1
|
Kumari M, Tamang A, Swarnkar M, Kumar P, Kumar D, Warghat AR, Hallan V, Pandey SS. Deciphering the endomicrobiome of Podophyllum hexandrum to reveal the endophytic bacterial-association of in-planta podophyllotoxin biosynthesis. World J Microbiol Biotechnol 2025; 41:38. [PMID: 39815146 DOI: 10.1007/s11274-024-04245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/29/2024] [Indexed: 01/18/2025]
Abstract
Understanding the change in plant-associated microbial diversity and secondary metabolite biosynthesis in medicinal plants due to their cultivation in non-natural habitat (NNH) is important to maintain their therapeutic importance. Here, the bacterial endomicrobiome of Podophyllum hexandrum plants of natural habitat (NH; Kardang and Triloknath locations) and NNH (Palampur location) was identified and its association with the biosynthesis of podophyllotoxin (PTOX) was revealed. Rhizomes (source of PTOX) of plants of NH had highest endophytic bacterial diversity compared to NNH-plants. Presence of plant-location and tissue-specific distinct and common taxa were also identified. Acinetobacter, Ralstonia and Pseudomonas were identified as core taxa, present in plants of both NH and NNH. Predictive functional analysis of endophytic communities revealed abundant presence of genes encoding initial enzymes of PTOX biosynthesis and plant growth promotion in the rhizomes and roots of Kardang locations. Higher accumulations of secondary metabolites such as PTOX (2.78 and 2.11 folds in Kardang and Triloknath rhizomes, respectively; 1.48 and 1.71 fold in Kardang and Triloknath roots, respectively), Picropodophyllotoxin (3.08 fold in Kardang rhizomes), Quercetin (1.65 fold in Kardang and 1.32 fold in Triloknath rhizomes; 3.07-fold in Kardang and 1.60 fold in Triloknath roots) and Kaempferol (1.66 and 1.24-fold in Kardang and Triloknath rhizomes, respectively; 2.91 and 1.94-fold in Kardang and Triloknath roots, respectively) were also found in NH compared to NNH. This study provides novel insight into the change in the endomicrobiome of NH and NNH-plants and their correlation to secondary metabolites biosynthesis, and that must be considered for cultivation practices.
Collapse
Affiliation(s)
- Manju Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
| | - Pawan Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - Ashish Rambau Warghat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Yu J, Zheng Y, Song C, Chen S. New insights into the roles of fungi and bacteria in the development of medicinal plant. J Adv Res 2024; 65:137-152. [PMID: 38092299 PMCID: PMC11518954 DOI: 10.1016/j.jare.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND The interaction between microorganisms and medicinal plants is a popular topic. Previous studies consistently reported that microorganisms were mainly considered pathogens or contaminants. However, with the development of microbial detection technology, it has been demonstrated that fungi and bacteria affect beneficially the medicinal plant production chain. AIM OF REVIEW Microorganisms greatly affect medicinal plants, with microbial biosynthesis a high regarded topic in medicinal plant-microbial interactions. However, it lacks a systematic review discussing this relationship. Current microbial detection technologies also have certain advantages and disadvantages, it is essential to compare the characteristics of various technologies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the role of fungi and bacteria in various medicinal plant production procedures, discusses the development of microbial detection and identification technologies in recent years, and concludes with microbial biosynthesis of natural products. The relationship between fungi, bacteria, and medicinal plants is discussed comprehensively. We also propose a future research model and direction for further studies.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Yixuan Zheng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China.
| |
Collapse
|
3
|
Alkandahri MY, Sadino A, Pamungkas BT, Oktoba Z, Arfania M, Yuniarsih N, Wahyuningsih ES, Dewi Y, Winarti SA, Dinita ST. Potential Nephroprotective Effect of Kaempferol: Biosynthesis, Mechanisms of Action, and Clinical Prospects. Adv Pharmacol Pharm Sci 2024; 2024:8907717. [PMID: 39377015 PMCID: PMC11458287 DOI: 10.1155/2024/8907717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Kidney is an essential organ that is highly susceptible to cellular injury caused by various toxic substances in the blood. Several studies have shown that untreated injuries to this organ can cause glomerulosclerosis, tubulointerstitial fibrosis, and tubular cell apoptosis, leading to kidney failure. Despite significant advancements in modern treatment, there is no fully effective drug for repairing its function, providing complete protection, and assisting in cell regeneration. Furthermore, some available medications have been reported to exacerbate injuries, showing the need to explore alternative treatments. Natural drugs are currently being explored as a new therapeutic strategy for managing kidney diseases. Kaempferol, a polyphenol found in plants, including vegetables, legumes, and fruits, has been extensively studied in various nephrotoxicity protocols. The compound has been reported to have potential as a nephroprotective agent with beneficial effects on various physiological pathways, such as CPL-induced kidney injury, DOX, LPO, ROS, RCC, and diabetic nephropathy. Therefore, this study aims to provide a brief overview of the current nephroprotective effects of kaempferol, as well as its molecular mechanisms of action, biosynthesis pathways, and clinical prospects.
Collapse
Affiliation(s)
- Maulana Yusuf Alkandahri
- Department of Pharmacology and Clinical PharmacyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Asman Sadino
- Department of PharmacyFaculty of Mathematics and Natural ScienceUniversitas Garut, Garut, West Java, Indonesia
| | - Barolym Tri Pamungkas
- Department of Pharmaceutical BiologyFaculty of PharmacyUniversitas Mulawarman, Samarinda, East Kalimantan, Indonesia
| | - Zulpakor Oktoba
- Department of PharmacyFaculty of MedicineUniversitas Lampung, Bandar Lampung, Indonesia
| | - Maya Arfania
- Department of Pharmacology and Clinical PharmacyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Nia Yuniarsih
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Eko Sri Wahyuningsih
- Department of Pharmaceutical BiologyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Yuliani Dewi
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Sri Ayu Winarti
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Sri Tantia Dinita
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| |
Collapse
|
4
|
Wang J, Chen C, Guo Q, Gu Y, Shi TQ. Advances in Flavonoid and Derivative Biosynthesis: Systematic Strategies for the Construction of Yeast Cell Factories. ACS Synth Biol 2024; 13:2667-2683. [PMID: 39145487 DOI: 10.1021/acssynbio.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Flavonoids, a significant group of natural polyphenolic compounds, possess a broad spectrum of pharmacological effects. Recent advances in the systematic metabolic engineering of yeast cell factories (YCFs) provide new opportunities for enhanced flavonoid production. Herein, we outline the latest research progress on typical flavonoid products in YCFs. Advanced engineering strategies involved in flavonoid biosynthesis are discussed in detail, including enhancing precursor supply, cofactor engineering, optimizing core pathways, eliminating competitive pathways, relieving transport limitations, and dynamic regulation. Additionally, we highlight the existing problems in the biosynthesis of flavonoid glucosides in yeast, such as endogenous degradation of flavonoid glycosides, substrate promiscuity of UDP-glycosyltransferases, and an insufficient supply of UDP-sugars, with summaries on the corresponding solutions. Discussions also cover other typical postmodifications like prenylation and methylation, and the recent biosynthesis of complex flavonoid compounds in yeast. Finally, a series of advanced technologies are envisioned, i.e., semirational enzyme engineering, ML/DL algorithn, and systems biology, with the aspiration of achieving large-scale industrial production of flavonoid compounds in the future.
Collapse
Affiliation(s)
- Jian Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|
5
|
Lu M, Liu S, Liu J, Zhao L, Pei J. A sustainable and efficient strategy for bioconverting naringin to L-rhamnose, 2R-naringenin, and kaempferol. Food Chem 2024; 447:138942. [PMID: 38484542 DOI: 10.1016/j.foodchem.2024.138942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/01/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
The development of a sustainable and efficient bioconversion strategy is crucial for the full-component utilization of naringin. In this study, an engineering Pichia pastoris co-culture system was developed to produce L-rhamnose and 2S/2R-naringenin. By optimizing transformation conditions, the co-culture system could completely convert naringin while fully consuming glucose. The production of 2S/2R-naringenin reached 59.5 mM with a molar conversion of 99.2%, and L-rhamnose reached 59.1 mM with a molar conversion of 98.5%. In addition, an engineering Escherichia coli co-culture system was developed to produce 2R-naringenin and kaempferol from 2S/2R-naringenin. Maximal kaempferol production reached 1050 mg/L with a corresponding molar conversion of 99.0%, and 996 mg/L 2R-naringenin was accumulated. Finally, a total of 17.4 g 2R-naringenin, 18.0 g kaempferol, and 26.1 g L-rhamnose were prepared from 100 g naringin. Thus, this study provides a novel strategy for the production of value-added compounds from naringin with an environmentally safe process.
