1
|
Ishimoto CK, Paulino BN, Neri-Numa IA, Bicas JL. The blue palette of life: A comprehensive review of natural bluish colorants with potential commercial applications. Food Res Int 2024; 196:115082. [PMID: 39614567 DOI: 10.1016/j.foodres.2024.115082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 12/01/2024]
Abstract
Considering the growing interest for safer, environmentally friendly and healthier products, the search for natural colorants to replace their synthetic has been raised. This is particularly challenging for the rare and usually unstable bluish coloring substances. This comprehensive review describes several bluish pigments which can be obtained from natural sources (plants and mostly microorganisms), covering less known molecules to well established compounds (although no focus is given for anthocyanins). Key information about each compound, including sources, extraction procedures, properties, and potential applications, are presented. Despite many studies on these molecules, toxicological and stability studies are still lacking for many of them. Therefore, this text also discusses the regulatory requirements for approving new coloring substances. Given the increasing robustness of scientific data supporting the biological activities attributed to many of these pigments, it is possible to envisage that some of them may be commercially available for industrial applications in different fields, not only in traditional food or cosmetic uses but in pharmaceutical formulations as well.
Collapse
Affiliation(s)
- Caroline Kie Ishimoto
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Bruno Nicolau Paulino
- Department of Bromatological Analysis, Faculty of Pharmacy, Federal University of Bahia (UFBA), 40170-115 Salvador, BA, Brazil
| | - Iramaia Angelica Neri-Numa
- Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil; Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
2
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
3
|
Zhao M, Zhang XS, Xiong LB, Liu K, Li XF, Liu Y, Wang FQ. Establishment of an Efficient Expression and Regulation System in Streptomyces for Economical and High-Level Production of the Natural Blue Pigment Indigoidine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:483-492. [PMID: 38146267 DOI: 10.1021/acs.jafc.3c05696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Indigoidine, as a kind of natural blue pigment, is widely used in textiles, food, and pharmaceuticals and is mainly synthesized from l-glutamine via a condensation reaction by indigoidine synthetases, most of which originates from Streptomyces species. However, due to the complex metabolic switches of Streptomyces, most of the researchers choose to overexpress indigoidine synthetases in the heterologous host to achieve high-level production of indigoidine. Considering the advantages of low-cost culture medium and simple culture conditions during the large-scale culture of Streptomyces, here, an updated regulation system derived from the Streptomyces self-sustaining system, constructed in our previous study, was established for the highly efficient production of indigoidine in Streptomyces lividans TK24. The updated system was constructed via promoter mining and σhrdB expression optimization, and this system was applied to precisely and continuously regulate the expression of indigoidine synthetase IndC derived from Streptomyces albus J1704. Finally, the engineered strain was cultured with cheap industrial glycerol as a supplementary carbon source, and 14.3 and 46.27 g/L indigoidine could be achieved in a flask and a 4 L fermentor, respectively, reaching the highest level of microbial synthesis of indigoidine. This study will lay a foundation for the industrial application of Streptomyces cell factories to produce indigoidine.
Collapse
Affiliation(s)
- Ming Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiu-Shan Zhang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Liang-Bin Xiong
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Kun Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiang-Fei Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yan Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Jia L, Lu W, Hu D, Feng M, Wang A, Wang R, Sun H, Wang P, Xia Q, Ma S. Genetically engineered Blue silkworm capable of synthesizing natural blue pigment. Int J Biol Macromol 2023; 235:123863. [PMID: 36870637 DOI: 10.1016/j.ijbiomac.2023.123863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Synthetic biology is an eco-friendly and sustainable approach for the production of compounds, particularly used when the production processes involve toxic reagents. In this study, we used the silk gland of silkworm to produce indigoidine, a valuable natural blue pigment that cannot be synthesized naturally in animals. We genetically engineered these silkworms by integrating the indigoidine synthetase (idgS) gene from S. lavendulae and the PPTase (Sfp) gene from B. subtilis into the silkworm genome. In the resulting Blue silkworm, indigoidine was detected at a high level in the posterior silk gland (PSG), spanning all developmental stages from larvae to adults, without affecting silkworm growth or development. This synthesized indigoidine was secreted from the silk gland and subsequently stored in the fat body, with only a small fraction being excreted by the Malpighian tubule. Metabolomic analysis revealed that Blue silkworm efficiently synthesized indigoidine by upregulating l-glutamine, the precursor of indigoidine, and succinate, which is related to energy metabolism in the PSG. This study represents the first synthesis of indigoidine in an animal and therefore opens a new avenue for the biosynthesis of natural blue pigments and other valuable small molecules.
