1
|
Kwikima MM. The biological and chemical water quality of retail bottled water brands: a case of Dodoma, Tanzania. NUTRITION & FOOD SCIENCE 2025; 55:165-179. [DOI: 10.1108/nfs-05-2024-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Purpose
Ensuring high water quality is crucial for safeguarding public health, as contaminated water can pose significant risks to consumers’ well-being. This study aims to evaluate the microbiological and chemical quality of bottled water brands commonly consumed in Dodoma, Tanzania.
Design/methodology/approach
A total of 36 samples from 12 brands were collected between January and March 2023 and analyzed for microbiological and general water quality parameters.
Findings
Microbial analysis found that 42% of brands tested positive for coliform bacteria, while opportunistic pathogens Aeromonas hydrophila and Pseudomonas aeruginosa were detected in 25% and 17% of samples, respectively. For chemical composition, 42% of brands exceeded the World Health Organization guideline value of 1.5 mg/L for fluoride. However, no other parameters exceeded national drinking water standards. Statistical analysis revealed significantly higher measured fluoride levels compared to values declared on product labels (paired t-test, p = 0.003). A moderate positive correlation between fluoride and conductivity (r = 0.52, p = 0.045) indicated possible geological influences on water chemistry.
Research limitations/implications
To enhance the study’s comprehensiveness, exploring temporal and spatial variations among water brands, including samples from typically clean environments such as supermarkets, could have been beneficial in identifying underlying factors. Additionally, investigating the entire manufacturing process, from production to end-user, could have provided insights into unforeseen deviations in quality. Furthermore, the use of pour plating techniques at 37°C for microbial analysis, while suitable for resource-limited settings, may not have fully captured coliform diversity compared to membrane filtration and differential temperature incubation as per standard methods. This could partly explain the detection of heterotrophs without higher coliform counts in some samples.
Practical implications
This study provides baseline data on the bacteriological and inorganic chemical quality of bottled water in Dodoma. Detectable microbial contaminants and significant exceedances of fluoride guidelines in some products raise public health concerns.
Originality/value
While existing studies focus on bottled water quality at production facilities, this research highlights the overlooked risks at retail points, where consumers are directly affected.
Collapse
|
2
|
Tsipa A, Puig S, Peixoto L, Paquete CM. Electro-bioremediation of wastewater: Transitioning the focus on pure cultures to elucidate the missing mechanistic insights upon electro-assisted biodegradation of exemplary pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123726. [PMID: 39729711 DOI: 10.1016/j.jenvman.2024.123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
Electro-bioremediation of exemplary water pollutants such as nitrogenous, phosphorous, and sulphurous compounds, hydrocarbons, metals and azo dyes has already been studied at a macro-scale level using mixed cultures. The technology has been generally established as a proof of concept at the technology readiness level (TRL) of 3, and there are already specific cases where the technology reached TRL 5. However, this technology is less utilized compared to traditional approaches. Although, mixed cultures result in high electro-biodegradation efficiency, their use hinders process' mechanistic insights which are better determined through pure cultures studies. This knowledge can lead to improved technologies. Therefore, this manuscript focuses on the specific pollutants' electro-biodegradation by pure cultures, assessing the availability of information regarding genes, enzymes, proteins and metabolites involved. Furthermore, studies characterizing the dominant genera or species are assessed, in which the available information at molecular level is evaluated. In total, less than 40 studies were found which were predominantly focused on the electro-biodegradation potential rather than the mechanistic insights. This highlights a gap in the field featuring a motivation to transitioning the focus on the study of pure cultures to unravel the mechanistic insights. Therefore, specific actions are suggested. Characterization of the mixed cultures followed by microorganisms' isolation is crucial. Thus, electroactive and biodegradation characteristics will be revealed using omics, genome annotation and transcriptional kinetics. This can lead to optimization at the microbiological level through genetic engineering, synthetic biology, mathematical modelling and strategic building of co-cultures. This research focus offers new avenues for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Argyro Tsipa
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, 1678, Cyprus; Nireas International Water Research Centre, University of Cyprus, Nicosia, 1678, Cyprus.
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Luciana Peixoto
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; BIP4DAB, BioData.pt - Portuguese Infrastructure for Biological Data, Rua da Quinta Grande 6, 2780-157, Oeiras, Portugal
| | - Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| |
Collapse
|
3
|
Ummalyma SB, Bhaskar T. Recent advances in the role of biocatalyst in biofuel cells and its application: An overview. Biotechnol Genet Eng Rev 2024; 40:2051-2089. [PMID: 37010302 DOI: 10.1080/02648725.2023.2197715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
Biofuel cells have recently gained popularity as a green and renewable energy source. Biofuel cells are unique devices of energy and are capable of converting the stored chemical energy from waste materials such as pollutants, organics and wastewater into reliable, renewable, pollution-free energy sources through the action of biocatalysts such as various microorganisms and enzymes. It is a promising technological device to treat waste to compensate for global warming and the energy crisis through the green energy production process. Due to their unique properties, various potential biocatalysts are attracting researchers to apply them to various microbial biofuel cells for improving electricity and power. Recent research in biofuel cells is focusing on the exploitation of different biocatalysts and how they are enhancing power generation for various applications in the field of environmental technology, and biomedical fields such as implantable devices, testing kits, and biosensors. This review focusing the importance of microbial fuel cells (MFCs) and enzymatic fuel cells (ECFs) and role of different types of biocatalysts and their mechanisms for improving biofuel cell efficiency gathered from recent reports. Finally, its multifaceted applications with special emphasis on environmental technology and biomedical field will be described, along with future perspectives.
Collapse
Affiliation(s)
- Sabeela Beevi Ummalyma
- Department of Biotechnology, Govt. of India Takyelpat, Institute of Bioresources and Sustainable Development (IBSD)An Autonomous Institute, Imphal, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Singh A, Rao A, Kaushik A. Enhancing microbial fuel cell performance for distillery wastewater treatment and bioelectricity generation: harnessing niacin as a redox mediator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34975-3. [PMID: 39294536 DOI: 10.1007/s11356-024-34975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
The role of redox mediators in improving electron transport from electrochemically active bacteria to the anode is crucial for enhanced bioelectricity output from microbial fuel cells (MFCs), which makes the selection of an ideal mediator very important. This study aims at exploring a new redox mediator niacin (vit B3) for enhanced bioelectricity generation in MFC while treating distillery wastewater through facile modification of anode electrode by niacin doping (MFC-NME) and simple application of niacin to the anolyte (MFC-NAA). Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) of NME confirmed the effective adsorption of niacin onto the carbon felt surface. Notably, MFC-NME exhibited a significantly higher power density (PD) of 6.36 W/m3 compared to MFC-NAA (4.59 W/m3) and control MFC (3.49W/m3). The charge transfer resistance (RCT) in MFC-NME (1.73 Ω) and MFC-NAA (2.06 Ω) were lowered by more than half than that in control MFC (4.33 Ω), which underscores the efficacy of niacin as a redox mediator. SEM analysis revealed improved bacterial attachment over the bioanode in the MFC-NME as compared to that of MFC-NAA and control MFC. Removal of chemical oxygen demand (COD) was higher in MFC-NAA (85%) and MFC-NME (80%) than in control MFC (73%) suggesting that niacin in the anolyte supported greater organic matter removal due to enriched microbial activity. Niacin used in anode modification shows great potential for improved electron transfer and enhanced bioelectricity production and supports greater wastewater treatment performance. The modified bioanode NME exhibits excellent stability.
Collapse
Affiliation(s)
- Aradhana Singh
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Ankit Rao
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Anubha Kaushik
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India.
| |
Collapse
|
5
|
Mahto KU, Das S. Electroactive biofilm communities in microbial fuel cells for the synergistic treatment of wastewater and bioelectricity generation. Crit Rev Biotechnol 2024:1-20. [PMID: 39009474 DOI: 10.1080/07388551.2024.2372070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/09/2024] [Indexed: 07/17/2024]
Abstract
Increasing industrialization and urbanization have contributed to a significant rise in wastewater discharge and exerted extensive pressure on the existing natural energy resources. Microbial fuel cell (MFC) is a sustainable technology that utilizes wastewater for electricity generation. MFC comprises a bioelectrochemical system employing electroactive biofilms of several aerobic and anaerobic bacteria, such as Geobacter sulfurreducens, Shewanella oneidensis, Pseudomonas aeruginosa, and Ochrobacterum pseudiintermedium. Since the electroactive biofilms constitute a vital part of the MFC, it is crucial to understand the biofilm-mediated pollutant metabolism and electron transfer mechanisms. Engineering electroactive biofilm communities for improved biofilm formation and extracellular polymeric substances (EPS) secretion can positively impact the bioelectrochemical system and improve fuel cell performance. This review article summarizes the role of electroactive bacterial communities in MFC for wastewater treatment and bioelectricity generation. A significant focus has been laid on understanding the composition, structure, and function of electroactive biofilms in MFC. Various electron transport mechanisms, including direct electron transfer (DET), indirect electron transfer (IET), and long-distance electron transfer (LDET), have been discussed. A detailed summary of the optimization of process parameters and genetic engineering strategies for improving the performance of MFC has been provided. Lastly, the applications of MFC for wastewater treatment, bioelectricity generation, and biosensor development have been reviewed.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
6
|
Hirsch LO, Gandu B, Chiliveru A, Dubrovin IA, Jukanti A, Schechter A, Cahan R. Hydrogen Production in Microbial Electrolysis Cells Using an Alginate Hydrogel Bioanode Encapsulated with a Filter Bag. Polymers (Basel) 2024; 16:1996. [PMID: 39065313 PMCID: PMC11280511 DOI: 10.3390/polym16141996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The bacterial anode of microbial electrolysis cells (MECs) is the limiting factor in a high hydrogen evolution reaction (HER). This study focused on improving biofilm attachment to a carbon-cloth anode using an alginate hydrogel. In addition, the modified bioanode was encapsulated by a filter bag that served as a physical barrier, to overcome its low mechanical strength and alginate degradation by certain bacterial species in wastewater. The MEC based on an encapsulated alginate bioanode (alginate bioanode encapsulated by a filter bag) was compared with three controls: an MEC based on a bare bioanode (non-immobilized bioanode), an alginate bioanode, and an encapsulated bioanode (bioanode encapsulated by a filter bag). At the beginning of the operation, the Rct value for the encapsulated alginate bioanode was 240.2 Ω, which decreased over time and dropped to 9.8 Ω after three weeks of operation when the Geobacter medium was used as the carbon source. When the MECs were fed with wastewater, the encapsulated alginate bioanode led to the highest current density of 9.21 ± 0.16 A·m-2 (at 0.4 V), which was 20%, 95%, and 180% higher, compared to the alginate bioanode, bare bioanode, and encapsulated bioanode, respectively. In addition, the encapsulated alginate bioanode led to the highest reduction currents of (4.14 A·m-2) and HER of 0.39 m3·m-3·d-1. The relative bacterial distribution of Geobacter was 79%. The COD removal by all the bioanodes was between 62% and 88%. The findings of this study demonstrate that the MEC based on the encapsulated alginate bioanode exhibited notably higher bio-electroactivity compared to both bare, alginate bioanode, and an encapsulated bioanode. We hypothesize that this improvement in electron transfer rate is attributed to the preservation and the biofilm on the anode material using alginate hydrogel which was inserted into a filter bag.