Collapse
Affiliation(s)
- Mengfan Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Simin Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Jiamei Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
6
|
Nemati Z, Kazemi-Shahandashti SS, Garibay-Hernández A, Mock HP, Schmidt MHW, Usadel B, Blattner FR. Metabolomic and transcriptomic analyses of yellow-flowered crocuses to infer alternative sources of saffron metabolites. BMC PLANT BIOLOGY 2024; 24:369. [PMID: 38711012 DOI: 10.1186/s12870-024-05036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The increasing demand for saffron metabolites in various commercial industries, including medicine, food, cosmetics, and dyeing, is driven by the discovery of their diverse applications. Saffron, derived from Crocus sativus stigmas, is the most expensive spice, and there is a need to explore additional sources to meet global consumption demands. In this study, we focused on yellow-flowering crocuses and examined their tepals to identify saffron-like compounds. RESULTS Through metabolomic and transcriptomic approaches, our investigation provides valuable insights into the biosynthesis of compounds in yellow-tepal crocuses that are similar to those found in saffron. The results of our study support the potential use of yellow-tepal crocuses as a source of various crocins (crocetin glycosylated derivatives) and flavonoids. CONCLUSIONS Our findings suggest that yellow-tepal crocuses have the potential to serve as a viable excessive source of some saffron metabolites. The identification of crocins and flavonoids in these crocuses highlights their suitability for meeting the demands of various industries that utilize saffron compounds. Further exploration and utilization of yellow-tepal crocuses could contribute to addressing the growing global demand for saffron-related products.
Collapse
Affiliation(s)
- Zahra Nemati
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- Present address: Institute of Medical Microbiology and hospital hygiene, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany.
| | - Seyyedeh-Sanam Kazemi-Shahandashti
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science Center (BioSC) , CEPLAS, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute for Biological Data Science, Faculty of Mathematics and Natural Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adriana Garibay-Hernández
- Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Maximilian H-W Schmidt
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science Center (BioSC) , CEPLAS, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Grapevine Breeding, Geisenheim University, Geisenheim, Germany
| | - Björn Usadel
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science Center (BioSC) , CEPLAS, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute for Biological Data Science, Faculty of Mathematics and Natural Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
7
|
Wang S, Meng D, Feng M, Li C, Wang Y. Efficient Plant Triterpenoids Synthesis in Saccharomyces cerevisiae: from Mechanisms to Engineering Strategies. ACS Synth Biol 2024; 13:1059-1076. [PMID: 38546129 DOI: 10.1021/acssynbio.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Triterpenoids possess a range of biological activities and are extensively utilized in the pharmaceutical, food, cosmetic, and chemical industries. Traditionally, they are acquired through chemical synthesis and plant extraction. However, these methods have drawbacks, including high energy consumption, environmental pollution, and being time-consuming. Recently, the de novo synthesis of triterpenoids in microbial cell factories has been achieved. This represents a promising and environmentally friendly alternative to traditional supply methods. Saccharomyces cerevisiae, known for its robustness, safety, and ample precursor supply, stands out as an ideal candidate for triterpenoid biosynthesis. However, challenges persist in industrial production and economic feasibility of triterpenoid biosynthesis. Consequently, metabolic engineering approaches have been applied to improve the triterpenoid yield, leading to substantial progress. This review explores triterpenoids biosynthesis mechanisms in S. cerevisiae and strategies for efficient production. Finally, the review also discusses current challenges and proposes potential solutions, offering insights for future engineering.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dong Meng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meilin Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Scheau AE, Savulescu-Fiedler I, Caruntu A, Badarau IA, Caruntu C, Scheau C. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. Int J Mol Sci 2023; 24:16299. [PMID: 38003488 PMCID: PMC10671393 DOI: 10.3390/ijms242216299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Kaempferol and its derivatives are flavonoids found in various plants, and a considerable number of these have been used in various medical applications worldwide. Kaempferol and its compounds have well-known antioxidant, anti-inflammatory and antimicrobial properties among other health benefits. However, the antiviral properties of kaempferol are notable, and there is a significant number of experimental studies on this topic. Kaempferol compounds were effective against DNA viruses such as hepatitis B virus, viruses of the alphaherpesvirinae family, African swine fever virus, and pseudorabies virus; they were also effective against RNA viruses, namely feline SARS coronavirus, dengue fever virus, Japanese encephalitis virus, influenza virus, enterovirus 71, poliovirus, respiratory syncytial virus, human immunodeficiency virus, calicivirus, and chikungunya virus. On the other hand, no effectiveness against murine norovirus and hepatitis A virus could be determined. The antiviral action mechanisms of kaempferol compounds are various, such as the inhibition of viral polymerases and of viral attachment and entry into host cells. Future research should be focused on further elucidating the antiviral properties of kaempferol compounds from different plants and assessing their potential use to complement the action of antiviral drugs.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
9
|
Matsumoto T, Otani T, Yamada R, Ogino H. Enhancing 3-hydroxypropionic acid production in Saccharomyces cerevisiae through enzyme localization within mitochondria. Biochem Biophys Res Commun 2023; 680:1-6. [PMID: 37703602 DOI: 10.1016/j.bbrc.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Microbial 3-hydroxypropionic acid (3-HP) production can potentially replace petroleum-based production methods for acrylic acid. Here, we constructed a yeast strain that expressed enzymes related to 3-HP biosynthesis within the mitochondria. This approach aimed to enhance the 3-HP production by utilizing the mitochondrial acetyl-CoA, an important intermediate for synthesizing 3-HP. The strain that expressed 3-HP-producing enzymes in the mitochondria (YPH-mtA3HP) showed improved production of 3-HP compared to that shown by the strain expressing 3-HP-producing enzymes in the cytosol (YPH-cyA3HP). Additionally, cMCR was overexpressed, which regulates a rate-limiting reaction in synthesizing 3-HP. In this study, we aimed to further enhance 3-HP production by expressing multiple copies of cMCR in the mitochondria using the δ-integration strategy to optimize the expression level of cMCR (YPH-mtA3HPx*). The results of flask-scale cultivation showed that 3-HP production by cMCR δ-integration was significantly higher, exhibiting a yield of 160 mg/L in YPH-mtA3HP6* strain and 257 mg/L in YPH-mtA3HP22* strain. Notably, YPH-mtA3HP22*, exhibited the highest 3-HP titer, which was 3.2-fold higher than that of YPH-cyA3HP. Our results demonstrated the potential of utilizing the mitochondrial compartment within S. cerevisiae for enhancing 3-HP production.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Takashi Otani
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
10
|
An T, Lin G, Liu Y, Qin L, Xu Y, Feng X, Li C. De novo biosynthesis of anticarcinogenic icariin in engineered yeast. Metab Eng 2023; 80:207-215. [PMID: 37852432 DOI: 10.1016/j.ymben.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Icariin (ICA) has wide applications in nutraceuticals and medicine with strong anticancer activities. However, the structural complexity and low abundance in plants of ICA lead to the unsustainable and high-cost supply from chemical synthesis and plant extraction. Here, the whole biosynthesis pathway of ICA was elucidated, then was constructed in Saccharomyces cerevisiae, including a 13-step heterologous ICA pathway from eleven kinds of plants as well as deletions or overexpression of ten yeast endogenous genes. Spatial regulation of 8-C-prenyltransferase to mitochondria and three-stage sequential control of 4'-O-methyltransferase, 3-OH rhamnosyltransferase, and 7-OH glycosyltransferase expression successfully achieved the de novo synthesis of ICA with a titer of 130 μg/L under shake-flask culture. The ICA synthesis from glucose represents the longest reconstructed pathway of flavonoid in microbe so far. This study provides a potential choice for the sustainable microbial production of number of complex flavonoids.
