yokohama, Kanagawa, 230-0045, Japan
| | - Ryuichi Tominaga
- Combustion of Thermo and Fluid Dynamics, Department of Fundamental Technology, Tokyo Gas Co. Ltd., Yokohama, Kanagawa, 230-0045, Japan
| | - Hideki Aoyagi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
30
|
Pang Y, Zhao Y, Li S, Zhao Y, Li J, Hu Z, Zhang C, Xiao D, Yu A. Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:241. [PMID: 31624503 PMCID: PMC6781337 DOI: 10.1186/s13068-019-1580-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/25/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Limonene is an important biologically active natural product widely used in the food, cosmetic, nutraceutical and pharmaceutical industries. However, the low abundance of limonene in plants renders their isolation from plant sources non-economically viable. Therefore, engineering microbes into microbial factories for producing limonene is fast becoming an attractive alternative approach that can overcome the aforementioned bottleneck to meet the needs of industries and make limonene production more sustainable and environmentally friendly. RESULTS In this proof-of-principle study, the oleaginous yeast Yarrowia lipolytica was successfully engineered to produce both d-limonene and l-limonene by introducing the heterologous d-limonene synthase from Citrus limon and l-limonene synthase from Mentha spicata, respectively. However, only 0.124 mg/L d-limonene and 0.126 mg/L l-limonene were produced. To improve the limonene production by the engineered yeast Y. lipolytica strain, ten genes involved in the mevalonate-dependent isoprenoid pathway were overexpressed individually to investigate their effects on limonene titer. Hydroxymethylglutaryl-CoA reductase (HMGR) was found to be the key rate-limiting enzyme in the mevalonate (MVA) pathway for the improving limonene synthesis in Y. lipolytica. Through the overexpression of HMGR gene, the titers of d-limonene and l-limonene were increased to 0.256 mg/L and 0.316 mg/L, respectively. Subsequently, the fermentation conditions were optimized to maximize limonene production by the engineered Y. lipolytica strains from glucose, and the final titers of d-limonene and l-limonene were improved to 2.369 mg/L and 2.471 mg/L, respectively. Furthermore, fed-batch fermentation of the engineered strains Po1g KdHR and Po1g KlHR was used to enhance limonene production in shake flasks and the titers achieved for d-limonene and l-limonene were 11.705 mg/L (0.443 mg/g) and 11.088 mg/L (0.385 mg/g), respectively. Finally, the potential of using waste cooking oil as a carbon source for limonene biosynthesis from the engineered Y. lipolytica strains was investigated. We showed that d-limonene and l-limonene were successfully produced at the respective titers of 2.514 mg/L and 2.723 mg/L under the optimal cultivation condition, where 70% of waste cooking oil was added as the carbon source, representing a 20-fold increase in limonene titer compared to that before strain and fermentation optimization. CONCLUSIONS This study represents the first report on the development of a new and efficient process to convert waste cooking oil into d-limonene and l-limonene by exploiting metabolically engineered Y. lipolytica strains for fermentation. The results obtained in this study lay the foundation for more future applications of Y. lipolytica in converting waste cooking oil into various industrially valuable products.
