1
|
Imam R, Chastang KM, Olowojesiku R, Sherman MG, Mukadam AM, Barber JR, Liomba AM, Seydel KB, Postels DG. Enriching Clinical Trials Enrolling Children With Cerebral Malaria Using Admission Demographics, Physical Examination and Point-of-care Testing Results. Pediatr Infect Dis J 2024:00006454-990000000-01042. [PMID: 39383355 DOI: 10.1097/inf.0000000000004581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
BACKGROUND Multiple clinical trials evaluating therapies for cerebral malaria (CM) have failed to demonstrate improved outcomes. This may derive from inclusion of children at all risk levels, including those at low risk of mortality or neurologic morbidity, limiting power to detect significant differences between intervention arms. One solution is enrichment, enrolling clinical trial participants at higher risk of adverse outcomes. We assessed if demographic, physical examination and point-of-care laboratory testing results in combination could identify children with CM at higher risk of death or neurologic disability. METHODS Retrospective case-control study of 1674 children hospitalized with CM in Blantyre, Malawi. We used univariate and multivariate analyses of admission factors to find the most parsimonious model associated with death or neurologic disability. To assess the clinical utility of the models, we evaluated derived probability density curve separation. RESULTS Blantyre Coma Score (BCS), deep breathing and high blood lactate were independently associated with mortality. The derived receiver operating curve yielded an area under the curve of 0.7118. There was poor separation of derived probability density curves predicting death or survival, indicating limited clinical utility of this model. On multivariate modeling of neurologic sequelae in CM survivors, only BCS was associated with adverse outcomes (area-under-the-curve = 0.6151). Probability density curves again largely overlapped, demonstrating limited utility of BCS alone in outcome prediction. CONCLUSIONS Combinations of admission demographic, clinical and point-of-care laboratory factors are inadequate to predict prognosis in children with CM. Higher technology assessment methods are necessary for clinical trial enrichment.
Collapse
Affiliation(s)
- Rami Imam
- From the The George Washington University School of Medicine, Washington, District of Columbia
| | | | - Ronke Olowojesiku
- Department of Pediatrics, Children's National Medical Center, Washington, District of Columbia
| | - Meredith G Sherman
- Global Health Initiative, Children's National Hospital, Washington, District of Columbia
| | | | - John R Barber
- Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, District of Columbia
| | | | - Karl B Seydel
- Blantyre Malaria Project, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; and
| | - Douglas G Postels
- Blantyre Malaria Project, Blantyre, Malawi
- Division of Neurology, The George Washington University/Children's National Hospital, Washington, District of Columbia
| |
Collapse
|
2
|
Zhu YF, Xia WJ, Liu W, Xie JM. Treatment of a patient with severe cerebral malaria during the COVID-19 pandemic in China: A case report. World J Clin Cases 2024; 12:4419-4426. [PMID: 39015931 PMCID: PMC11235524 DOI: 10.12998/wjcc.v12.i20.4419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND On June 30, 2021, China received certification from the World Health Organization for malaria elimination. However, this certification does not signify the absence of malaria within China. Due to the increasing frequency of international exchanges and collaborations, the threat of imported malaria persists in China. Consequently, the prevention and control of imported malaria have become a primary focus for our country to maintain its malaria elimination status. CASE SUMMARY Herein, we present a case report of a 53-year-old Chinese man who worked in Africa for nearly two years. He was diagnosed with malaria in the Democratic Republic of the Congo between November 19 and November 23, 2022. After receiving effective treatment with oral antimalarial drugs, his condition improved, allowing him to return to China. He was later admitted to our hospital on January 12, 2023, during the coronavirus disease 2019 pandemic in Huangshi, China. Through a thorough evaluation of the patient's symptoms, clinical signs, imaging and laboratory test results, and epidemiological data, he was rapidly diagnosed with severe cerebral malaria. The patient underwent successful treatment through a series of intensive care unit interventions. CONCLUSION The successful treatment of this imported case of severe cerebral malaria provides a valuable reference for managing patients with similar malaria infections and has significant clinical implications.