Collapse
Affiliation(s)
- Ting An
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Guangyuan Lin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Qin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Madhavan A, Arun KB, Alex D, Anoopkumar AN, Emmanual S, Chaturvedi P, Varjani S, Tiwari A, Kumar V, Reshmy R, Awasthi MK, Binod P, Aneesh EM, Sindhu R. Microbial production of nutraceuticals: Metabolic engineering interventions in phenolic compounds, poly unsaturated fatty acids and carotenoids synthesis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2092-2104. [PMID: 37273565 PMCID: PMC10232702 DOI: 10.1007/s13197-022-05482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/06/2023]
Abstract
Nutraceuticals have attained substantial attention due to their health-boosting or disease-prevention characteristics. Growing awareness about the potential of nutraceuticals for the prevention and management of diseases affecting human has led to an increase in the market value of nutraceuticals in several billion dollars. Nevertheless, limitations in supply and isolation complications from plants, animals or fungi, limit the large-scale production of nutraceuticals. Microbial engineering at metabolic level has been proved as an environment friendly substitute for the chemical synthesis of nutraceuticals. Extensively used microbial systems such as E. coli and S. cerevisiae have been modified as versatile cell factories for the synthesis of diverse nutraceuticals. This review describes current interventions in metabolic engineering for synthesising some of the therapeutically important nutraceuticals (phenolic compounds, polyunsaturated fatty acids and carotenoids). We focus on the interventions in enhancing product yield through engineering at gene level or pathway level.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 India
| | - K. B. Arun
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 India
| | - Deepthy Alex
- Department of Biotechnology, Mar Ivanios College, Trivandrum, Kerala 695015 India
| | - A. N. Anoopkumar
- Department of Zoology, Centre for Research in Emerging Tropical Diseases (CRET‑D), University of Calicut, Malappuram, Kerala India
| | - Shibitha Emmanual
- Department of Zoology, St. Joseph’s College, Thrissur, Kerala 680121 India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226001 India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10 A, Gandhinagar, Gujarat 382010 India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, 201301 India
| | - Vinod Kumar
- Fermentation Technology Division, CSIR- Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, J & K 180001 India
| | - R. Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur, Kerala 689122 India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695019 India
| | - Embalil Mathachan Aneesh
- Department of Zoology, Centre for Research in Emerging Tropical Diseases (CRET‑D), University of Calicut, Malappuram, Kerala India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, Kerala 691505 India
| |
Collapse
|
12
|
Jiang L, Gao Y, Han L, Zhang W, Fan P. Designing plant flavonoids: harnessing transcriptional regulation and enzyme variation to enhance yield and diversity. FRONTIERS IN PLANT SCIENCE 2023; 14:1220062. [PMID: 37575923 PMCID: PMC10420081 DOI: 10.3389/fpls.2023.1220062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Plant synthetic biology has emerged as a powerful and promising approach to enhance the production of value-added metabolites in plants. Flavonoids, a class of plant secondary metabolites, offer numerous health benefits and have attracted attention for their potential use in plant-based products. However, achieving high yields of specific flavonoids remains challenging due to the complex and diverse metabolic pathways involved in their biosynthesis. In recent years, synthetic biology approaches leveraging transcription factors and enzyme diversity have demonstrated promise in enhancing flavonoid yields and expanding their production repertoire. This review delves into the latest research progress in flavonoid metabolic engineering, encompassing the identification and manipulation of transcription factors and enzymes involved in flavonoid biosynthesis, as well as the deployment of synthetic biology tools for designing metabolic pathways. This review underscores the importance of employing carefully-selected transcription factors to boost plant flavonoid production and harnessing enzyme promiscuity to broaden flavonoid diversity or streamline the biosynthetic steps required for effective metabolic engineering. By harnessing the power of synthetic biology and a deeper understanding of flavonoid biosynthesis, future researchers can potentially transform the landscape of plant-based product development across the food and beverage, pharmaceutical, and cosmetic industries, ultimately benefiting consumers worldwide.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifei Gao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Leiqin Han
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxuan Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
13
|
Chen B, Liu X, Wang Y, Bai J, Liu X, Xiang G, Liu W, Zhu X, Cheng J, Lu L, Zhang G, Zhang G, Dai Z, Zi S, Yang S, Jiang H. Production of the antidepressant orcinol glucoside in Yarrowia lipolytica with yields over 6,400-fold higher than plant extraction. PLoS Biol 2023; 21:e3002131. [PMID: 37279234 DOI: 10.1371/journal.pbio.3002131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/20/2023] [Indexed: 06/08/2023] Open
Abstract
Orcinol glucoside (OG), mainly found in the rhizome of the traditional Chinese herb Curculigo orchioides Gaertn, is noted for its antidepressant effects. In this study, an efficient screening pipeline was established for identifying the highly active orcinol synthase (ORS) and UDP-dependent glycosyltransferase (UGT) involved in the biosynthesis of OG by combining transcriptome analysis, structure-based virtual screening, and in vitro enzyme activity assays. By enhancing the downstream pathway, metabolic engineering and fermentation optimization, the OG production in Yarrowia lipolytica was improved 100-fold, resulting in a final yield of 43.46 g/L (0.84 g/g DCW), which is almost 6,400-fold higher than the extraction yield from C. orchioides roots. This study provides a reference for rapid identification of functional genes and high-yield production of natural products.
Collapse
Affiliation(s)
- Bihuan Chen
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Xiaonan Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yina Wang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Jie Bai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiangyu Liu
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Guisheng Xiang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Wei Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xiaoxi Zhu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Cheng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Lina Lu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Guanghui Zhang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Ge Zhang
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Shuhui Zi
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Shengchao Yang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
14
|
Lan HN, Liu RY, Liu ZH, Li X, Li BZ, Yuan YJ. Biological valorization of lignin to flavonoids. Biotechnol Adv 2023; 64:108107. [PMID: 36758651 DOI: 10.1016/j.biotechadv.2023.108107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Lignin is the most affluent natural aromatic biopolymer on the earth, which is the promising renewable source for valuable products to promote the sustainability of biorefinery. Flavonoids are a class of plant polyphenolic secondary metabolites containing the benzene ring structure with various biological activities, which are largely applied in health food, pharmaceutical, and medical fields. Due to the aromatic similarity, microbial conversion of lignin derived aromatics to flavonoids could facilitate flavonoid biosynthesis and promote the lignin valorization. This review thereby prospects a novel valorization route of lignin to high-value natural products and demonstrates the potential advantages of microbial bioconversion of lignin to flavonoids. The biodegradation of lignin polymers is summarized to identify aromatic monomers as momentous precursors for flavonoid synthesis. The biosynthesis pathways of flavonoids in both plants and strains are introduced and compared. After that, the key branch points and important intermediates are clearly discussed in the biosynthesis pathways of flavonoids. Moreover, the most significant enzyme reactions including Claisen condensation, cyclization and hydroxylation are demonstrated in the biosynthesis pathways of flavonoids. Finally, current challenges and potential future strategies are also discussed for transforming lignin into various flavonoids. The holistic microbial conversion routes of lignin to flavonoids could make a sustainable production of flavonoids and improve the feasibility of lignin valorization.
Collapse
Affiliation(s)
- Hai-Na Lan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruo-Ying Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xia Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
15
|
Tartik M, Liu J, Mohedano MT, Mao J, Chen Y. Optimizing yeast for high-level production of kaempferol and quercetin. Microb Cell Fact 2023; 22:74. [PMID: 37076829 PMCID: PMC10116799 DOI: 10.1186/s12934-023-02084-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/09/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Two important flavonoids, kaempferol and quercetin possess remarkably potent biological impacts on human health. However, their structural complexity and low abundance in nature make both bulk chemical synthesis and extraction from native plants difficult. Therefore microbial production via heterologous expression of plant enzymes can be a safe and sustainable route for their production. Despite several attempts reported in microbial hosts, the production levels of kaempferol and quercetin still stay far behind compared to many other microbial-produced flavonoids. RESULTS In this study, Saccharomyces cerevisiae was engineered for high production of kaempferol and quercetin in minimal media from glucose. First, the kaempferol biosynthetic pathway was reconstructed via screening various F3H and FLS enzymes. In addition, we demonstrated that amplification of the rate-limiting enzyme AtFLS could reduce the dihydrokaempferol accumulation and improve kaempferol production. Increasing the availability of precursor malonyl-CoA further improved the production of kaempferol and quercetin. Furthermore, the highest amount of 956 mg L- 1 of kaempferol and 930 mg L- 1 of quercetin in yeast was reached in fed-batch fermentations. CONCLUSIONS De novo biosynthesis of kaempferol and quercetin in yeast was improved through increasing the upstream naringenin biosynthesis and debugging the flux-limiting enzymes together with fed-batch fermentations, up to gram per liter level. Our work provides a promising platform for sustainable and scalable production of kaempferol, quercetin and compounds derived thereof.
Collapse
Affiliation(s)
- Musa Tartik
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, Bingol, 12000, Turkey
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, Gothenburg, SE-412 96, Sweden
| | - Juan Liu
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, Gothenburg, SE-412 96, Sweden
| | - Marta Tous Mohedano
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, Gothenburg, SE-412 96, Sweden
| | - Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, Gothenburg, SE-412 96, Sweden
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, Gothenburg, SE-412 96, Sweden.
| |
Collapse
|
16
|
Danaeifar M, Mazlomi MA. Combinatorial biosynthesis: playing chess with the metabolism. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:171-190. [PMID: 35435779 DOI: 10.1080/10286020.2022.2065265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Secondary metabolites are a group of natural products that produced by bacteria, fungi and plants. Many applications of these compounds from medicine to industry have been discovered. However, some changes in their structure and biosynthesis mechanism are necessary for their properties to be more suitable and also for their production to be profitable. The main and most useful method to achieve this goal is combinatorial biosynthesis. This technique uses the multi-unit essence of the secondary metabolites biosynthetic enzymes to make changes in their order, structure and also the organism that produces them.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Mohammad Ali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| |
Collapse
|
17
|
Cuvas-Limon RB, Ferreira-Santos P, Cruz M, Teixeira JA, Belmares R, Nobre C. Effect of Gastrointestinal Digestion on the Bioaccessibility of Phenolic Compounds and Antioxidant Activity of Fermented Aloe vera Juices. Antioxidants (Basel) 2022; 11:antiox11122479. [PMID: 36552686 PMCID: PMC9774616 DOI: 10.3390/antiox11122479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Plant-based beverages are enriched by the fermentation process. However, their biocompounds are transformed during gastrointestinal digestion, improving their bioaccessibility, which is of primary importance when considering the associated health benefits. This study aimed to evaluate the effect of in vitro gastrointestinal digestion on phenolic compound bioaccessibility and antioxidant activity of novel Aloe vera juices fermented by probiotic Enterococcus faecium and Lactococcus lactis. Aloe vera juices were digested using the standardized static INFOGEST protocol. During digestion, phenolic compounds and antioxidant activity (DPPH, ABTS, and FRAP) were accessed. The digestion process was seen to significantly increase the total phenolic content of the fermented Aloe vera juices. The fermentation of Aloe vera increased the bioaccessibility of juice biocompounds, particularly for kaempferol, ellagic acid, resveratrol, hesperidin, ferulic acid, and aloin. The phenolics released during digestion were able to reduce the oxidative radicals assessed by ABTS and FRAP tests, increasing the antioxidant action in the intestine, where they are absorbed. The fermentation of Aloe vera by probiotics is an excellent process to increase the bioavailability of beverages, resulting in natural added-value functional products.