Collapse
Affiliation(s)
- Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Dan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Min Feng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Aoming Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Ruolin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Hao Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Pan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China.
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Jagadeesh V, Yoshida T, Uraji M, Okahashi N, Matsuda F, Vavricka CJ, Tsuge K, Kondo A. Simple and Rapid Non-ribosomal Peptide Synthetase Gene Assembly Using the SEAM-OGAB Method. ACS Synth Biol 2023; 12:305-318. [PMID: 36563322 DOI: 10.1021/acssynbio.2c00565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recombination of biosynthetic gene clusters including those of non-ribosomal peptide synthetases (NRPSs) is essential for understanding the mechanisms of biosynthesis. Due to relatively huge gene cluster sizes ranging from 10 to 150 kb, the prevalence of sequence repeats, and inability to clearly define optimal points for manipulation, functional characterization of recombinant NRPSs with maintained activity has been hindered. In this study, we introduce a simple yet rapid approach named "Seamed Express Assembly Method (SEAM)" coupled with Ordered Gene Assembly in Bacillus subtilis (OGAB) to reconstruct fully functional plipastatin NRPS. This approach is enabled by the introduction of restriction enzyme sites as seams at module borders. SEAM-OGAB is then first demonstrated by constructing the ppsABCDE NRPS (38.4 kb) to produce plipastatin, a cyclic decapeptide in B. subtilis. The introduced amino acid level seams do not hinder the NRPS function and enable successful production of plipastatin at a commensurable titer. It is challenging to modify the plipastatin NRPS gene cluster due to the presence of three long direct-repeat sequences; therefore, this study demonstrates that SEAM-OGAB can be readily applied towards the recombination of various NRPSs. Compared to previous NRPS gene assembly methods, the advantage of SEAM-OGAB is that it readily enables the shuffling of NRPS gene modules, and therefore, chimeric NRPSs can be rapidly constructed for the production of novel peptides. This chimeric assembly application of SEAM-OGAB is demonstrated by swapping plipastatin NRPS and surfactin NRPS modules to produce two novel lipopeptides in B. subtilis.
Collapse
Affiliation(s)
- Varada Jagadeesh
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takanobu Yoshida
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Misugi Uraji
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Japan.,Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Japan.,Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Christopher J Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kenji Tsuge
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
6
|
Llorente B, Williams TC, Goold HD, Pretorius IS, Paulsen IT. Harnessing bioengineered microbes as a versatile platform for space nutrition. Nat Commun 2022; 13:6177. [PMID: 36261466 PMCID: PMC9582011 DOI: 10.1038/s41467-022-33974-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Human enterprises through the solar system will entail long-duration voyages and habitation creating challenges in maintaining healthy diets. We discuss consolidating multiple sensory and nutritional attributes into microorganisms to develop customizable food production systems with minimal inputs, physical footprint, and waste. We envisage that a yeast collection bioengineered for one-carbon metabolism, optimal nutrition, and diverse textures, tastes, aromas, and colors could serve as a flexible food-production platform. Beyond its potential for supporting humans in space, bioengineered microbial-based food could lead to a new paradigm for Earth's food manufacturing that provides greater self-sufficiency and removes pressure from natural ecosystems.
Collapse
Affiliation(s)
- Briardo Llorente
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia.
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Thomas C Williams
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hugh D Goold
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- New South Wales Department of Primary Industries, Orange, NSW, 2800, Australia
| | - Isak S Pretorius
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian T Paulsen
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
7
|
Panchanawaporn S, Chutrakul C, Jeennor S, Anantayanon J, Rattanaphan N, Laoteng K. Potential of Aspergillus oryzae as a biosynthetic platform for indigoidine, a non-ribosomal peptide pigment with antioxidant activity. PLoS One 2022; 17:e0270359. [PMID: 35737654 PMCID: PMC9223385 DOI: 10.1371/journal.pone.0270359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
The growing demand for natural pigments in the industrial sector is a significant driving force in the development of production processes. The production of natural blue pigments, which have wide industrial applications, using microbial systems has been gaining significant attention. In this study, we used Aspergillus oryzae as a platform cell factory to produce the blue pigment indigoidine (InK), by genetic manipulation of its non-ribosomal peptide synthetase system to overexpress the indigoidine synthetase gene (AoinK). Phenotypic analysis showed that InK production from the engineered strain was growth associated, owing to the constitutive control of gene expression. Furthermore, the initial pH, temperature, and glutamine and MgSO4 concentrations were key factors affecting InK production by the engineered strain. The pigment secretion was enhanced by addition of 1% Tween 80 solution to the culture medium. The maximum titer of total InK was 1409.22 ± 95.33 mg/L, and the maximum productivity was 265.09 ± 14.74 mg/L·d. Moreover, the recombinant InK produced by the engineered strain exhibited antioxidant activity. These results indicate that A. oryzae has the potential to be used as a fungal platform for overproduction of extracellular non-ribosomal peptide pigments.