Collapse
Affiliation(s)
- Yaru Pang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Yakun Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Shenglong Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Yu Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Jian Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Zhihui Hu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| |
Collapse
|
31
|
Ongey EL, Santolin L, Waldburger S, Adrian L, Riedel SL, Neubauer P. Bioprocess Development for Lantibiotic Ruminococcin-A Production in Escherichia coli and Kinetic Insights Into LanM Enzymes Catalysis. Front Microbiol 2019; 10:2133. [PMID: 31572338 PMCID: PMC6753504 DOI: 10.3389/fmicb.2019.02133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Ruminococcin-A (RumA) is a peptide antibiotic with post-translational modifications including thioether cross-links formed from non-canonical amino acids, called lanthionines, synthesized by a dedicated lanthionine-generating enzyme RumM. RumA is naturally produced by Ruminococcus gnavus, which is part of the normal bacterial flora in the human gut. High activity of RumA against pathogenic Clostridia has been reported, thus allowing potential exploitation of RumA for clinical applications. However, purifying RumA from R. gnavus is challenging due to low production yields (<1 μg L-1) and difficulties to cultivate the obligately anaerobic organism. We recently reported the reconstruction of the RumA biosynthesis machinery in Escherichia coli where the fully modified and active peptide was expressed as a fusion protein together with GFP. In the current study we developed a scale-up strategy for the biotechnologically relevant heterologous production of RumA, aimed at overproducing the peptide under conditions comparable with those in industrial production settings. To this end, glucose-limited fed-batch cultivation was used. Firstly, parallel cultivations were performed in 24-microwell plates using the enzyme-based automated glucose-delivery cultivation system EnPresso® B to determine optimal conditions for IPTG induction. We combined the bioprocess development with ESI-MS and tandem ESI-MS to monitor modification of the precursor peptide (preRumA) during bioreactor cultivation. Dehydration of threonine and serine residues in the core peptide, catalyzed by RumM, occurs within 1 h after IPTG induction while formation of thioether cross-bridges occur around 2.5 h after induction. Our data also supplies important information on modification kinetics especially with respect to the fluctuations observed in the various dehydrated precursor peptide versions or intermediates produced at different time points during bioreactor cultivation. Overall, protein yields obtained from the bioreactor cultivations were >120 mg L-1 for the chimeric construct and >150 mg L-1 for RumM. The correlation observed between microscale and lab-scale bioreactor cultivations suggests that the process is robust and realistically applicable to industrial-scale conditions.
Collapse
Affiliation(s)
- Elvis L Ongey
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Lara Santolin
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Saskia Waldburger
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany.,Chair of Geobiotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sebastian L Riedel
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Peter Neubauer
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
32
|
Natochii T, Motronenko V. Comparative Characteristics of Biotechnological Approaches to Obtaining Recombinant Human Cytokines in Bacterial Expressing Systems. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2019. [DOI: 10.20535/ibb.2019.3.3.170150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
33
|
Jansen R, Tenhaef N, Moch M, Wiechert W, Noack S, Oldiges M. FeedER: a feedback-regulated enzyme-based slow-release system for fed-batch cultivation in microtiter plates. Bioprocess Biosyst Eng 2019; 42:1843-1852. [PMID: 31399865 PMCID: PMC6800402 DOI: 10.1007/s00449-019-02180-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/23/2019] [Indexed: 11/09/2022]
Abstract
With the advent of modern genetic engineering methods, microcultivation systems have become increasingly important tools for accelerated strain phenotyping and bioprocess engineering. While these systems offer sophisticated capabilities to screen batch processes, they lack the ability to realize fed-batch processes, which are used more frequently in industrial bioprocessing. In this study, a novel approach to realize a feedback-regulated enzyme-based slow-release system (FeedER), allowing exponential fed-batch for microscale cultivations, was realized by extending our existing Mini Pilot Plant technology with a customized process control system. By continuously comparing the experimental growth rates with predefined set points, the automated dosage of Amyloglucosidase enzyme for the cleavage of dextrin polymers into d-glucose monomers is triggered. As a prerequisite for stable fed-batch operation, a constant pH is maintained by automated addition of ammonium hydroxide. We show the successful application of FeedER to study fed-batch growth of different industrial model organisms including Corynebacterium glutamicum, Pichia pastoris, and Escherichia coli. Moreover, the comparative analysis of a C. glutamicum GFP producer strain, cultivated under microscale batch and fed-batch conditions, revealed two times higher product yields under slow growing fed-batch operation. In summary, FeedER enables to run 48 parallel fed-batch experiments in an automated and miniaturized manner, and thereby accelerates industrial bioprocess development at the screening stage.
Collapse
Affiliation(s)
- Roman Jansen
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany
| | - Niklas Tenhaef
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Matthias Moch
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany.,RWTH Aachen University, Computational Systems Biotechnology (AVT.CSB), Aachen, Germany
| | - Stephan Noack
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marco Oldiges
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
34
|
Rosano GL, Morales ES, Ceccarelli EA. New tools for recombinant protein production in Escherichia coli: A 5-year update. Protein Sci 2019; 28:1412-1422. [PMID: 31219641 PMCID: PMC6635841 DOI: 10.1002/pro.3668] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
The production of proteins in sufficient amounts is key for their study or use as biotherapeutic agents. Escherichia coli is the host of choice for recombinant protein production given its fast growth, easy manipulation, and cost-effectiveness. As such, its protein production capabilities are continuously being improved. Also, the associated tools (such as plasmids and cultivation conditions) are subject of ongoing research to optimize product yield. In this work, we review the latest advances in recombinant protein production in E. coli.