Collapse
Affiliation(s)
- Yan-Fang Zhu
- Department of Critical Care Medicine, Huangshi Hospital of TCM (Infectious Disease Hospital), Huangshi 435000, Hubei Province, China
| | - Wen-Jing Xia
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi 435003, Hubei Province, China
| | - Wei Liu
- Department of Critical Care Medicine, Huangshi Hospital of TCM (Infectious Disease Hospital), Huangshi 435000, Hubei Province, China
| | - Ju-Min Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi 435003, Hubei Province, China
| |
Collapse
|
3
|
Torres-Fernandez D, Dalsuco J, Bramugy J, Bassat Q, Varo R. Innovative strategies for the surveillance, prevention, and management of pediatric infections applied to low-income settings. Expert Rev Anti Infect Ther 2024; 22:413-422. [PMID: 38739471 DOI: 10.1080/14787210.2024.2354839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION Infectious diseases still cause a significant burden of morbidity and mortality among children in low- and middle-income countries (LMICs). There are ample opportunities for innovation in surveillance, prevention, and management, with the ultimate goal of improving survival. AREAS COVERED This review discusses the current status in the use and development of innovative strategies for pediatric infectious diseases in LMICs by focusing on surveillance, diagnosis, prevention, and management. Topics covered are: Minimally Invasive Tissue Sampling as a technique to accurately ascertain the cause of death; Genetic Surveillance to trace the pathogen genomic diversity and emergence of resistance; Artificial Intelligence as a multidisciplinary tool; Portable noninvasive imaging methods; and Prognostic Biomarkers to triage and risk stratify pediatric patients. EXPERT OPINION To overcome the specific hurdles in child health for LMICs, some innovative strategies appear at the forefront of research. If the development of these next-generation tools remains focused on accessibility, sustainability and capacity building, reshaping epidemiological surveillance, diagnosis, and treatment in LMICs, can become a reality and result in a significant public health impact. Their integration with existing healthcare infrastructures may revolutionize disease detection and surveillance, and improve child health and survival.
Collapse
Affiliation(s)
- David Torres-Fernandez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Jessica Dalsuco
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Justina Bramugy
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Pg. Lluís Companys, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosauro Varo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
4
|
Haley MJ, Barroso R, Jasim DA, Haigh M, Green J, Dickie B, Craig AG, Brough D, Couper KN. Lymphatic network drainage resolves cerebral edema and facilitates recovery from experimental cerebral malaria. Cell Rep 2024; 43:114217. [PMID: 38728141 DOI: 10.1016/j.celrep.2024.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/29/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
While brain swelling, associated with fluid accumulation, is a known feature of pediatric cerebral malaria (CM), how fluid and macromolecules are drained from the brain during recovery from CM is unknown. Using the experimental CM (ECM) model, we show that fluid accumulation in the brain during CM is driven by vasogenic edema and not by perivascular cerebrospinal fluid (CSF) influx. We identify that fluid and molecules are removed from the brain extremely quickly in mice with ECM to the deep cervical lymph nodes (dcLNs), predominantly through basal routes and across the cribriform plate and the nasal lymphatics. In agreement, we demonstrate that ligation of the afferent lymphatic vessels draining to the dcLNs significantly impairs fluid drainage from the brain and lowers anti-malarial drug recovery from the ECM syndrome. Collectively, our results provide insight into the pathways that coordinate recovery from CM.
Collapse
Affiliation(s)
- Michael J Haley
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Ruben Barroso
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Dhifaf A Jasim
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester M13 9PT, UK; Medicines Discovery Catapult (MDC), Alderley Park, Macclesfield SK10 4TG, UK
| | - Megan Haigh
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Jack Green
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Ben Dickie
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Alister G Craig
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Dunican C, Andradi-Brown C, Ebmeier S, Georgiadou A, Cunnington AJ. The malarial blood transcriptome: translational applications. Biochem Soc Trans 2024; 52:651-660. [PMID: 38421063 PMCID: PMC11088907 DOI: 10.1042/bst20230497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The blood transcriptome of malaria patients has been used extensively to elucidate the pathophysiological mechanisms and host immune responses to disease, identify candidate diagnostic and prognostic biomarkers, and reveal new therapeutic targets for drug discovery. This review gives a high-level overview of the three main translational applications of these studies (diagnostics, prognostics, and therapeutics) by summarising recent literature and outlining the main limitations and future directions of each application. It highlights the need for consistent and accurate definitions of disease states and subject groups and discusses how prognostic studies must distinguish clearly between analyses that attempt to predict future disease states and those which attempt to discriminate between current disease states (classification). Lastly it examines how many promising therapeutics fail due to the choice of imperfect animal models for pre-clinical testing and lack of appropriate validation studies in humans, and how future transcriptional studies may be utilised to overcome some of these limitations.