Collapse
Affiliation(s)
- Ruth B. Cuvas-Limon
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas s/n Col. República C.P., Saltillo 25280, Coahuila, Mexico
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (P.F.-S.); (C.N.); Tel.: +351-253-604-400 (P.F.-S.)
| | - Mario Cruz
- Department of Food Science and Technology, Antonio Narro Autonomous Agricultural University, Calzada Antonio Narro, No. 1923 Col. Buena Vista C.P., Saltillo 25315, Coahuila, Mexico
| | - José A. Teixeira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ruth Belmares
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas s/n Col. República C.P., Saltillo 25280, Coahuila, Mexico
| | - Clarisse Nobre
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (P.F.-S.); (C.N.); Tel.: +351-253-604-400 (P.F.-S.)
| |
Collapse
|
18
|
Velička A, Tarasevičienė Ž, Hallmann E, Kieltyka-Dadasiewicz A. Impact of Foliar Application of Amino Acids on Essential Oil Content, Odor Profile, and Flavonoid Content of Different Mint Varieties in Field Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212938. [PMID: 36365392 PMCID: PMC9731322 DOI: 10.3390/plants11212938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 05/31/2023]
Abstract
Mint is an industrial plant that is a good source of essential oil and many phenolic compounds that have several positive benefits to human health and can be used to prevent the development of many diseases. The aim of this research was to investigate the possibility of increasing essential oil and flavonoid content, changing the chemical composition of these compounds in different mint cultivars under foliar application with precursors (phenylalanine, tryptophan, and tyrosine) at two concentrations, 100 and 200 mg L-1, to enable the possibilities for wider use of these plants when they are grown in field conditions. Spraying with phenylalanine at 100 mg L-1 concentration increased essential oil content in Mentha piperita 'Granada' plants by 0.53 percentage units. Foliar application with tyrosine solutions at 100 mg L-1 concentration most effectively influenced the essential oil odor profile Mentha spicata 'Crispa'. The highest number of total flavonoids was in Mentha piperita 'Swiss' sprayed with tyrosine at 100 mg L-1 concentration. The flavonoid content depended on the mint cultivar, amino acids, and their concentration. The results showed that the effect of amino acid solutions on different secondary metabolites' quantitative and qualitative composition differed depending on the mint cultivar; therefore, amino acids and their concentrations must be selected based on the cultivar they are targeting.
Collapse
Affiliation(s)
- Aloyzas Velička
- Department of Plants Biology and Food Science, Faculty of Agronomy, Agriculture Academy Vytautas Magnus University, Donelaicio STR. 52, LT-44248 Kaunas, Lithuania
| | - Živilė Tarasevičienė
- Department of Plants Biology and Food Science, Faculty of Agronomy, Agriculture Academy Vytautas Magnus University, Donelaicio STR. 52, LT-44248 Kaunas, Lithuania
| | - Ewelina Hallmann
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 c, 02-776 Warsaw, Poland
- Bioeconomy Research Institute, Agriculture Academy, Vytautas Magnus University, K. Donelaicio Str. 58, LT-44248 Kaunas, Lithuania
| | - Anna Kieltyka-Dadasiewicz
- Department of Plant Production Technology and Commodity, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| |
Collapse
|
19
|
Zhang H, Li Z, Zhou S, Li SM, Ran H, Song Z, Yu T, Yin WB. A fungal NRPS-PKS enzyme catalyses the formation of the flavonoid naringenin. Nat Commun 2022; 13:6361. [PMID: 36289208 PMCID: PMC9606254 DOI: 10.1038/s41467-022-34150-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
Biosynthesis of the flavonoid naringenin in plants and bacteria is commonly catalysed by a type III polyketide synthase (PKS) using one p-coumaroyl-CoA and three malonyl-CoA molecules as substrates. Here, we report a fungal non-ribosomal peptide synthetase -polyketide synthase (NRPS-PKS) hybrid FnsA for the naringenin formation. Feeding experiments with isotope-labelled precursors demonstrate that FnsA accepts not only p-coumaric acid (p-CA), but also p-hydroxybenzoic acid (p-HBA) as starter units, with three or four malonyl-CoA molecules for elongation, respectively. In vitro assays and MS/MS analysis prove that both p-CA and p-HBA are firstly activated by the adenylation domain of FnsA. Phylogenetic analysis reveals that the PKS portion of FnsA shares high sequence homology with type I PKSs. Refactoring the biosynthetic pathway in yeast with the involvement of fnsA provides an alternative approach for the production of flavonoids such as isorhamnetin and acacetin.
Collapse
Affiliation(s)
- Hongjiao Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zixin Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg, 35037, Germany
| | - Huomiao Ran
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zili Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Yu
- Center for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes for Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Keefover-Ring K, Carlson CH, Hyden B, Azeem M, Smart LB. Genetic mapping of sexually dimorphic volatile and non-volatile floral secondary chemistry of a dioecious willow. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6352-6366. [PMID: 35710312 DOI: 10.1093/jxb/erac260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Secondary chemistry often differs between sexes in dioecious plant species, a pattern attributed to its possible role in the evolution and/or maintenance of dioecy. We used GC-MS to measure floral volatiles emitted from, and LC-MS to quantitate non-volatile secondary compounds contained in, female and male Salix purpurea willow catkins from an F2 family. Using the abundance of these chemicals, we then performed quantitative trait locus (QTL) mapping to locate them on the genome, identified biosynthetic candidate genes in the QTL intervals, and examined expression patterns of candidate genes using RNA-seq. Male flowers emitted more total terpenoids than females, but females produced more benzenoids. Male tissue contained greater amounts of phenolic glycosides, but females had more chalcones and flavonoids. A flavonoid pigment and a spermidine derivative were found only in males. Male catkins were almost twice the mass of females. Forty-two QTL were mapped for 25 chemical traits and catkin mass across 16 of the 19 S. purpurea chromosomes. Several candidate genes were identified, including a chalcone isomerase associated with seven compounds. A better understanding of the genetic basis of the sexually dimorphic chemistry of a dioecious species may shed light on how chemically mediated ecological interactions may have helped in the evolution and maintenance of dioecy.
Collapse
Affiliation(s)
- Ken Keefover-Ring
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Department of Geography, University of Wisconsin-Madison, Madison, WI, USA
| | - Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Brennan Hyden
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Muhammad Azeem
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| |
Collapse
|
21
|
Nejabati HR, Roshangar L. Kaempferol: A potential agent in the prevention of colorectal cancer. Physiol Rep 2022; 10:e15488. [PMID: 36259115 PMCID: PMC9579739 DOI: 10.14814/phy2.15488] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 04/18/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in relation to incidence and mortality rate and its incidence is considerably increasing annually due to the change in the dietary habit and lifestyle of the world population. Although conventional therapeutic options, such as surgery, chemo- and radiotherapy have profound impacts on the treatment of CRC, dietary therapeutic agents, particularly natural products have been regarded as the safest alternatives for the treatment of CRC. Kaempferol (KMP), a naturally derived flavonol, has been shown to reduce the production of reactive oxygen species (ROS), such as superoxide ions, hydroxyl radicals, and reactive nitrogen species (RNS), especially peroxynitrite. Furthermore, this flavonol inhibits xanthine oxidase (XO) activity and increases the activities of catalase, heme oxygenase-1 (HO), and superoxide dismutase (SOD) in a wide range of cancer and non-cancer cells. Based on several studies, KMP is also a hopeful anticancer which carries out its anticancer action via suppression of angiogenesis, stimulation of apoptosis, and cell cycle arrest. Due to various applications of KMP as an anticancer flavonol, this review article aims to highlight the current knowledge regarding the role of KMP in CRC.
Collapse
Affiliation(s)
| | - Leila Roshangar
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
22
|
Li H, Lyv Y, Zhou S, Yu S, Zhou J. Microbial cell factories for the production of flavonoids-barriers and opportunities. BIORESOURCE TECHNOLOGY 2022; 360:127538. [PMID: 35777639 DOI: 10.1016/j.biortech.2022.127538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Flavonoids are natural plant products with important nutritional value, health-promoting benefits, and therapeutic potential. The use of microbial cell factories to generate flavonoids is an appealing option. The microbial biosynthesis of flavonoids is compared to the classic plant extract approach in this review, and the pharmaceutical applications were presented. This paper summarize approaches for effective flavonoid biosynthesis from microorganisms, and discuss the challenges and prospects of microbial flavonoid biosynthesis. Finally, the barriers and strategies for industrial bio-production of flavonoids are highlighted. This review offers guidance on how to create robust microbial cell factories for producing flavonoids and other relevant chemicals.