Collapse
Affiliation(s)
- Germán L. Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
| | - Enrique S. Morales
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
| | - Eduardo A. Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
| |
Collapse
|
35
|
Anane E, García ÁC, Haby B, Hans S, Krausch N, Krewinkel M, Hauptmann P, Neubauer P, Cruz Bournazou MN. A model‐based framework for parallel scale‐down fed‐batch cultivations in mini‐bioreactors for accelerated phenotyping. Biotechnol Bioeng 2019; 116:2906-2918. [DOI: 10.1002/bit.27116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Emmanuel Anane
- Department of Bioprocess EngineeringInstitute of BiotechnologyTechnische Universität Berlin Berlin Germany
| | - Ángel Córcoles García
- Biologics Development: Microbial Dev'tSanofi‐Aventis Deutschland GmbH Frankfurt Germany
| | - Benjamin Haby
- Department of Bioprocess EngineeringInstitute of BiotechnologyTechnische Universität Berlin Berlin Germany
| | - Sebastian Hans
- Department of Bioprocess EngineeringInstitute of BiotechnologyTechnische Universität Berlin Berlin Germany
| | - Niels Krausch
- Department of Bioprocess EngineeringInstitute of BiotechnologyTechnische Universität Berlin Berlin Germany
| | - Manuel Krewinkel
- Biologics Development: Microbial Dev'tSanofi‐Aventis Deutschland GmbH Frankfurt Germany
| | - Peter Hauptmann
- Biologics Development: Microbial Dev'tSanofi‐Aventis Deutschland GmbH Frankfurt Germany
| | - Peter Neubauer
- Department of Bioprocess EngineeringInstitute of BiotechnologyTechnische Universität Berlin Berlin Germany
| | - Mariano Nicolas Cruz Bournazou
- Department of Bioprocess EngineeringInstitute of BiotechnologyTechnische Universität Berlin Berlin Germany
- Department of Chemistry and Applied BiosciencesETH Zurich‐Institute of Chemical and Bioengineering Zurich Switzerland
- DataHow AG Zurich Switzerland
| |
Collapse
|
36
|
Haby B, Hans S, Anane E, Sawatzki A, Krausch N, Neubauer P, Cruz Bournazou MN. Integrated Robotic Mini Bioreactor Platform for Automated, Parallel Microbial Cultivation With Online Data Handling and Process Control. SLAS Technol 2019; 24:569-582. [PMID: 31288593 DOI: 10.1177/2472630319860775] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During process development, the experimental search space is defined by the number of experiments that can be performed in specific time frames but also by its sophistication (e.g., inputs, sensors, sampling frequency, analytics). High-throughput liquid-handling stations can perform a large number of automated experiments in parallel. Nevertheless, the experimental data sets that are obtained are not always relevant for development of industrial bioprocesses, leading to a high rate of failure during scale-up. We present an automated mini bioreactor platform that enables parallel cultivations in the milliliter scale with online monitoring and control, well-controlled conditions, and advanced feeding strategies similar to industrial processes. The combination of two liquid handlers allows both automated mini bioreactor operation and at-line analysis in parallel. A central database enables end-to-end data exchange and fully integrated device and process control. A model-based operation algorithm allows for the accurate performance of complex cultivations for scale-down studies and strain characterization via optimal experimental redesign, significantly increasing the reliability and transferability of data throughout process development. The platform meets the tradeoff between experimental throughput and process control and monitoring comparable to laboratory-scale bioreactors.