Collapse
Affiliation(s)
- Lea Ouaknin Hirsch
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (L.O.H.); (B.G.); (A.C.); (I.A.D.); (A.J.)
| | - Bharath Gandu
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (L.O.H.); (B.G.); (A.C.); (I.A.D.); (A.J.)
- Department of Environmental Studies, University of Delhi, New Delhi 110007, India
| | - Abhishiktha Chiliveru
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (L.O.H.); (B.G.); (A.C.); (I.A.D.); (A.J.)
| | - Irina Amar Dubrovin
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (L.O.H.); (B.G.); (A.C.); (I.A.D.); (A.J.)
| | - Avinash Jukanti
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (L.O.H.); (B.G.); (A.C.); (I.A.D.); (A.J.)
| | - Alex Schechter
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel;
- Research and Development Centre for Renewable Energy, New Technologies, Research Centre (NTC), University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Rivka Cahan
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (L.O.H.); (B.G.); (A.C.); (I.A.D.); (A.J.)
| |
Collapse
|
7
|
Hornik T, Terry M, Krause M, Catterlin JK, Joiner KL, Aragon S, Sarmiento A, Arias-Thode YM, Kartalov EP. Experimental Proof of Principle of 3D-Printed Microfluidic Benthic Microbial Fuel Cells (MBMFCs) with Inbuilt Biocompatible Carbon-Fiber Electrodes. MICROMACHINES 2024; 15:870. [PMID: 39064381 PMCID: PMC11278569 DOI: 10.3390/mi15070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Microbial fuel cells (MFCs) represent a promising avenue for sustainable energy production by harnessing the metabolic activity of microorganisms. In this study, a novel design of MFC-a Microfluidic Benthic Microbial Fuel Cell (MBMFC)-was developed, fabricated, and tested to evaluate its electrical energy generation. The design focused on balancing microfluidic architecture and wiring procedures with microbial community dynamics to maximize power output and allow for upscaling and thus practical implementation. The testing phase involved experimentation to evaluate the performance of the MBMFC. Microbial feedstock was varied to assess its impact on power generation. The designed MBMFC represents a promising advancement in the field of bioenergy generation. By integrating innovative design principles with advanced fabrication techniques, this study demonstrates a systematic approach to optimizing MFC performance for sustainable and clean energy production.
Collapse
Affiliation(s)
- Terak Hornik
- Physics Department, Naval Postgraduate School, 1 University Circle, Monterey, CA 93943, USA; (T.H.); (M.T.); (J.K.C.)
| | - Maxwell Terry
- Physics Department, Naval Postgraduate School, 1 University Circle, Monterey, CA 93943, USA; (T.H.); (M.T.); (J.K.C.)
| | - Michael Krause
- MOVES Institute, Naval Postgraduate School, 1 University Circle, Monterey, CA 93943, USA;
| | - Jeffrey K. Catterlin
- Physics Department, Naval Postgraduate School, 1 University Circle, Monterey, CA 93943, USA; (T.H.); (M.T.); (J.K.C.)
| | - Kevin L. Joiner
- Naval Information Warfare Center, San Diego, CA 92152, USA; (K.L.J.); (S.A.); (A.S.); (Y.M.A.-T.)
| | - Samuel Aragon
- Naval Information Warfare Center, San Diego, CA 92152, USA; (K.L.J.); (S.A.); (A.S.); (Y.M.A.-T.)
| | - Angelica Sarmiento
- Naval Information Warfare Center, San Diego, CA 92152, USA; (K.L.J.); (S.A.); (A.S.); (Y.M.A.-T.)
| | | | - Emil P. Kartalov
- Physics Department, Naval Postgraduate School, 1 University Circle, Monterey, CA 93943, USA; (T.H.); (M.T.); (J.K.C.)
| |
Collapse
|
8
|
Perchikov R, Cheliukanov M, Plekhanova Y, Tarasov S, Kharkova A, Butusov D, Arlyapov V, Nakamura H, Reshetilov A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. BIOSENSORS 2024; 14:302. [PMID: 38920606 PMCID: PMC11201457 DOI: 10.3390/bios14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Microbial biofilms present one of the most widespread forms of life on Earth. The formation of microbial communities on various surfaces presents a major challenge in a variety of fields, including medicine, the food industry, shipping, etc. At the same time, this process can also be used for the benefit of humans-in bioremediation, wastewater treatment, and various biotechnological processes. The main direction of using electroactive microbial biofilms is their incorporation into the composition of biosensor and biofuel cells This review examines the fundamental knowledge acquired about the structure and formation of biofilms, the properties they have when used in bioelectrochemical devices, and the characteristics of the formation of these structures on different surfaces. Special attention is given to the potential of applying the latest advances in genetic engineering in order to improve the performance of microbial biofilm-based devices and to regulate the processes that take place within them. Finally, we highlight possible ways of dealing with the drawbacks of using biofilms in the creation of highly efficient biosensors and biofuel cells.
Collapse
Affiliation(s)
- Roman Perchikov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Maxim Cheliukanov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Yulia Plekhanova
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Sergei Tarasov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Anna Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Denis Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg 197022, Russia;
| | - Vyacheslav Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Tokyo, Japan;
| | - Anatoly Reshetilov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| |
Collapse
|
9
|
Varnava CK, Persianis P, Ieropoulos I, Tsipa A. Electricity generation and real oily wastewater treatment by Pseudomonas citronellolis 620C in a microbial fuel cell: pyocyanin production as electron shuttle. Bioprocess Biosyst Eng 2024; 47:903-917. [PMID: 38630261 PMCID: PMC11101561 DOI: 10.1007/s00449-024-03016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/06/2024] [Indexed: 05/19/2024]
Abstract
In the present study, the potential of Pseudomonas citronellolis 620C strain was evaluated, for the first time, to generate electricity in a standard, double chamber microbial fuel cell (MFC), with oily wastewater (OW) being the fuel at 43.625 mg/L initial chemical oxygen demand (COD). Both electrochemical and physicochemical results suggested that this P. citronellolis strain utilized efficiently the OW substrate and generated electricity in the MFC setup reaching 0.05 mW/m2 maximum power. COD removal was remarkable reaching 83.6 ± 0.1%, while qualitative and quantitative gas chromatography/mass spectrometry (GC/MS) analysis of the OW total petroleum and polycyclic aromatic hydrocarbons, and fatty acids revealed high degradation capacity. It was also determined that P. citronellolis 620C produced pyocyanin as electron shuttle in the anodic MFC chamber. To the authors' best knowledge, this is the first study showing (phenazine-based) pyocyanin production from a species other than P. aeruginosa and, also, the first time that P. citronellolis 620C has been shown to produce electricity in a MFC. The production of pyocyanin, in combination with the formation of biofilm in the MFC anode, as observed with scanning electron microscopy (SEM) analysis, makes this P. citronellolis strain an attractive and promising candidate for wider MFC applications.
Collapse
Affiliation(s)
- Constantina K Varnava
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus
| | - Panagiotis Persianis
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ioannis Ieropoulos
- Water and Environmental Engineering Group, University of Southampton, Southampton, SO16 7QF, UK
| | - Argyro Tsipa
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus.
- Nireas International Water Research Centre, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
10
|
Sun J, Yang R, Li Q, Zhu R, Jiang Y, Zang L, Zhang Z, Tong W, Zhao H, Li T, Li H, Qi D, Li G, Chen X, Dai Z, Liu Z. Living Synthelectronics: A New Era for Bioelectronics Powered by Synthetic Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400110. [PMID: 38494761 DOI: 10.1002/adma.202400110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Bioelectronics, which converges biology and electronics, has attracted great attention due to their vital applications in human-machine interfaces. While traditional bioelectronic devices utilize nonliving organic and/or inorganic materials to achieve flexibility and stretchability, a biological mismatch is often encountered because human tissues are characterized not only by softness and stretchability but also by biodynamic and adaptive properties. Recently, a notable paradigm shift has emerged in bioelectronics, where living cells, and even viruses, modified via gene editing within synthetic biology, are used as core components in a new hybrid electronics paradigm. These devices are defined as "living synthelectronics," and they offer enhanced potential for interfacing with human tissues at informational and substance exchange levels. In this Perspective, the recent advances in living synthelectronics are summarized. First, opportunities brought to electronics by synthetic biology are briefly introduced. Then, strategic approaches to designing and making electronic devices using living cells/viruses as the building blocks, sensing components, or power sources are reviewed. Finally, the challenges faced by living synthelectronics are raised. It is believed that this paradigm shift will significantly contribute to the real integration of bioelectronics with human tissues.
Collapse
Affiliation(s)
- Jing Sun
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ruofan Yang
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingsong Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Runtao Zhu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ying Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lei Zang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhibo Zhang
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wei Tong
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hang Zhao
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tengfei Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hanfei Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guanglin Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuojun Dai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Standard Robots Co.,Ltd,Room 405, Building D, Huafeng International Robot Fusen Industrial Park, Hangcheng Avenue, Guxing Community, Xixiang Street, Baoan District, Shenzhen, 518055, China
| |
Collapse
|
11
|
Zhou L, Tang T, Deng D, Wang Y, Pei D. Isolation and Electrochemical Analysis of a Facultative Anaerobic Electrogenic Strain Klebsiella sp. SQ-1. Pol J Microbiol 2024; 73:143-153. [PMID: 38676960 PMCID: PMC11192523 DOI: 10.33073/pjm-2024-013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 04/29/2024] Open
Abstract
Electricigens decompose organic matter and convert stored chemical energy into electrical energy through extracellular electron transfer. They are significant biocatalysts for microbial fuel cells with practical applications in green energy generation, effluent treatment, and bioremediation. A facultative anaerobic electrogenic strain SQ-1 is isolated from sludge in a biotechnology factory. The strain SQ-1 is a close relative of Klebsiella variicola. Multilayered biofilms form on the surface of a carbon electrode after the isolated bacteria are inoculated into a microbial fuel cell device. This strain produces high current densities of 625 μA cm-2 by using acetate as the carbon source in a three-electrode configuration. The electricity generation performance is also analyzed in a dual-chamber microbial fuel cell. It reaches a maximum power density of 560 mW m-2 when the corresponding output voltage is 0.59 V. The facultative strain SQ-1 utilizes hydrous ferric oxide as an electron acceptor to perform extracellular electricigenic respiration in anaerobic conditions. Since facultative strains possess better properties than anaerobic strains, Klebsiella sp. SQ-1 may be a promising exoelectrogenic strain for applications in microbial electrochemistry.
