1
|
Arenas YM, Pérez-Martinez G, Montoliu C, Llansola M, Felipo V. Extracellular vesicles from L. paracasei improve neuroinflammation, GABA neurotransmission and motor incoordination in hyperammonemic rats. Brain Behav Immun 2025; 123:556-570. [PMID: 39384052 DOI: 10.1016/j.bbi.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024] Open
Abstract
Patients with liver cirrhosis may show minimal hepatic encephalopathy (MHE) with motor incoordination and cognitive impairment that reduce life quality and span. Motor incoordination is due to neuroinflammation and enhanced GABAergic neurotransmission in cerebellum. Recent reports support that probiotics, including L. casei, may improve cognitive function in different pathologies and MHE in cirrhotic patients. Extracellular vesicles (EV) are small cell-derived membrane vesicles that carry bioactive molecules released from cells, including bacteria. We hypothesized that EV from Lacticaseibacillus paracasei (LC-EV) could improve neuroinflammation, GABAergic neurotransmission and motor function in MHE. We show that LC-EV treatment reverses glial activation and neuroinflammation in cerebellum and restore motor coordination in hyperammonemic rats. Moreover, ex vivo treatment of cerebellar slices from hyperammonemic rats with LC-EV also reverses glial activation and neuroinflammation, and the enhancement of the TNFR1-S1PR2-BDNF-TrkB and TNFR1-TrkB-pAKT-NFκB-glutaminase-GAT3 pathways and of GABAergic neurotransmission. The results reported support that LC-EV may be used as a therapeutic tool to improve motor incoordination in patients with MHE.
Collapse
Affiliation(s)
- Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain; Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain; INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain; Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
| | - Gaspar Pérez-Martinez
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
| | - Carmina Montoliu
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain; INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
2
|
Chen SY, Xu H, Qin Y, He TQ, Shi RR, Xing YR, Xu J, Cong RC, Wang MR, Yang JS, Gu JH, He BS. Nicotinamide adenine dinucleotide phosphate alleviates intestinal ischemia/reperfusion injury via Nrf2/HO-1 pathway. Int Immunopharmacol 2024; 143:113478. [PMID: 39471691 DOI: 10.1016/j.intimp.2024.113478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a critical condition in the abdomen that has significant morbidity and fatality rates. Prior studies have noted the defensive role of the coenzymatic antioxidant reduced nicotinamide adenine dinucleotide phosphate (NADPH) in heart and brain I/R damage, yet its impact on intestinal I/R trauma required further exploration. Through the application of an in vitro oxygen-glucose deprivation-reoxygenation model and a mouse model of short-term intestinal I/R, this study clarified the defensive mechanisms of NADPH against intestinal I/R injury. We demonstrated that intraperitoneal NADPH administration markedly reduced interleukin-1β (IL-1β) levels and blocked NLRP3 inflammasome activation, hence reducing inflammation. The antioxidative properties of NADPH were established by the reduction of oxidative stress markers and enhancement of glutathione levels. Importantly, NADPH improved intestinal barrier integrity, indicated by an upregulation of zonula occludens-1 and the promotion of a balanced gut microbiome profile. Furthermore, we identified the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) pathway as a crucial conduit for NADPH's beneficence. When this pathway was inhibited by ML385, the favorable outcomes conferred by NADPH were significantly abrogated. These results demonstrate that NADPH functions as an antioxidative, anti-inflammatory, microbiota-balancing, barrier-strengthening, and anti-inflammatory agent against intestinal I/R damage through activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Su-Ying Chen
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Ultrasonography, Wuxi City Rehabilitation Hospital, Liangxi District Chinese Medicine Hospital, Wuxi 214000, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China.
| | - Yan Qin
- Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Tian-Qi He
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Rui-Rui Shi
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Yu-Run Xing
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Jian Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Ruo-Chen Cong
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Mei-Rong Wang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Ju-Shun Yang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jin-Hua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China.
| | - Bo-Sheng He
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China; Translational Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Bitew D, Damtew B, Tesfaye A, Andualem B. Isolation of yeast from some Ethiopian traditional fermented beverages and in vitro evaluation for probiotic traits. Heliyon 2024; 10:e40520. [PMID: 39654710 PMCID: PMC11626069 DOI: 10.1016/j.heliyon.2024.e40520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Traditional fermented foods and beverages are important sources of probiotic microbes. The purpose of this study was to isolate yeast from Ethiopian fermented beverages and assess their probiotic activity in an in vitro setting. Yeast isolation, identification, and in vitro probiotic trait screening were conducted in accordance with established protocols. Eleven isolates were obtained. Of them, GB1D5, RTj3D3 and DMTD2 were low hydrogen sulfide producers and were selected. The D1/2 genotyping of selected isolates revealed that they were strains of Saccharomyces cerevisiae. All strains grew well at low pH, body temperature, bile salt concentrations (0.3-0.6 (w/v)) and survived at simulated gastrointestinal conditions with survival percentages of 12.8 ± 4.9 to 14.4 ± 5.0 % and 5.3 ± 1.7-5.9 ± 1.8 %, respectively. They demonstrated surface hydrophobicity ranging from 61.3 to 68.7 %; and 80.7-86 % auto-aggregation percentages after 24 h of incubation. They also showed hydroxyl radical scavenging activity ranging between 91.6 and 92.3 % and mild inhibitory activity against Escherichia coli (ATCC 893614) and Staphylococcus aureus (ATCC 892760). The PCA revealed that two strains (DMTD2 and RTj3D3) have a strong association with most probiotic properties, which affirms their promising candidacy. Safety assessments indicated that they were resistant to antibacterial antibiotics, susceptible to antifungals, and negative for protease, gelatinase, biogenic amine production, and hemolytic activity. All these suggest that they are promising candidates for the production of food containing probiotics. Examining their performance in vivo circumstances is recommended.
Collapse
Affiliation(s)
- Dagnew Bitew
- Department of Biology, College of Natural and Computational Science, Mizan-Tepi University, Ethiopia
- Department of Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Ethiopia
| | - Bogale Damtew
- Department of General Biotechnology, Institute of Biotechnology, University of Gondar, Ethiopia
| | - Anteneh Tesfaye
- Institute of Biotechnology, Addis Ababa University, Ethiopia
- BioTEI, Winnipeg, Manitoba, Canada
| | - Berhanu Andualem
- Department of Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Ethiopia
| |
Collapse
|
4
|
Zhao Y, Zhang R, Wang S, Yang C, Wang Y, Fan H, Yang M. Observation on the therapeutic effect of probiotics on early oral feeding in the treatment of severe acute pancreatitis. Front Med (Lausanne) 2024; 11:1492108. [PMID: 39691367 PMCID: PMC11649409 DOI: 10.3389/fmed.2024.1492108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Objectives To evaluate the clinical efficacy of probiotics and early oral feeding in patients with severe acute pancreatitis. Methods A prospective, randomized, controlled trial was conducted involving 66 patients, who were randomly divided into a control group (n = 32) receiving standard enteral nutrition and an observation group (n = 34) receiving additional Bifidobacterium quadruplex live bacterial tablets. Serum inflammatory markers, including white blood cells (WBC), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP), were measured on days 1, 3, and 7 post-admission. Abdominal pain scores, the computed tomography severity index (CTSI), and the Bedside Index for Severity in Acute Pancreatitis (BISAP) scores were also assessed. Additionally, defecation time and the total duration of hospitalization were compared between the two groups. Results Inflammatory markers declined in all groups by the third day post-admission, with the observation group exhibiting a significantly greater reduction compared to the control group (p < 0.05). Similarly, from the first day to the third day, both groups experienced a decrease in abdominal pain scores, CTSI, and BISAP scores, with the observation group showing a significantly more pronounced decrease in BISAP scores compared to the control group (p < 0.05). By the seventh day of admission, inflammatory markers continued to decline in all groups compared to the third day, except for TNF-α levels, and the observation group demonstrated a significantly greater decrease compared to the control group (p < 0.05). Abdominal pain scores, CTSI, and BISAP scores also decreased further in both groups compared to the third day, with the observation group again showing a significantly greater improvement than the control group (p < 0.05). Additionally, the observation group had a significantly shorter time to bowel movement resumption (38.23 ± 2.31 h vs. 43.43 ± 2.75 h, p = 0.013) and total hospital stay compared to the control group (10.97 ± 0.35 days vs. 13.40 ± 0.50 days, p < 0.001). Conclusion Early oral ingestion combined with probiotics can reduce the levels of inflammatory factors, improve abdominal pain symptoms, alleviate pancreatic edema and shorten defecation time and hospital stay in patients with severe acute pancreatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingyue Yang
- Department of Gastroenterology, First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Ismael M, Huang M, Zhong Q. The Bacteriocins Produced by Lactic Acid Bacteria and the Promising Applications in Promoting Gastrointestinal Health. Foods 2024; 13:3887. [PMID: 39682959 DOI: 10.3390/foods13233887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Bacteriocins produced by lactic acid bacteria (LAB) are promising bioactive peptides. Intriguingly, bacteriocins have health benefits to the host and may be applied safely in the food industry as bio-preservatives or as therapeutic interventions preventing intestinal diseases. In recent years, finding a safe alternative approach to conventional treatments to promote gut health is a scientific hotspot. Therefore, this review aimed to give insight into the promising applications of LAB-bacteriocins in preventing intestinal diseases, such as colonic cancer, Helicobacter pylori infections, multidrug-resistant infection-associated colitis, viral gastroenteritis, inflammatory bowel disease, and obesity disorders. Moreover, we highlighted the recent research on bacteriocins promoting gastrointestinal health. The review also provided insights into the proposed mechanisms, challenges and opportunities, trends and prospects. In addition, a SWOT analysis was conducted on the potential applications. Based on properties, biosafety, and health functions of LAB-bacteriocins, we conclude that the future applications of LAB-bacteriocins are promising in promoting gastrointestinal health. Further in vivo trials are needed to confirm these potential effects of LAB-bacteriocins interventions.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mingxin Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Donati Zeppa S, Gervasi M, Bartolacci A, Ferrini F, Patti A, Sestili P, Stocchi V, Agostini D. Targeting the Gut Microbiota for Prevention and Management of Type 2 Diabetes. Nutrients 2024; 16:3951. [PMID: 39599740 PMCID: PMC11597803 DOI: 10.3390/nu16223951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder with a heterogeneous etiology encompassing societal and behavioral risk factors in addition to genetic and environmental susceptibility. The cardiovascular consequences of diabetes account for more than two-thirds of mortality among people with T2D. Not only does T2D shorten life expectancy, but it also lowers quality of life and is associated with extremely high health expenditures since diabetic complications raise both direct and indirect healthcare costs. An increasing body of research indicates a connection between T2D and gut microbial traits, as numerous alterations in the intestinal microorganisms have been noted in pre-diabetic and diabetic individuals. These include pro-inflammatory bacterial patterns, increased intestinal permeability, endotoxemia, and hyperglycemia-favoring conditions, such as the alteration of glucagon-like peptide-1 (GLP-1) secretion. Restoring microbial homeostasis can be very beneficial for preventing and co-treating T2D and improving antidiabetic therapy outcomes. This review summarizes the characteristics of a "diabetic" microbiota and the metabolites produced by microbial species that can worsen or ameliorate T2D risk and progression, suggesting gut microbiota-targeted strategies to restore eubiosis and regulate blood glucose. Nutritional supplementation, diet, and physical exercise are known to play important roles in T2D, and here their effects on the gut microbiota are discussed, suggesting non-pharmacological approaches that can greatly help in diabetes management and highlighting the importance of tailoring treatments to individual needs.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| |
Collapse
|
7
|
Xue Y, Lin S, Chen M, Ke J, Zhang J, Fan Q, Chen Y, Chen F. Altered colonic microflora and its metabolic profile in mice with acute viral myocarditis induced by coxsackievirus B3. Virol J 2024; 21:295. [PMID: 39550578 PMCID: PMC11568606 DOI: 10.1186/s12985-024-02571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Mounting evidence suggests that the gut-heart axis is critical in the pathogenesis of cardiovascular diseases. The gut serves as the primary pathway through which Coxsackievirus B3 (CVB3) infects its host, leading to acute viral myocarditis (AVMC). However, little is known about the role of gut microflora and its metabolites in the development of AVMC. The AVMC model was established by intraperitoneal injection of CVB3 in mice. Then, 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) untargeted metabolomics profiling were performed to analyze the microflora composition and metabolic profile of colonic contents. Compared to the Control mice, the AVMC mice displayed a significant reduction in gut microflora richness and diversity, as revealed by an increased abundance of Proteobacteria and a decreased abundance of Cyanobacteria and Desulfobacterota. LEfSe analysis indicated that the main genera differing between the two groups were Escherichia-Shigella, Lactobacillus, Clostridium_sensu_stricto_1, Prevotellaceae_UCG-001, and Odoribacter. Based on the criterion of OPLS-DA VIP ≥ 1.0 and p-value < 0.05, a total of 198 differential metabolites (DMs) were identified in the gut, including 79 upregulated and 119 downregulated metabolites, of which lipids and lipid-like molecules accounted for the largest proportion. Notably, both altered gut bacterial taxa and metabolites were significantly enriched in the Lipid metabolism pathway, with Traumatic acid (TA), Alpha-Linolenic acid (ALA), Eicosapentaenoic acid (EPA), and Docosahexaenoic acid (DHA) being the key DMs in the pathway. Additionally, significant positive correlations (|r| > 0.80 and p < 0.05) were found between TA levels and Anaerotruncus and Bilophila abundance, between EPA levels and Clostridium_sensu_stricto_1 abundance, and between DHA levels and Escherichia-Shigella abundance, respectively. CVB3 infection leads to notable alterations in gut microflora composition and its metabolic profile, which may participate in AVMC development. Our findings provide important clues for future in-depth studies on AVMC etiology.