Collapse
Affiliation(s)
- Benjamin Haby
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Sebastian Hans
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Emmanuel Anane
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Annina Sawatzki
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Niels Krausch
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Peter Neubauer
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | | |
Collapse
|
37
|
Janzen NH, Striedner G, Jarmer J, Voigtmann M, Abad S, Reinisch D. Implementation of a Fully Automated Microbial Cultivation Platform for Strain and Process Screening. Biotechnol J 2019; 14:e1800625. [PMID: 30793511 DOI: 10.1002/biot.201800625] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/22/2018] [Indexed: 12/29/2022]
Abstract
Advances in molecular biotechnology have resulted in the generation of numerous potential production strains. Because every strain can be screened under various process conditions, the number of potential cultivations is multiplied. Exploiting this potential without increasing the associated timelines requires a cultivation platform that offers increased throughput and flexibility to perform various bioprocess screening protocols. Currently, there is no commercially available fully automated cultivation platform that can operate multiple microbial fed-batch processes, including at-line sampling, deep freezer off-line sample storage, and complete data handling. To enable scalable high-throughput early-stage microbial bioprocess development, a commercially available microbioreactor system and a laboratory robot are combined to develop a fully automated cultivation platform. By making numerous modifications, as well as supplementation with custom-built hardware and software, fully automated milliliter-scale microbial fed-batch cultivation, sample handling, and data storage are realized. The initial results of cultivations with two different expression systems and three different process conditions are compared using 5 L scale benchmark cultivations, which provide identical rankings of expression systems and process conditions. Thus, fully automated high-throughput cultivation, including automated centralized data storage to significantly accelerate the identification of the optimal expression systems and process conditions, offers the potential for automated early-stage bioprocess development.
Collapse
Affiliation(s)
- Nils H Janzen
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Johanna Jarmer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Martin Voigtmann
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Sandra Abad
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Daniela Reinisch
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| |
Collapse
|
38
|
Keil T, Dittrich B, Lattermann C, Habicher T, Büchs J. Polymer-based controlled-release fed-batch microtiter plate - diminishing the gap between early process development and production conditions. J Biol Eng 2019; 13:18. [PMID: 30833982 PMCID: PMC6387502 DOI: 10.1186/s13036-019-0147-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fed-batch conditions are advantageous for industrial cultivations as they avoid unfavorable phenomena appearing in batch cultivations. Those are for example the formation of overflow metabolites, catabolite repression, oxygen limitation or inhibition due to elevated osmotic concentrations. For both, the early bioprocess development and the optimization of existing bioprocesses, small-scale reaction vessels are applied to ensure high throughput, low costs and prompt results. However, most conventional small-scale procedures work in batch operation mode, which stands in contrast to fed-batch conditions in large-scale bioprocesses. Extensive expenditure for installations and operation accompany almost all cultivation systems in the market allowing fed-batch conditions in small-scale. An alternative, more cost efficient enzymatic glucose release system is strongly influenced by environmental conditions. To overcome these issues, this study investigates a polymer-based fed-batch system for controlled substrate release in microtiter plates. RESULTS Immobilizing a solid silicone matrix with embedded glucose crystals at the bottom of each well of a microtiter plate is a suitable technique for implementing fed-batch conditions in microtiter plates. The results showed that the glucose release rate depends on the osmotic concentration, the pH and the temperature of the medium. Moreover, the applied nitrogen source proved to influence the glucose release rate. A new developed mathematical tool predicts the glucose release for various media conditions. The two model organisms E. coli and H. polymorpha were cultivated in the fed-batch microtiter plate to investigate the general applicability for microbial systems. Online monitoring of the oxygen transfer rate and offline analysis of substrate, product, biomass and pH confirmed that fed-batch conditions are comparable to large-scale cultivations. Furthermore, due to fed-batch conditions in microtiter plates, product formation could be enhanced by the factor 245 compared to batch cultivations. CONCLUSIONS The polymer-based fed-batch microtiter plate represents a sophisticated and cost efficient system to mimic typical industrial fed-batch conditions in small-scale. Thus, a more reliable strain screening and early process development can be performed. A systematical scale-down with low expenditure of work, time and money is possible.