Collapse
Affiliation(s)
- Sarocha Panchanawaporn
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Chanikul Chutrakul
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- * E-mail:
| | - Sukanya Jeennor
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Jutamas Anantayanon
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Nakul Rattanaphan
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Kobkul Laoteng
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
8
|
Dinoflagellate Phosphopantetheinyl Transferase (PPTase) and Thiolation Domain Interactions Characterized Using a Modified Indigoidine Synthesizing Reporter. Microorganisms 2022; 10:microorganisms10040687. [PMID: 35456738 PMCID: PMC9027781 DOI: 10.3390/microorganisms10040687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Photosynthetic dinoflagellates synthesize many toxic but also potential therapeutic compounds therapeutics via polyketide/non-ribosomal peptide synthesis, a common means of producing natural products in bacteria and fungi. Although canonical genes are identifiable in dinoflagellate transcriptomes, the biosynthetic pathways are obfuscated by high copy numbers and fractured synteny. This study focuses on the carrier domains that scaffold natural product synthesis (thiolation domains) and the phosphopantetheinyl transferases (PPTases) that thiolate these carriers. We replaced the thiolation domain of the indigoidine producing BpsA gene from Streptomyces lavendulae with those of three multidomain dinoflagellate transcripts and coexpressed these constructs with each of three dinoflagellate PPTases looking for specific pairings that would identify distinct pathways. Surprisingly, all three PPTases were able to activate all the thiolation domains from one transcript, although with differing levels of indigoidine produced, demonstrating an unusual lack of specificity. Unfortunately, constructs with the remaining thiolation domains produced almost no indigoidine and the thiolation domain for lipid synthesis could not be expressed in E. coli. These results combined with inconsistent protein expression for different PPTase/thiolation domain pairings present technical hurdles for future work. Despite these challenges, expression of catalytically active dinoflagellate proteins in E. coli is a novel and useful tool going forward.
Collapse
|
9
|
Seo SO, Jin YS. Next-Generation Genetic and Fermentation Technologies for Safe and Sustainable Production of Food Ingredients: Colors and Flavorings. Annu Rev Food Sci Technol 2022; 13:463-488. [DOI: 10.1146/annurev-food-052720-012228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing human population is a significant issue in food security owing to the limited land and resources available for agricultural food production. To solve these problems, sustainable food manufacturing processes and the development of alternative foods and ingredients are needed. Metabolic engineering and synthetic biology can help solve the food security issue and satisfy the demand for alternative food production. Bioproduction of food ingredients by microbial fermentation is a promising method to replace current manufacturing processes, such as extraction from natural materials and chemical synthesis, with more ecofriendly and sustainable operations. This review highlights successful examples of bioproduction for food additives by engineered microorganisms, with an emphasis on colorants and flavors that are extensively used in the food industry. Recent strain engineering developments and fermentation strategies for producing selected food colorants and flavors are introduced with discussions on the current status and future perspectives. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Seung-Oh Seo
- Department of Food Science and Nutrition, Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Wu Z, Li Y, Zhang L, Ding Z, Shi G. Microbial production of small peptide: pathway engineering and synthetic biology. Microb Biotechnol 2021; 14:2257-2278. [PMID: 33459516 PMCID: PMC8601181 DOI: 10.1111/1751-7915.13743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 01/14/2023] Open
Abstract
Small peptides are a group of natural products with low molecular weights and complex structures. The diverse structures of small peptides endow them with broad bioactivities and suggest their potential therapeutic use in the medical field. The remaining challenge is methods to address the main limitations, namely (i) the low amount of available small peptides from natural sources, and (ii) complex processes required for traditional chemical synthesis. Therefore, harnessing microbial cells as workhorse appears to be a promising approach to synthesize these bioactive peptides. As an emerging engineering technology, synthetic biology aims to create standard, well-characterized and controllable synthetic systems for the biosynthesis of natural products. In this review, we describe the recent developments in the microbial production of small peptides. More importantly, synthetic biology approaches are considered for the production of small peptides, with an emphasis on chassis cells, the evolution of biosynthetic pathways, strain improvements and fermentation.