Collapse
Affiliation(s)
- Yimin Xue
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Shirong Lin
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Mingguang Chen
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Jun Ke
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Jiuyun Zhang
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Qiaolian Fan
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Yimei Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Feng Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
8
|
He Y, Jia D, Chen W, Liu J, Liu C, Shi X. Discussion on the treatment of diabetic kidney disease based on the "gut-fat-kidney" axis. Int Urol Nephrol 2024:10.1007/s11255-024-04283-3. [PMID: 39549180 DOI: 10.1007/s11255-024-04283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Diabetic kidney disease is the main cause of end-stage renal disease, and its prevention and treatment are still a major clinical problem. The human intestine has a complex flora of hundreds of millions of microorganisms, and intestinal microorganisms, and their derivatives are closely related to renal inflammatory response, immune response, and material metabolism. Brown adipose tissue is the main part of adaptive thermogenesis. Recent studies have shown that activating brown fat by regulating intestinal flora has good curative effects in diabetic kidney disease-related diseases. As an emerging medical concept, the "gut-fat-kidney" axis has received increasing attention in diabetic kidney disease and related diseases. However, the specific mechanism involved needs further study. A new theoretical basis for the prevention and treatment of diabetic kidney disease is presented in this article, based on the "gut-fat-kidney" axis.
Collapse
Affiliation(s)
- Yaping He
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Dengke Jia
- Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Wenying Chen
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Juan Liu
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Congrong Liu
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xiaowei Shi
- Department of Endocrinology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730000, China.
| |
Collapse
|
9
|
He K, Cheng H, McClements DJ, Xu Z, Meng M, Zou Y, Chen G, Chen L. Utilization of diverse probiotics to create human health promoting fatty acids: A review. Food Chem 2024; 458:140180. [PMID: 38964111 DOI: 10.1016/j.foodchem.2024.140180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Many probiotics produce functional lipids with health-promoting properties, such as short-chain fatty acids, linoleic acid and omega-3 fatty acids. They have been shown to maintain gut health, strengthen the intestinal barrier, and have anti-inflammatory and antioxidant effects. In this article, we provide an up-to-date review of the various functional lipids produced by probiotics. These probiotics can be incorporated into foods, supplements, or pharmaceuticals to produce these functional lipids in the human colon, or they can be used in industrial biotechnology processes to generate functional lipids, which are then isolated and used as ingredients. We then highlight the different physiological functions for which they may be beneficial to human health, in addition to discussing some of the challenges of incorporating probiotics into commercial products and some potential solutions to address these challenges. Finally, we highlight the importance of testing the efficacy and safety of the new generation of probiotic-enhanced products, as well as the great potential for the marketization of related products.
Collapse
Affiliation(s)
- Kuang He
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Cheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd., Zhongshan 528400, China
| | - Yidong Zou
- Skystone Feed Co., Ltd., Wuxi 214258, China
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Lab of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Zhang Y, Song M, Fan J, Guo X, Tao S. Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. J Anim Sci Biotechnol 2024; 15:149. [PMID: 39506860 PMCID: PMC11542448 DOI: 10.1186/s40104-024-01102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024] Open
Abstract
Probiotic extracellular vesicles (pEVs) are biologically active nanoparticle structures that can regulate the intestinal tract through direct or indirect mechanisms. They enhance the intestinal barrier function in livestock and poultry and help alleviate intestinal diseases. The specific effects of pEVs depend on their internal functional components, including nucleic acids, proteins, lipids, and other substances. This paper presents a narrative review of the impact of pEVs on the intestinal barrier across various segments of the intestinal tract, exploring their mechanisms of action while highlighting the limitations of current research. Investigating the mechanisms through which probiotics operate via pEVs could deepen our understanding and provide a theoretical foundation for their application in livestock production.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Mengzhen Song
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Jinping Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Xuming Guo
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
11
|
Li Z, Zhou H, Liu W, Wu H, Li C, Lin F, Yan L, Huang C. Beneficial effects of duck-derived lactic acid bacteria on growth performance and meat quality through modulation of gut histomorphology and intestinal microflora in Muscovy ducks. Poult Sci 2024; 103:104195. [PMID: 39191001 PMCID: PMC11395760 DOI: 10.1016/j.psj.2024.104195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Duck-derived lactic acid bacteria (DDL) are a crucial beneficial bacterium in the intestines, contributing significantly to the health of ducks. However, the mechanism by which these DDL improves the growth performance and meat quality of Muscovy duck is not clear. In this study, A total of 800 male Muscovy ducks, initially weighing 50.15 ± 5.37 g, were randomly allocated into 4 groups, each with 4 replicates, consisting of 50 ducks per replicate. The control group consumed deep well water, while the experimental groups were given water supplemented with 1%, 3%, and 5% DDL (1.59×108 CFU/mL). The study duration was 70 d. The results revealed that Muscovy ducks drinks with the DDL significant reduced the feed conversion ratio (FCR) (P < 0.05) and increased the sweetness and richness of duck meat, among which the 5% drinking group has the most significant difference. Further study finding, the DDL significantly increased the height of villi, the ratio of villi height/crypt depth (V/C) on jejunum and colon, and the ratio of acidic mucus, neutral mucus, and glycogen to tissue area in both the duodenum and ileum of Muscovy ducks, and significantly decreased the tunel positive cells. Moreover, DDL significantly enhanced the abundance of genus beneficial bacterium (Bacillus, lentilactobacillus, Bacterodies, Lactobacillus) on duodenum and ileum. Additionally, drink with the DDL elevated the level of IgG in blood and the immune indices of the thymus and the fabricius bursa (P<0.05). Meanwhile, the meat composition analysis demonstrated that Muscovy duck drinks with the DDL raised the level of the saturated fatty acid rate(C12:0), and polyunsaturated fatty acid (C18:2 n-6 and C20:5 n-3,), and the monounsaturated (C18:1 n-7, and C18:1 n-9). Furthermore, correlation analysis finding that the growth performance of Muscovy ducks was positively correlated with the height of villi, the ratio of villi height/crypt depth (V/C), the abundance of genus beneficial bacterium. And the meat quality of Muscovy ducks has positively correlated with genus beneficial bacterium in intestinal, glutamic acid, saturated fatty acid rate and polyunsaturated fatty acid. This finding suggest DDL is an effective strategy to improve the growth performance and meat quality of Muscovy ducks by gut histomorphology and intestinal microflora.
Collapse
Affiliation(s)
- Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China.
| | - Haiou Zhou
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China
| | - Wenjin Liu
- Center for Animal Disease Control and Prevention of Changji Hui Autonomous Prefecture, Xinjiang, Changji 09942339853, China
| | - Huini Wu
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China
| | - Cuiting Li
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China
| | - Lu Yan
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China
| | - Chenyu Huang
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China
| |
Collapse
|
12
|
Mafaldo ÍM, Araújo LM, Cabral L, Barão CE, Noronha MF, Fink JR, de Albuquerque TMR, Dos Santos Lima M, Vidal H, Pimentel TC, Magnani M. Cassava (Manihot esculenta) Brazilian cultivars have different chemical compositions, present prebiotic potential, and beneficial effects on the colonic microbiota of celiac individuals. Food Res Int 2024; 195:114909. [PMID: 39277216 DOI: 10.1016/j.foodres.2024.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024]
Abstract
The purpose of this study was to investigate the potential prebiotic properties of cassava cultivars from Northeast [Doce mel and Ourinho (OUR)] and South [Baiana, and IPR-Upira (UPI)] of Brazil in in vitro fermentation systems. The cultivars were evaluated for their chemical composition, and, then, two cultivars were selected (OUR and UPI) and subjected to in vitro gastrointestinal digestion to assess the effects on probiotics Lacticaseibacillus casei, Lactobacillus acidophilus, and Bifidobacterium animalis growth, metabolic activity, and prebiotic activity scores. Finally, the impact of cassava cultivars on the fecal microbiota of celiac individuals was evaluated using the 16S rRNA gene. Cassava cultivars have variable amounts of fiber, resistant starch, fructooligosaccharides (FOS), organic acids, phenolic compounds, and sugars, with OUR and UPI cultivars standing out. OUR and UPI cultivars contributed to the increase in the proliferation rates of L. casei (0.04-0.19), L. acidophilus (0.34-0.27), and B. animalis (0.10-0.03), resulting in more significant effects than FOS, an established prebiotic compound. Also, the positive scores of prebiotic activities with probiotic strains indicate OUR and UPI's ability to stimulate beneficial bacteria while limiting enteric competitors selectively. In addition, OUR and UPI promoted increased relative abundance of Bifidobacteriaceae, Enterococcaceae, and Lactobacillaceae in the fecal microbiota of celiac individuals while decreased Lachnospirales, Bacteroidales, and Oscillospirales. The results show that cassava cultivars caused beneficial changes in the composition and metabolic activity of the human intestinal microbiota of celiacs. OUR and UPI cultivars from the Northeast and South of Brazil could be considered potential prebiotic ingredients for use in the formulation of functional foods and dietary supplements.
Collapse
Affiliation(s)
- Ísis Meireles Mafaldo
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Lais Matias Araújo
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Lucélia Cabral
- Institute of Biological Sciences, University of Brasília-UnB, Brasília, DF, Brazil
| | | | - Melline Fontes Noronha
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | | | - Marcos Dos Santos Lima
- Departament of Food Technology, Federal Institute of Sertao de Pernambuco, Petrolina, Pernambuco, Brazil
| | - Hubert Vidal
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
13
|
Aslam S, Qasim M, Noor F, Shahid M, Ashfaq UA, Munir S, Al-Harthi HF, Mashraqi MM, Waqas U, Khurshid M. Potential Target Metabolites From Gut Microbiota Against Hepatocellular Carcinoma: A Network Pharmacology and Molecular Docking Study. Int J Microbiol 2024; 2024:4286228. [PMID: 39502516 PMCID: PMC11537736 DOI: 10.1155/2024/4286228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, posing significant challenges and economic burdens on healthcare systems. Gut microbiota metabolites have shown promise in cancer treatment, but the specific active metabolites and their key targets remain unclear. This study employed a network pharmacology-based approach to identify potent metabolites of gut microbiota and their key targets. Active metabolites produced by gut microbiota were retrieved using the database gutMGene, and targets associated with these metabolites were identified using the Swiss Target Prediction tool. HCC-related targets were obtained from the GeneCards database, and overlapping targets were selected through a Venn diagram tool. An integrated metabolites-target-pathway network was analyzed to identify active inhibitors against HCC, including p-cresol glucuronide, secoisolariciresinol, glycocholic acid, enterodiol, and citric acid. Molecular docking tests were performed to validate the findings and assess the binding affinity of the metabolites with their target proteins. The study identified AKT1, EGFR, ALB, and TNF genes as potential therapeutic targets against hepatic cancer. The metabolites, p-cresol glucuronide, secoisolariciresinol, glycocholic acid, enterodiol, and citric acid, exhibited significant binding affinity with their respective target proteins. The study also revealed multiple signaling pathways and biological processes associated with the metabolites, demonstrating their preventive effect against HCC. This research utilizes a network pharmacology-based approach to identify potent metabolites of gut microbiota and their key targets for the treatment of HCC. The findings were validated through molecular docking tests, providing a foundation for future studies on anti-HCC metabolites and their mechanisms of action. Furthermore, this study offers insights into the development of novel anti-HCC drugs utilizing gut microbiota metabolites.