Collapse
Affiliation(s)
- T. Keil
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - B. Dittrich
- DWI – Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - C. Lattermann
- Kuhner Shaker GmbH, Kaiserstraße 100, 52134 Herzogenrath, Germany
| | - T. Habicher
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - J. Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
39
|
Nguyen JT, Fong J, Fong D, Fong T, Lucero RM, Gallimore JM, Burata OE, Parungao K, Rascón AA. Soluble expression of recombinant midgut zymogen (native propeptide) proteases from the Aedes aegypti Mosquito Utilizing E. coli as a host. BMC BIOCHEMISTRY 2018; 19:12. [PMID: 30563449 PMCID: PMC6299515 DOI: 10.1186/s12858-018-0101-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
Background Studying proteins and enzymes involved in important biological processes in the Aedes aegypti mosquito is limited by the quantity that can be directly isolated from the mosquito. Adding to this difficulty, digestive enzymes (midgut proteases) involved in metabolizing blood meal proteins require a more oxidizing environment to allow proper folding of disulfide bonds. Therefore, recombinant techniques to express foreign proteins in Escherichia coli prove to be effective in producing milligram quantities of the expressed product. However, with the most commonly used strains having a reducing cytoplasm, soluble expression of recombinant proteases is hampered. Fortunately, new E. coli strains with a more oxidizing cytoplasm are now available to ensure proper folding of disulfide bonds. Results Utilizing an E. coli strain with a more oxidizing cytoplasm (SHuffle® T7, New England Biolabs) and changes in bacterial growth temperature has resulted in the soluble expression of the four most abundantly expressed Ae. aegypti midgut proteases (AaET, AaSPVI, AaSPVII, and AaLT). A previous attempt of solubly expressing the full-length zymogen forms of these proteases with the leader (signal) sequence and a modified pseudo propeptide with a heterologous enterokinase cleavage site led to insoluble recombinant protein expression. In combination with the more oxidizing cytoplasm, and changes in growth temperature, helped improve the solubility of the zymogen (no leader) native propeptide proteases in E. coli. Furthermore, the approach led to autocatalytic activation of the proteases during bacterial expression and observable BApNA activity. Different time-points after bacterial growth induction were tested to determine the time at which the inactive (zymogen) species is observed to transition to the active form. This helped with the purification and isolation of only the inactive zymogen forms using Nickel affinity. Conclusions The difficulty in solubly expressing recombinant proteases in E. coli is caused by the native reducing cytoplasm. However, with bacterial strains with a more oxidizing cytoplasm, recombinant soluble expression can be achieved, but only in concert with changes in bacterial growth temperature. The method described herein should provide a facile starting point to recombinantly expressing Ae. aegypti mosquito proteases or proteins dependent on disulfide bonds utilizing E. coli as a host. Electronic supplementary material The online version of this article (10.1186/s12858-018-0101-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James T Nguyen
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Jonathan Fong
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Daniel Fong
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Timothy Fong
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Rachael M Lucero
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Jamie M Gallimore
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Olive E Burata
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Kamille Parungao
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Alberto A Rascón
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA.
| |
Collapse
|
40
|
Sawatzki A, Hans S, Narayanan H, Haby B, Krausch N, Sokolov M, Glauche F, Riedel SL, Neubauer P, Cruz Bournazou MN. Accelerated Bioprocess Development of Endopolygalacturonase-Production with Saccharomyces cerevisiae Using Multivariate Prediction in a 48 Mini-Bioreactor Automated Platform. Bioengineering (Basel) 2018; 5:E101. [PMID: 30469407 PMCID: PMC6316240 DOI: 10.3390/bioengineering5040101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/04/2023] Open
Abstract
Mini-bioreactor systems enabling automatized operation of numerous parallel cultivations are a promising alternative to accelerate and optimize bioprocess development allowing for sophisticated cultivation experiments in high throughput. These include fed-batch and continuous cultivations with multiple options of process control and sample analysis which deliver valuable screening tools for industrial production. However, the model-based methods needed to operate these robotic facilities efficiently considering the complexity of biological processes are missing. We present an automated experiment facility that integrates online data handling, visualization and treatment using multivariate analysis approaches to design and operate dynamical experimental campaigns in up to 48 mini-bioreactors (8⁻12 mL) in parallel. In this study, the characterization of Saccharomyces cerevisiae AH22 secreting recombinant endopolygalacturonase is performed, running and comparing 16 experimental conditions in triplicate. Data-driven multivariate methods were developed to allow for fast, automated decision making as well as online predictive data analysis regarding endopolygalacturonase production. Using dynamic process information, a cultivation with abnormal behavior could be detected by principal component analysis as well as two clusters of similarly behaving cultivations, later classified according to the feeding rate. By decision tree analysis, cultivation conditions leading to an optimal recombinant product formation could be identified automatically. The developed method is easily adaptable to different strains and cultivation strategies, and suitable for automatized process development reducing the experimental times and costs.