Collapse
Affiliation(s)
- Lei Zhou
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| | - Tuoxian Tang
- Department of Biological Sciences, Virginia Tech, Blacksburg, USA
| | - Dandan Deng
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| | - Yayue Wang
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| | - Dongli Pei
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| |
Collapse
|
12
|
Nguyen HTT, Le GTH, Park SG, Jadhav DA, Le TTQ, Kim H, Vinayak V, Lee G, Yoo K, Song YC, Chae KJ. Optimizing electrochemically active microorganisms as a key player in the bioelectrochemical system: Identification methods and pathways to large-scale implementation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169766. [PMID: 38181955 DOI: 10.1016/j.scitotenv.2023.169766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The rapid global economic growth driven by industrialization and population expansion has resulted in significant issues, including reliance on fossil fuels, energy scarcity, water crises, and environmental emissions. To address these issues, bioelectrochemical systems (BES) have emerged as a dual-purpose solution, harnessing electrochemical processes and the capabilities of electrochemically active microorganisms (EAM) to simultaneously recover energy and treat wastewater. This review examines critical performance factors in BES, including inoculum selection, pretreatment methods, electrodes, and operational conditions. Further, authors explore innovative approaches to suppress methanogens and simultaneously enhance the EAM in mixed cultures. Additionally, advanced techniques for detecting EAM are discussed. The rapid detection of EAM facilitates the selection of suitable inoculum sources and optimization of enrichment strategies in BESs. This optimization is essential for facilitating the successful scaling up of BES applications, contributing substantially to the realization of clean energy and sustainable wastewater treatment. This analysis introduces a novel viewpoint by amalgamating contemporary research on the selective enrichment of EAM in mixed cultures. It encompasses identification and detection techniques, along with methodologies tailored for the selective enrichment of EAM, geared explicitly toward upscaling applications in BES.
Collapse
Affiliation(s)
- Ha T T Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School (OST), Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Giang T H Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Sung-Gwan Park
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Trang T Q Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Hyunsu Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University, Sagar, MP 470003, India
| | - Gihan Lee
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Keunje Yoo
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Young-Chae Song
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
13
|
Sonawane AV, Rikame S, Sonawane SH, Gaikwad M, Bhanvase B, Sonawane SS, Mungray AK, Gaikwad R. A review of microbial fuel cell and its diversification in the development of green energy technology. CHEMOSPHERE 2024; 350:141127. [PMID: 38184082 DOI: 10.1016/j.chemosphere.2024.141127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The advancement of microbial fuel cell technology is rapidly growing, with extensive research and well-established methodologies for enhancing structural performance. This terminology attracts researchers to compare the MFC devices on a technological basis. The architectural and scientific successes of MFCs are only possible with the knowledge of engineering and technical fields. This involves the structure of MFCs, using substrates and architectural backbones regarding electrode advancement, separators and system parameter measures. Knowing about the MFCs facilitates the systematic knowledge of engineering and scientific principles. The current situation of rapid urbanization and industrial growth is demanding the augmented engineering goods and production which results in unsolicited burden on traditional wastewater treatment plants. Consequently, posing health hazards and disturbing aquatic veracity due to partial and untreated wastewater. Therefore, it's sensible to evaluate the performance of MFCs as an unconventional treatment method over conventional one to treat the wastewater. However, MFCs some benefits like power generation, stumpy carbon emission and wastewater treatment are the main reasons behind the implementation. Nonetheless, few challenges like low power generation, scaling up are still the major areas needs to be focused so as to make MFCs sustainable one. We have focused on few archetypes which majorities have been laboratory scale in operations. To ensure the efficiency MFCs are needed to integrate and compatible with conventional wastewater treatment schemes. This review intended to explore the diversification in architecture of MFCs, exploration of MFCs ingredients and to provide the foreseen platform for the researchers in one source, so as to establish the channel for scaling up the technology. Further, the present review show that the MFC with different polymer membranes and cathode and anode modification presents significant role for potential commercial applications after change the system form prototype to pilot scale.
Collapse
Affiliation(s)
- Amol V Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Satish Rikame
- Department of Chemical Engineering, K.K.Wagh Polytechnic Nashik, Maharashtra, India.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Mahendra Gaikwad
- Department of Chemical Engineering, National Institute of Technology, Raipur, 492010, Chhattisgarh, India.
| | - Bharat Bhanvase
- Department of Chemical Engineering, Laxminarayan Innovation Technological University, Nagpur, 440033, Maharashtra, India.
| | - Shriram S Sonawane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, Maharashtra, India.
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| | - Ravindra Gaikwad
- Department of Chemical Engineering, Ravindra W. Gaikwad, Jawaharlal Nehru Engineering College, Chatrapati Sambhaji Nagar, 431003, Maharashtra, India.
| |
Collapse
|
14
|
Tamilarasan K, Shabarish S, Rajesh Banu J, Godvin Sharmila V. Sustainable power production from petrochemical industrial effluent using dual chambered microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119777. [PMID: 38086119 DOI: 10.1016/j.jenvman.2023.119777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Dual chambered microbial fuel cell (DMFC) is an advanced and effective treatment technology in wastewater treatment. The current work has made an effort to treat petrochemical industrial wastewater (PWW) as a DMFC substrate for power generation and organic substance removal. Investigating the impact of organic load (OL) on organic reduction and electricity generation is the main objective of this study. At the OL of 1.5 g COD/L, the highest total chemical oxygen demand (TCOD) removal efficiency of 88%, soluble oxygen demand (SCOD) removal efficiency of 80% and total suspended solids (TSS) removal efficiency of 71% were seen, respectively. In the same optimum condition of 1.5 g COD/L, the highest current and power density of about 270 mW/m2 and 376 mA/m2 were also observed. According to the results of this study, using high-strength organic wastewater in DMFC can assist in addressing the issue of the petrochemical industries and minimize the energy demand.
Collapse
Affiliation(s)
- K Tamilarasan
- Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India
| | - S Shabarish
- Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, India
| | - V Godvin Sharmila
- Department of Civil Engineering, Mar Ephraem College of Engineering and Technology, Marthandam, 629171, Tamil Nadu, India.
| |
Collapse
|
15
|
Rumora A, Hopkins L, Yim K, Baykus MF, Martinez L, Jimenez L. Detection and Characterization of Electrogenic Bacteria from Soils. BIOTECH 2023; 12:65. [PMID: 38131677 PMCID: PMC10871078 DOI: 10.3390/biotech12040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Soil microbial fuel cells (SMFCs) are bioelectrical devices powered by the oxidation of organic and inorganic compounds due to microbial activity. Seven soils were randomly selected from Bergen Community College or areas nearby, located in the state of New Jersey, USA, were used to screen for the presence of electrogenic bacteria. SMFCs were incubated at 35-37 °C. Electricity generation and electrogenic bacteria were determined using an application developed for cellular phones. Of the seven samples, five generated electricity and enriched electrogenic bacteria. Average electrical output for the seven SMFCs was 155 microwatts with the start-up time ranging from 1 to 11 days. The highest output and electrogenic bacterial numbers were found with SMFC-B1 with 143 microwatts and 2.99 × 109 electrogenic bacteria after 15 days. Optimal electrical output and electrogenic bacterial numbers ranged from 1 to 21 days. Microbial DNA was extracted from the top and bottom of the anode of SMFC-B1 using the ZR Soil Microbe DNA MiniPrep Protocol followed by PCR amplification of 16S rRNA V3-V4 region. Next-generation sequencing of 16S rRNA genes generated an average of 58 k sequences. BLAST analysis of the anode bacterial community in SMFC-B1 demonstrated that the predominant bacterial phylum was Bacillota of the class Clostridia (50%). However, bacteria belonging to the phylum Pseudomonadota (15%) such as Magnetospirillum sp. and Methylocaldum gracile were also part of the predominant electrogenic bacterial community in the anode. Unidentified uncultured bacteria accounted for 35% of the predominant bacterial community. Bioelectrical devices such as MFCs provide sustainable and clean alternatives to future applications for electricity generation, waste treatment, and biosensors.
Collapse
Affiliation(s)
| | | | | | | | | | - Luis Jimenez
- Biology and Horticulture Department, Bergen Community College, 400 Paramus Road, Paramus, NJ 07652, USA; (A.R.); (K.Y.); (L.M.)
| |
Collapse
|
16
|
Tong KTX, Tan IS, Foo HCY, Show PL, Lam MK, Wong MK. Sustainable circular biorefinery approach for novel building blocks and bioenergy production from algae using microbial fuel cell. Bioengineered 2023; 14:246-289. [PMID: 37482680 PMCID: PMC10367576 DOI: 10.1080/21655979.2023.2236842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
The imminent need for transition to a circular biorefinery using microbial fuel cells (MFC), based on the valorization of renewable resources, will ameliorate the carbon footprint induced by industrialization. MFC catalyzed by bioelectrochemical process drew significant attention initially for its exceptional potential for integrated production of biochemicals and bioenergy. Nonetheless, the associated costly bioproduct production and slow microbial kinetics have constrained its commercialization. This review encompasses the potential and development of macroalgal biomass as a substrate in the MFC system for L-lactic acid (L-LA) and bioelectricity generation. Besides, an insight into the state-of-the-art technological advancement in the MFC system is also deliberated in detail. Investigations in recent years have shown that MFC developed with different anolyte enhances power density from several µW/m2 up to 8160 mW/m2. Further, this review provides a plausible picture of macroalgal-based L-LA and bioelectricity circular biorefinery in the MFC system for future research directions.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn Bhd, Kajang, Selangor, Malaysia
| |
Collapse
|
17
|
Apollon W. An Overview of Microbial Fuel Cell Technology for Sustainable Electricity Production. MEMBRANES 2023; 13:884. [PMID: 37999370 PMCID: PMC10672772 DOI: 10.3390/membranes13110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The over-exploitation of fossil fuels and their negative environmental impacts have attracted the attention of researchers worldwide, and efforts have been made to propose alternatives for the production of sustainable and clean energy. One proposed alternative is the implementation of bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs), which are sustainable and environmentally friendly. MFCs are devices that use bacterial activity to break down organic matter while generating sustainable electricity. Furthermore, MFCs can produce bioelectricity from various substrates, including domestic wastewater (DWW), municipal wastewater (MWW), and potato and fruit wastes, reducing environmental contamination and decreasing energy consumption and treatment costs. This review focuses on recent advancements regarding the design, configuration, and operation mode of MFCs, as well as their capacity to produce bioelectricity (e.g., 2203 mW/m2) and fuels (i.e., H2: 438.7 mg/L and CH4: 358.7 mg/L). Furthermore, this review highlights practical applications, challenges, and the life-cycle assessment (LCA) of MFCs. Despite the promising biotechnological development of MFCs, great efforts should be made to implement them in a real-time and commercially viable manner.