Collapse
Affiliation(s)
- Zhiyong Wu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Youran Li
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Liang Zhang
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Zhongyang Ding
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Guiyang Shi
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| |
Collapse
|
11
|
Eng T, Banerjee D, Lau AK, Bowden E, Herbert RA, Trinh J, Prahl JP, Deutschbauer A, Tanjore D, Mukhopadhyay A. Engineering Pseudomonas putida for efficient aromatic conversion to bioproduct using high throughput screening in a bioreactor. Metab Eng 2021; 66:229-238. [PMID: 33964456 DOI: 10.1016/j.ymben.2021.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Pseudomonas putida KT2440 is an emerging biomanufacturing host amenable for use with renewable carbon streams including aromatics such as para-coumarate. We used a pooled transposon library disrupting nearly all (4,778) non-essential genes to characterize this microbe under common stirred-tank bioreactor parameters with quantitative fitness assays. Assessing differential fitness values by monitoring changes in mutant strain abundance identified 33 gene mutants with improved fitness across multiple stirred-tank bioreactor formats. Twenty-one deletion strains from this subset were reconstructed, including GacA, a regulator, TtgB, an ABC transporter, and PP_0063, a lipid A acyltransferase. Thirteen deletion strains with roles in varying cellular functions were evaluated for conversion of para-coumarate, to a heterologous bioproduct, indigoidine. Several mutants, such as the ΔgacA strain improved fitness in a bioreactor by 35 fold and showed an 8-fold improvement in indigoidine production (4.5 g/L, 0.29 g/g, 23% of maximum theoretical yield) from para-coumarate as the carbon source.
Collapse
Affiliation(s)
- Thomas Eng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Andrew K Lau
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Emily Bowden
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Robin A Herbert
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Jessica Trinh
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Hollis Street, Emeryville, CA, 5885, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Hollis Street, Emeryville, CA, 5885, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA.
| |
Collapse
|
12
|
Sun L, Xin F, Alper HS. Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnol Adv 2021; 47:107694. [PMID: 33388370 DOI: 10.1016/j.biotechadv.2020.107694] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
Food additives and colorants are extensively used in the food industry to improve food quality and safety during processing, storage and packing. Sourcing of these molecules is predominately through three means: extraction from natural sources, chemical synthesis, and bio-production, with the first two being the most utilized. However, growing demands for sustainability, safety and "natural" products have renewed interest in using bio-based production methods. Likewise, the move to more cultured foods and meat alternatives requires the production of new additives and colorants. The production of bio-based food additives and colorants is an interdisciplinary research endeavor and represents a growing trend in future food. To highlight the potential of microbial hosts for food additive and colorant production, we focus on current advances for example molecules based on their utilization stage and bio-production yield as follows: (I) approved and industrially produced with high titers; (II) approved and produced with decent titers (in the g/L range), but requiring further engineering to reduce production costs; (III) approved and produced with very early stage titers (in the mg/L range); and (IV) new/potential candidates that have not been approved but can be sourced through microbes. Promising approaches, as well as current challenges and future directions will also be thoroughly discussed for the bioproduction of these food additives and colorants.
Collapse
Affiliation(s)
- Lichao Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States; McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States.
| |
Collapse
|
13
|
Santos MCD, Bicas JL. Natural blue pigments and bikaverin. Microbiol Res 2020; 244:126653. [PMID: 33302226 DOI: 10.1016/j.micres.2020.126653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
In last years, the main studied microbial sources of natural blue pigments have been the eukaryotic algae, Rhodophytes and Cryptophytes, and the cyanobacterium Arthrospira (Spirulina) platensis, responsible for the production of phycocyanin, one of the most important blue compounds approved for food and cosmetic use. Recent research also includes the indigoidine pigment from the bacteria Erwinia, Streptomyces and Photorhabdus. Despite these advances, there are still few options of microbial blue pigments reported so far, but the interest in these products is high due to the lack of stable natural blue pigments in nature. Filamentous fungi are particularly attractive for their ability to produce pigments with a wide range of colors. Bikaverin is a red metabolite present mainly in species of the genus Fusarium. Although originally red, the biomass containing bikaverin changes its color to blue after heat treatment, through a mechanism still unknown. In addition to the special behavior of color change by thermal treatment, bikaverin has beneficial biological properties, such as antimicrobial and antiproliferative activities, which can expand its use for the pharmaceutical and medical sectors. The present review addresses the production natural blue pigments and focuses on the properties of bikaverin, which can be an important source of blue pigment with potential applications in the food industry and in other industrial sectors.