Collapse
Affiliation(s)
- Annina Sawatzki
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | - Sebastian Hans
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | | | - Benjamin Haby
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | - Niels Krausch
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | - Michael Sokolov
- ETH Zürich, Rämistrasse 101, CH-8092 Zurich, Switzerland.
- DataHow AG, c/o ETH Zürich, HCl, F137, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland.
| | - Florian Glauche
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | - Sebastian L Riedel
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | - Peter Neubauer
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | - Mariano Nicolas Cruz Bournazou
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| |
Collapse
|
41
|
Junne S, Neubauer P. How scalable and suitable are single-use bioreactors? Curr Opin Biotechnol 2018; 53:240-247. [DOI: 10.1016/j.copbio.2018.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/27/2023]
|
42
|
Yu JL, Qian ZG, Zhong JJ. Advances in bio-based production of dicarboxylic acids longer than C4. Eng Life Sci 2018; 18:668-681. [PMID: 32624947 DOI: 10.1002/elsc.201800023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/18/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
Growing concerns of environmental pollution and fossil resource shortage are major driving forces for bio-based production of chemicals traditionally from petrochemical industry. Dicarboxylic acids (DCAs) are important platform chemicals with large market and wide applications, and here the recent advances in bio-based production of straight-chain DCAs longer than C4 from biological approaches, especially by synthetic biology, are reviewed. A couple of pathways were recently designed and demonstrated for producing DCAs, even those ranging from C5 to C15, by employing respective starting units, extending units, and appropriate enzymes. Furthermore, in order to achieve higher production of DCAs, enormous efforts were made in engineering microbial hosts that harbored the biosynthetic pathways and in improving properties of biocatalytic elements to enhance metabolic fluxes toward target DCAs. Here we summarize and discuss the current advantages and limitations of related pathways, and also provide perspectives on synthetic pathway design and optimization for hyper-production of DCAs.
Collapse
Affiliation(s)
- Jia-Le Yu
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai P. R. China.,State Key Laboratory of Bioreactor Engineering, School of Biotechnology East China University of Science and Technology Shanghai P. R. China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai P. R. China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) East China University of Science and Technology Shanghai P. R. China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai P. R. China.,State Key Laboratory of Bioreactor Engineering, School of Biotechnology East China University of Science and Technology Shanghai P. R. China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) East China University of Science and Technology Shanghai P. R. China
| |
Collapse
|
43
|
Philip P, Kern D, Goldmanns J, Seiler F, Schulte A, Habicher T, Büchs J. Parallel substrate supply and pH stabilization for optimal screening of E. coli with the membrane-based fed-batch shake flask. Microb Cell Fact 2018; 17:69. [PMID: 29743073 PMCID: PMC5941677 DOI: 10.1186/s12934-018-0917-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/03/2018] [Indexed: 11/16/2022] Open
Abstract
Background Screening in the fed-batch operation mode is essential for biological cultivations facing challenges as oxygen limitation, osmotic inhibition, catabolite repression, substrate inhibition or overflow metabolism. As a screening tool on shake flask level, the membrane-based fed-batch shake flask was developed. While a controlled supply of a substrate was realized with the in-built membrane tip, the possibilities for replenishing nutrients and stabilizing pH values was not yet exploited. High buffer concentrations were initially used, shifting the medium osmolality out of the biological optimum. As the growth rate is predefined by the glucose release kinetics from the reservoir, the resulting medium acidification can be compensated with a controlled continuous supply of an alkaline compound. The focus of this research is to establish a simultaneous multi-component release of glucose and an alkaline compound from the reservoir to enable cultivations within the optimal physiological range of Escherichia coli. Results In combination with the Respiratory Activity MOnitoring System, the membrane-based fed-batch shake flask enabled the detection of an ammonium limitation. The multi-component release of ammonium carbonate along with glucose from the reservoir resulted not only in the replenishment of the nitrogen source but also in the stabilization of the pH value in the culture medium. A biomass concentration up to 25 g/L was achieved, which is one of the highest values obtained so far to the best of the author’s knowledge with the utilization of a shake flask and a defined synthetic medium. Going a step