Collapse
Affiliation(s)
- Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo 66050, Nuevo León, Mexico
| |
Collapse
|
18
|
Pugazhendi A, Jamal MT. Application of halophiles in UMFC (upflow microbial fuel cell) for the treatment of saline olive oil industrial wastewater coupled with eco-energy yield. 3 Biotech 2023; 13:351. [PMID: 37810189 PMCID: PMC10550894 DOI: 10.1007/s13205-023-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
The olive oil industry faces a major problem of treating the wastewater with high organic content and safe disposal. Olive oil industrial wastewater (OOIWW) consists of highly toxic environmental pollutants with high salinity. Saline olive oil industrial wastewater was treated using halophilic consortium in UMFC (upflow microbial fuel cell) mobilized with carbon felt as electrode. Total and soluble COD (chemical oxygen demand), total suspended solids and phenol content removal were studied at different organic loads (0.56, 0.77, 1.05, 1.26, 1.52 and 1.8 gCOD/L). UMFC with OOIWW was optimized at 1.52 gCOD/L for high organic removal and corresponding electricity production. Total COD, soluble COD, TSS and phenol removal were 91%, 89%, 78%, and complete removal of phenol was accomplished at the optimized organic load (1.52 gCOD/L). Correspondingly, the maximum bioenergy yield was 784 mV with 439 mW/m2 (power density) and 560 mA/m2 (current density), respectively. The presence of prominent halophilic exo-electrogens such as Ochrobactrum, Marinobacter, Rhodococcus and Bacillus potently treated the OOIWW and exhibited high energy yield.
Collapse
Affiliation(s)
- Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mamdoh T. Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
19
|
Khodaparastasgarabad N, Sonawane JM, Baghernavehsi H, Gong L, Liu L, Greener J. Microfluidic membraneless microbial fuel cells: new protocols for record power densities. LAB ON A CHIP 2023; 23:4201-4212. [PMID: 37702583 DOI: 10.1039/d3lc00387f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The main hurdle in leveraging microfluidic advantages in membraneless MFCs is their low electrode area-normalized power. For nearly a decade, maximum power densities have remained stagnant, while at the same time macrosystems continue to gather pace. To bridge this growing gap, we showcase a strategy that focuses on (i) technology improvements, (ii) establishment of record areal power densities, and (iii) presentation of different normalization methods that complement areal power densities and enable direct comparisons across all MFC scales. Using a pure-culture Geobacter sulfurreducens electroactive biofilm (EAB) in a new membraneless MFC that adheres to the strategy above, we observed optimal anode colonization, resulting in the highest recorded electrode areal power density for a microfluidic MFC of 3.88 W m-2 (24.37 kW m-3). We also consider new power normalization methods that may be more appropriate for comparison to other works. Normalized by the wetted cross-section area between electrodes accounts for constraints in electrode/electrolyte contact, resulting in power densities as high as 8.08 W m-2. Alternatively, we present a method to normalize by the flow rate to account for acetate supply, obtaining normalized energy recovery values of 0.025 kW h m-3. With these results, the performance gap between micro- and macroscale MFCs is closed, and a road map to move forward is presented.
Collapse
Affiliation(s)
| | - Jayesh M Sonawane
- Département de Chimie, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada.
| | - Haleh Baghernavehsi
- Département de Chimie, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada.
| | - Lingling Gong
- Département de Chimie, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada.
| | - Linlin Liu
- Département de Chimie, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada.
| | - Jesse Greener
- Département de Chimie, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada.
- CHU de Québec, Centre de recherche, Université Laval, 10 rue de l'Espinay, Québec, QC, Canada
| |
Collapse
|
20
|
Kuznetsova LS, Arlyapov VA, Plekhanova YV, Tarasov SE, Kharkova AS, Saverina EA, Reshetilov AN. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers (Basel) 2023; 15:3783. [PMID: 37765637 PMCID: PMC10536614 DOI: 10.3390/polym15183783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Vyacheslav A. Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Yulia V. Plekhanova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Tarasov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna S. Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Evgeniya A. Saverina
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
- Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
21
|
Li X, Zheng S, Li Y, Ding J, Qin W. Effectively facilitating the degradation of chloramphenicol by the synergism of Shewanella oneidensis MR-1 and the metal-organic framework. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131545. [PMID: 37148794 DOI: 10.1016/j.jhazmat.2023.131545] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Electroactive bacteria (EAB) and metal oxides are capable of synergistically removing chloramphenicol (CAP). However, the effects of redox-active metal-organic frameworks (MOFs) on CAP degradation with EAB are not yet known. This study investigated the synergism of iron-based MOFs (Fe-MIL-101) and Shewanella oneidensis MR-1 on CAP degradation. 0.5 g/L Fe-MIL-101 with more possible active sites led to a three-fold higher CAP removal rate in the synergistic system with MR-1 (initial bacterial concentration of 0.2 at OD600), and showed a superior catalytic effect than exogenously added Fe(III)/Fe(II) or magnetite. Mass spectrometry revealed that CAP was transformed into smaller molecular weight and less toxic metabolites in cultures. Transcriptomic analysis showed that Fe-MIL-101 enhanced the expression of genes related to nitro and chlorinated contaminants degradation. Additionally, genes encoding hydrogenases and c-type cytochromes associated with extracellular electron transfer were significantly upregulated, which may contribute to the simultaneous bioreduction of CAP both intracellularly and extracellularly. These results indicated that Fe-MIL-101 can be used as a catalyst to synergize with EAB to effectively facilitate CAP degradation, which might shed new light on the application in the in situ bioremediation of antibiotic-contaminated environments.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shiling Zheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, PR China.
| | - Yinhao Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China.
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China
| |
Collapse
|
22
|
Leicester DD, Settle S, McCann CM, Heidrich ES. Investigating Variability in Microbial Fuel Cells. Appl Environ Microbiol 2023; 89:e0218122. [PMID: 36840599 PMCID: PMC10057029 DOI: 10.1128/aem.02181-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 02/24/2023] Open
Abstract
In scientific studies, replicas should replicate, and identical conditions should produce very similar results which enable parameters to be tested. However, in microbial experiments which use real world mixed inocula to generate a new "adapted" community, this replication is very hard to achieve. The diversity within real-world microbial systems is huge, and when a subsample of this diversity is placed into a reactor vessel or onto a surface to create a biofilm, stochastic processes occur, meaning there is heterogeneity within these new communities. The smaller the subsample, the greater this heterogeneity is likely to be. Microbial fuel cells are typically operated at a very small laboratory scale and rely on specific communities which must include electrogenic bacteria, known to be of low abundance in most natural inocula. Microbial fuel cells (MFCs) offer a unique opportunity to investigate and quantify variability as they produce current when they metabolize, which can be measured in real time as the community develops. In this research, we built and tested 28 replica MFCs and ran them under identical conditions. The results showed high variability in terms of the rate and amount of current production. This variability perpetuated into subsequent feeding rounds, both with and without the presence of new inoculate. In an attempt to control this variability, reactors were reseeded using established "good" and "bad" reactors. However, this did not result in replica biofilms, suggesting there is a spatial as well as a compositional control over biofilm formation. IMPORTANCE The research presented, although carried out in the area of microbial fuel cells, reaches an important and broadly impacting conclusion that when using mixed inoculate in replica reactors under replicated conditions, different communities emerge capable of different levels of metabolism. To date there has been very little research focusing on this, or even reporting it, with most studies using duplicate or triplicate reactors, in which this phenomenon is not fully observed. Publishing data in which replicas do not replicate will be an important and brave first step in the research into understanding this fundamental microbial process.
Collapse
Affiliation(s)
| | - Sam Settle
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clare M. McCann
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
23
|
Cao L, Sun H, Ma Y, Lu M, Zhao M, Li E, Liu Y. Analysis and enhancement of the energy utilization efficiency of corn stover using strain Lsc-8 in a bioelectrochemical system. Microb Cell Fact 2023; 22:54. [PMID: 36935505 PMCID: PMC10024844 DOI: 10.1186/s12934-023-02058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 03/21/2023] Open
Abstract
The strain Lsc-8 can produce a current density of 33.08 µA cm-2 using carboxymethylcellulose (CMC) as a carbon source in a three-electrode configuration. A co-culture system of strain Lsc-8 and Geobacter sulfurreducens PCA was used to efficiently convert cellulose into electricity to improve the electricity generation capability of microbial fuel cells (MFCs). The maximum current density achieved by the co-culture with CMC was 559 μA cm-2, which was much higher than that of strain Lsc-8 using CMC as the carbon source. The maximum power density reached 492.05 ± 52.63 mW cm-2, which is much higher than that previously reported. Interaction mechanism studies showed that strain Lsc-8 had the ability to secrete riboflavin and convert cellulose into acetic acid, which might be the reason for the high electrical production performance of the co-culture system. In addition, to the best of our knowledge, a co-culture or single bacteria system using agricultural straw as the carbon source to generate electricity has not been reported. In this study, the maximum current density of the three-electrode system inoculated with strain Lsc-8 was 14.56 μA cm-2 with raw corn stover as the sole carbon source. Raw corn stover as a carbon source was also investigated for use in a co-culture system. The maximum current density achieved by the co-culture was 592 μA cm-2. The co-culture system showed a similar electricity generation capability when using raw corn stover and when using CMC. This research shows for the first time that a co-culture or single bacteria system can realize both waste biomass treatment and waste power generation.