Collapse
|
14
|
Brown AS, Sissons JA, Owen JG, Ackerley DF. Directed Evolution of the Nonribosomal Peptide Synthetase BpsA to Enable Recognition by the Human Phosphopantetheinyl Transferase for Counter-Screening Antibiotic Candidates. ACS Infect Dis 2020; 6:2879-2886. [PMID: 33118808 DOI: 10.1021/acsinfecdis.0c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial type II phosphopantetheinyl transferases (PPTases), required for the activation of many cellular mega-synthases, have been validated as promising drug targets in several pathogens. Activation of the blue-pigment-synthesizing nonribosomal peptide synthetase BpsA by a target PPTase can be used to screen in vitro for new antibiotic candidates from chemical libraries. For a complete screening platform, there is a need to also counter-screen inhibitors for cross-reactivity with the endogenous human Type II PPTase (hPPTase), as this is a likely source of toxicity. As hPPTase is unable to recognize the PCP-domain of native BpsA, we used a combination of directed evolution and rational engineering to generate a triple-substitution variant that is able to be efficiently activated by hPPTase. Our engineered BpsA variant was able to readily detect inhibition of both hPPTase and the equivalent rat PPTase by broad-spectrum PPTase inhibitors, demonstrating its potential for high-throughput counter-screening of novel antibiotic candidates.
Collapse
Affiliation(s)
- Alistair S. Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Jack A. Sissons
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G. Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
15
|
Wang L, Sun Y, Lv D, Liu B, Guan Y, Yu D. Protein scaffold optimizes arrangement of constituent enzymes in indigoidine synthetic pathway to improve the pigment production. Appl Microbiol Biotechnol 2020; 104:10493-10502. [PMID: 33151367 DOI: 10.1007/s00253-020-10990-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/30/2020] [Accepted: 10/31/2020] [Indexed: 11/26/2022]
Abstract
Indigoidine is a dark-blue natural pigment with application prospect and synthesized from glutamine (Gln) by series of indigoidine synthetases (IndCs). Indigoidine production can be improved by enhancing Gln pool via supplementing Gln directly or converting metabolism glutamate (Glu) to Gln by glutamine synthetase (GlnA). But, Gln is expensive, and excess Gln inhibits indigoidine production of the recombinant strain. Supplementing Glu instead of Gln may improve the productive and economic efficiency of indigoidine, but the local activities and positions of the indigoidine pathway enzymes GlnA, Sc-IndC, and the helper protein of Sc-IndC (IndB) should be well arranged. We identified the Streptomyces chromofuscus ATCC 49982 derived IndC (Sc-IndC) as an more efficient IndC compared to other IndCs applied for constructing indigoidine-producting strains, and designed series of protein scaffold complexes with architectures of PDZ, SH3, and GBD domains (PxSyG1) to arrange the pathway enzymes. The strain recruiting GlnA, Sc-IndC, and IndB on the PDZ, SH3, and GBD domains of scaffold P1S2G1, respectively, was the most efficient. In the strain, the GlnA supplied sufficient local Gln for Sc-IndC from Glu, and the generated Gln was immediately consumed by Sc-IndC to relieve cell growth inhibition caused by Gln. The optimum Glu concentration (6 g/L) for the strain was higher than those of the strains recruiting Sc-IndC on the GBD domain, which was away from the PDZ domain recruiting GlnA. The highest titer of indigoidine was 12 g/L, which was two folds of the control without scaffold (5.8 g/L). The titer is 5 g/L higher than the control without Glu supplemented (6.9 g/L), meaning that 97% of the supplemented Glu was transformed into indigoidine. The batch fermentation with the optimum strain in a 5-L reactor achieved an indigoidine titer of 14 g/L in 60 h. To our knowledge, this was the most efficient indigoidine productivity achieved so far. The optimization strategies by protein scaffold should be applicative to other pathways with complex substrate demands. KEY POINTS: •Protein scaffold systems were designed to arrange the indigoidine synthetic pathway. •The scaffold system improved supplement of Gln for indigoidine production from Glu. •The inhibition caused by excess Gln was relieved by proper designed scaffold. •The yield and titer of indigoidine was improved by arranging the pathway enzymes. Graphical abstract.