Collapse
Affiliation(s)
- Sehar Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Samman Munir
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Helal F. Al-Harthi
- Biology Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Najran University, Najran 61441, Saudi Arabia
| | - Umair Waqas
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
14
|
Zhang X, Wu M, Wang J, Chen J, Yu W, Pan H. [Research progress of probiotics regulating intestinal micro-ecological environment in obese patients after bariatric surgery]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:659-666. [PMID: 39289777 PMCID: PMC11528145 DOI: 10.3724/zdxbyxb-2024-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Bariatric surgery may cause intestinal microecological environment imbalance due to changes in gastrointestinal anatomy. Some patients may have compli-cations, even regain weight. Probiotics can act on intestinal mucosa, epithelium and gut-associated lymphoid tissue to improve the intestinal microecological environment of obese patients after bariatric surgery. Probiotics can promote the production of short-chain fatty acids, stimulate intestinal cells to release glucagon-like peptide-1, peptide tyrosine-tyrosine, insulin and other endocrine hormones, affect the function of the central nervous system through the gut-brain axis, make patients after bariatric surgery feel full, and reduce blood sugar at the same time. Probiotics can produce lactic acid, acetic acid and lactase, to inhibit the growth of harmful bacteria and to improve gastrointestinal symptoms of patients after bariatric surgery. Probiotics can activate the AMP-activated protein kinase signaling pathway, improve lipid metabolism, and promote the recovery of symptom indicators of nonalcoholic fatty liver disease after bariatric surgery. Probiotics can regulate the release of neurotransmitters or metabolites by the microbiota through the gut-brain axis to affect brain activity and behavior, thus helping patients improve negative emotions after bariatric surgery. This article describes the intestinal microecological environment of obese patients and mechanism of the change after bariatric surgery and summarizes the effects and possible mechanisms of probiotics in improving the intestinal microecological environment of obese patients after bariatric surgery, to provide references for promoting the clinical application of probiotics.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Mizhi Wu
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jianan Wang
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jionghuang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Weihua Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Hongying Pan
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
15
|
Jeon H, Lee D, Kim JY, Shim JJ, Lee JH. Limosilactobacillus reuteri HY7503 and Its Cellular Proteins Alleviate Endothelial Dysfunction by Increasing Nitric Oxide Production and Regulating Cell Adhesion Molecule Levels. Int J Mol Sci 2024; 25:11326. [PMID: 39457107 PMCID: PMC11509054 DOI: 10.3390/ijms252011326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Endothelial dysfunction, which is marked by a reduction in nitric oxide (NO) production or an imbalance in relaxing and contracting factor levels, exacerbates atherosclerosis by promoting the production of cell adhesion molecules and cytokines. This study aimed to investigate the effects of Limosilactobacillus reuteri HY7503, a novel probiotic isolated from raw milk, on endothelial dysfunction. Five lactic acid bacterial strains were screened for their antioxidant, anti-inflammatory, and endothelium-protective properties; L. reuteri HY7503 had the most potent effect. In a mouse model of angiotensin II-induced endothelial dysfunction, L. reuteri HY7503 reduced vascular thickening (19.78%), increased serum NO levels (226.70%), upregulated endothelial NO synthase (eNOS) expression in the aortic tissue, and decreased levels of cell adhesion molecules (intercellular adhesion molecule-1 [ICAM-1] and vascular cell adhesion molecule-1 [VCAM-1]) and serum cytokines (tumor necrosis factor-alpha [TNF-α] and interleukin-6 [IL-6]). In TNF-α-treated human umbilical vein endothelial cells (HUVECs), L. reuteri HY7503 enhanced NO production and reduced cell adhesion molecule levels. In HUVECs, surface-layer proteins (SLPs) were more effective than extracellular vesicles (exosomes) in increasing NO production and decreasing cell adhesion molecule levels. These findings suggested that L. reuteri HY7503 may serve as a functional probiotic that alleviates endothelial dysfunction.
Collapse
Affiliation(s)
| | | | - Joo-Yun Kim
- R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Gyeonggi-do, Republic of Korea; (H.J.); (D.L.); (J.-J.S.); (J.-H.L.)
| | | | | |
Collapse
|
16
|
Tang E, Lin H, Yang Y, Xu J, Lin B, Yang Y, Huang Z, Wu X. Dietary astragalin confers protection against lipopolysaccharide-induced intestinal mucosal barrier damage through mitigating inflammation and modulating intestinal microbiota. Front Nutr 2024; 11:1481203. [PMID: 39421621 PMCID: PMC11483603 DOI: 10.3389/fnut.2024.1481203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction The intestinal mucosal barrier (IMB) damage is intricately linked with the onset of numerous intestinal diseases. Astragalin (AS), a flavonoid present in numerous edible plants, exhibits notable antioxidant and anti-inflammatory properties, demonstrating a promising impact on certain intestinal ailments. In this study, our objective was to investigate the protective effects of AS and elucidate the underlying mechanisms by which it mitigates lipopolysaccharide (LPS)-induced damage to the IMB in mice. Methods During the experimental period, mice were subjected to a 7-day regimen of AS treatment, followed by LPS injection to induce IMB damage. Subsequently, a comprehensive evaluation of relevant biological indicators was conducted, including intestinal pathological analysis, serum inflammatory factors, intestinal tight junction proteins, and intestinal microbiota composition. Results Our results suggested that AS treatment significantly bolstered IMB function. This was evidenced by the enhanced morphology of the small intestine and the elevated expression of tight junction proteins, including ZO-1 and Claudin-1, in addition to increased levels of MUC2 mucin. Moreover, the administration of AS demonstrated a mitigating effect on intestinal inflammation, as indicated by the reduced plasma concentrations of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α. Furthermore, AS treatment exerted a positive influence on the composition of the gut microbiota, primarily by augmenting the relative abundance of beneficial bacteria (including Lachnospiracea and Lactobacillus murinus), while simultaneously reducing the prevalence of the harmful bacterium Mucispirillum schaedleri. Conclusion AS mitigates LPS-induced IMB damage via mitigating inflammation and modulating intestinal microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinlan Wu
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Bendinelli P, De Noni I, Cattaneo S, Silvetti T, Brasca M, Piazzalunga F, Donetti E, Ferraretto A. Surface layer proteins from Lactobacillus helveticus ATCC® 15009™ affect the gut barrier morphology and function. Tissue Barriers 2024; 12:2289838. [PMID: 38059583 PMCID: PMC11583618 DOI: 10.1080/21688370.2023.2289838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Paraprobiotics and postbiotics represent a valid alternative to probiotic strains for ameliorating and preserving a healthy intestinal epithelial barrier (IEB). The present study investigated the effects of surface layer proteins (S-layer) of the dairy strain Lactobacillus helveticus ATCC® 15009™ (Lb ATCC® 15009™), as paraprobiotic, on the morpho-functional modulation of IEB in comparison to live or heat-inactivated Lb ATCC® 15009™ in an in vitro co-culture of Caco-2/HT-29 70/30 cells. Live or heat-inactivated Lb ATCC® 15009™ negatively affected transepithelial electrical resistance (TEER) and paracellular permeability, and impaired the distribution of Claudin-1, a tight junction (TJ) transmembrane protein, as detected by immunofluorescence (IF). Conversely, the addition of the S-layer improved TEER and decreased permeability in physiological conditions in co-cultures with basal TEER lower than 50 ohmcm2, indicative of a more permeable physiological IEB known as leaky gut. Transmission electron microscopy (TEM) and IF analyses suggested that the S-layer induces a structural TJ rearrangement and desmosomes' formation. S-layer also restored TEER and permeability in the presence of LPS, but not of a mixture of pro-inflammatory cytokines (TNF-α plus IFN-γ). IF analyses showed an increase in Claudin-1 staining when LPS and S-layer were co-administered with respect to LPS alone; in addition, the S-layer counteracted the reduction of alkaline phosphatase detoxification activity and the enhancement of pro-inflammatory interleukin-8 release both induced by LPS. Altogether, these data corroborate a paraprobiotic role of S-layer from Lb ATCC® 15009™ as a possible candidate for therapeutic and prophylactic uses in conditions related to gastrointestinal health and correlated with extra-intestinal disorders.
Collapse
Affiliation(s)
- Paola Bendinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stefano Cattaneo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Tiziana Silvetti
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Milan, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Milan, Italy
| | | | - Elena Donetti
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Anita Ferraretto
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Galeazzi-Sant’Ambrogio, Milan, Italy
| |
Collapse
|
18
|
Kiššová Z, Schusterová P, Mudroňová D, Novotný J, Tkáčiková Ľ. Exopolysaccharides from Limosilactobacillus reuteri: their influence on in vitro activation of porcine monocyte-derived dendritic cells - brief report. Vet Res Commun 2024; 48:3315-3321. [PMID: 38963469 PMCID: PMC11442659 DOI: 10.1007/s11259-024-10445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
The aim of this study was to evaluate the immunomodulatory potential of two α-D-glucans from Limosilactobacillus reuteri L26 Biocenol™ (EPS-L26) and L. reuteri DSM17938 (EPS-DSM17938), with respect to their influence on in vitro activation of porcine dendritic cells (DCs). We used immature DCs differentiated from porcine blood monocytes under in vitro conditions. Based on the surface expression of MHC II and costimulatory CD80/86 molecules, we showed that both used EPSs favour the maturation of monocyte-derived DCs (MoDCs) similarly to the commonly used stimulant tumour necrosis factor α (TNF-α). In contrast to TNF-α stimulation, MoDCs treated with both used EPSs significantly up-regulated the mRNA levels not only for interleukin (IL)-10 (P < 0.0001 for EPS-DSM17938; P = 0.0037 for EPS-L26), but also for IL-12 (P = 0.0176 for EPS-DSM17938; P = 0.0019 for EPS-L26). These cytokines are known to regulate T-cell kinetics and play a key role in maintaining immune homeostasis. Interestingly, only relatively linear α-D-glucan (EPS-DSM17938) significantly increased gene expression of the major pro-inflammatory cytokine IL-1β (P = 0.0011) and the "SOS" cytokine IL-6 (P = 0.0127). However, it is important to highlight the need for further studies aimed at cytokine kinetics in DCs, as well as a co-culture study with allogenic T-lymphocytes.
Collapse
Affiliation(s)
- Zuzana Kiššová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81, Košice, Slovakia
| | - Petra Schusterová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81, Košice, Slovakia.