Collapse
Affiliation(s)
- Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Stefan Ebmeier
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| |
Collapse
|
6
|
Sharma I, Kataria P, Das J. Cerebral malaria pathogenesis: Dissecting the role of CD4 + and CD8 + T-cells as major effectors in disease pathology. Int Rev Immunol 2024; 43:309-325. [PMID: 38618863 DOI: 10.1080/08830185.2024.2336539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum (P. falciparum) infection, with complex pathogenesis involving multiple factors, including the host's immunological response. T lymphocytes, specifically CD4+ T helper cells and CD8+ cytotoxic T cells, are crucial in controlling parasite growth and activating cells for parasite clearance via cytokine secretion. Contrary to this, reports also suggest the pathogenic nature of T lymphocytes as they are often involved in disease progression and severity. CD8+ cytotoxic T cells migrate to the host's brain vasculature, disrupting the blood-brain barrier and causing neurological manifestations. CD4+ T helper cells on the other hand play a variety of functions as they differentiate into different subtypes which may function as pro-inflammatory or anti-inflammatory. The excessive pro-inflammatory response in CM can lead to multi-organ failure, necessitating a check mechanism to maintain immune homeostasis. This is achieved by regulatory T cells and their characteristic cytokines, which counterbalance the pro-inflammatory immune response. Maintaining a critical balance between pro and anti-inflammatory responses is crucial for determining disease outcomes in CM. A slight change in this balance may contribute to a disease severity owing to an extreme inflammatory response or unrestricted parasite growth, a potential target for designing immunotherapeutic treatment approaches. The review briefly discusses the pathogenesis of CM and various mechanisms responsible for the disruption of the blood-brain barrier. It also highlights the role of different T cell subsets during infection and emphasizes the importance of balance between pro and anti-inflammatory T cells that ultimately decides the outcome of the disease.
Collapse
Affiliation(s)
- Indu Sharma
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Poonam Kataria
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Jyoti Das
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
7
|
Baro B, Bassat Q. sTREM-1 to Risk-Stratify Patients With Malaria: A Functional Crystal Ball to Improve Outcomes and Save Lives. J Infect Dis 2024; 229:923-925. [PMID: 38078563 DOI: 10.1093/infdis/jiad565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 04/13/2024] Open
Affiliation(s)
- Bàrbara Baro
- ISGlobal, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Varo R, Crowley VM, Mucasse H, Sitoe A, Bramugy J, Serghides L, Weckman AM, Erice C, Bila R, Vitorino P, Mucasse C, Valente M, Ajanovic S, Balanza N, Zhong K, Derpsch Y, Gladstone M, Mayor A, Bassat Q, Kain KC. Adjunctive rosiglitazone treatment for severe pediatric malaria: A randomized placebo-controlled trial in Mozambican children. Int J Infect Dis 2024; 139:34-40. [PMID: 38013152 DOI: 10.1016/j.ijid.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVES We tested the hypothesis that adjunctive rosiglitazone treatment would reduce levels of circulating angiopoietin-2 (Angpt-2) and improve outcomes of Mozambican children with severe malaria. METHODS A randomized, double-blind, placebo-controlled trial of rosiglitazone vs placebo as adjunctive treatment to artesunate in children with severe malaria was conducted. A 0.045 mg/kg/dose of rosiglitazone or matching placebo were administered, in addition to standard of malaria care, twice a day for 4 days. The primary endpoint was the rate of decline of Angpt-2 over 96 hours. Secondary outcomes included the longitudinal dynamics of angiopoietin-1 (Angpt-1) and the Angpt-2/Angpt-1 ratio over 96 hours, parasite clearance kinetics, clinical outcomes, and safety metrics. RESULTS Overall, 180 children were enrolled; 91 were assigned to rosiglitazone and 89 to placebo. Children who received rosiglitazone had a steeper rate of decline of Angpt-2 over the first 96 hours of hospitalization compared to children who received placebo; however, the trend was not significant (P = 0.28). A similar non-significant trend was observed for Angpt-1 (P = 0.65) and the Angpt-2/Angpt-1 ratio (P = 0.34). All other secondary and safety outcomes were similar between groups (P >0.05). CONCLUSION Adjunctive rosiglitazone at this dosage was safe and well tolerated but did not significantly affect the longitudinal kinetics of circulating Angpt-2.