Collapse
Affiliation(s)
- Lei Wang
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Yue Sun
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
- Viablife Biotech Co., Ltd, Hangzhou, 311113, China
| | - Di Lv
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Bin Liu
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Yuekai Guan
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Dayu Yu
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China.
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China.
- Viablife Biotech Co., Ltd, Hangzhou, 311113, China.
| |
Collapse
|
16
|
Marques F, Luzhetskyy A, Mendes MV. Engineering Corynebacterium glutamicum with a comprehensive genomic library and phage-based vectors. Metab Eng 2020; 62:221-234. [DOI: 10.1016/j.ymben.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
|
17
|
Banerjee D, Eng T, Lau AK, Sasaki Y, Wang B, Chen Y, Prahl JP, Singan VR, Herbert RA, Liu Y, Tanjore D, Petzold CJ, Keasling JD, Mukhopadhyay A. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nat Commun 2020; 11:5385. [PMID: 33097726 PMCID: PMC7584609 DOI: 10.1038/s41467-020-19171-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023] Open
Abstract
High titer, rate, yield (TRY), and scalability are challenging metrics to achieve due to trade-offs between carbon use for growth and production. To achieve these metrics, we take the minimal cut set (MCS) approach that predicts metabolic reactions for elimination to couple metabolite production strongly with growth. We compute MCS solution-sets for a non-native product indigoidine, a sustainable pigment, in Pseudomonas putida KT2440, an emerging industrial microbe. From the 63 solution-sets, our omics guided process identifies one experimentally feasible solution requiring 14 simultaneous reaction interventions. We implement a total of 14 genes knockdowns using multiplex-CRISPRi. MCS-based solution shifts production from stationary to exponential phase. We achieve 25.6 g/L, 0.22 g/l/h, and ~50% maximum theoretical yield (0.33 g indigoidine/g glucose). These phenotypes are maintained from batch to fed-batch mode, and across scales (100-ml shake flasks, 250-ml ambr®, and 2-L bioreactors).
Collapse
Affiliation(s)
- Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas Eng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrew K Lau
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yusuke Sasaki
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brenda Wang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Biofuel and Bioproduct Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Vasanth R Singan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robin A Herbert
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Biofuel and Bioproduct Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- QB3 Institute, University of California-Berkeley, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, 2970, Horsholm, Denmark
- Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
18
|
Wehrs M, Thompson MG, Banerjee D, Prahl JP, Morella NM, Barcelos CA, Moon J, Costello Z, Keasling JD, Shih PM, Tanjore D, Mukhopadhyay A. Investigation of Bar-seq as a method to study population dynamics of Saccharomyces cerevisiae deletion library during bioreactor cultivation. Microb Cell Fact 2020; 19:167. [PMID: 32811554 PMCID: PMC7437010 DOI: 10.1186/s12934-020-01423-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Despite the latest advancements in metabolic engineering for genome editing and characterization of host performance, the successful development of robust cell factories used for industrial bioprocesses and accurate prediction of the behavior of microbial systems, especially when shifting from laboratory-scale to industrial conditions, remains challenging. To increase the probability of success of a scale-up process, data obtained from thoroughly performed studies mirroring cellular responses to typical large-scale stimuli may be used to derive crucial information to better understand potential implications of large-scale cultivation on strain performance. This study assesses the feasibility to employ a barcoded yeast deletion library to assess genome-wide strain fitness across a simulated industrial fermentation regime and aims to understand the genetic basis of changes in strain physiology during industrial fermentation, and the corresponding roles these genes play in strain performance. Results We find that mutant population diversity is maintained through multiple seed trains, enabling large scale fermentation selective pressures to act upon the community. We identify specific deletion mutants that were enriched in all processes tested in this study, independent of the cultivation conditions, which include MCK1, RIM11, MRK1, and YGK3 that all encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). Ecological analysis of beta diversity between all samples revealed significant population divergence over time and showed feed specific consequences of population structure. Further, we show that significant changes in the population diversity during fed-batch cultivations reflect the presence of significant stresses. Our observations indicate that, for this yeast deletion collection, the selection of the feeding scheme which affects the accumulation of the fermentative by-product ethanol impacts the diversity of the mutant pool to a higher degree as compared to the pH of the culture broth. The mutants that were lost during the time of most extreme population selection suggest that specific biological processes may be required to cope with these specific stresses. Conclusions Our results demonstrate the feasibility of Bar-seq to assess fermentation associated stresses in yeast populations under industrial conditions and to understand critical stages of a scale-up process where variability emerges, and selection pressure gets imposed. Overall our work highlights a promising avenue to identify genetic loci and biological stress responses required for fitness under industrial conditions.