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81, Košice, Slovakia
| | - Jaroslav Novotný
- Clinic of Swine, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81, Košice, Slovakia
| | - Ľudmila Tkáčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81, Košice, Slovakia
| |
Collapse
|
19
|
Chen Y, Li Y, Li X, Fang Q, Li F, Chen S, Chen W. Indole‑3‑propionic acid alleviates intestinal epithelial cell injury via regulation of the TLR4/NF‑κB pathway to improve intestinal barrier function. Mol Med Rep 2024; 30:189. [PMID: 39219265 PMCID: PMC11350629 DOI: 10.3892/mmr.2024.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Indole‑3‑propionic acid (IPA), a product of Clostridium sporogenes metabolism, has been shown to improve intestinal barrier function. In the present study, in vitro experiments using NCM460 human colonic epithelial cells were performed to investigate how IPA alleviates lipopolysaccharide (LPS)‑induced intestinal epithelial cell injury, with the aim of improving intestinal barrier function. In addition, the underlying mechanism was explored. NCM460 cell viability and apoptosis were measured using the Cell Counting Kit‑8 assay and flow cytometry, respectively. The integrity of the intestinal epithelial barrier was evaluated by measuring transepithelial electrical resistance (TEER). The underlying molecular mechanism was explored using western blotting, immunofluorescence staining, a dual luciferase reporter gene assay and quantitative PCR. The results showed that 10 µg/ml LPS induced the most prominent decrease in cell viability after 24 h of treatment. By contrast, IPA effectively inhibited LPS‑induced apoptosis in the intestinal epithelial cells. Additionally, >0.5 mM IPA improved intestinal barrier function by increasing TEER and upregulating the expression of tight junction proteins (zonula occludens‑1, claudin‑1 and occludin). Furthermore, IPA inhibited the release of pro‑inflammatory cytokines (IL‑1β, IL‑6 and TNF‑α) in a dose‑dependent manner and this was achieved via regulation of the Toll‑like receptor 4 (TLR4)/myeloid differentiation factor 88/NF‑κB and TLR4/TRIF/NF‑κB pathways. In conclusion, IPA may alleviate LPS‑induced inflammatory injury in human colonic epithelial cells. Taken together, these results suggest that IPA may be a potential therapeutic approach for the management of diseases characterized by LPS‑induced intestinal epithelial cell injury and intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Ying Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Yu Li
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Xiaojuan Li
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Qingqing Fang
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Feng Li
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shiyao Chen
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai 201100, P.R. China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
20
|
Zheng Q, Chia SL, Saad N, Song AAL, Loh TC, Foo HL. Different Combinations of Nitrogen and Carbon Sources Influence the Growth and Postbiotic Metabolite Characteristics of Lactiplantibacillus plantarum Strains Isolated from Malaysian Foods. Foods 2024; 13:3123. [PMID: 39410157 PMCID: PMC11475368 DOI: 10.3390/foods13193123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Postbiotic metabolites produced by Lactiplantibacillus plantarum strains isolated from Malaysian food have been extensively reported for their positive effects on health. Understanding the effects of different combinations of carbon and nitrogen sources on the growth and corresponding characteristics of postbiotic metabolites produced by different strains of L. plantarum is important for various applications. Hence, the effects of different combinations of carbon (glucose, lactose, sucrose and dextrose) and nitrogen (X-SEED Kat, X-SEED Peptone, X-SEED Nucleo Advanced, Nucel875 MG, FM888 and FM902) sources on the growth of six strains of L. plantarum (RG11, RG14, RI11, RS5, TL1 and UL4) and the functional characteristics (bacteriocin inhibitory activity, antioxidant activity and lactic acid concentration) of their respective postbiotic metabolites were investigated in this study. UL4 produced the highest viable cell population with sucrose and Nucel875 nitrogen source. The UL4 strain also produced the strongest bacteriocin inhibitory activity with dextrose and FM888 nitrogen source. In comparison, the RI11 strain produced the highest lactic acid concentration with dextrose and Nucel875 nitrogen source and the highest reducing power of RS5 and TL1 postbiotic metabolites was achieved with MRS medium. In the combination of sucrose and X-Seed KAT nitrogen source, RG14 produce the highest hydroxyl radical scavenging activity. The effects of different combinations of carbon and nitrogen sources on the viable cell population of L. plantarum strains and the respective functional characteristics of postbiotic metabolites were strain dependent. The current study also revealed that fermentation media were an important factor that greatly impacted the functionalities of postbiotic metabolites due to the presence of various bioactive compounds that contributed to high antioxidant and antimicrobial properties. The results of this study will facilitate the subsequent medium design and optimisation for the development and production of specific postbiotic metabolites produced by the respective L. plantarum strain for their applications in various industries.
Collapse
Affiliation(s)
- Qinri Zheng
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Suet Lin Chia
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.L.C.); (N.S.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.L.C.); (N.S.)
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Research Laboratory of Probiotics and Cancer Therapeutics, UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Obisesan AO, Abiodun OO, Ayeni FA. Lactic acid bacteria isolated from women' breast milk and infants' faeces have appreciable immunogenic and probiotic potentials against diarrheagenic E. coli strains. BMC Microbiol 2024; 24:350. [PMID: 39289612 PMCID: PMC11406810 DOI: 10.1186/s12866-024-03502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Diarrheal diseases remain the leading cause of high mortality among the infants, particularly in the developing countries; Probiotic intervention for diarrhea has been an ongoing novel approach to diarrheal prevention and treatment. This study aims to characterize immunogenic and probiotic properties of lactic acid bacteria (LAB) isolated from human breast milk and neonates' faeces. The LAB isolates from 16 mothers' breast milk and 13 infants' faeces were screened and identified by 16 S rRNA gene partial sequencing. Their antimicrobial activities against 5 strains of diarrheagenic Escherichia coli were tested. Organic acids production was quantified by HPLC, and antibiotic resistance pattern were determined by VITEK®. Autoaggregation, co-aggregation and hydrophobicity properties were assessed by UV spectrophotometry and immunomodulatory effect was determined in mouse model. Ninety-three LAB of five genera were identified. The most abundant species was Lactiplantibacillus plantarum with inhibition zones ranged from 8.0 to 25.0 ± 1 mm. Lacticaseibacillus rhamnosus A012 had 76.8 mg/mL lactic acid, (the highest concentration), was susceptible to all antibiotics tested. L. plantarum A011 and L. rhamnosus A012 were highly resistance to gastrointestinal conditions. L. rhamnosus A012 produced hydrophobicity of 25.01% (n-hexadecane), 15.4% (xylene) and its autoaggregation was 32.52%. L. rhamnosus A012 and L. plantarum A011 exert immunomodulatory effects on the cyclophosphamide-treated mice by upregulating anti-inflammatory cytokine and downregulating proinflammatory cytokines. Lactobacillus sp. demonstrated good probiotic and immunomodulatory properties. Further works are ongoing on the practical use of the strains.
Collapse
Affiliation(s)
- Abiola O Obisesan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Pharmaceutical Microbiology and Biotechnology, College of Pharmacy, Afe Babalola University, Ado Ekiti, Nigeria
| | - Oyindamola O Abiodun
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Funmilola A Ayeni
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA.
| |
Collapse
|
22
|
Singh S, Kriti M, Catanzaro R, Marotta F, Malvi M, Jain A, Verma V, Nagpal R, Tiwari R, Kumar M. Deciphering the Gut–Liver Axis: A Comprehensive Scientific Review of Non-Alcoholic Fatty Liver Disease. LIVERS 2024; 4:435-454. [DOI: 10.3390/livers4030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health issue. The condition is closely linked to metabolic dysfunctions such as obesity and type 2 diabetes. The gut–liver axis, a bidirectional communication pathway between the liver and the gut, plays a crucial role in the pathogenesis of NAFLD. This review delves into the mechanisms underlying the gut–liver axis, exploring the influence of gut microbiota, intestinal permeability, and inflammatory pathways. This review also explores the potential therapeutic strategies centered on modulating gut microbiota such as fecal microbiota transplantation; phage therapy; and the use of specific probiotics, prebiotics, and postbiotics in managing NAFLD. By understanding these interactions, we can better comprehend the development and advancement of NAFLD and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Mona Kriti
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Roberto Catanzaro
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology Service, University Hospital Policlinico “G. Rodolico”, University of Catania, 95123 Catania, Italy
| | | | - Mustafa Malvi
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Ajay Jain
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Rajnarayan Tiwari
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| |
Collapse
|
23
|
Yue SY, Li WY, Xu S, Bai XX, Xu WL, Wang X, Ding HK, Chen J, Du HX, Xu LF, Niu D, Liang CZ. Causality investigation among gut microbiota, immune cells, and prostate diseases: a Mendelian randomization study. Front Microbiol 2024; 15:1445304. [PMID: 39323879 PMCID: PMC11422081 DOI: 10.3389/fmicb.2024.1445304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Background The gut microbiota has been demonstrated to have a significant role in the pathogenesis and progression of a variety of diseases, including prostate cancer, prostatitis, and benign prostatic hyperplasia. Potential links between prostate diseases, immune cells and the gut microbiota have not been adequately investigated. Methods MR studies were conducted to estimate the effects of instrumental variables obtained from genome-wide association studies (GWASs) of 196 gut microbial taxa and 731 immune cells on the risk of prostate diseases. The primary method for analysing causal relationships was inverse variance-weighted (IVW) analysis, and the MR results were validated through various sensitivity analyses. Results MR analysis revealed that 28 gut microbiome taxa and 75 immune cell types were significantly associated with prostate diseases. Furthermore, reverse MR analysis did not support a causal relationship between prostate diseases and the intestinal microbiota or immune cells. Finally, the results of the mediation analysis indicated that Secreting Treg % CD4 Treg, Activated & resting Treg % CD4 Treg, and Mo MDSC AC inhibited the role of the class Mollicutes in reducing the risk of PCa. In prostatitis, CD8+ T cells on EM CD8br hinder the increased risk associated with the genus Eubacterium nodatum group. Interestingly, in BPH, CD28- CD25++CD8br AC and CD16-CD56 on HLA DR+ NK promoted the role of the genus Dorea in reducing the risk of BPH. Conclusion This study highlights the complex relationships among the gut microbiota, immune cells and prostate diseases. The involvement of the gut microbiota in regulating immune cells to impact prostate diseases could provide novel methods and concepts for its therapy and management.
Collapse
Affiliation(s)
- Shao-Yu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Wei-Yi Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shun Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiao-Xin Bai
- Department of Infectious Disease, The Second People’s Hospital of Fuyang City, Fuyang, China
| | - Wen-Long Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xu Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - He-Kang Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ling-Fan Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Di Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Giri SS, Kim HJ, Jung WJ, Bin Lee S, Joo SJ, Gupta SK, Park SC. Probiotics in addressing heavy metal toxicities in fish farming: Current progress and perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116755. [PMID: 39053044 DOI: 10.1016/j.ecoenv.2024.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Heavy metal contamination of aquatic environments adversely affects the health of aquatic organisms and consumption of fish contaminated with heavy metals poses serious health risks to humans. Among various strategies, probiotics (living microorganisms known to have beneficial effects on the host), which have been extensively applied in the aquaculture industry, could be helpful for heavy metal detoxification and remediation. Several probiotics, including Lactobacillus strains, exhibit heavy metal binding, high heavy metal tolerance, and other beneficial characteristics for the host. Notably, numerous probiotics have been reported to bind heavy metals and excrete them from the host. Various probiotic strains (Lactobacillus, Bacillus, Lactococcus, etc.) show beneficial effects in alleviating heavy metal toxicity in cultured fish species. Certain probiotic bacteria reduce the absorption and bioavailability of heavy metals by enhancing heavy metal detoxification and sequestration while preserving gut barrier function. This review summarises the toxic effects of selected heavy metals on the health of farmed fish and discusses the role of probiotic strains in remediating the consequential exposure-induced immune toxicity and oxidative stress. Moreover, we discussed the protective strategies of probiotics against heavy metal accumulation in various tissues and gut dysbiosis in fish to alleviate heavy metal toxicity in fish farming, thereby promoting a sustainable blue economy worldwide.
Collapse
Affiliation(s)
- Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea.
| | - Hyoun Joong Kim
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, Gunsan 54150, South Korea
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Su Jin Joo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Sanjay Kumar Gupta
- ICAR, Indian Institute of Agricultural Biotechnology, Ranchi 834003, India.
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
25
|
Xiao L, Zhao X, Lin L, Mahsa GC, Ma K, Zhang C, Rui X, Li W. Contribution of Surface Adhesins of Lacticaseibacillus paracasei S-NB to Its Intestinal Adhesion and Colonization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18986-19002. [PMID: 39140151 DOI: 10.1021/acs.jafc.4c04256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The intestinal retention and persistence of lactic acid bacteria (LAB) are strain-specific and affected by the bacterial surface components. However, the contribution of surface adhesins of LAB to intestinal adhesion and colonization remains unclear. In the present study, seven gene knockout mutants (genes related to surface adhesin synthesis) of Lacticaseibacillus paracasei S-NB were derived based on the Cre-lox-based recombination system. Results showed that the capsule layer appeared thinner in the cell wall of S-NBΔ7576, S-NBΔdlt, and S-NBΔsrtA mutants when compared with the wild-type (WT) S-NB. The effects of S-NB_7576 (wzd and wze genes, responsible for capsular polysaccharide synthesis) and S-NB_srtA (sortase A) mutation on the hydrophobicity, surface charge, and adhesion ability seem to vary strongly among seven mutant strains. In vivo colonization experiments showed a decrease in the colonization numbers of S-NBΔ7576 and S-NBΔsrtA in both the ileal and colon lumen from 2 to 8 days when compared with those of the WT S-NB. In conclusion, the synthesis of capsular polysaccharides and the transport of surface proteins are closely related to the adhesion ability and intestinal colonization of L. paracasei S-NB.