further, the pH stabilization allowed the decrease of the required buffer amount to one-fourth establishing an optimal osmolality range for cultivation. As optimal physiological conditions were implemented with the multi-component release fed-batch cultivation, the supply of 0.2 g glucose in a 10 mL initial culture medium volume with 50 mM MOPS buffer resulted in a twofold higher biomass concentration than in a comparable batch cultivation. Conclusions The newly introduced multi-component release with the membrane-based fed-batch shake flask serves a threefold purpose of replenishing depleted substrates in the culture medium, stabilizing the pH throughout the entire cultivation time and minimizing the necessary amount of buffer to maintain an optimal osmolality range. In comparison to a batch cultivation, these settings enable to achieve higher biomass and product concentrations.![]() Electronic supplementary material The online version of this article (10.1186/s12934-018-0917-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Philip
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - D Kern
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - J Goldmanns
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - F Seiler
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - A Schulte
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - T Habicher
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - J Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
44
|
Improved microscale cultivation of Pichia pastoris for clonal screening. Fungal Biol Biotechnol 2018; 5:8. [PMID: 29750118 PMCID: PMC5932850 DOI: 10.1186/s40694-018-0053-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 11/10/2022] Open
Abstract
Background Expanding the application of technical enzymes, e.g., in industry and agriculture, commands the acceleration and cost-reduction of bioprocess development. Microplates and shake flasks are massively employed during screenings and early phases of bioprocess development, although major drawbacks such as low oxygen transfer rates are well documented. In recent years, miniaturization and parallelization of stirred and shaken bioreactor concepts have led to the development of novel microbioreactor concepts. They combine high cultivation throughput with reproducibility and scalability, and represent promising tools for bioprocess development. Results Parallelized microplate cultivation of the eukaryotic protein production host Pichia pastoris was applied effectively to support miniaturized phenotyping of clonal libraries in batch as well as fed-batch mode. By tailoring a chemically defined growth medium, we show that growth conditions are scalable from microliter to 0.8 L lab-scale bioreactor batch cultivation with different carbon sources. Thus, the set-up allows for a rapid physiological comparison and preselection of promising clones based on online data and simple offline analytics. This is exemplified by screening a clonal library of P. pastoris constitutively expressing AppA phytase from Escherichia coli. The protocol was further modified to establish carbon-limited conditions by employing enzymatic substrate-release to achieve screening conditions relevant for later protein production processes in fed-batch mode. Conclusion The comparison of clonal rankings under batch and fed-batch-like conditions emphasizes the necessity to perform screenings under process-relevant conditions. Increased biomass and product concentrations achieved after fed-batch microscale cultivation facilitates the selection of top producers. By reducing the demand to conduct laborious and cost-intensive lab-scale bioreactor cultivations during process development, this study will contribute to an accelerated development of protein production processes. Electronic supplementary material The online version of this article (10.1186/s40694-018-0053-6) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Ebert FV, Reitz C, Cruz-Bournazou MN, Neubauer P. Characterization of a noninvasive on-line turbidity sensor in shake flasks for biomass measurements. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Haby B, Glauche F, Hans S, Nicolas Cruz-Bournazou M, Neubauer P. Stammcharakterisierung mittels on-line-Redesign von Experimenten. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s12268-018-0889-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Zhou Y, Lu Z, Wang X, Selvaraj JN, Zhang G. Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2017; 102:1545-1556. [DOI: 10.1007/s00253-017-8700-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
|
48
|
Chrast L, Chaloupkova R, Damborsky J. Gram-scale production of recombinant microbial enzymes in shake flasks. FEMS Microbiol Lett 2017; 365:4693837. [DOI: 10.1093/femsle/fnx265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/02/2017] [Indexed: 11/14/2022] Open
|
49
|