Collapse
Affiliation(s)
- Hongbiao Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyv
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
23
|
Isogai S, Tominaga M, Kondo A, Ishii J. Plant Flavonoid Production in Bacteria and Yeasts. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.880694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flavonoids, a major group of secondary metabolites in plants, are promising for use as pharmaceuticals and food supplements due to their health-promoting biological activities. Industrial flavonoid production primarily depends on isolation from plants or organic synthesis, but neither is a cost-effective or sustainable process. In contrast, recombinant microorganisms have significant potential for the cost-effective, sustainable, environmentally friendly, and selective industrial production of flavonoids, making this an attractive alternative to plant-based production or chemical synthesis. Structurally and functionally diverse flavonoids are derived from flavanones such as naringenin, pinocembrin and eriodictyol, the major basic skeletons for flavonoids, by various modifications. The establishment of flavanone-producing microorganisms can therefore be used as a platform for producing various flavonoids. This review summarizes metabolic engineering and synthetic biology strategies for the microbial production of flavanones. In addition, we describe directed evolution strategies based on recently-developed high-throughput screening technologies for the further improvement of flavanone production. We also describe recent progress in the microbial production of structurally and functionally complicated flavonoids via the flavanone modifications. Strategies based on synthetic biology will aid more sophisticated and controlled microbial production of various flavonoids.
Collapse
|
24
|
Ji L, Li Q, He Y, Zhang X, Zhou Z, Gao Y, Fang M, Yu Z, Rodrigues RM, Gao Y, Li M. Therapeutic potential of traditional Chinese medicine for the treatment of NAFLD: a promising drug Potentilla discolor Bunge. Acta Pharm Sin B 2022; 12:3529-3547. [PMID: 36176915 PMCID: PMC9513494 DOI: 10.1016/j.apsb.2022.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of hepatic lipids and metabolic stress-induced liver injury. There are currently no approved effective pharmacological treatments for NAFLD. Traditional Chinese medicine (TCM) has been used for centuries to treat patients with chronic liver diseases without clear disease types and mechanisms. More recently, TCM has been shown to have unique advantages in the treatment of NAFLD. We performed a systematic review of the medical literature published over the last two decades and found that many TCM formulas have been reported to be beneficial for the treatment of metabolic dysfunctions, including Potentilla discolor Bunge (PDB). PDB has a variety of active compounds, including flavonoids, terpenoids, organic acids, steroids and tannins. Many compounds have been shown to exhibit a series of beneficial effects for the treatment of NAFLD, including anti-oxidative and anti-inflammatory functions, improvement of lipid metabolism and reversal of insulin resistance. In this review, we summarize potential therapeutic effects of TCM formulas for the treatment of NAFLD, focusing on the medicinal properties of natural active compounds from PDB and their underlying mechanisms. We point out that PDB can be classified as a novel candidate for the treatment and prevention of NAFLD.
Collapse
Affiliation(s)
- Longshan Ji
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Qian Li
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Yong He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Zhenhua Zhou
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yating Gao
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Robim M. Rodrigues
- Department of in Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels 1000, Belgium
- Corresponding authors.
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| | - Man Li
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| |
Collapse
|
25
|
Bangar SP, Chaudhary V, Sharma N, Bansal V, Ozogul F, Lorenzo JM. Kaempferol: A flavonoid with wider biological activities and its applications. Crit Rev Food Sci Nutr 2022; 63:9580-9604. [PMID: 35468008 DOI: 10.1080/10408398.2022.2067121] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kaempferol and its derivatives are naturally occurring phytochemicals with promising bioactivities. This flavonol can reduce the lipid oxidation in the human body, prevent the organs and cell structure from deterioration and protect their functional integrity. This review has extensively highlighted the antioxidant, antimicrobial, anticancer, neuroprotective, and hepatoprotective activity of kaempferol. However, poor water solubility and low bioavailability of kaempferol greatly limit its applications. The utilization of advanced delivery systems can improve its stability, efficacy, and bioavailability. This is the first review that aimed to comprehensively collate some of the vital information published on biosynthesis, mechanism of action, bioactivities, bioavailability, and toxicological potential of kaempferol. Besides, it provides insights into the future direction on the improvement of bioavailability of kaempferol for wide applications.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nitya Sharma
- Food Customization Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi, India
| | - Vasudha Bansal
- Department of Foods and Nutrition, Government of Home Science College, Chandigarh, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
26
|
Lyu M, Wang Y, Chen Q, Qin J, Hou D, Huang S, Shao D, Gong X, Huang G, Zhang S, Zhang Z, Cui H. Molecular Mechanism Underlying Effects of Wumeiwan on Steroid-Dependent Asthma: A Network Pharmacology, Molecular Docking, and Experimental Verification Study. Drug Des Devel Ther 2022; 16:909-929. [PMID: 35386850 PMCID: PMC8978578 DOI: 10.2147/dddt.s349950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Background Steroid-dependent asthma (SDA) is characterized by oral corticosteroid (OCS) resistance and dependence. Wumeiwan (WMW) showed potentials in reducing the dose of OCS of SDA patients based on our previous studies. Methods Network pharmacology was conducted to explore the molecular mechanism of WMW against SDA with the databases of TCMSP, STRING, etcetera. GO annotation and KEGG functional enrichment analysis were conducted by metascape database. Pymol performed the molecular docking. In the experiment, the OVA-induced plus descending dexamethasone intervention chronic asthmatic rat model was conducted. Lung pathological changes were analyzed by H&E, Masson, and IHC staining. Relative expressions of the gene were performed by real-time PCR. Results A total of 102 bioactive ingredients in WMW were identified, as well as 191 common targets were found from 241 predicted targets in WMW and 3539 SDA-related targets. The top five bioactive ingredients were identified as pivotal ingredients, which included quercetin, candletoxin A, palmidin A, kaempferol, and beta-sitosterol. Besides, 35 HUB genes were obtained from the PPI network, namely, TP53, AKT1, MAPK1, JUN, HSP90AA1, TNF, RELA, IL6, CXCL8, EGFR, etcetera. GO biological process analysis indicated that HUB genes were related to bacteria, transferase, cell differentiation, and steroid. KEGG pathway enrichment analysis indicated that the potential mechanism might be associated with IL-17 and MAPK signaling pathways. Molecular docking results supported these findings. H&E and Masson staining proved that WMW could reduce airway inflammation and remodeling of model rats, which might be related to the downward expression of IL-8 proved by IHC staining and real-time PCR. Conclusion WMW could be a complementary and alternative therapy for SDA by reducing airway inflammation.
Collapse
Affiliation(s)
- Mingsheng Lyu
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yahui Wang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qiuyi Chen
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jingbo Qin
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Dan Hou
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shuaiyang Huang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Dongmei Shao
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xuefeng Gong
- Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Guirui Huang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shiyu Zhang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhijie Zhang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hongsheng Cui
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
27
|
Qiu Z, Liu X, Li J, Qiao B, Zhao GR. Metabolic Division in an Escherichia coli Coculture System for Efficient Production of Kaempferide. ACS Synth Biol 2022; 11:1213-1227. [PMID: 35167258 DOI: 10.1021/acssynbio.1c00510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kaempferide, a plant-derived natural flavonoid, exhibits excellent pharmacological activities with nutraceutical and medicinal applications in human healthcare. Efficient microbial production of complex flavonoids suffers from metabolic crosstalk and burden, which is a big challenge for synthetic biology. Herein, we identified 4'-O-methyltransferases and divided the artificial biosynthetic pathway of kaempferide into upstream, midstream, and downstream modules. By combining heterologous genes from different sources and fine-tuning the expression, we optimized each module for the production of kaempferide. Furthermore, we designed and evaluated four division patterns of synthetic labor in coculture systems by plug-and-play modularity. The linear division of three modules in a three-strain coculture showed higher productivity of kaempferide than that in two-strain cocultures. The U-shaped division by co-distributing the upstream and downstream modules in one strain led to the best performance of the coculture system, which produced 116.0 ± 3.9 mg/L kaempferide, which was 510, 140, and 50% higher than that produced by the monoculture, two-strain coculture, and three-strain coculture with the linear division, respectively. This is the first report of efficient de novo production of kaempferide in a robust Escherichia coli coculture. The strategy of U-shaped pathway division in the coculture provides a promising way for improving the productivity of valuable and complex natural products.
Collapse
Affiliation(s)
- Zetian Qiu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan
District, Shenzhen 518055, China
| | - Xue Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan
District, Shenzhen 518055, China
| | - Jia Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan
District, Shenzhen 518055, China
| | - Bin Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan
District, Shenzhen 518055, China
| |
Collapse
|
28
|
Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol 2022; 106:1783-1798. [PMID: 35171341 DOI: 10.1007/s00253-022-11835-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/02/2022]
Abstract
Anthocyanins are the phenolic compounds responsible for coloring pigments in fruits and vegetables. Anthocyanins offer a wide range of health benefits to human health. Their scope has expanded dramatically in the past decade, making anthocyanin control, influx, and outflow regulation fascinating for many researchers. The main culprit is anthocyanin stability and concentration form, which demands novel ways because these are critical in the food industry. This review aims to examine anthocyanin synthesis via triggering transcription genes that code for anthocyanin-producing enzymes. The balance between production and breakdown determines anthocyanin accumulation. Thus, increasing the anthocyanin content in food requires the stability of molecules in the vacuolar lumen, the pigment fading process, and a better understanding of the mechanism. The promising option is biosynthesis by metabolically engineered microorganisms with a lot of success. This study aims to look into and evaluate the existing literature on anthocyanin production, namely the biosynthesis of anthocyanin pathway genes, production by microbial cell factories, and the regulatory factors that can modulate the production of anthocyanins. Understanding these mechanisms will provide new biotechnological approaches.Key points• Factors affecting the regulation of anthocyanins• Focus on degradation, biosynthesis pathway genes, and alternative systems for the production of anthocyanins• Microbial cell factories can be used to produce large amounts of anthocyanins.