Collapse
Affiliation(s)
- Lianbin Cao
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, Henan, People's Republic of China
| | - Hongmei Sun
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, Henan, People's Republic of China
| | - Yamei Ma
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Mingguo Lu
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, Henan, People's Republic of China
| | - Mengrui Zhao
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, Henan, People's Republic of China
| | - Enzhong Li
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, Henan, People's Republic of China
| | - Ying Liu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
24
|
Schneider G, Pásztor D, Szabó P, Kőrösi L, Kishan NS, Raju PARK, Calay RK. Isolation and Characterisation of Electrogenic Bacteria from Mud Samples. Microorganisms 2023; 11:781. [PMID: 36985354 PMCID: PMC10058994 DOI: 10.3390/microorganisms11030781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
To develop efficient microbial fuel cell systems for green energy production using different waste products, establishing characterised bacterial consortia is necessary. In this study, bacteria with electrogenic potentials were isolated from mud samples and examined to determine biofilm-formation capacities and macromolecule degradation. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identifications have revealed that isolates represented 18 known and 4 unknown genuses. They all had the capacities to reduce the Reactive Black 5 stain in the agar medium, and 48 of them were positive in the wolfram nanorod reduction assay. The isolates formed biofilm to different extents on the surfaces of both adhesive and non-adhesive 96-well polystyrene plates and glass. Scanning electron microscopy images revealed the different adhesion potentials of isolates to the surface of carbon tissue fibres. Eight of them (15%) were able to form massive amounts of biofilm in three days at 23 °C. A total of 70% of the isolates produced proteases, while lipase and amylase production was lower, at 38% and 27% respectively. All of the macromolecule-degrading enzymes were produced by 11 isolates, and two isolates of them had the capacity to form a strong biofilm on the carbon tissue one of the most used anodic materials in MFC systems. This study discusses the potential of the isolates for future MFC development applications.
Collapse
Affiliation(s)
- György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Dorina Pásztor
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Péter Szabó
- Department of Geology and Meteorology, Faculty of Sciences, University of Pécs, Ifjúság Str. 6, H-7624 Pécs, Hungary
| | - László Kőrösi
- Research Institute for Viticulture and Oenology, University of Pécs, Pázmány P. u. 4, H-7634 Pécs, Hungary
| | - Nandyala Siva Kishan
- Centre for Research and Development, SRKR Engineering College, SRKR Marg, China Amiram, Bhimavaram 534204, India
| | | | - Rajnish Kaur Calay
- Institute for Building Energy and Materials Technology, Narvik Campus, UiT Norway’s Arctic University, 8514 Narvik, Norway
| |
Collapse
|
25
|
Danaeifar M, Ocheje OM, Mazlomi MA. Exploitation of renewable energy sources for water desalination using biological tools. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32193-32213. [PMID: 36725802 DOI: 10.1007/s11356-023-25642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The emerging impacts of climate change and the growing world population are driving the demand for more food resources and creating an urgent need for new water resources. About 93% of Earth's surface is made up of water bodies, mainly oceans. Seawater attracted a lot of attention in order to be used as a sustainable source of usable water. However, an essential step in harnessing this source of water is desalination. Utilizing renewable sources of energy, biology offers several tools for removal of salts. This article for the first time reviews all currently available biological water desalination tools and compares their efficiency with industrial systems. Bacteria are employed as electrical power generators to provide the energy needed for desalination in microbial desalination cells. Its salt removal efficiency varied from 0.8 to 30 g/L/d. Many strains of algal cells can grow in high concentrations of salts, adsorb and accumulate it inside the cell, and therefore could be used without prior treatment for seawater desalination. This biological tool can yield salt removal efficiency of 0.4-5 g/L/d. Biopolymers are also used for treatment of seawater through enhancing water evaporation as a component of solar steam generators. Despite significant advances in biological water desalination, further modifications and improvements are still needed to make its use sustainable and cost-effective.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Onuche Musa Ocheje
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Zhao F, Chen Y, Zhang S, Li M, Tang X. Three-Dimensional Carbon Monolith Coated by Nano-TiO 2 for Anode Enhancement in Microbial Fuel Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3437. [PMID: 36834138 PMCID: PMC9966231 DOI: 10.3390/ijerph20043437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
A three-dimensional (3D) anode is essential for high-performance microbial fuel cells (MFCs). In this study, 3D porous carbon monoliths from a wax gourd (WGCM) were obtained by freeze-drying and carbonization. Nano-TiO2 was further coated onto the surface of WGCM to obtain a nano-TiO2/WGCM anode. The WGCM anode enhanced the maximum power density of MFCs by 167.9% compared with the carbon felt anode, while nano-TiO2/WGCM anode additionally increased the value by 45.8% to achieve 1396.2 mW/m2. WGCM enhancement was due to the 3D porous structure, the good conductivity and the surface hydrophilicity, which enhanced electroactive biofilm formation and anodic electron transfer. In addition, nano-TiO2 modification enhanced the enrichment of Acinetobacter, an electricigen, by 31.0% on the anode to further improve the power production. The results demonstrated that the nano-TiO2/WGCM was an effective anode for power enhancement in MFCs.
Collapse
Affiliation(s)
| | | | | | | | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430062, China
| |
Collapse
|
27
|
Hemdan BA, El-Taweel GE, Naha S, Goswami P. Bacterial community structure of electrogenic biofilm developed on modified graphite anode in microbial fuel cell. Sci Rep 2023; 13:1255. [PMID: 36690637 PMCID: PMC9871009 DOI: 10.1038/s41598-023-27795-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Formation of electrogenic microbial biofilm on the electrode is critical for harvesting electrical power from wastewater in microbial biofuel cells (MFCs). Although the knowledge of bacterial community structures in the biofilm is vital for the rational design of MFC electrodes, an in-depth study on the subject is still awaiting. Herein, we attempt to address this issue by creating electrogenic biofilm on modified graphite anodes assembled in an air-cathode MFC. The modification was performed with reduced graphene oxide (rGO), polyaniline (PANI), and carbon nanotube (CNTs) separately. To accelerate the growth of the biofilm, soybean-potato composite (plant) powder was blended with these conductive materials during the fabrication of the anodes. The MFC fabricated with PANI-based anode delivered the current density of 324.2 mA cm-2, followed by CNTs (248.75 mA cm-2), rGO (193 mA cm-2), and blank (without coating) (151 mA cm-2) graphite electrodes. Likewise, the PANI-based anode supported a robust biofilm growth containing maximum bacterial cell densities with diverse shapes and sizes of the cells and broad metabolic functionality. The alpha diversity of the biofilm developed over the anode coated with PANI was the loftiest operational taxonomic unit (2058 OUT) and Shannon index (7.56), as disclosed from the high-throughput 16S rRNA sequence analysis. Further, within these taxonomic units, exoelectrogenic phyla comprising Proteobacteria, Firmicutes, and Bacteroidetes were maximum with their corresponding level (%) 45.5, 36.2, and 9.8. The relative abundance of Gammaproteobacteria, Clostridia, and Bacilli at the class level, while Pseudomonas, Clostridium, Enterococcus, and Bifidobacterium at the genus level were comparatively higher in the PANI-based anode.
Collapse
Affiliation(s)
- Bahaa A Hemdan
- Water Pollution Research Department, Environmental Research and Climate Change Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| | - Gamila E El-Taweel
- Water Pollution Research Department, Environmental Research and Climate Change Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt
| | - Sunandan Naha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
28
|
Ahirwar A, Das S, Das S, Yang YH, Bhatia SK, Vinayak V, Ghangrekar MM. Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bio-economy approach. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Abadikhah M, Rodriguez MDC, Persson F, Wilén BM, Farewell A, Modin O. Evidence of competition between electrogens shaping electroactive microbial communities in microbial electrolysis cells. Front Microbiol 2022; 13:959211. [PMID: 36590422 PMCID: PMC9800620 DOI: 10.3389/fmicb.2022.959211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
In single-chamber microbial electrolysis cells (MECs), organic compounds are oxidized at the anode, liberating electrons that are used for hydrogen evolution at the cathode. Microbial communities on the anode and cathode surfaces and in the bulk liquid determine the function of the MEC. The communities are complex, and their assembly processes are poorly understood. We investigated MEC performance and community composition in nine MECs with a carbon cloth anode and a cathode of carbon nanoparticles, titanium, or stainless steel. Differences in lag time during the startup of replicate MECs suggested that the initial colonization by electrogenic bacteria was stochastic. A network analysis revealed negative correlations between different putatively electrogenic Deltaproteobacteria on the anode. Proximity to the conductive anode surface is important for electrogens, so the competition for space could explain the observed negative correlations. The cathode communities were dominated by hydrogen-utilizing taxa such as Methanobacterium and had a much lower proportion of negative correlations than the anodes. This could be explained by the diffusion of hydrogen throughout the cathode biofilms, reducing the need to compete for space.
Collapse
Affiliation(s)
- Marie Abadikhah
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden,*Correspondence: Marie Abadikhah, ✉
| | - Miguel de Celis Rodriguez
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anne Farewell
- Institute of Chemistry and Molecular Biology and the Center for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
30
|
Srivastava RK, Sarangi PK, Vivekanand V, Pareek N, Shaik KB, Subudhi S. Microbial fuel cells for waste nutrients minimization: Recent process technologies and inputs of electrochemical active microbial system. Microbiol Res 2022; 265:127216. [DOI: 10.1016/j.micres.2022.127216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
|
31
|
Simeon IM, Weig A, Freitag R. Optimization of soil microbial fuel cell for sustainable bio-electricity production: combined effects of electrode material, electrode spacing, and substrate feeding frequency on power generation and microbial community diversity. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:124. [PMID: 36380346 PMCID: PMC9667596 DOI: 10.1186/s13068-022-02224-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Microbial fuel cells (MFCs) are among the leading research topics in the field of alternative energy sources due to their multifunctional potential. However, their low bio-energy production rate and unstable performance limit their application in the real world. Therefore, optimization is needed to deploy MFCs beyond laboratory-scale experiments. In this study, we investigated the combined influence of electrode material (EM), electrode spacing (ES), and substrate feeding interval (SFI) on microbial community diversity and the electrochemical behavior of a soil MFC (S-MFC) for sustainable bio-electricity generation. RESULTS Two EMs (carbon felt (CF) and stainless steel/epoxy/carbon black composite (SEC)) were tested in an S-MFC under three levels of ES (2, 4, and 8 cm) and SFI (4, 6, and 8 days). After 30 days of operation, all MFCs achieved open-circuit voltage in the range of 782 + 12.2 mV regardless of the treatment. However, the maximum power of the SEC-MFC was 3.6 times higher than that of the CF-MFC under the same experimental conditions. The best solution, based on the interactive influence of the two discrete variables, was obtained with SEC at an ES of 4.31 cm and an SFI of 7.4 days during an operating period of 66 days. Analysis of the experimental treatment effects of the variables revealed the order SFI < ES < EM, indicating that EM is the most influential factor affecting the performance of S-MFC. The performance of S-MFC at a given ES value was found to be dependent on the levels of SFI with the SEC electrode, but this interactive influence was found to be insignificant with the CF electrode. The microbial bioinformatic analysis of the samples from the S-MFCs revealed that both electrodes (SEC and CF) supported the robust metabolism of electroactive microbes with similar morphological and compositional characteristics, independent of ES and SFI. The complex microbial community showed significant compositional changes at the anode and cathode over time. CONCLUSION This study has demonstrated that the performance of S-MFC depends mainly on the electrode materials and not on the diversity of the constituent microbial communities. The performance of S-MFCs can be improved using electrode materials with pseudocapacitive properties and a larger surface area, instead of using unmodified CF electrodes commonly used in S-MFC systems.