Collapse
Affiliation(s)
- Luyao Xiao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaogan Zhao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Long Lin
- Key Laboratory of Biological Interactions and Crop Health, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ghahvechi Chaeipeima Mahsa
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kai Ma
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China
| | - Changliang Zhang
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
26
|
Chiba M, Miri S, Yousuf B, Esmail GA, Leao L, Li Y, Hincke M, Minic Z, Mottawea W, Hammami R. Dual bacteriocin and extracellular vesicle-mediated inhibition of Campylobacter jejuni by the potential probiotic candidate Ligilactobacillus salivarius UO.C249. Appl Environ Microbiol 2024; 90:e0084524. [PMID: 39078127 PMCID: PMC11337818 DOI: 10.1128/aem.00845-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Campylobacter jejuni (C. jejuni) is one of the most common causes of foodborne infections worldwide and a major contributor to diarrheal diseases. This study aimed to explore the ability of commensal gut bacteria to control C. jejuni infection. Bacterial strains from the intestinal mucosa of broilers were screened in vitro against C. jejuni ATCC BAA1153. The cell-free supernatant (CFS) of Ligilactobacillus salivarius UO.C249 showed potent dose-dependent antimicrobial activity against the pathogen, likely due to the presence of bacteriocin-like moieties, as confirmed by protease treatment. Genome and exoproteome analyses revealed the presence of known bacteriocins, including Abp118. The genome of Lg. salivarius UO.C249 harbors a 1.8-Mb chromosome and a 203-kb megaplasmid. The strain was susceptible to several antibiotics and had a high survival rate in the simulated chicken gastrointestinal tract (GIT). Post-protease treatment revealed residual inhibitory activity, suggesting alternative antimicrobial mechanisms. Short-chain fatty acid (SCFA) quantification confirmed non-inhibitory levels of acetic (24.4 ± 1.2 mM), isovaleric (34 ± 1.0 µM), and butyric (32 ± 2.5 µM) acids. Interestingly, extracellular vesicles (EVs) isolated from the CFS of Lg. salivarius UO.C249 were found to inhibit C. jejuni ATCC BAA-1153. Proteome profiling of these EVs revealed the presence of unique proteins distinct from bacteriocins identified in CFS. The majority of the identified proteins in EVs are located in the membrane and play roles in transmembrane transport and peptidoglycan degradation, peptidase, proteolysis, and hydrolysis. These findings suggest that although bacteriocins are a primary antimicrobial mechanism, EV production also contributes to the inhibitory activity of Lg. salivarius UO.C249 against C. jejuni. IMPORTANCE Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and a global public health concern. The increasing antibiotic resistance and lack of effective alternatives in livestock production pose serious challenges for controlling C. jejuni infections. Therefore, alternative strategies are needed to control this pathogen, especially in the poultry industry where it is prevalent and can be transmitted to humans through contaminated food products. In this study, Ligilactobacillus salivarius UO.C249 isolated from broiler intestinal mucosa inhibited C. jejuni and exhibited important probiotic features. Beyond bacteriocins, Lg. salivarius UO.C249 secretes antimicrobial extracellular vesicles (EVs) with a unique protein set distinct from bacteriocins that are involved in transmembrane transport and peptidoglycan degradation. Our findings suggest that beyond bacteriocins, EV production is also a distinct inhibitory signaling mechanism used by Lg. salivarius UO.C249 to control C. jejuni. These findings hold promise for the application of probiotic EVs for pathogen control.
Collapse
Affiliation(s)
- Mariem Chiba
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Basit Yousuf
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Galal Ali Esmail
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Luana Leao
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Yingxi Li
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Ren Y, Sun Y, Liao YY, Wang S, Liu Q, Duan CY, Sun L, Li XY, Yuan JL. Mechanisms of action and applications of Polygonatum sibiricum polysaccharide at the intestinal mucosa barrier: a review. Front Pharmacol 2024; 15:1421607. [PMID: 39224782 PMCID: PMC11366640 DOI: 10.3389/fphar.2024.1421607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
As a medicinal and edible homologous Chinese herb, Polygonatum sibiricum has been used as a primary ingredient in various functional and medicinal products. Damage to the intestinal mucosal barrier can lead to or worsen conditions such as type 2 diabetes and Alzheimer's disease. Traditional Chinese medicine and its bioactive components can help prevent and manage these conditions by restoring the integrity of the intestinal mucosal barrier. This review delves into the mode of action of P. sibiricum polysaccharide in disease prevention and management through the restoration of the intestinal barrier. Polysaccharide from P. sibiricum effectively treats conditions by repairing the intestinal mucosal barrier, offering insights for treating complex diseases and supporting the application of P. sibiricum in clinical settings.
Collapse
Affiliation(s)
- Yu Ren
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yu-Ying Liao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qian Liu
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chun-Yan Duan
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lan Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiao-Ya Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jia-Li Yuan
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
28
|
Barbero-Herranz R, Garriga-García M, Moreno-Blanco A, Palacios E, Ruiz-Sala P, Vicente-Santamaría S, Stanescu S, Belanger-Quintana A, Pintos-Morell G, Arconada B, del Campo R, Avendaño-Ortiz J. The Role of the Gut Microbiota in Sanfilippo Syndrome's Physiopathology: An Approach in Two Affected Siblings. Int J Mol Sci 2024; 25:8856. [PMID: 39201540 PMCID: PMC11354487 DOI: 10.3390/ijms25168856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Sanfilippo syndrome, or mucopolysaccharidosis type III (MPS III), is a rare lysosomal disease caused by congenital enzymatic deficiencies in heparan sulfate (HS) degradation, leading to organ dysfunction. The most severe hallmark of MPS III comprises neurological alterations, although gastrointestinal symptoms (GISs) have also been shown to be relevant in many patients. Here, we explored the contribution of the gut microbiota to MPS III GISs. We analyzed the composition and functionality of the gut microbiota in two MPS III siblings with the same mutation (c.544C > T, c.1080delC, in the SGSH gene) and the same diet, but with differences in their GISs, including recurrent diarrhea in one of them. Using 16S sequencing, we observed that the MPS III patients exhibited decreased alpha diversity and a lower abundance of Lachnospiraceae and Bifidobacteriaceae accompanied by a higher abundance of the Ruminococcaceae and Rikenellaceae families than the healthy control subjects. Comparing siblings, we found an increased abundance of Bacteroidaceae and a lower abundance of Ruminococcaceae and Akkermansiaceae in the GIS-free patient. This patient also had a higher relative abundance of Sus genes (SusA, SusB, SusE, and SusG) involved in glycosaminoglycan metabolism. We found higher HS levels in the stool of the two MPS III patients than in healthy volunteers, particularly in the patient with GISs. Functionally, whole fecal metabolites from the patient with GISs induced oxidative stress in vitro in healthy monocytes. Finally, the Bacteroides thetaiotaomicron strain isolated from MPS III stool samples exhibited HS degradation ability. Overall, our results reveal different microbiota compositions and functionalities in MPS III siblings, who exhibited differential gastrointestinal symptomatology. Our study may serve as a gateway to explore the impact of the gut microbiota and its potential to enhance the quality of life in Sanfilippo syndrome patients.
Collapse
Affiliation(s)
- Raquel Barbero-Herranz
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.B.-H.); (A.M.-B.); (E.P.)
| | - María Garriga-García
- Endocrinology and Nutrition Service, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.G.-G.); (S.V.-S.)
| | - Ana Moreno-Blanco
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.B.-H.); (A.M.-B.); (E.P.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther Palacios
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.B.-H.); (A.M.-B.); (E.P.)
| | - Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Autonomous University of Madrid (UAM), IdiPaz, 28049 Madrid, Spain;
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Saioa Vicente-Santamaría
- Endocrinology and Nutrition Service, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.G.-G.); (S.V.-S.)
| | - Sinziana Stanescu
- Unidad de Enfermedades Metabólicas Hospital, CSUR, MetabERN, Pediatric Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (S.S.); (A.B.-Q.)
| | - Amaya Belanger-Quintana
- Unidad de Enfermedades Metabólicas Hospital, CSUR, MetabERN, Pediatric Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (S.S.); (A.B.-Q.)
| | - Guillem Pintos-Morell
- Vall d’Hebron Institut de Recerca (VHIR), Unidad de Enfermedades Raras, Hospital Vall d’Hebron Barcelona Hospital Campus, Comité Médico Consultivo MPS-Lisosomales, 08035 Barcelona, Spain;
| | - Beatriz Arconada
- Federación Española de Enfermedades Raras (FEDER), 28009 Madrid, Spain;
| | - Rosa del Campo
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.B.-H.); (A.M.-B.); (E.P.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University, Villanueva de la Cañada, 28691 Madrid, Spain
| | - José Avendaño-Ortiz
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.B.-H.); (A.M.-B.); (E.P.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
29
|
Jia Y, Liu Y, Wu Y, Feng C, Zhang H, Ren F, Liu H. The regulation of glucose and lipid metabolism through the interaction of dietary polyphenols and polysaccharides via the gut microbiota pathway. Food Funct 2024; 15:8200-8216. [PMID: 39039938 DOI: 10.1039/d4fo00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The interaction of polyphenols-polysaccharides-gut microbiota to promote health benefits has become a hotspot and direction for precise dietary intervention strategies and foundational research in biomedicine. Both dietary polyphenols and polysaccharides possess biological activities that regulate body health. Single components, due to their inherent structure and physicochemical properties, have a low bioavailability, thus are unable to exert their optimal effects. The compound structure formed by the interaction of polyphenols and polysaccharides can enhance their functional properties, thereby more effectively promoting health benefits and preventing diseases. This review primarily focuses on the roles played by polyphenols and polysaccharides in regulating glucose and lipid metabolism, the improvement of glucose and lipid metabolism through the gut microbial pathway by polyphenols and polysaccharides, and the mechanisms by which polyphenols and polysaccharides interact to regulate glucose and lipid metabolism. A considerable amount of preliminary research has confirmed the regulatory effects of plant polyphenols and polysaccharides on glucose and lipid metabolism. However, studies on the combined effects and mechanisms of these two components are still very limited. This review aims to provide a reference for subsequent research on their interactions and changes in functional properties.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
30
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
31
|
Wang J, Mei L, Hao Y, Xu Y, Yang Q, Dai Z, Yang Y, Wu Z, Ji Y. Contemporary Perspectives on the Role of Vitamin D in Enhancing Gut Health and Its Implications for Preventing and Managing Intestinal Diseases. Nutrients 2024; 16:2352. [PMID: 39064795 PMCID: PMC11279818 DOI: 10.3390/nu16142352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D, a crucial fat-soluble vitamin, is primarily synthesized in the skin upon exposure to ultraviolet radiation and is widely recognized as a bone-associated hormone. However, recent scientific advancements have unveiled its intricate association with gut health. The intestinal barrier serves as a vital component, safeguarding the intestinal milieu and maintaining overall homeostasis. Deficiencies in vitamin D have been implicated in altering the gut microbiome composition, compromising the integrity of the intestinal mucosal barrier, and predisposing individuals to various intestinal pathologies. Vitamin D exerts its regulatory function by binding to vitamin D receptors (VDR) present in immune cells, thereby modulating the production of pro-inflammatory cytokines and influencing the intestinal barrier function. Notably, numerous studies have reported lower serum vitamin D levels among patients suffering from intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, and celiac disease, highlighting the growing significance of vitamin D in gut health maintenance. This comprehensive review delves into the latest advancements in understanding the mechanistic role of vitamin D in modulating the gut microbiome and intestinal barrier function, emphasizing its pivotal role in immune regulation. Furthermore, we consolidate and present relevant findings pertaining to the therapeutic potential of vitamin D in the management of intestinal diseases.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, Peking University, Beijing 100083, China;
| | - Qing Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| |
Collapse
|
32
|
Thapa D, Kumar V, Naik B, Kumar V, Gupta AK, Mohanta YK, Mishra B, Rustagi S. Harnessing probiotic foods: managing cancer through gut health. Food Sci Biotechnol 2024; 33:2141-2160. [PMID: 39130664 PMCID: PMC11315834 DOI: 10.1007/s10068-024-01638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024] Open
Abstract
One of the greatest threats to global health is cancer. Probiotic foods have been shown to have therapeutic promise in the management of cancer, even though traditional treatments such as radiation therapy, chemotherapy, and surgery are still essential. The generation of anticarcinogenic compounds, immune system stimulation, and gut microbiota regulation are a few ways that probiotics when taken in sufficient quantities, might help health. The purpose of this review is to examine the therapeutic potential of probiotic foods in the management of cancer. Research suggests that certain strains of probiotics have anticancer effects by preventing the growth of cancer cells, triggering apoptosis, and reducing angiogenesis in new tumors. Probiotics have shown promise in mitigating treatment-related adverse effects, such as diarrhea, mucositis, and immunosuppression caused by chemotherapy, improving the general quality of life for cancer patients. However, there are several factors, such as patient-specific features, cancer subtype, and probiotic strain type and dosage, which affect how effective probiotic therapies are in managing cancer. More research is necessary to find the long-term safety and efficacy characteristics of probiotics as well as to clarify the best ways to incorporate them into current cancer treatment methods. Graphical abstract Graphical representation showing the role of probiotic foods in cancer management.