Collapse
|
29
|
Zhang Q, Zeng W, Xu S, Zhou J. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2021; 342:125978. [PMID: 34598073 DOI: 10.1016/j.biortech.2021.125978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Acetyl-CoA is a kind of important cofactor that is involved in many metabolic pathways. It serves as the precursor for many interesting commercial products, such as terpenes, flavonoids and anthraquinones. However, the insufficient supply of acetyl-CoA limits biosynthesis of its derived compounds in the intracellular. In this review, we outlined metabolic pathways involved in the catabolism and anabolism of acetyl-CoA, as well as some important derived products. We examined several strategies for the enhanced supply of acetyl-CoA, and provided insight into pathways that generate acetyl-CoA to balance metabolism, which can be harnessed to improve the titer, yield and productivities of interesting products in Saccharomyces cerevisiae and other eukaryotic microorganisms. We believe that peroxisomal fatty acid β-oxidation could be an attractive strategy for enhancing the supply of acetyl-CoA.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
30
|
Kulagina N, Besseau S, Godon C, Goldman GH, Papon N, Courdavault V. Yeasts as Biopharmaceutical Production Platforms. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:733492. [PMID: 37744146 PMCID: PMC10512354 DOI: 10.3389/ffunb.2021.733492] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/26/2021] [Indexed: 09/26/2023]
Affiliation(s)
- Natalja Kulagina
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| | - Sébastien Besseau
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| | - Charlotte Godon
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | - Gustavo H. Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nicolas Papon
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| |
Collapse
|
31
|
Wu M, Gong DC, Yang Q, Zhang MQ, Mei YZ, Dai CC. Activation of Naringenin and Kaempferol through Pathway Refactoring in the Endophyte Phomopsis Liquidambaris. ACS Synth Biol 2021; 10:2030-2039. [PMID: 34251173 DOI: 10.1021/acssynbio.1c00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abundant gene clusters of natural products are observed in the endophytic fungus Phomopsis liquidambaris; however, most of them are silent. Herein, a plug-and-play DNA assembly tool has been applied for flavonoid synthesis in P. liquidambaris. A shuttle plasmid was constructed based on S. cerevisiae, E. coli, and P. liquidambaris with screening markers URA, Amp, and hygR, respectively. Each fragment or cassette was successively assembled by overlap extension PCR with at least 40-50 bp homologous arms in S. cerevisiae for generating a new vector. Seven native promoters were screened by the DNA assembly based on the fluorescence intensity of the mCherry reporter gene in P. liquidambaris, and two of them were new promoters. The key enzyme chalcone synthase was the limiting step of the pathway. The naringenin and kaempferol pathways were refactored and activated with the titers of naringenin and kaempferol of 121.53 mg/L and 75.38 mg/L in P. liquidambaris using fed-batch fermentation, respectively. This study will be efficient and helpful for the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Mei Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Da-Chun Gong
- China Key Laboratory of Light Industry Functional Yeast, Three Gorges University, Yichang, 443000, Hubei Province China
| | - Qian Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Meng-Qian Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Yan-Zhen Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| |
Collapse
|
32
|
Marín L, Gutiérrez-Del-Río I, Villar CJ, Lombó F. De novo biosynthesis of garbanzol and fustin in Streptomyces albus based on a potential flavanone 3-hydroxylase with 2-hydroxylase side activity. Microb Biotechnol 2021; 14:2009-2024. [PMID: 34216097 PMCID: PMC8449655 DOI: 10.1111/1751-7915.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022] Open
Abstract
Flavonoids are important plant secondary metabolites, which were shown to have antioxidant, anti-inflammatory or antiviral activities. Heterologous production of flavonoids in engineered microbial cell factories is an interesting alternative to their purification from plant material representing the natural source. The use of engineered bacteria allows to produce specific compounds, independent of soil, climatic or other plant-associated production parameters. The initial objective of this study was to achieve an engineered production of two interesting flavanonols, garbanzol and fustin, using Streptomyces albus as the production host. Unexpectedly, the engineered strain produced several flavones and flavonols in the absence of the additional expression of a flavone synthase (FNS) or flavonol synthase (FLS) gene. It turned out that the heterologous flavanone 3-hydroxylase (F3H) has a 2-hydroxylase side activity, which explains the observed production of 7,4'-dihydroxyflavone, resokaempferol, kaempferol and apigenin, as well as the biosynthesis of the extremely rare 2-hydroxylated intermediates 2-hydroxyliquiritigenin, 2-hydroxynaringenin and probably licodione. Other related metabolites, such as quercetin, dihydroquercetin and eriodictyol, have also been detected in culture extracts of this recombinant strain. Hence, the enzymatic versatility of S. albus can be conveniently exploited for the heterologous production of a large diversity of plant metabolites of the flavonoid family.
Collapse
Affiliation(s)
- Laura Marín
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Ignacio Gutiérrez-Del-Río
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Claudio Jesús Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| |
Collapse
|
33
|
Discovery and Validation of a Novel Step Catalyzed by OsF3H in the Flavonoid Biosynthesis Pathway. BIOLOGY 2021; 10:biology10010032. [PMID: 33418890 PMCID: PMC7825110 DOI: 10.3390/biology10010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Flavonoids are important plant secondary metabolites mostly produced in the shikimate pathway. Kaempferol and quercetin are important anti-oxidant flavonoids, which enhance plant tolerance to environmental stresses. The biosynthesis of both the flavonoids largely depends on the expression of genes of the shikimate pathway. Therefore, we selected the OsF3H gene from rice and assessed its functional expression using the yeast expression system. We found that OsF3H regulates a very important step of the flavonoid biosynthesis pathway and enhances the accumulation of kaempferol and quercetin. The present research confirmed that overexpression of the OsF3H gene in rice could significantly increase the biosynthesis of flavonoids, which are essential for the plant defense system. Abstract Kaempferol and quercetin are the essential plant secondary metabolites that confer huge biological functions in the plant defense system. In this study, biosynthetic pathways for kaempferol and quercetin were constructed in Saccharomyces cerevisiae using naringenin as a substrate. OsF3H was cloned into pRS42K yeast episomal plasmid (YEp) vector and the activity of the target gene was analyzed in engineered and empty strains. We confirmed a novel step of kaempferol and quercetin biosynthesis directly from naringenin, catalyzed by the rice flavanone 3-hydroxylase (F3H). The results were confirmed through thin layer chromatography (TLC) followed by western blotting, nuclear magnetic resonance (NMR), and liquid chromatography-mass spectrometry LCMS-MS. TLC showed positive results when comparing both compounds extracted from the engineered strain with the standard reference. Western blotting confirmed the lack of OsF3H activity in empty strains and confirmed high OsF3H expression in engineered strains. NMR spectroscopy confirmed only quercetin, while LCMS-MS results revealed that F3H is responsible for the conversion of naringenin to both kaempferol and quercetin.
Collapse
|
34
|
Zhang N, Xu H, Wang Y, Yao Y, Liu G, Lei X, Sun H, Wu X, Li J. Protective mechanism of kaempferol against Aβ 25-35-mediated apoptosis of pheochromocytoma (PC-12) cells through the ER/ERK/MAPK signalling pathway. Arch Med Sci 2021; 17:406-416. [PMID: 33747277 PMCID: PMC7959041 DOI: 10.5114/aoms.2020.98199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/21/2019] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Progressive accumulation of amyloid-β (Aβ) is a pathological trait of Alzheimer's disease (AD). Amyloid-β increases free radical production in neuronal cells, leading to neuronal cell death. Hormone replacement therapy can reduce the incidence of AD, and oestrogen significantly improves the clinical signs in patients with AD. However, the long-term use of oestrogen causes a variety of diseases. Phytoestrogens have been reported to bind and activate oestrogen receptors in mammals and humans to produce oestrogen-like or anti-oestrogen-like effects. Kaempferol is a flavonoid phytoestrogen that can produce a certain protective effect in neurons. However, the molecular mechanism of kaempferol in AD is unclear. MATERIAL AND METHODS This study used pheochromocytoma (PC-12) cells that were damaged by Aβ25-35 as an in vitro model of AD, and oestradiol was a positive control. The cells were incubated with kaempferol alone or in combination with fulvestrant (an antagonist of ER) and U0126 (an inhibitor of ERK) in Aβ25-35 culture. Cell activity was measured by the MTT method. Cell apoptosis was evaluated by flow cytometry. Gene and protein expression levels were tested by qRT-PCR and Western blotting. RESULTS This study demonstrated that kaempferol protected PC-12 cells from Aβ25-35-induced cell death and apoptosis in a dose-dependent manner. Treatment with fulvestrant (an antagonist of ER) and U0126 (an inhibitor of ERK) significantly increased the apoptosis of PC-12 cells. Moreover, kaempferol promoted the expression of anti-apoptotic molecules and inhibited the expression of pro-apoptotic molecules, which were blocked by fulvestrant and U0126. CONCLUSIONS Kaempferol protected PC-12 cells against Aβ25-35-induced cell apoptosis through the ER/ERK/MAPK signalling pathway.