Collapse
Affiliation(s)
- Imologie Meshack Simeon
- Process Biotechnology & Center for Energy Technology (ZET), University of Bayreuth, 95447, Bayreuth, Germany.
- Department of Agricultural and Bioresources Engineering, Federal University of Technology Minna, PMB 65, Minna, Nigeria.
| | - Alfons Weig
- Genomics & Bioinformatics, University of Bayreuth, 95447, Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology & Center for Energy Technology (ZET), University of Bayreuth, 95447, Bayreuth, Germany
| |
Collapse
|
32
|
Hassanzadeh R, Sabzi RE, Faraji M. Detailed investigation the impact of biofilm formation and cathode limitations on electrochemical performance of biofuel cell. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Yin Y, Liu C, Zhao G, Chen Y. Versatile mechanisms and enhanced strategies of pollutants removal mediated by Shewanella oneidensis: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129703. [PMID: 35963088 DOI: 10.1016/j.jhazmat.2022.129703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The removal of environmental pollutants is important for a sustainable ecosystem and human health. Shewanella oneidensis (S. oneidensis) has diverse electron transfer pathways and can use a variety of contaminants as electron acceptors or electron donors. This paper reviews S. oneidensis's function in removing environmental pollutants, including heavy metals, inorganic non-metallic ions (INMIs), and toxic organic pollutants. S. oneidensis can mineralize o-xylene (OX), phenanthrene (PHE), and pyridine (Py) as electron donors, and also reduce azo dyes, nitro aromatic compounds (NACs), heavy metals, and iodate by extracellular electron transfer (EET). For azo dyes, NACs, Cr(VI), nitrite, nitrate, thiosulfate, and sulfite that can cross the membrane, S. oneidensis transfers electrons to intracellular reductases to catalyze their reduction. However, most organic pollutants cannot be directly degraded by S. oneidensis, but S. oneidensis can remove these pollutants by self-synthesizing catalysts or photocatalysts, constructing bio-photocatalytic systems, driving Fenton reactions, forming microbial consortia, and genetic engineering. However, the industrial-scale application of S. oneidensis is insufficient. Future research on the metabolism of S. oneidensis and interfacial reactions with other materials needs to be deepened, and large-scale reactors should be developed that can be used for practical engineering applications.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
34
|
Noori MT, Min B. Fundamentals and recent progress in bioelectrochemical system-assisted biohythane production. BIORESOURCE TECHNOLOGY 2022; 361:127641. [PMID: 35863600 DOI: 10.1016/j.biortech.2022.127641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Biohythane, a balanced mixture of 10%-30% v/v of hydrogen and 70%-90% v/v of methane, could be the backbone of an all-purpose future energy supply. Recently, bioelectrochemical systems (BES) became a new sensation among environmental biotechnology processes with the potential to sustainably generate biohythane. Therefore, to unleash its full potential for scaling up, researchers are consistently improving microbial metabolic pathways, novel reactors, and electrode designs. This review presents a detailed analysis of recently discovered fundamental mechanisms and science and engineering intervention of different strategies to improve the biohythane composition and production rate from BES. However, several milestones are to be achieved, for instance, improving electrode kinetics using efficient catalysts, engineered microbial communities, and improved reactor configurations, for commercializing this sustainable technology. Thus, a future perspective section is included to recommend novel research lines, mainly focusing on the microbial communities and the efficient electrocatalysts, to enhance reactor performance.
Collapse
Affiliation(s)
- Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Yongin-Si, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Yongin-Si, Republic of Korea.
| |
Collapse
|
35
|
Varjani S. Prospective review on bioelectrochemical systems for wastewater treatment: Achievements, hindrances and role in sustainable environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156691. [PMID: 35714749 DOI: 10.1016/j.scitotenv.2022.156691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BESs) are a relatively new arena for producing bioelectricity, desalinating sea water, and treating industrial effluents by removing organic matter. Microbial electrochemical technologies (METs) are promising for obtaining value-added products during simultaneous remediation of pollutants from wastewater. The search for more affordable desalination technology has led to the development of microbial desalination cells (MDCs). MDC combines the operation of microbial fuel cells (MFC) with electrodialysis for water desalination and energy generation. It has received notable interest of researchers in desalination and wastewater treatment because of low energy requirement and eco-friendly nature. Firstly, this article provides a brief overview of MDC technology. Secondly, factors affecting functioning of MDC and its applications have been accentuated. Additionally, challenges and future outlook on the development of this technology have been delineated. State-of-the-art information provided in this review would expand the scope of interdisciplinary and translational research.
Collapse
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India.
| |
Collapse
|
36
|
Wang J, Ren K, Zhu Y, Huang J, Liu S. A Review of Recent Advances in Microbial Fuel Cells: Preparation, Operation, and Application. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040044. [PMID: 36278556 PMCID: PMC9589990 DOI: 10.3390/biotech11040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 12/07/2022]
Abstract
The microbial fuel cell has been considered a promising alternative to traditional fossil energy. It has great potential in energy production, waste management, and biomass valorization. However, it has several technical issues, such as low power generation efficiency and operational stability. These issues limit the scale-up and commercialization of MFC systems. This review presents the latest progress in microbial community selection and genetic engineering techniques for enhancing microbial electricity production. The summary of substrate selection covers defined substrates and some inexpensive complex substrates, such as wastewater and lignocellulosic biomass materials. In addition, it also includes electrode modification, electron transfer mediator selection, and optimization of operating conditions. The applications of MFC systems introduced in this review involve wastewater treatment, production of value-added products, and biosensors. This review focuses on the crucial process of microbial fuel cells from preparation to application and provides an outlook for their future development.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Kexin Ren
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Yan Zhu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
- The Center for Biotechnology & Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
- Correspondence:
| |
Collapse
|
37
|
Halobacterium salinarum NRC-1 Sustains Voltage Production in a Dual-Chambered Closed Microbial Fuel Cell. ScientificWorldJournal 2022; 2022:3885745. [PMID: 36132437 PMCID: PMC9484973 DOI: 10.1155/2022/3885745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Sustained bioenergy production from organisms that thrive in high salinity, low oxygen, and low nutrition levels is useful in monitoring hypersaline polluted environments. Microbial fuel cell (MFC) studies utilizing single species halophiles under salt concentrations higher than 1 M and as a closed microbial system are limited. The current study aimed to establish baseline voltage, current, and power density from a dual-chambered MFC utilizing the halophile Halobacterium salinarum NRC-1. MFC performance was determined with two different electrode sizes (5 cm2 and 10 cm2), under oscillating and nonoscillating conditions, as well as in a stacked series. A closed dual-chamber MFC system of 100 mL capacity was devised with Halobacterium media (4.3 M salt concentration) as both anolyte and catholyte, with H. salinarum NRC-1 being the anodic organism. The MFC measured electrical output over 7, 14, 28, and 42 days. MFC output increased with 5 cm2 sized electrodes under nonoscillating (p < 0.0001) relative to oscillating conditions. However, under oscillating conditions, doubling the electrode size increased MFC output significantly (p = 0.01). The stacked series MFC, with an electrode size of 10 cm2, produced the highest power density (1.2672 mW/m2) over 14 days under oscillation. Our results highlight the potentiality of H. salinarum as a viable anodic organism to produce sustained voltage in a closed-MFC system.
Collapse
|
38
|
Tarasov S, Plekhanova Y, Kashin V, Gotovtsev P, Signore MA, Francioso L, Kolesov V, Reshetilov A. Gluconobacter Oxydans-Based MFC with PEDOT:PSS/Graphene/Nafion Bioanode for Wastewater Treatment. BIOSENSORS 2022; 12:bios12090699. [PMID: 36140084 PMCID: PMC9496339 DOI: 10.3390/bios12090699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022]
Abstract
Microbial fuel cells (MFCs) are a variety of bioelectrocatalytic devices that utilize the metabolism of microorganisms to generate electric energy from organic matter. This study investigates the possibility of using a novel PEDOT:PSS/graphene/Nafion composite in combination with acetic acid bacteria Gluconobacter oxydans to create a pure culture MFC capable of effective municipal wastewater treatment. The developed MFC was shown to maintain its activity for at least three weeks. The level of COD in municipal wastewater treatment was reduced by 32%; the generated power was up to 81 mW/m2 with a Coulomb efficiency of 40%. Combining the MFC with a DC/DC boost converter increased the voltage generated by two series-connected MFCs from 0.55 mV to 3.2 V. A maximum efficiency was achieved on day 8 of MFC operation and was maintained for a week; capacitors of 6800 µF capacity were fully charged in ~7 min. Thus, G. oxydans cells can become an important part of microbial consortia in MFCs used for treatment of wastewaters with reduced pH.