Collapse
Affiliation(s)
- Devika Thapa
- Department of Food Science and Technology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand 248140 India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand 248002 India
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand 248140 India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, Meghalaya 793101 India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gandipet, Hyderabad, Telangana 500075 India
| | - Sarvesh Rustagi
- Department of Food Technology, SALS, Uttaranchal University, Dehradun, 248007 Uttarakhand India
| |
Collapse
|
33
|
Fan X, Lu Q, Jia Q, Li L, Cao C, Wu Z, Liao M. Prevotella histicola ameliorates DSS-induced colitis by inhibiting IRE1α-JNK pathway of ER stress and NF-κB signaling. Int Immunopharmacol 2024; 135:112285. [PMID: 38762922 DOI: 10.1016/j.intimp.2024.112285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent gastrointestinal inflammation regulated by intricate mechanisms. Recently, prebiotics is considered as promising nutritional strategy for the prevention and treatment of IBD. Prevotella histicola (P. histicola), an emerging probiotic, possesses apparently anti-inflammatory bioactivity. However, the role and underlying mechanism of P. histicola on IBD remain unclear. Hence, we probe into the effect of P. histicola on dextran sulfate sodium (DSS)-induced colitis and clarified the potential mechanism. Our results revealed that DSS-induced colonic inflammatory response and damaged epithelial barrier in mice were attenuated by oral administration of P. histicola. Moreover, supplementary P. histicola significantly enriched short-chain fatty acid (SCFA)-producing bacteria (Lactobacillus, and Bacillus) and reduced pathogenic bacteria (Erysipelotrichaceae, Clostridium, Bacteroides) in DSS-induced colitis. Notably, In DSS-treated mice, endoplasmic reticulum stress (ERS) was persistently activated in colonic tissue. Conversely, P. histicola gavage suppressed expansion of endoplasmic reticulum, downregulated PERK-ATF4-CHOP and IRE1α-JNK pathway. In vitro, the P. histicola supernatant eliminated LPS-induced higher production of pro-inflammatory cytokines regulated by NF-κB and impairment of epithelial barrier by inhibiting IRE1α-JNK signaling in Caco-2 cell. In summary, our study indicated that P. histicola mitigated DSS-induced chronic colitis via inhibiting IRE1α-JNK pathway and NF-κB signaling. These findings provide the new insights into the promotion of gut homeostasis and the application potential of P. histicola as a prebiotic for IBD in the future.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiuxia Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qing Jia
- Laboratory Animal Resources Center, Wenzhou Medical University, Wenzhou, China
| | - Liangqiong Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Cong Cao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ziniu Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Min Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
34
|
Abdollahzadeh Baghaei T, Katebi K, Jafari Tayebpour M, Hashemi M. Effect of probiotics on pain and ulceration in patients undergoing fixed orthodontic treatment. J Dent Res Dent Clin Dent Prospects 2024; 18:152-156. [PMID: 39071213 PMCID: PMC11282199 DOI: 10.34172/joddd.41128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 07/30/2024] Open
Abstract
Background Ulcers caused by mucosal irritation of fixed orthodontic appliances remain an unsolved problem, and more research is needed to improve the pain caused by orthodontic appliances to provide more comfortable treatment for these patients. This study investigated the effect of probiotic Lactogum on pain and ulceration in patients undergoing fixed orthodontic treatment. Methods In this study, 64 patients over 12 years of age and candidates for fixed orthotic treatment were divided into case and control groups (n=32). The control group received orthodontic waxes, and the case group received the same orthodontic waxes and "Lactogum" probiotic lozenges from the beginning of the treatment. The number of ulcers, the amount of pain, and the location of the ulcer were recorded and compared between the two groups. An independent-sample t-test was used to compare the pain level and number of ulcers between the two groups. A significance level of 0.05 was considered for all tests. SPSS 17 was used for data analysis. Results The mean number of ulcers in the case group was significantly lower than the control group (P<0.001). The mean pain in the case group was significantly lower than in the control group (P<0.001). The most frequent location of ulcers was the buccal mucosa, followed by the labial mucosa. Conclusion Lactogum probiotic lozenges can reduce traumatic oral ulcers and pain levels in patients undergoing fixed orthodontic treatment. However, larger clinical trials are encouraged to confirm these findings.
Collapse
Affiliation(s)
| | - Katayoun Katebi
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohsen Hashemi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Nasreen S, Ali S, Andleeb S, Summer M, Hussain T, Imdad K, Ara C, Tahir HM. Mechanisms of medicinal, pharmaceutical, and immunomodulatory action of probiotics bacteria and their secondary metabolites against disease management: an overview. Folia Microbiol (Praha) 2024; 69:549-565. [PMID: 38532057 DOI: 10.1007/s12223-024-01155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Probiotics or bacteriotherapy is today's hot issue for public entities (Food and Agriculture Organization, and World Health Organization) as well as health and food industries since Metchnikoff and his colleagues hypothesized the correlation between probiotic consumption and human's health. They contribute to the newest and highly efficient arena of promising biotherapeutics. These are usually attractive in biomedical applications such as gut-related diseases like irritable bowel disease, diarrhea, gastrointestinal disorders, fungal infections, various allergies, parasitic and bacterial infections, viral diseases, and intestinal inflammation, and are also worth immunomodulation. The useful impact of probiotics is not limited to gut-related diseases alone. Still, these have proven benefits in various acute and chronic infectious diseases, like cancer, human immunodeficiency virus (HIV) diseases, and high serum cholesterol. Recently, different researchers have paid special attention to investigating biomedical applications of probiotics, but consolidated data regarding bacteriotherapy with a detailed mechanistically applied approach is scarce and controversial. The present article reviews the bio-interface of probiotic strains, mainly (i) why the demand for probiotics?, (ii) the current status of probiotics, (iii) an alternative to antibiotics, (iv) the potential applications towards disease management, (v) probiotics and industrialization, and (vi) futuristic approach.
Collapse
Affiliation(s)
- Sundas Nasreen
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Summer
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Kaleem Imdad
- Department of Bioscience, COMSATS Institute of Information Technology (CIIT), Islamabad, 45550, Pakistan
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
36
|
Hou L, Wang H, Yan M, Cai Y, Zheng R, Ma Y, Tang W, Jiang W. Obeticholic acid attenuates the intestinal barrier disruption in a rat model of short bowel syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167221. [PMID: 38718845 DOI: 10.1016/j.bbadis.2024.167221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Short bowel syndrome (SBS) features nutrients malabsorption and impaired intestinal barrier. Patients with SBS are prone to sepsis, intestinal flora dysbiosis and intestinal failure associated liver disease. Protecting intestinal barrier and preventing complications are potential strategies for SBS treatment. This study aims to investigate the effects of farnesoid X receptor (FXR) agonist, obeticholic acid (OCA), have on intestinal barrier and ecological environment in SBS. METHODS AND RESULTS Through testing the small intestine and serum samples of patients with SBS, impaired intestinal barrier was verified, as evidenced by reduced expressions of intestinal tight junction proteins (TJPs), increased levels of apoptosis and epithelial cell damage. The intestinal expressions of FXR and related downstream molecules were decreased in SBS patients. Then, global FXR activator OCA was used to further dissect the potential role of the FXR in a rat model of SBS. Low expressions of FXR-related molecules were observed on the small intestine of SBS rats, along with increased proinflammatory factors and damaged barrier function. Furthermore, SBS rats possessed significantly decreased body weight and elevated death rate. Supplementation with OCA mitigated the damaged intestinal barrier and increased proinflammatory factors in SBS rats, accompanied by activated FXR-related molecules. Using 16S rDNA sequencing, the regulatory role of OCA on gut microbiota in SBS rats was witnessed. LPS stimulation to Caco-2 cells induced apoptosis and overexpression of proinflammatory factors in vitro. OCA incubation of LPS-pretreated Caco-2 cells activated FXR-related molecules, increased the expressions of TJPs, ameliorated apoptosis and inhibited overexpression of proinflammatory factors. CONCLUSIONS OCA supplementation could effectively ameliorate the intestinal barrier disruption and inhibit overexpression of proinflammatory factors in a rat model of SBS and LPS-pretreated Caco-2 cells. As a selective activator of FXR, OCA might realize its protective function through FXR activation.
Collapse
Affiliation(s)
- Li Hou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanfei Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Yan
- Department of Pediatrics, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Yaoyao Cai
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ruifei Zheng
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yujun Ma
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Weiwei Jiang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
37
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Effects of Probiotics on Gut Microbiota: An Overview. Int J Mol Sci 2024; 25:6022. [PMID: 38892208 PMCID: PMC11172883 DOI: 10.3390/ijms25116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The role of probiotics in regulating intestinal flora to enhance host immunity has recently received widespread attention. Altering the human gut microbiota may increase the predisposition to several disease phenotypes such as gut inflammation and metabolic disorders. The intestinal microbiota converts dietary nutrients into metabolites that serve as biologically active molecules in modulating regulatory functions in the host. Probiotics, which are active microorganisms, play a versatile role in restoring the composition of the gut microbiota, helping to improve host immunity and prevent intestinal disease phenotypes. This comprehensive review provides firsthand information on the gut microbiota and their influence on human health, the dietary effects of diet on the gut microbiota, and how probiotics alter the composition and function of the human gut microbiota, along with their corresponding effects on host immunity in building a healthy intestine. We also discuss the implications of probiotics in some of the most important human diseases. In summary, probiotics play a significant role in regulating the gut microbiota, boosting overall immunity, increasing the abundance of beneficial bacteria, and helping ameliorate the symptoms of multiple diseases.
Collapse
Affiliation(s)
- Preethi Chandrasekaran
- UT Southwestern Medical Center Dallas, 5323 Harry Hines Blvd. ND10.504, Dallas, TX 75390-9014, USA
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
38
|
Cui X, Zhang T, Xie T, Guo FX, Zhang YY, Deng YJ, Wang Q, Guo YX, Dong MH, Luo XT. Research Progress on the Correlation Between Hypertension and Gut Microbiota. J Multidiscip Healthc 2024; 17:2371-2387. [PMID: 38770171 PMCID: PMC11104380 DOI: 10.2147/jmdh.s463880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Among cardiovascular diseases, hypertension is the most important risk factor for morbidity and mortality worldwide, and its pathogenesis is complex, involving genetic, dietary and environmental factors. The characteristics of the gut microbiota can vary in response to increased blood pressure (BP) and influence the development and progression of hypertension. This paper describes five aspects of the relationship between hypertension and the gut microbiota, namely, the different types of gut microbiota, metabolites of the gut microbiota, sympathetic activation, gut-brain interactions, the effects of exercise and dietary patterns and the treatment of the gut microbiota through probiotics, faecal microbiota transplantation (FMT) and herbal remedies, providing new clues for the future prevention of hypertension. Diet, exercise and traditional Chinese medicine may contribute to long-term improvements in hypertension, although the effects of probiotics and FMT still need to be validated in large populations.