Collapse
Affiliation(s)
- Ning Zhang
- Jiamusi College, Heilongjiang University of Chinese Medicine, Harbin, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongdan Xu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yueying Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuan Yao
- Jiamusi College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guoliang Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xia Lei
- Jiamusi College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huifeng Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiuhong Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianmin Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
35
|
Li S, Zhang Q, Wang J, Liu Y, Zhao Y, Deng Y. Recent progress in metabolic engineering of Saccharomyces cerevisiae for the production of malonyl-CoA derivatives. J Biotechnol 2020; 325:83-90. [PMID: 33278463 DOI: 10.1016/j.jbiotec.2020.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
To reduce dependence on petroleum, the biosynthesis of important chemicals from simple substrates using industrial microorganisms has attracted increased attention. Metabolic engineering of Saccharomyces cerevisiae offers a sustainable and flexible alternative for the production of various chemicals. As a key metabolic intermediate, malonyl-CoA is a precursor for many useful compounds. However, the productivity of malonyl-CoA derivatives is restricted by the low cellular level of malonyl-CoA and enzymatic performance. In this review, we focused on how to increase the intracellular malonyl-CoA level and summarize the recent advances in different metabolic engineering strategies for directing intracellular malonyl-CoA to the desired malonyl-CoA derivatives, including strengthening the malonyl-CoA supply, reducing malonyl-CoA consumption, and precisely controlling the intracellular malonyl-CoA level. These strategies provided new insights for further improving the synthesis of malonyl-CoA derivatives in microorganisms.
Collapse
Affiliation(s)
- Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiyue Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
36
|
Liskova A, Koklesova L, Samec M, Varghese E, Abotaleb M, Samuel SM, Smejkal K, Biringer K, Petras M, Blahutova D, Bugos O, Pec M, Adamkov M, Büsselberg D, Ciccocioppo R, Adamek M, Rodrigo L, Caprnda M, Kruzliak P, Kubatka P. Implications of flavonoids as potential modulators of cancer neovascularity. J Cancer Res Clin Oncol 2020; 146:3079-3096. [PMID: 32902794 DOI: 10.1007/s00432-020-03383-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE The formation of new blood vessels from previous ones, angiogenesis, is critical in tissue repair, expansion or remodeling in physiological processes and in various pathologies including cancer. Despite that, the development of anti-angiogenic drugs has great potential as the treatment of cancer faces many problems such as development of the resistance to treatment or an improperly selected therapy approach. An evaluation of predictive markers in personalized medicine could significantly improve treatment outcomes in many patients. METHODS This comprehensive review emphasizes the anticancer potential of flavonoids mediated by their anti-angiogenic efficacy evaluated in current preclinical and clinical cancer research. RESULTS AND CONCLUSION Flavonoids are important groups of phytochemicals present in common diet. Flavonoids show significant anticancer effects. The anti-angiogenic effects of flavonoids are currently a widely discussed topic of preclinical cancer research. Flavonoids are able to regulate the process of tumor angiogenesis through modulation of signaling molecules such as VEGF, MMPs, ILs, HIF or others. However, the evaluation of the anti-angiogenic potential of flavonoids within the clinical studies is not frequently discussed and is still of significant scientific interest.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Petras
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dana Blahutova
- Department of Biology and Ecology, Faculty of Education, Catholic University in Ruzomberok, Ruzomberok, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar.
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico GB Rossi, University of Verona, Verona, Italy
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic. .,St. Anne's University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
| |
Collapse
|
37
|
Zhou S, Hao T, Xu S, Deng Y. Coenzyme A thioester-mediated carbon chain elongation as a paintbrush to draw colorful chemical compounds. Biotechnol Adv 2020; 43:107575. [PMID: 32512221 DOI: 10.1016/j.biotechadv.2020.107575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
The biosynthesis of various useful chemicals from simple substrates using industrial microorganisms is becoming increasingly crucial to address the challenge of dwindling non-renewable resources. As the most common intermediate substrates in organisms, Coenzyme A (CoA) thioesters play a central role in the carbon chain elongation process of their products. As a result, numerous of chemicals can be synthesized by the iterative addition of various CoA thioester extender units at a given CoA thioester primer backbone. However, these elongation reactions and the product yields are still restricted due to the low enzymatic performance and supply of CoA thioesters. This review highlights the current protein and metabolic engineering strategies used to enhance the diversity and product yield by coupling different primers, extender units, enzymes, and termination pathways, in an attempt to provide a road map for producing a more diverse range of industrial chemicals.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Tingting Hao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shumin Xu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
38
|
Rainha J, Gomes D, Rodrigues LR, Rodrigues JL. Synthetic Biology Approaches to Engineer Saccharomyces cerevisiae towards the Industrial Production of Valuable Polyphenolic Compounds. Life (Basel) 2020; 10:life10050056. [PMID: 32370107 PMCID: PMC7281501 DOI: 10.3390/life10050056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022] Open
Abstract
Polyphenols are plant secondary metabolites with diverse biological and potential therapeutic activities such as antioxidant, anti-inflammatory and anticancer, among others. However, their extraction from the native plants is not enough to satisfy the increasing demand for this type of compounds. The development of microbial cell factories to effectively produce polyphenols may represent the most attractive solution to overcome this limitation and produce high amounts of these bioactive molecules. With the advances in the synthetic biology field, the development of efficient microbial cell factories has become easier, largely due to the development of the molecular biology techniques and by the identification of novel isoenzymes in plants or simpler organisms to construct the heterologous pathways. Furthermore, efforts have been made to make the process more profitable through improvements in the host chassis. In this review, advances in the production of polyphenols by genetically engineered Saccharomyces cerevisiae as well as by synthetic biology and metabolic engineering approaches to improve the production of these compounds at industrial settings are discussed.
Collapse
|
39
|
Raising the production of phloretin by alleviation of by-product of chalcone synthase in the engineered yeast. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1734-1743. [DOI: 10.1007/s11427-019-1634-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022]
|
40
|
Madhavan A, Arun KB, Sindhu R, Binod P, Kim SH, Pandey A. Tailoring of microbes for the production of high value plant-derived compounds: From pathway engineering to fermentative production. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140262. [PMID: 31404685 DOI: 10.1016/j.bbapap.2019.140262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Plant natural products have been an attracting platform for the isolation of various active drugs and other bioactives. However large-scale extraction of these compounds is affected by the difficulty in mass cultivation of these plants and absence of strategies for successful extraction. Even though, synthesis by chemical method is an alternative method; it is less efficient as their chemical structure is highly complex which involve enantio-selectivity. Thus an alternate bio-system for heterologous production of plant natural products using microbes has emerged. Advent of various omics, synthetic and metabolic engineering strategies revolutionised the field of heterologous plant metabolite production. In this context, various engineering methods taken to synthesise plant natural products are described with an additional focus to fermentation strategies.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, India
| | | | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum 695 019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum 695 019, India
| | - Sang Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ashok Pandey
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea; Center for Innovation and Translational Research, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226 001, India.
| |
Collapse
|
41
|
|
42
|
Zhao Y, Jian X, Wu J, Huang W, Huang C, Luo J, Kong L. Elucidation of the biosynthesis pathway and heterologous construction of a sustainable route for producing umbelliferone. J Biol Eng 2019; 13:44. [PMID: 31139252 PMCID: PMC6530170 DOI: 10.1186/s13036-019-0174-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/30/2019] [Indexed: 11/10/2022] Open
Abstract
Background Coumarins play roles in many biological processes. Angelica decursiva is one of the major sources of coumarins in China. Due to increasing demand for coumarins in the marketplace, traditional extraction from plants is now considered economically insufficient and unsustainable. Microbial synthesis is a promising strategy for scalable production of coumarins. However, the biosynthetic pathway of coumarin remains poorly understood, and even more, the genes associated with this process have not been characterized in A. decursiva. Results RNA-seq was employed to elucidate the umbelliferone biosynthetic pathway. The results indicated that three enzymes, phenylalanine ammonia-lyase (PAL), 4-Coumarate: Coenzyme A Ligase (4CL), and p-coumaroyl CoA 2'-hydroxylase (C2'H) were involved in umbelliferone biosynthesis. Using the cloned genes, we generated a synthetic biology based microbial cell factory that produces coumarins from tyrosine utilizing Rhodotorula glutinis tyrosine ammonia lyase (RgTAL) to bypass cinnamic acid 4-hydroxylase (C4H). With metabolic engineering strategies, we deleted prephenate dehydratase (pheA), anthranilate synthase (trpE) and transcriptional regulatory protein (tyrR) and overexpressed six related genes involved in tyrosine biosynthesis, to drive the carbon flux from tyrosine. To overcome the limitation of 4CL, a virtual screening and site-specific mutagenesis-based protein engineering approach was applied. In addition, induction/culture conditions and different ions were employed to further improve the yield of umbelliferone. Finally, a yield of 356.59 mg/L umbelliferone was obtained. Conclusions The current study elucidated the umbelliferone biosynthesis pathway in A. decursiva. The results also demonstrated the feasibility of integrating gene mining with synthetic biology techniques to produce natural compounds.