Philip P, Meier K, Kern D, Goldmanns J, Stockmeier F, Bähr C, Büchs J. Systematic evaluation of characteristics of the membrane-based fed-batch shake flask. Microb Cell Fact 2017; 16:122. [PMID: 28716035 PMCID: PMC5514527 DOI: 10.1186/s12934-017-0741-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The initial part of process development involves extensive screening programs to identify optimal biological systems and cultivation conditions. For a successful scale-up, the operation mode on screening and production scale must be as close as possible. To enable screening under fed-batch conditions, the membrane-based fed-batch shake flask was developed. It is a shake flask mounted with a central feed reservoir with an integrated rotating membrane tip for a controlled substrate release. Building on the previously provided proof of principle for this tool, this work extends its application by constructive modifications and improved methodology to ensure reproducible performance. RESULTS The previously limited operation window was expanded by a systematic analysis of reservoir set-up variations for cultivations with the fast-growing organism Escherichia coli. Modifying the initial glucose concentration in the reservoir as well as interchanging the built-in membrane, resulted in glucose release rates and oxygen transfer rate levels during the fed-batch phase varying up to a factor of five. The range of utilizable membranes was extended from dialysis membranes to porous microfiltration membranes with the design of an appropriate membrane tip. The alteration of the membrane area, molecular weight cut-off and liquid volume in the reservoir offered additional parameters to fine-tune the duration of the initial batch phase, the oxygen transfer rate level of the fed-batch phase and the duration of feeding. It was shown that a homogeneous composition of the reservoir without a concentration gradient is ensured up to an initial glucose concentration of 750 g/L. Finally, the experimental validity of fed-batch shake flask cultivations was verified with comparable results obtained in a parallel fed-batch cultivation in a laboratory-scale stirred tank reactor. CONCLUSIONS The membrane-based fed-batch shake flask is a reliable tool for small-scale screening under fed-batch conditions filling the gap between microtiter plates and scaled-down stirred tank reactors. The implemented reservoir system offers various set-up possibilities, which provide a wide range of process settings for diverse biological systems. As a screening tool, it accurately reflects the cultivation conditions in a fed-batch stirred tank reactor and enables a more efficient bioprocess development.
Collapse
Affiliation(s)
- P. Philip
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - K. Meier
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - D. Kern
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - J. Goldmanns
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - F. Stockmeier
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - C. Bähr
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - J. Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
50
|
Herold S, Krämer D, Violet N, King R. Rapid process synthesis supported by a unified modular software framework. Eng Life Sci 2017; 17:1202-1214. [PMID: 32624748 DOI: 10.1002/elsc.201600020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 10/12/2016] [Accepted: 01/05/2017] [Indexed: 11/11/2022] Open
Abstract
Although known to be very powerful, the widespread application of model-based techniques is still significantly hampered in the area of bio-processes. Reasons for this situation can be found along the whole chain to set up and implement such approaches. In a time-consuming step, models are typically hand-crafted. Whether alternatives of better models exist to actually fulfill the final goals is undocumented, most often even unknown. In a next step, model-based process control methods are hand-coded in an error-prone procedure. For many of these methods given in the literature, only simulation studies are shown, leaving the interested reader with the unanswered question whether the implementation of a specific method in a real process is viable. As the potentially time-consuming implementation of such a method presents a risk for a rapid process development, promising candidates may be overlooked. To remediate this unsatisfactory situation, a combination of theoretical methods and information technology is proposed here. By an exemplarily realized software tool, it is shown how such an environment helps to promote model-based optimization, supervision, and control of bio-processes and allows for an inexpensive test of new ideas as well in real-life experiments. The contribution concentrates on an overview of a possible software architecture with respect to necessary methods and a meaningful information strategy, highlighting some of the more crucial building blocks. Experimental results exploiting parts of the proposed methods are given for a yeast strain synthesizing a product of industrial interest.
Collapse
Affiliation(s)
- Sebastian Herold
- Chair of Measurement and Control Technische Universität Berlin Berlin Germany
| | - Dominik Krämer
- Chair of Measurement and Control Technische Universität Berlin Berlin Germany
| | - Norman Violet
- Department Experimental Toxicology and ZEBET Federal Institute for Risk Assessment Berlin Germany
| | - Rudibert King
- Chair of Measurement and Control Technische Universität Berlin Berlin Germany
| |
Collapse
|