Collapse
Affiliation(s)
- Sergei Tarasov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
- Correspondence:
| | - Yulia Plekhanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
| | - Vadim Kashin
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - Pavel Gotovtsev
- Biotechnology and Bioenergy Department, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Moscow Region, 141701 Dolgoprudny, Russia
| | - Maria Assunta Signore
- CNR IMM, Institute for Microelectronics and Microsystems, Via Monteroni, I-73100 Lecce, Italy
| | - Luca Francioso
- CNR IMM, Institute for Microelectronics and Microsystems, Via Monteroni, I-73100 Lecce, Italy
| | - Vladimir Kolesov
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - Anatoly Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
| |
Collapse
|
39
|
Cao Y, Liu H, Liu W, Guo J, Xian M. Debottlenecking the biological hydrogen production pathway of dark fermentation: insight into the impact of strain improvement. Microb Cell Fact 2022; 21:166. [PMID: 35986320 PMCID: PMC9389701 DOI: 10.1186/s12934-022-01893-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Confronted with the exhaustion of the earth’s fossil fuel reservoirs, bio-based process to produce renewable energy is receiving significant interest. Hydrogen is considered as an attractive energy carrier that can replace fossil fuels in the future mainly due to its high energy content, recyclability and environment-friendly nature. Biological hydrogen production from renewable biomass or waste materials by dark fermentation is a promising alternative to conventional routes since it is energy-saving and reduces environmental pollution. However, the current yield and evolution rate of fermentative hydrogen production are still low. Strain improvement of the microorganisms employed for hydrogen production is required to make the process competitive with traditional production methods. The present review summarizes recent progresses on the screening for highly efficient hydrogen-producing strains using various strategies. As the metabolic pathways for fermentative hydrogen production have been largely resolved, it is now possible to engineer the hydrogen-producing strains by rational design. The hydrogen yields and production rates by different genetically modified microorganisms are discussed. The key limitations and challenges faced in present studies are also proposed. We hope that this review can provide useful information for scientists in the field of fermentative hydrogen production. Hydrogen can be generated by microorganisms. Dark fermentation is efficient for biological hydrogen production. Strain improvement is critical to enhancing hydrogen-producing ability.
Collapse
|
40
|
Borja-Maldonado F, López Zavala MÁ. Contribution of configurations, electrode and membrane materials, electron transfer mechanisms, and cost of components on the current and future development of microbial fuel cells. Heliyon 2022; 8:e09849. [PMID: 35855980 PMCID: PMC9287189 DOI: 10.1016/j.heliyon.2022.e09849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 06/28/2022] [Indexed: 10/25/2022] Open
Abstract
Microbial fuel cells (MFCs) are a technology that can be applied to both the wastewater treatment and bioenergy generation. This work discusses the contribution of improvements regarding the configurations, electrode materials, membrane materials, electron transfer mechanisms, and materials cost on the current and future development of MFCs. Analysis of the most recent scientific publications on the field denotes that dual-chamber MFCs configuration offers the greatest potential due to the excellent ability to be adapted to different operating environments. Carbon-based materials show the best performance, biocompatibility of carbon-brush anode favors the formation of the biofilm in a mixed consortium and in wastewater as a substrate resembles the conditions of real scenarios. Carbon-cloth cathode modified with nanotechnology favors the conductive properties of the electrode. Ceramic clay membranes emerge as an interesting low-cost membrane with a proton conductivity of 0.0817 S cm-1, close to that obtained with the Nafion membrane. The use of nanotechnology in the electrodes also enhances electron transfer in MFCs. It increases the active sites at the anode and improves the interface with microorganisms. At the cathode, it favors its catalytic properties and the oxygen reduction reaction. These features together favor MFCs performance through energy production and substrate degradation with values above 2.0 W m-2 and 90% respectively. All the recent advances in MFCs are gradually contributing to enable technological alternatives that, in addition to wastewater treatment, generate energy in a sustainable manner. It is important to continue the research efforts worldwide to make MFCs an available and affordable technology for industry and society.
Collapse
Affiliation(s)
- Fátima Borja-Maldonado
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| | - Miguel Ángel López Zavala
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| |
Collapse
|
41
|
Tay ZHY, Ng FL, Ling TC, Iwamoto M, Phang SM. The use of marine microalgae in microbial fuel cells, photosynthetic microbial fuel cells and biophotovoltaic platforms for bioelectricity generation. 3 Biotech 2022; 12:148. [PMID: 35733833 DOI: 10.1007/s13205-022-03214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022] Open
Abstract
Algal green energy has emerged as an alternative to conventional energy production using fossil fuels. Microbial fuel cells (MFCs), photosynthetic microbial fuel cells (PMFCs) and biophotovoltaic (BPV) platforms have been developed to utilize microalgae for bioelectricity generation, wastewater treatment and biomass production. There remains a lack of research on marine microalgae in these systems, so to the best of our knowledge, all information on their integration in these systems have been gathered in this review, and are used to compare with the interesting studies on freshwater microalgae. The performance of the systems is extremely reliant on the microalgae species and/or microbial community used, the size of the bio-electrochemical cell, and electrode material and distance used. The mean was calculated for each system, PMFC has the highest average maximum power density of 344 mW/m2, followed by MFC (179 mW/m2) and BPV (58.9 mW/m2). In addition, the advantages and disadvantages of each system are highlighted. Although all three systems face the issue of low power outputs, the integration of a suitable energy harvester could potentially increase power efficiency and make them applicable for lower power applications.
Collapse
Affiliation(s)
- Zoe Hui-Yee Tay
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fong-Lee Ng
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia.,Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tau-Chuan Ling
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mitsumasa Iwamoto
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo, Japan.,Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Yadav A, Kumar P, Rawat D, Garg S, Mukherjee P, Farooqi F, Roy A, Sundaram S, Sharma RS, Mishra V. Microbial fuel cells for mineralization and decolorization of azo dyes: Recent advances in design and materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154038. [PMID: 35202698 DOI: 10.1016/j.scitotenv.2022.154038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cells (MFCs) exhibit tremendous potential in the sustainable management of dye wastewater via degrading azo dyes while generating electricity. The past decade has witnessed advances in MFC configurations and materials; however, comprehensive analyses of design and material and its association with dye degradation and electricity generation are required for their industrial application. MFC models with high efficiency of dye decolorization (96-100%) and a wide variation in power generation (29.4-940 mW/m2) have been reported. However, only 28 out of 104 studies analyzed dye mineralization - a prerequisite to obviate dye toxicity. Consequently, the current review aims to provide an in-depth analysis of MFCs potential in dye degradation and mineralization and evaluates materials and designs as crucial factors. Also, structural and operation parameters critical to large-scale applicability and complete mineralization of azo dye were evaluated. Choice of materials, i.e., bacteria, anode, cathode, cathode catalyst, membrane, and substrate and their effects on power density and dye decolorization efficiency presented in review will help in economic feasibility and MFCs scalability to develop a self-sustainable solution for treating azo dye wastewater.
Collapse
Affiliation(s)
- Archana Yadav
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Pankaj Kumar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Deepak Rawat
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; Department of Environmental Studies, Janki Devi Memorial College, University of Delhi, Delhi 110060, India
| | - Shafali Garg
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Paromita Mukherjee
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Furqan Farooqi
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Anurag Roy
- Environment and Sustainability Institute ESI Solar Lab, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Senthilarasu Sundaram
- Environment and Sustainability Institute ESI Solar Lab, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK; Electrical & Electronic Engineering, School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi 110007, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
43
|
Greenman J, Mendis BA, Gajda I, Ieropoulos IA. Microbial fuel cell compared to a chemostat. CHEMOSPHERE 2022; 296:133967. [PMID: 35176300 PMCID: PMC9023796 DOI: 10.1016/j.chemosphere.2022.133967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 05/31/2023]
Abstract
Microbial Fuel Cells (MFCs) represent a green and sustainable energy conversion system that integrate bacterial biofilms within an electrochemical two-electrode set-up to produce electricity from organic waste. In this review, we focus on a novel exploratory model, regarding "thin" biofilms forming on highly perfusable (non-diffusible) anodes in small-scale, continuous flow MFCs due to the unique properties of the electroactive biofilm. We discuss how this type of MFC can behave as a chemostat in fulfilling common properties including steady state growth and multiple steady states within the limit of biological physicochemical conditions imposed by the external environment. With continuous steady state growth, there is also continuous metabolic rate and continuous electrical power production, which like the chemostat can be controlled. The model suggests that in addition to controlling growth rate and power output by changing the external resistive load, it will be possible instead to change the flow rate/dilution rate.
Collapse
Affiliation(s)
- John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK.
| | - Buddhi Arjuna Mendis
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - Ioannis A Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.
| |
Collapse
|
44
|
Mirza SS, Al-Ansari MM, Ali M, Aslam S, Akmal M, Al-Humaid L, Hussain A. Towards sustainable wastewater treatment: Influence of iron, zinc and aluminum as anode in combination with salt bridge on microbial fuel cell performance. ENVIRONMENTAL RESEARCH 2022; 209:112781. [PMID: 35085564 DOI: 10.1016/j.envres.2022.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cell (MFC) is a green technology and does not harm the environment. It can be used for wastewater treatment, hydrogen production and power generation. There are lot of avenues need to be investigated to increase the efficiency of MFC and in order to make it acceptable publicly. Efficiency of MFC depends on many factors. In this study, the influence of anode materials (Fe, Al and Zn), their sizes (12, 16 and 20 cm2) and shapes (square, rectangular and circular) were investigated on MFC efficiency. Dual chamber MFC setup was prepared in which Rhodobacter capsulatus was used as biocatalytic agent. Results revealed that Zn anode gave the highest voltage of 1.57 V with corresponding 0.23 A of current. Size of 20 cm2 of anode gave maximum voltage of 1.66 V with corresponding value of 0.08 A current, while anode size of 16 cm2 gave maximum current of 0.75 A with corresponding voltage of 1.65 V. Regarding their studied shapes, circular shape of anode gave the highest voltages of 1.70 V. Salt bridge played an important role in internal resistance of the fuel cell. The results were checked by changing the diameter and length of the salt bridge. The best results were noticed with 16 cm2 circular Zn anode and Fe as cathode. Salt bridge with 7.5 cm length gave the highest voltage of 1.65 V, while 4 gauge diameter salt bridge gave the highest current of 0.85 A.