Collapse
Affiliation(s)
- Maren Wehrs
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Mitchell G Thompson
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Deepanwita Banerjee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Norma M Morella
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Carolina A Barcelos
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jadie Moon
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Zak Costello
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Energy Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2970, Horsholm, Denmark.,Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Patrick M Shih
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
19
|
Pang B, Chen Y, Gan F, Yan C, Jin L, Gin JW, Petzold CJ, Keasling JD. Investigation of Indigoidine Synthetase Reveals a Conserved Active-Site Base Residue of Nonribosomal Peptide Synthetase Oxidases. J Am Chem Soc 2020; 142:10931-10935. [PMID: 32510939 DOI: 10.1021/jacs.0c04328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonribosomal peptide synthetase (NRPS) oxidase (Ox) domains oxidize protein-bound intermediates to install crucial structural motifs in bioactive natural products. The mechanism of this domain remains elusive. Here, by studying indigoidine synthetase, a single-module NRPS involved in the biosynthesis of indigoidine and several other bacterial secondary metabolites, we demonstrate that its Ox domain utilizes an active-site base residue, tyrosine 665, to deprotonate a protein-bound l-glutaminyl residue. We further validate the generality of this active-site residue among NRPS Ox domains. These findings not only resolve the biosynthetic pathway mediated by indigoidine synthetase but enable mechanistic insight into NRPS Ox domains.
Collapse
Affiliation(s)
- Bo Pang
- QB3 Institute, University of California, Berkeley, Berkeley, California 94720, United States.,Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Fei Gan
- QB3 Institute, University of California, Berkeley, Berkeley, California 94720, United States.,Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chunsheng Yan
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Liyuan Jin
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Jennifer W Gin
- Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D Keasling
- QB3 Institute, University of California, Berkeley, Berkeley, California 94720, United States.,Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical & Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK 2970 Horsholm, Denmark.,Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen 518055, P. R. China
| |
Collapse
|
20
|
Quintieri L, Fanelli F, Zühlke D, Caputo L, Logrieco AF, Albrecht D, Riedel K. Biofilm and Pathogenesis-Related Proteins in the Foodborne P. fluorescens ITEM 17298 With Distinctive Phenotypes During Cold Storage. Front Microbiol 2020; 11:991. [PMID: 32670211 PMCID: PMC7326052 DOI: 10.3389/fmicb.2020.00991] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
In food chain, Pseudomonas spp. cause spoilage by reducing shelf life of fresh products, especially during cold storage, with a high economic burden for industries. However, recent studies have shed new light on health risks occurring when they colonize immunocompromised patient tissues. Likewise to P. aeruginosa, they exhibit antibiotic resistance and biofilm formation, responsible for their spread and persistence in the environment. Biofilm formation might be induced by environmental stresses, such as temperature fluctuations causing physiological and metabolic changes exacerbating food spoilage (by protease and pigment synthesis), and the production of adhesion molecules, chemotactic or underestimated virulence factors. In order to provide a new insight into phenotypic biodiversity of Pseudomonas spoilers isolated from cold stored cheese, in this work 19 Pseudomonas spp. were investigated for biofilm, pigments, exopolysaccharide production and motility at low temperature. Only nine strains showed these phenotypic traits and the blue pigmenting cheese strain P. fluorescens ITEM 17298 was the most distinctive. In addition, this strain decreased the survival probability of infected Galleria mellonella larvae, showing, for the first time, a pathogenic potential. Genomic and proteomic analyses performed on the ITEM 17298 planktonic cells treated or not with lactoferrin derived antibiofilm peptides allowed to reveal specific biofilm related-pathways as well as proteins involved in pathogenesis. Indeed, several genes were found related to signaling system by cGMP-dependent protein kinases, cellulose, rhamnolipid and alginate synthesis, antibiotic resistance, adhesion and virulence factors. The proteome of the untreated ITEM 17298, growing at low temperature, showed that most of the proteins associated with biofilm regulation, pigmentation motility, antibiotic resistance and pathogenecity were repressed, or decreased their levels in comparison to that of the untreated cultures. Thus, the results of this work shed light on the complex pathways network allowing psychrotrophic pseudomonads to adapt themselves to food-refrigerated conditions and enhance their spoilage. In addition, the discovery of virulence factors and antibiotic resistance determinants raises some questions about the need to deeper investigate these underestimated bacteria in order to increase awareness and provide input to update legislation on their detection limits in foods.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Leonardo Caputo