Collapse
Affiliation(s)
- Xiaomei Cui
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ting Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Tao Xie
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Fang-xi Guo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yu-ying Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yuan-jia Deng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Qi Wang
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yi-xing Guo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ming-hua Dong
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Xiao-ting Luo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of General Medicine, Gannan Medical University, Ganzhou, People’s Republic of China
| |
Collapse
|
39
|
Xiao C, Li X, Ding Z, Zhang H, Lv W, Yang C, He D, Zhu L. Enhancing Growth and Gut Health in Squabs: The Impact of Fermented Mixed Feed. Animals (Basel) 2024; 14:1411. [PMID: 38791629 PMCID: PMC11117316 DOI: 10.3390/ani14101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The purpose of this study was to evaluate the effect of fermented mixed feed (FMF) (soybean meal-rapeseed meal-corn bran (6:3:1, m/m/m)) on the growth performance, intestinal microbial communities, and metabolomes of squabs. One hundred and eighty 1-day-old squabs were randomly allocated to two groups, each containing six replicates of fifteen squabs cared for by 60 pairs of breeding pigeons secreting crop milk. Each pair of breeding pigeons cared for three squabs. The control group was fed a basal diet, while the experimental group was fed the basal diet containing 5% FMF. The results showed that daily weight gain, carcass weight, villus height, and the mRNA level of ZO-1 in the ileum were increased in the birds fed FMF compared to the control squabs (p < 0.05). Greater abundances of beneficial bacteria such as Lactobacillus, Bifidobacteria, and Bacillus as well as fewer harmful bacteria (i.e., Enterococcus, Veillonella, and Corynebacterium) in the ilea of squabs fed FMF. Six differential metabolites were identified in the FMF-treated squabs; one metabolite was increased (ω-salicoyisalicin) and five were decreased (3-benzoyloxy-6-oxo-12-ursen-28-oic acid, estradiol-17-phenylpropionate, aminotriazole, phosphatidyl ethanolamine (22:6/0:0), and 1-arachidonoylglycerophosphoinositol). Positive correlations were observed between the abundance of Lactobacillus and villus height. Overall, FMF treatment improved both growth and intestinal health in pigeons, suggesting potential benefits for pigeon production.
Collapse
Affiliation(s)
- Changfeng Xiao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| | - Xin Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| | - Zhizhao Ding
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Wenwei Lv
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| | - Changsuo Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| | - Daqian He
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| | - Lihui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| |
Collapse
|
40
|
Li J, Yu J, Song Y, Wang S, Mu G, Tuo Y. Exopolysaccharides and Surface-Layer Proteins Expressed by Biofilm-State Lactiplantibacillus plantarum Y42 Play Crucial Role in Preventing Intestinal Barrier and Immunity Dysfunction of Balb/C Mice Infected by Listeria monocytogenes ATCC 19115. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8581-8594. [PMID: 38590167 DOI: 10.1021/acs.jafc.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Our previous study showed that Lactiplantibacillus plantarum Y42 in the biofilm state can produce more exopolysaccharides and surface-layer proteins and showed a stronger promoting effect on intestinal barrier function than that in the planktonic state. In this study, oral administration of the live/pasteurized planktonic or biofilm L. plantarum Y42 and its metabolites (exopolysaccharides and surface-layer proteins) increased the expression of Occludin, Claudin-1, ZO-1, and MUC2 in the gut of the Balb/C mice after exposure to Listeria monocytogenes ATCC 19115 and inhibited the activation of the NLRP3 inflammasome pathway, which in turn reduced the levels of inflammatory cytokines IL-1β and IL-18 in the serum of the mice. Furthermore, oral administration of the live/pasteurized planktonic or biofilm L. plantarum Y42 and its metabolites increased the abundance of beneficial bacteria (e.g., Lachnospiraceae_NK4A136_group and Prevotellaceae_UCG-001) while reducing the abundance of harmful bacteria (e.g., norank_f__Muribaculaceae) in the gut of the mice, in line with the increase of short-chain fatty acids and indole derivatives in the feces of the mice. Notably, biofilm L. plantarum Y42 exerted a better preventing effect on the intestinal barrier dysfunction of the Balb/C mice due to the fact that biofilm L. plantarumY42 expressed more exopolysaccharides and surface-layer proteins than the planktonic state. These results provide data support for the use of exopolysaccharides and surface-layer proteins extracted from biofilm-state L. plantarum Y42 as functional food ingredients in preventing intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Jiayi Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiang Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Sihan Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
41
|
Nong K, Liu Z, Qin X, Chen W, Zhang B, Wu Y, Wang Z, Fang X, Liu Y, Wang X, Shi H, Zhang H. Effect of the Pseudopleuronectes americanus-derived Pleurocidin on DSS-induced Ulcerative colitis in mice and its preliminary molecular mechanisms. Int Immunopharmacol 2024; 130:111757. [PMID: 38422770 DOI: 10.1016/j.intimp.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Pleurocidin is an antimicrobial peptide derived from the mucous membranes of the skin or intestinal secretions of Pseudopleuronectes americanus that has antimicrobial and immunomodulatory activities. Ulcerative colitis is recognized as a widespread human disease that may be influenced by environmental and genetic factors. Evidence emphasizes the critical role of the gut microbiota in UC. Synthetic Pleurocidin was analyzed by a combination of liquid chromatography and mass spectrometry. Pleurocidin pharmacological effects were evaluated by DAI score, colon histological score, cytokine levels, and tight junction protein expression in mice. The preliminary molecular mechanism was explored by the levels of key proteins in the NF-κB and MAPK inflammatory signaling pathways in colon tissues. The main analytical methods such as immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and Western blot were used. We then used 16S rRNA gene sequences to characterize the gut microbiota. Firstly, our study demonstrated that rectal injection of Pleurocidin at 5 mg/kg body weight alleviated clinical symptoms and colonic histopathological changes in UC mice caused by DSS. Secondly, Pleurocidin altered the abnormal levels of inflammatory and immune-related cytokines in serum, modulated the significant down-regulation of tight junction proteins, and inhibited the expression of NF-κB and MAPK inflammatory signaling pathway-related proteins. Finally, Pleurocidin can regulate gut microbiota, increase the relative abundance of beneficial bacteria and reduce the relative abundance of harmful bacteria. In conclusion, Pleurocidin alleviates UC symptoms in mice, and its effects on the gut microbiome may be potential pathways. It is providing a promising therapeutic option for UC.
Collapse
Affiliation(s)
- Keyi Nong
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Zhineng Liu
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Xinyun Qin
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Wanyan Chen
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Bin Zhang
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Yijia Wu
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Zihan Wang
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Xin Fang
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Youming Liu
- Yibin Academy of Agricultural Sciences, Yibin 644600, China
| | - Xuemei Wang
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Huiyu Shi
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Haiwen Zhang
- College of Tropical Agriculture and Forestry, Hainan University, China.
| |
Collapse
|
42
|
Wang H, Wang Y, Yang L, Feng J, Tian S, Chen L, Huang W, Liu J, Wang X. Integrated 16S rRNA sequencing and metagenomics insights into microbial dysbiosis and distinct virulence factors in inflammatory bowel disease. Front Microbiol 2024; 15:1375804. [PMID: 38591039 PMCID: PMC10999624 DOI: 10.3389/fmicb.2024.1375804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction The escalation of urbanization correlates with rising rates of inflammatory bowel disease (IBD), necessitating research into new etiological factors. This study aims to elucidate the gut microbiota profiles in IBD patients and compare them with healthy controls in a western city of China. Methods We conducted a multicenter case-control study from the end of 2020, using 16S rRNA gene sequencing (n = 36) and metagenomic sequencing (n = 12) to analyze the gut microbiota of newly diagnosed IBD patients, including those with Crohn's disease (CD) and ulcerative colitis (UC). Results Our results demonstrated a significant enrichment of the phylum Proteobacteria, particularly the genus Escherichia-Shigella, in CD patients. Conversely, the genus Enterococcus was markedly increased in UC patients. The core gut microbiota, such as the Christensenellaceae R-7 group, Fusicatenibacter, and Holdemanella, were primarily identified in healthy subjects. Additionally, significant interactions between the microbiome and virulence factors were observed. Discussion The findings suggest that oxidative stress may play a pivotal role in the pathology of IBD. This study contributes to the growing dialogue about the impact of gut microbiota on the development of IBD and its variations across different geographies, highlighting potential avenues for further research.
Collapse
Affiliation(s)
- Haijing Wang
- Medical College of Qinghai University, Xining, China
| | - Yuanjun Wang
- Medical College of Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| | - Libin Yang
- Ningxia Hui Autonomous Region People's Hospital, Yinchuan, China
| | - Jiawen Feng
- Medical College of Qinghai University, Xining, China
- Qinghai Provincial Traditional Chinese Medicine Hospital, Xining, China
| | - Shou Tian
- Medical College of Qinghai University, Xining, China
- Qinghai Provincial Traditional Chinese Medicine Hospital, Xining, China
| | - Lingyan Chen
- Qinghai Provincial Traditional Chinese Medicine Hospital, Xining, China
| | - Wei Huang
- Qinghai Provincial Traditional Chinese Medicine Hospital, Xining, China
| | - Jia Liu
- Qinghai Provincial Traditional Chinese Medicine Hospital, Xining, China
| | - Xiaojin Wang
- Medical College of Qinghai University, Xining, China
- Qinghai Provincial Traditional Chinese Medicine Hospital, Xining, China
| |
Collapse
|
43
|
Balasubramanian R, Schneider E, Gunnigle E, Cotter PD, Cryan JF. Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci Biobehav Rev 2024; 158:105562. [PMID: 38278378 DOI: 10.1016/j.neubiorev.2024.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Over the past two decades, whole food supplementation strategies have been leveraged to target mental health. In addition, there has been increasing attention on the ability of gut microbes, so called psychobiotics, to positively impact behaviour though the microbiota-gut-brain axis. Fermented foods offer themselves as a combined whole food microbiota modulating intervention. Indeed, they contain potentially beneficial microbes, microbial metabolites and other bioactives, which are being harnessed to target the microbiota-gut-brain axis for positive benefits. This review highlights the diverse nature of fermented foods in terms of the raw materials used and type of fermentation employed, and summarises their potential to shape composition of the gut microbiota, the gut to brain communication pathways including the immune system and, ultimately, modulate the microbiota-gut-brain axis. Throughout, we identify knowledge gaps and challenges faced in designing human studies for investigating the mental health-promoting potential of individual fermented foods or components thereof. Importantly, we also suggest solutions that can advance understanding of the therapeutic merit of fermented foods to modulate the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland
| | | | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
44
|
Liu S, Yang L, Zhang Y, Chen H, Li X, Xu Z, Du R, Li X, Ma J, Liu D. Review of yeast culture concerning the interactions between gut microbiota and young ruminant animals. Front Vet Sci 2024; 11:1335765. [PMID: 38496306 PMCID: PMC10940410 DOI: 10.3389/fvets.2024.1335765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/22/2024] [Indexed: 03/19/2024] Open
Abstract
Microorganisms inhabit the gastrointestinal tract of ruminants and regulate body metabolism by maintaining intestinal health. The state of gastrointestinal health is influenced not only by the macro-level factors of optimal development and the physiological structure integrity but also by the delicate equilibrium between the intestinal flora and immune status at the micro-level. Abrupt weaning in young ruminants causes incomplete development of the intestinal tract resulting in an unstable and unformed microbiota. Abrupt weaning also induced damages to the microecological homeostasis of the intestinal tract, resulting in the intestinal infections and diseases, such as diarrhea. Recently, nutritional and functional yeast culture has been researched to tackle these problems. Herein, we summarized current known interactions between intestinal microorganisms and the body of young ruminants, then we discussed the regulatory effects of using yeast culture as a feed supplement. Yeast culture is a microecological preparation that contains yeast, enriched with yeast metabolites and other nutrient-active components, including β-glucan, mannan, digestive enzymes, amino acids, minerals, vitamins, and some other unknown growth factors. It stimulates the proliferation of intestinal mucosal epithelial cells and the reproduction of intestinal microorganisms by providing special nutrient substrates to support the intestinal function. Additionally, the β-glucan and mannan effectively stimulate intestinal mucosal immunity, promote immune response, activate macrophages, and increase acid phosphatase levels, thereby improving the body's resistance to several disease. The incorporation of yeast culture into young ruminants' diet significantly alleviated the damage caused by weaning stress to the gastrointestinal tract which also acts an effective strategy to promote the balance of intestinal flora, development of intestinal tissue, and establishment of mucosal immune system. Our review provides a theoretical basis for the application of yeast culture in the diet of young ruminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dacheng Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
45
|
Zou LE, Yang YN, Zhan J, Cheng J, Fu Y, Cao Y, Yan X, Wang Y, Wu C. Gut microbiota-based discovery of Houttuyniae Herba as a novel prebiotic of Bacteroides thetaiotaomicron with anti-colitis activity. Biomed Pharmacother 2024; 172:116302. [PMID: 38387133 DOI: 10.1016/j.biopha.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Ulcerative colitis (UC) represents an inflammatory disease characterized by fluctuations in severity, posing substantial challenges in treatment. The gut microbiota plays a pivotal role in the pathogenesis of UC. This study sought to identify drugs specifically targeting the gut microbiota to mitigate UC. We initiated a meta-analysis on gut microbiota in UC patients to identify UC-associated bacterial strains. Subsequently, we screened 164 dietary herbal medicines in vitro to identify potential prebiotics for the UC-associated bacterium, Bacteroides thetaiotaomicron. The DSS-induced colitis mouse model was utilized to evaluate the anti-colitis efficacy of the identified dietary herbal medicine. Full-length 16 S rRNA amplicon sequencing was employed to observe changes in gut microbiota following dietary herbal medicine intervention. The relative abundance of Bacteroides was notably diminished in UC patients compared to their healthy counterparts. B. thetaiotaomicron exhibited an inverse relationship with UC symptoms, indicating its potential as an anti-colitis agent. In vitro assessments revealed that H. Herba significantly bolstered the proliferation of B. thetaiotaomicron. Further experiments showed that treating DSS-induced mice with an aqueous extract of H. Herba considerably alleviated colitis indicators such as weight loss, colon shortening, disease activity score (DAI), and systemic inflammation. Microbial analysis revealed B. thetaiotaomicron as the sole bacterium substantially augmented by H. Herba in vivo. Overall H. Herba emerges as a promising prebiotic for B. thetaiotaomicron, offering significant anti-colitis benefits. Employing a gut microbiota-centric approach proves valuable in the quest for drug discovery.This study provides a new paradigm for drug discovery that targets the gut microbiota to treat UC.