Collapse
Affiliation(s)
- Saima Shahzad Mirza
- Microbiology Laboratory, Department of Zoology, University of Education, Lahore, Pakistan
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mudassar Ali
- Microbiology Laboratory, Department of Zoology, University of Education, Lahore, Pakistan
| | - Sumaira Aslam
- Department of Zoology, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Akmal
- Department of Applied Biological Science, Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Japan
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ali Hussain
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
45
|
Complete genome sequence of Pseudomonas stutzeri S116 owning bifunctional catalysis provides insights into affecting performance of microbial fuel cells. BMC Microbiol 2022; 22:137. [PMID: 35590268 PMCID: PMC9118636 DOI: 10.1186/s12866-022-02552-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background Pseudomonas stutzeri S116 is a sulfur-oxidizing bacteria isolated from marine sludge. It exhibited excellent electricity generation as bioanode and biocathode applied in microbial fuel cells (MFCs). Complete genome sequencing of P. stutzeri and cyclic voltammetry method were performed to reveal its mechanism in microbial fuel cells system. Results This study indicated that the MFCs generated a maximum output voltage of 254.2 mV and 226.0 mV, and maximum power density of 765 mW/m2 and 656.6 mW/m2 respectively. Complete genome sequencing of P. stutzeri S116 was performed to indicate that most function genes showed high similarities with P. stutzeri, and its primary annotations were associated with energy production and conversion (6.84%), amino acid transport and metabolism (6.82%) and inorganic ion transport and metabolism (6.77%). Homology of 36 genes involved in oxidative phosphorylation was detected, which suggests the strain S116 possesses an integrated electron transport chain. Additionally, many genes encoding pilus-assembly proteins and redox mediators (riboflavin and phenazine) were detected in the databases. Thiosulfate oxidization and dissimilatory nitrate reduction were annotated in the sulfur metabolism pathway and nitrogen metabolism pathway, respectively. Gene function analysis and cyclic voltammetry indicated that P. stutzeri probably possesses cellular machinery such as cytochrome c and redox mediators and can perform extracellular electron transfer and produce electricity in MFCs. Conclusion The redox mediators secreted by P. stutzeri S116 were probably responsible for performance of MFCs. The critical genes and metabolic pathways involved in thiosulfate oxide and nitrate reduction were detected, which indicated that the strain can treat wastewater containing sulfide and nitrite efficiently. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02552-8.
Collapse
|
46
|
Boosting microfluidic microbial fuel cells performance via investigating electron transfer mechanisms, metal-based electrodes, and magnetic field effect. Sci Rep 2022; 12:7417. [PMID: 35523838 PMCID: PMC9076923 DOI: 10.1038/s41598-022-11472-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
The presented paper fundamentally investigates the influence of different electron transfer mechanisms, various metal-based electrodes, and a static magnetic field on the overall performance of microfluidic microbial fuel cells (MFCs) for the first time to improve the generated bioelectricity. To do so, as the anode of microfluidic MFCs, zinc, aluminum, tin, copper, and nickel were thoroughly investigated. Two types of bacteria, Escherichia coli and Shewanella oneidensis MR-1, were used as biocatalysts to compare the different electron transfer mechanisms. Interaction between the anode and microorganisms was assessed. Finally, the potential of applying a static magnetic field to maximize the generated power was evaluated. For zinc anode, the maximum open circuit potential, current density, and power density of 1.39 V, 138,181 mA m-2 and 35,294 mW m-2 were obtained, respectively. The produced current density is at least 445% better than the values obtained in previously published studies so far. The microfluidic MFCs were successfully used to power ultraviolet light-emitting diodes (UV-LEDs) for medical and clinical applications to elucidate their application as micro-sized power generators for implantable medical devices.
Collapse
|
47
|
Chauhan S, Sharma V, Varjani S, Sindhu R, Chaturvedi Bhargava P. Mitigation of tannery effluent with simultaneous generation of bioenergy using dual chambered microbial fuel cell. BIORESOURCE TECHNOLOGY 2022; 351:127084. [PMID: 35358671 DOI: 10.1016/j.biortech.2022.127084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, a dual chambered microbial fuel cell (MFC) was fabricated for the treatment of tannery wastewater with concurrent production of bio-energy. The tannery effluent acts as an anolyte and a synthetic electrolytic solution as the catholyte. Five electrochemically active bacteria from the biofilm were isolated that showed homology with Klebsiella quasipneumoniae, Klebsiella pneumoniae, Cloacibacterium normanese, Bacillus firmus and Pseudomonas reactans, using 16S rDNA analysis. The physiochemical studies of treated wastewater showcased the 88%, 74% and 94% reduction in COD, BOD and TDS level, respectively. The maximum voltage output and power density obtained using electroactive consortium in MFC was 940 mV and 7371 mW/cm3, respectively. The techno-economic feasibility of the bio-electrochemical system was studied for future bioprospecting. The present study reports a significant power generation with simultaneous effluent treatment up to a maximum of ∼85%, in a sustainable and eco-friendly manner.
Collapse
Affiliation(s)
- Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Vikas Sharma
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | | | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
48
|
Singh M, Mal N, Mohapatra R, Bagchi T, Parambath SD, Chavali M, Rao KM, Ramanaiah SV, Kadier A, Kumar G, Chandrasekhar K, Kim SH. Recent biotechnological developments in reshaping the microalgal genome: A signal for green recovery in biorefinery practices. CHEMOSPHERE 2022; 293:133513. [PMID: 34990720 DOI: 10.1016/j.chemosphere.2022.133513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The use of renewable energy sources as a substitute for nonrenewable fossil fuels is urgently required. Algae biorefinery platform provides an excellent alternate to overcome future energy problems. However, to let this viable biomass be competent with existing feedstocks, it is necessary to exploit genetic manipulation and improvement in upstream and downstream platforms for optimal bio-product recovery. Furthermore, the techno-economic strategies further maximize metabolites production for biofuel, biohydrogen, and other industrial applications. The experimental methodologies in algal photobioreactor promote high biomass production, enriched in lipid and starch content in limited environmental conditions. This review presents an optimization framework combining genetic manipulation methods to simulate microalgal growth dynamics, understand the complexity of algal biorefinery to scale up, and identify green strategies for techno-economic feasibility of algae for biomass conversion. Overall, the algal biorefinery opens up new possibilities for the valorization of algae biomass and the synthesis of various novel products.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Navonil Mal
- Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Reecha Mohapatra
- Department of Life Sciences, NIT Rourkela, 769008, Odisha, India
| | - Trisha Bagchi
- Department of Botany, West Bengal State University, Barasat, 700126, West Bengal, India
| | | | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science & Technology, Alliance University (Central Campus), Chandapura-Anekal Main Road, Bengaluru, 562106, Karnataka, India; NTRC-MCETRC and 109 Nano Composite Technologies Pvt. Ltd., Guntur District, 522201, Andhra Pradesh, India
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea; Department of Automotive Lighting Convergence Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material and Opto-electronic Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
49
|
Nookwam K, Cheirsilp B, Maneechote W, Boonsawang P, Sukkasem C. Microbial fuel cells with Photosynthetic-Cathodic chamber in vertical cascade for integrated Bioelectricity, biodiesel feedstock production and wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 346:126559. [PMID: 34929328 DOI: 10.1016/j.biortech.2021.126559] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to develop efficient microbial fuel cells (MFCs) for integrated bioelectricity, biodiesel feedstock production and wastewater treatment. Among wastewaters tested, MFC fed with anaerobic digester effluent from rubber industry gave the maximum power density (55.43 ± 1.08 W/m3) and simultaneously removed COD, nitrogen and phosphorus (by 72.4 ± 0.9%, 40.5 ± 0.8% and 24.4 ± 1.5%, respectively). 16S rRNA gene analysis revealed that dominant microbial communities were: Firmicutes (43.68%), Bacteroidetes (25.41%) and Chloroflexi (15.02%), which mostly contributed to bioelectricity generation. After optimizing organic loading rate, photosynthetic oleaginous microalgae were applied in cathodic chamber in order to increase oxygen availability, secondarily treat anodic chamber effluent and produce lipids as biodiesel feedstocks. Four MFCs with photosynthetic-cathodic chamber connected in vertical cascade could improve power density up to 116.9 ± 15.5 W/m3, sequentially treat wastewater, and also produce microalgal biomass (465 ± 10 g/m3) with high lipid content (38.17 ± 0.01%). These strategies may greatly contribute to sustainable development of integrated bioenergy generation and environment.
Collapse
Affiliation(s)
- Kidakarn Nookwam
- Biotechnology Program, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Benjamas Cheirsilp
- Biotechnology Program, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Wageeporn Maneechote
- Biotechnology Program, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Piyarat Boonsawang
- Biotechnology Program, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chontisa Sukkasem
- Microbial Fuel Cell Laboratory, Research Center in Energy and Environment, Faculty of Agro and Bio Industry, Thaksin University, Phatthalung 93110, Thailand
| |
Collapse
|
50
|
Rivalland C, Radouani F, Gonzalez-Rizzo S, Robert F, Salvin P. Enrichment of Clostridia enhances Geobacter population and electron harvesting in a complex electroactive biofilm. Bioelectrochemistry 2022; 143:107954. [PMID: 34624726 DOI: 10.1016/j.bioelechem.2021.107954] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
Current research on microbial fuel cell or microbial electrolysis cell dealt with finding new electroactive bacteria and understanding the mechanisms of electronic exchange. Complex consortia allowed to obtain better performances than pure cultures in part thanks to inter-species cooperation. However, the role of each bacterium in a complex biofilm in the electron harvest on an electrode remains unclear. Thus, we combined electrochemical monitoring of electron exchange and high throughput sequencing analysis in order to describe the bacterial composition and the electroactive performance of mangrove mud biofilms. In this study, secondary electroactive biofilms were formed on carbon electrodes from Desulfuromonas-dominated inoculum of pre-formed bioanodes. The performances and the Desulfuromonas-dominated profile were the same as those of primary bioanodes when the planktonic community was conserved. However, a Clostridium enrichment allowed to restore the performance in maximal current densities promoting an increase of Geobacter population, becoming the most dominant group among the Deltaproteobacteria, replacing Desulfuromonas. These results highlight a positive collaboration between Clostridium and Geobacter spp. helping a bacterial population to achieve with the depletion of their environment. Our study provides new insight into relationships between dominant electroactive bacteria and other bacteria species living in an organic matter-rich environment as mangrove sediments.
Collapse
Affiliation(s)
- Caroline Rivalland
- Laboratoire des Matériaux et Molécules en Milieu Agressif L3MA EA7526, UFR STE, Université des Antilles, Schœlcher, France
| | - Fatima Radouani
- Laboratoire des Matériaux et Molécules en Milieu Agressif L3MA EA7526, UFR STE, Université des Antilles, Schœlcher, France
| | - Silvina Gonzalez-Rizzo
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - Florent Robert
- Laboratoire des Matériaux et Molécules en Milieu Agressif L3MA EA7526, UFR STE, Université des Antilles, Schœlcher, France
| | - Paule Salvin
- Laboratoire des Matériaux et Molécules en Milieu Agressif L3MA EA7526, UFR STE, Université des Antilles, Schœlcher, France.
| |
Collapse
|