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | | | - Dirk Albrecht
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Wehrs M, Prahl JP, Moon J, Li Y, Tanjore D, Keasling JD, Pray T, Mukhopadhyay A. Correction to: Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae. Microb Cell Fact 2019; 18:218. [PMID: 31884968 PMCID: PMC6936116 DOI: 10.1186/s12934-019-1262-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Maren Wehrs
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jadie Moon
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Yuchen Li
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Todd Pray
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
22
|
Vassaux A, Meunier L, Vandenbol M, Baurain D, Fickers P, Jacques P, Leclère V. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnol Adv 2019; 37:107449. [PMID: 31518630 DOI: 10.1016/j.biotechadv.2019.107449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Fungi are notoriously prolific producers of secondary metabolites including nonribosomal peptides (NRPs). The structural complexity of NRPs grants them interesting activities such as antibiotic, anti-cancer, and anti-inflammatory properties. The discovery of these compounds with attractive activities can be achieved by using two approaches: either by screening samples originating from various environments for their biological activities, or by identifying the related clusters in genomic sequences thanks to bioinformatics tools. This genome mining approach has grown tremendously due to recent advances in genome sequencing, which have provided an incredible amount of genomic data from hundreds of microbial species. Regarding fungal organisms, the genomic data have revealed the presence of an unexpected number of putative NRP-related gene clusters. This highlights fungi as a goldmine for the discovery of putative novel bioactive compounds. Recent development of NRP dedicated bioinformatics tools have increased the capacity to identify these gene clusters and to deduce NRPs structures, speeding-up the screening process for novel metabolites discovery. Unfortunately, the newly identified compound is frequently not or poorly produced by native producers due to a lack of expression of the related genes cluster. A frequently employed strategy to increase production rates consists in transferring the related biosynthetic pathway in heterologous hosts. This review aims to provide a comprehensive overview about the topic of NRPs discovery, from gene cluster identification by genome mining to the heterologous production in fungal hosts. The main computational tools and methods for genome mining are herein presented with an emphasis on the particularities of the fungal systems. The different steps of the reconstitution of NRP biosynthetic pathway in heterologous fungal cell factories will be discussed, as well as the key factors to consider for maximizing productivity. Several examples will be developed to illustrate the potential of heterologous production to both discover uncharacterized novel compounds predicted in silico by genome mining, and to enhance the productivity of interesting bio-active natural products.
Collapse
Affiliation(s)
- Antoine Vassaux
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France
| | - Loïc Meunier
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Micheline Vandenbol
- TERRA Teaching and Research Centre, Microbiologie et Génomique, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Philippe Jacques
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
23
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
24
|
Wehrs M, Tanjore D, Eng T, Lievense J, Pray TR, Mukhopadhyay A. Engineering Robust Production Microbes for Large-Scale Cultivation. Trends Microbiol 2019; 27:524-537. [PMID: 30819548 DOI: 10.1016/j.tim.2019.01.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/11/2019] [Accepted: 01/23/2019] [Indexed: 11/27/2022]
Abstract
Systems biology and synthetic biology are increasingly used to examine and modulate complex biological systems. As such, many issues arising during scaling-up microbial production processes can be addressed using these approaches. We review differences between laboratory-scale cultures and larger-scale processes to provide a perspective on those strain characteristics that are especially important during scaling. Systems biology has been used to examine a range of microbial systems for their response in bioreactors to fluctuations in nutrients, dissolved gases, and other stresses. Synthetic biology has been used both to assess and modulate strain response, and to engineer strains to improve production. We discuss these approaches and tools in the context of their use in engineering robust microbes for applications in large-scale production.
Collapse
Affiliation(s)
- Maren Wehrs
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas Eng
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | | | - Todd R Pray
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|