Collapse
Affiliation(s)
- Yucheng Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Xiangyun Jian
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Jialin Wu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Wanchun Huang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Chuanlong Huang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| |
Collapse
|
43
|
Lyu X, Zhao G, Ng KR, Mark R, Chen WN. Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5596-5606. [PMID: 30957490 DOI: 10.1021/acs.jafc.9b01329] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Kaempferol is a polyphenolic compound with various reported health benefits and thus harbors considerable potential for food-engineering applications. In this study, a high-yield kaempferol-producing cell factory was constructed by multiple strategies, including gene screening, elimination of the phenylethanol biosynthetic branch, optimizing the core flavonoid synthetic pathway, supplementation of precursor PEP/E4P, and mitochondrial engineering of F3H and FLS. A total of 86 mg/L of kaempferol was achieved in strain YL-4, to date the highest production titer in yeast. Furthermore, a coculture system and supplementation of surfactants were investigated, to relieve the metabolic burden as well as the low solubility/possible transport limitations of flavonoids, respectively. In the coculture system, the whole pathway was divided across two strains, resulting in 50% increased cell growth. Meanwhile, supplementation of Tween 80 in our engineered strains yielded 220 mg/L of naringenin and 200 mg/L of mixed flavonoids-among the highest production titer reported via de novo production in yeast.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Guili Zhao
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Kuan Rei Ng
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Rita Mark
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
44
|
Sun YJ, He JM, Kong JQ. Characterization of two flavonol synthases with iron-independent flavanone 3-hydroxylase activity from Ornithogalum caudatum Jacq. BMC PLANT BIOLOGY 2019; 19:195. [PMID: 31088366 PMCID: PMC6515686 DOI: 10.1186/s12870-019-1787-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/17/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Flavonol synthase (FLS) is the key enzyme responsible for the biosynthesis of flavonols, the most abundant flavonoids, which have diverse pharmaceutical effects. Flavonol synthase has been previously found in other species, but not yet in Ornithogalum caudatum. RESULTS The transcriptome-wide mining and functional characterisation of a flavonol synthase gene family from O. caudatum were reported. Specifically, a small FLS gene family harbouring two members, OcFLS1 and OcFLS2, was isolated from O. caudatum based on transcriptome-wide mining. Phylogenetic analysis suggested that the two proteins showed the closest relationship with FLS proteins. In vitro enzymatic assays indicated OcFLS1 and OcFLS2 were flavonol synthases, catalysing the conversion of dihydroflavonols to flavonols in an iron-dependent fashion. In addition, the two proteins were found to display flavanone 3β-hydroxylase (F3H) activity, hydroxylating flavanones to form dihydroflavonols. Unlike single F3H enzymes, the F3H activity of OcFLS1 and OcFLS2 did not absolutely require iron. However, the presence of sufficient Fe2+ was demonstrated to be conducive to successive catalysis of flavanones to flavonols. The qRT-PCR analysis demonstrated that both genes were expressed in the leaves, bulbs, and flowers, with particularly high expression in the leaves. Moreover, their expression was regulated by developmental and environmental conditions. CONCLUSIONS OcFLS1 and OcFLS2 from O. caudatum were demonstrated to be flavonol synthases with iron-independent flavanone 3-hydroxylase activity.
Collapse
Affiliation(s)
- Yu-Jia Sun
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050 China
| | - Jiu-Ming He
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050 China
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050 China
| |
Collapse
|
45
|
Lyu X, Lee J, Chen WN. Potential Natural Food Preservatives and Their Sustainable Production in Yeast: Terpenoids and Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4397-4417. [PMID: 30844263 DOI: 10.1021/acs.jafc.8b07141] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Terpenoids and polyphenols are high-valued plant secondary metabolites. Their high antimicrobial activities demonstrate their huge potential as natural preservatives in the food industry. With the rapid development of metabolic engineering, it has become possible to realize large-scale production of non-native terpenoids and polyphenols by using the generally recognized as safe (GRAS) strain, Saccharomyces cerevisiae, as a cell factory. This review will summarize the major terpenoid and polyphenol compounds with high antimicrobial properties, describe their native metabolic pathways as well as antimicrobial mechanisms, and highlight current progress on their heterologous biosynthesis in S. cerevisiae. Current challenges and perspectives for the sustainable production of terpenoid and polyphenol as natural food preservatives via S. cerevisiae will also be discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Jaslyn Lee
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
46
|
Pyne ME, Narcross L, Martin VJJ. Engineering Plant Secondary Metabolism in Microbial Systems. PLANT PHYSIOLOGY 2019; 179:844-861. [PMID: 30643013 PMCID: PMC6393802 DOI: 10.1104/pp.18.01291] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/27/2018] [Indexed: 05/02/2023]
Abstract
An overview of common challenges and strategies underlying efforts to reconstruct plant isoprenoid, alkaloid, phenylpropanoid, and polyketide biosynthetic pathways in microbial systems.
Collapse
Affiliation(s)
- Michael E Pyne
- Department of Biology, Centre for Applied Synthetic Biology, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Lauren Narcross
- Department of Biology, Centre for Applied Synthetic Biology, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Vincent J J Martin
- Department of Biology, Centre for Applied Synthetic Biology, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
47
|
Pei J, Chen A, Dong P, Shi X, Zhao L, Cao F, Tang F. Modulating heterologous pathways and optimizing fermentation conditions for biosynthesis of kaempferol and astragalin from naringenin in Escherichia coli. ACTA ACUST UNITED AC 2019; 46:171-186. [DOI: 10.1007/s10295-018-02134-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022]
Abstract
Abstract
Kaempferol and astragalin are used as standards to assess the quality of Ginkgo biloba extract and Radix astragali, respectively, and possess numerous biological properties. In this study, we constructed a recombinant strain with a highly efficient biosynthetic pathway of kaempferol by screening key enzyme genes, designing a synthetic fusion enzyme and increasing the gene copy number. By optimizing conversion and fed-batch fermentation conditions, maximal kaempferol production reached 1184.2 ± 16.5 mg/L, which represents the highest yield of kaempferol from naringenin reported to date. Based on this result, glycosyltransferase (AtUGT78D2) and an efficient UDP-glucose synthesis pathway were introduced into the recombinant strain to produce astragalin, resulting in maximal astragalin production at 1738.5 ± 24.8 mg/L without kaempferol accumulation. The efficient synthesis pathway described in this study for kaempferol and astragalin biosynthesis can be widely used for flavonoid biosynthesis in Escherichia coli.
Collapse
Affiliation(s)
- Jianjun Pei
- grid.410625.4 Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- grid.410625.4 College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China
- Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass Nanjing China
| | - Anna Chen
- grid.410625.4 Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- grid.410625.4 College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China
| | - Ping Dong
- grid.410625.4 Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- grid.410625.4 College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China
| | - Xuejia Shi
- grid.410625.4 Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- grid.410625.4 College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China
| | - Linguo Zhao
- grid.410625.4 Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- grid.410625.4 College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China
- Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass Nanjing China
| | - Fuliang Cao
- grid.410625.4 Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- grid.410625.4 College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China
| | - Feng Tang
- 0000 0001 0742 5632 grid.459618.7 International Centre for Bamboo and Rattan Beijing China
| |
Collapse
|
48
|
Rai AK, Pandey A, Sahoo D. Biotechnological potential of yeasts in functional food industry. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
50
|
Zhang Z, He Y, Huang Y, Ding L, Chen L, Liu Y, Nie Y, Zhang X. Development and Optimization of an In Vitro Multienzyme Synthetic System for Production of Kaempferol from Naringenin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8272-8279. [PMID: 30019587 DOI: 10.1021/acs.jafc.8b01299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An in vitro multienzyme synthetic system was developed and optimized to efficiently produce kaempferol in a single reaction tube. Two key genes, Atf3h and Atfls1, in the biosynthetic pathway of kaempferol were cloned into a prokaryotic expression vector and overexpressed in Escherichia coli. The recombinant proteins were purified through affinity chromatography and showed activities of flavanone 3-hydroxylase and flavonol synthase, respectively, followed by development of an in vitro synthetic system for producing kaempferol. The system contains 8.2 mM α-ketoglutaric acid, 0.01 mM ferrous ion, 0.4% sodium ascorbate, 25 μg/mL of each recombinant enzyme, and 10% glycerol in 100 mM Tris-HCl (pH 7.2). When the reaction was carried out at 40 °C for 40-50 min, the yield of kaempferol was 37.55 ± 1.62 mg/L and the conversion rate from NRN to KMF was 55.89% ± 2.74%. Overall, this system provides a promising and efficient approach to produce kaempferol economically.
Collapse
Affiliation(s)
- Zhiping Zhang
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Yanzhi He
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Yue Huang
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Li Ding
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Lei Chen
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Yaxian Liu
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Yesen Nie
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Xinyue Zhang
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China , Yangzhou University (26116120), Yangzhou , Jiangsu 225009 , China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety , Yangzhou University , Yangzhou , Jiangsu 225009 , China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu 225009 , China
| |
Collapse
|