Collapse
Affiliation(s)
- Lin-En Zou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaguo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiale Cheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Fu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingxu Yan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuming Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
46
|
Jiang X, Liu H, You Y, Zhong G, Ruan Z, Liao J, Zhang H, Pan J, Tang Z, Hu L. Multi-omics reveals the protective effects of curcumin against AFB1-induced oxidative stress and inflammatory damage in duckling intestines. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109815. [PMID: 38061615 DOI: 10.1016/j.cbpc.2023.109815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Aflatoxin B1 (AFB1) is the most prevalent and toxic class of aflatoxins, which is considered a significant risk factor for food safety. Curcumin, a phytoconstituent with anti-inflammatory and antioxidant properties, has potential therapeutic value for intestinal inflammatory diseases. In this study, the duckling model susceptible to AFB1 was selected for toxicity testing, aiming to explore the effect of curcumin on AFB1 enterotoxicity and its possible mechanism of action. The results showed that curcumin promoted the growth and development of ducklings and mitigated the changes in morphology and permeability serological index (DAO and D-LA) after AFB1 exposure. Curcumin also mitigated AFB1-induced oxidative stress by activating the Nrf2 pathway, and ameliorated intestinal inflammation by inhibiting the NF-κB/IκB signaling pathway and boosting intestinal autophagy. In terms of gut flora and their metabolites, we found that curcumin supplementation significantly increased the intestinal flora's abundance index and diversity index compared to the AFB1 group, mitigating the decline in the abundance of Actinobacteria and the rise in that of harmful bacteria Clostridia. Furthermore, untargeted metabolomic analysis revealed that the protective effect of curcumin on the intestine was mainly through the regulation of AFB1-induced disorders of lipid metabolism, involving linoleic acid metabolism, α-linolenic acid metabolism, and glycerolipid metabolism. Overall, the enteroprotective effects of curcumin may be of significant value in the future for treating chronic AFB1 poisoning and also provide new therapeutic ideas for other mycotoxicosis.
Collapse
Affiliation(s)
- Xuanxuan Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Medical Devices Research &Testing Center of South China University of Technology, Laboratory Animal Research Center of South China University of Technology, Guangzhou 510006, China
| | - Haiyan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yanli You
- College of Life Science, Yantai University, Yantai City 264005, Shandong Province, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, No. 321, Longdong North Road, Tianhe District, Guangzhou 510520, Guangdong Province, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
47
|
Liikonen V, Gomez-Gallego C, Kolehmainen M. The effects of whole grain cereals on tryptophan metabolism and intestinal barrier function: underlying factors of health impact. Proc Nutr Soc 2024; 83:42-54. [PMID: 37843435 DOI: 10.1017/s0029665123003671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
This review aims to investigate the relationship between the health impact of whole grains mediated via the interaction with intestinal microbiota and intestinal barrier function with special interest on tryptophan metabolism, focusing on the role of the intestinal microbiota and their impact on barrier function. Consuming various types of whole grains can lead to the growth of different microbiota species, which in turn leads to the production of diverse metabolites, including those derived from tryptophan metabolism, although the impact of whole grains on intestinal microbiota composition results remains inconclusive and vary among different studies. Whole grains can exert an influence on tryptophan metabolism through interactions with the intestinal microbiota, and the presence of fibre in whole grains plays a notable role in establishing this connection. The impact of whole grains on intestinal barrier function is closely related to their effects on the composition and activity of intestinal microbiota, and SCFA and tryptophan metabolites serve as potential links connecting whole grains, intestinal microbiota and the intestinal barrier function. Tryptophan metabolites affect various aspects of the intestinal barrier, such as immune balance, mucus and microbial barrier, tight junction complexes and the differentiation and proliferation of epithelial cells. Despite the encouraging discoveries in this area of research, the evidence regarding the effects of whole grain consumption on intestine-related activity remains limited. Hence, we can conclude that we are just starting to understand the actual complexity of the intestinal factors mediating in part the health impacts of whole grain cereals.
Collapse
Affiliation(s)
- Vilma Liikonen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| | - Carlos Gomez-Gallego
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| | - Marjukka Kolehmainen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
48
|
Barot SV, Sangwan N, Nair KG, Schmit SL, Xiang S, Kamath S, Liska D, Khorana AA. Distinct intratumoral microbiome of young-onset and average-onset colorectal cancer. EBioMedicine 2024; 100:104980. [PMID: 38306898 PMCID: PMC10850116 DOI: 10.1016/j.ebiom.2024.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND The unexplained rise of young-onset CRC (yoCRC, age <50 years) is of concern. Evidence suggests that microbial dysbiosis may be a contributing factor, but the tumor microbial profile of yoCRC in comparison to average-onset CRC (aoCRC, age >60) has not been fully investigated. METHODS 16S rRNA amplicon sequencing was performed in tumor and paired adjacent non-malignant fresh frozen tissue specimens prospectively collected from 136 yoCRC and 140 aoCRC patients. Phyloseq, microbiomeSeq, metagenomeSeq, and NetComi were utilized for bioinformatics analysis. Statistical tests included Fisher's exact test, ANOVA, PERMANOVA with Bonferroni correction, linear regression, and Wilcoxon test. p-value <0.05 was considered statistically significant. FINDINGS yoCRC patients were more likely to have left-sided (72.8 vs. 54.3%), rectal (36.7% vs. 25%), and stage IV (28% vs. 15%) tumors. yoCRC tumors had significantly higher microbial alpha diversity (p = 1.5 × 10-5) and varied beta diversity (R2 = 0.31, p = 0.013) than aoCRC tumors. yoCRC tumors were enriched with Akkermansia and Bacteroides, whereas aoCRC tumors showed greater relative abundances of Bacillus, Staphylococcus, Listeria, Enterococcus, Pseudomonas, Fusobacterium, and Escherichia/Shigella. Akkermansia had a predominantly negative correlation with the microbial communities in yoCRC tumors. yoCRC and aoCRC tumors had distinct microbial profiles associated with tumor location, sidedness, stage, and obesity. Fusobacterium (R2 = -0.23, p = 0.001) and Akkermansia (R2 = 0.05, p = 0.001) abundance correlated with overall survival in yoCRC. INTERPRETATION Our study provides a comprehensive understanding of the microbial perturbations in yoCRC tumors. We identify microbial candidates that may highlight a distinct pathogenesis of yoCRC and serve as preventive, diagnostic, and therapeutic targets. FUNDING Sondra and Stephen Hardis Chair in Oncology Research (A.A.K.).
Collapse
Affiliation(s)
- Shimoli V Barot
- Cleveland Clinic Taussig Cancer Institute, Department of Hematology-Oncology, USA
| | - Naseer Sangwan
- Shared Laboratory Resources (SLR), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kanika G Nair
- Cleveland Clinic Taussig Cancer Institute, Department of Hematology-Oncology, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA; Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - Stephanie L Schmit
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Shao Xiang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Suneel Kamath
- Cleveland Clinic Taussig Cancer Institute, Department of Hematology-Oncology, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA; Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - David Liska
- Case Comprehensive Cancer Center, Cleveland, OH, USA; Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alok A Khorana
- Cleveland Clinic Taussig Cancer Institute, Department of Hematology-Oncology, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA; Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
49
|
Liu Y, Liu G, Fang J. Progress on the mechanisms of Lactobacillus plantarum to improve intestinal barrier function in ulcerative colitis. J Nutr Biochem 2024; 124:109505. [PMID: 37890709 DOI: 10.1016/j.jnutbio.2023.109505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Ulcerative colitis (UC) is a chronic, non-specific inflammatory sickness of the intestinal tract, chiefly implicating the rectum and colon, which is characterized by chronic or subacute diarrhea, mucopurulent stools, and abdominal pain. The pathogeny of UC is still uncertain, and it is thought that multiple factors interact to cause the disease, such as environment, genetics, gut microbes, and immunity. Injuring the intestinal barrier is one of the most significant features of UC and includes mechanical, chemical, immune, and biological barriers. Plenty of research has shown that probiotics, as profitable bacteria in the gut, can play a prominent role in the treatment of UC by improving gut barrier function and modulating gut immunity. Lactobacillus plantarum (L. plantarum), a common probiotic, has made outstanding contributions to food and medicine, and many studies in recent years have shown that L. plantarum has great preventive and therapeutic effects on ulcerative colitis and restores the intestinal barrier. This paper reviews the mechanisms of L. plantarum for improving the intestinal barrier function of UC organisms, mainly including regulating the immune response, inhibiting oxidative stress, raising the expression of tight junction (TJ) proteins, promoting the formation of mucin, improving the composition of gut flora, and raising the levels of short-chain fatty acids (SCFAs), which offers some help for the clinical therapy of UC.
Collapse
Affiliation(s)
- Yihui Liu
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China.
| |
Collapse
|
50
|
Shahbaz F, Muccee F, Shahab A, Safi SZ, Alomar SY, Qadeer A. Isolation and in vitro assessment of chicken gut microbes for probiotic potential. Front Microbiol 2024; 15:1278439. [PMID: 38348194 PMCID: PMC10860760 DOI: 10.3389/fmicb.2024.1278439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Poultry production occupies an important place in the economy of any country. High broiler production in recent years has badly affected its profitability due to bad feed quality, excessive use of chemotherapeutic agents, emergence of diverse pathogens, and the deficiencies in management practices during rearing cycle. Microbiological improvement of the meat quality using potential probiotics can be beneficial for broiler farming. Present study was initiated to isolate chicken gastrointestinal tract (GIT) bacteria with probiotic potential. To isolate probiotics from chicken gut, alimentary canal of chickens of known sizes and ages was suspended in ringers soln. Under shaking conditions for overnight followed by serial dilutions of ringers soln. Bacterial isolates were analyzed via growth curve analysis, biochemical testing using RapID™ NF Plus Panel kit, molecular characterization, antimicrobial activity assay, antibiotic sensitivity assay, GIT adherence assay, bile salt and gastric acid resistant assay, and cholesterol assimilation assay. Four bacteria isolated in present study were identified as Limosilactobacillus antri strain PUPro1, Lactobacillus delbrueckii strain PUPro2, Lacticaseibacillus casei strain PUPro3, and Ligilactobacillus salivarius strain PUPro4. L. delbrueckii strain PUPro2 grew extremely fast. All isolates exhibited exceptional resistance to increasing concentrations of NaCl and bile salts with value of p >0.5. L. delbrueckii strain PUPro2 adhered to chicken ileum epithelial cells and demonstrated the highest viable counts of 320 colony forming units (CFUs). Antagonistic action was found in all isolates against P. aeruginosa, B. subtilis, B. proteus, and S. aureus, with value of p >0.5. Antibiotic susceptibility testing showed sensitivity to all the antibiotics used. Cholesterol assimilation was detected in all bacteria, with values ranging from 216.12 to 192.2 mg/dL. All isolates exhibited γ-hemolysis. In future, these bacteria might be tested for their impact on broilers meat quality and growth and can be recommended for their use as supplements for broilers diet with positive impact on poultry production.
Collapse
Affiliation(s)
- Fatima Shahbaz
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Fatima Muccee
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Aansa Shahab
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Sher Zaman Safi
- Faculty of Medicine, MAHSA University, Kuala Lumpur, Malaysia
| | - Suliman Yousef Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|