Collapse
Affiliation(s)
- Rosauro Varo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| | - Valerie M Crowley
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Humberto Mucasse
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Antonio Sitoe
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Justina Bramugy
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Lena Serghides
- Toronto General Research Institute (TGRI), University Health Network, Toronto, Canada; Women's College Research Institute, Women's College Hospital, Toronto, Canada; Department of Immunology and Institute of Medical Sciences University of Toronto, Toronto, Canada
| | - Andrea M Weckman
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Clara Erice
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Rubao Bila
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pio Vitorino
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Campos Mucasse
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Marta Valente
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Sara Ajanovic
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Núria Balanza
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Kathleen Zhong
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Yiovanna Derpsch
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom; School of Psychology, University of East Anglia, Norwich, United Kingdom
| | - Melissa Gladstone
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique; Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Medicine, University of Toronto, Toronto, Canada
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Medicine, University of Toronto, Toronto, Canada; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain; Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain.
| | - Kevin C Kain
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada; Toronto General Research Institute (TGRI), University Health Network, Toronto, Canada; Tropical Diseases Unit, Division of Infectious Diseases, Department of Medicine, UHN-Toronto General Hospital, Toronto, Canada
| |
Collapse
|
9
|
Wassmer SC, de Koning-Ward TF, Grau GER, Pai S. Unravelling mysteries at the perivascular space: a new rationale for cerebral malaria pathogenesis. Trends Parasitol 2024; 40:28-44. [PMID: 38065791 PMCID: PMC11072469 DOI: 10.1016/j.pt.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024]
Abstract
Cerebral malaria (CM) is a severe neurological complication caused by Plasmodium falciparum parasites; it is characterized by the sequestration of infected red blood cells within the cerebral microvasculature. New findings, combined with a better understanding of the central nervous system (CNS) barriers, have provided greater insight into the players and events involved in CM, including site-specific T cell responses in the human brain. Here, we review the updated roles of innate and adaptive immune responses in CM, with a focus on the role of the perivascular macrophage-endothelium unit in antigen presentation, in the vascular and perivascular compartments. We suggest that these events may be pivotal in the development of CM.
Collapse
Affiliation(s)
- Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia; Institute of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Georges E R Grau
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| |
Collapse
|
10
|
Jeje TO, Bando H, Azad MTA, Fukuda Y, Oluwafemi IE, Kato K. Antiplasmodial and interferon-gamma-modulating activities of the aqueous extract of stone breaker (Phyllanthus niruri Linn.) in malaria infection. Parasitol Int 2023; 97:102789. [PMID: 37473798 DOI: 10.1016/j.parint.2023.102789] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Plasmodium falciparum parasites are the primary cause of malaria across Africa. The problem of drug resistance to malaria is ever growing and novel therapeutic strategies need to be developed, particularly those targeting the parasite and also the host or host-pathogen interaction. Previous studies have shown that the development of cerebral malaria (CM) is related to dysregulation of the immune system in a murine malaria model of experimental cerebral malaria. It involves a complex interaction of events and interferon-gamma seems to be the unifying factor. Therefore, the antiplasmodial activity targeting the parasite and immunomodulatory strategies that reduce overall host inflammation, with IFN-γ in focus, could delay CM onset and prove beneficial in malaria infection therapy. Phyllanthus niruri is used to treat fever and other symptoms of malaria in Nigeria. Its modes of action as an anti-malarial remedy have not been exhaustively investigated. This study therefore examined the aqueous extract of P. niruri (PE) for its antiplasmodial activity in vitro using the Plasmodium falciparum HB3 strain. Furthermore, in vivo murine malaria model using the Plasmodium berghei ANKA strain was used to investigate its anti-malarial effects. We showed that PE has multiple anti-malarial effects, including anti-parasitic and host immunomodulatory activities. Co-culture of P. falciparum with PE and some of its phytoconstituents drastically reduced parasite number. PE also decreased parasitemia, and increased the survival of infected mice. We also observed that the integrity of the blood-brain barrier was maintained in the PE-treated mice. The results confirmed that PE showed moderate antiplasmodial activity. In vivo murine malaria model using P. berghei ANKA for experimental cerebral malaria revealed that PE suppressed parasite growth, and modulate the production of interferon-gamma. The findings demonstrate that PE affects malaria progression, targeting parasites and host cells.
Collapse
Affiliation(s)
- Temitope Olawale Jeje
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan; Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, Nigeria; Department of Biochemistry, School of Science, Federal University of Technology, Akure, Nigeria
| | - Hironori Bando
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | - Md Thoufic Anam Azad
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan; Department of Veterinary and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | | | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan.
| |
Collapse
|
11
|
Bansal V, Munjal J, Lakhanpal S, Gupta V, Garg A, Munjal RS, Jain R. Epidemiological shifts: the emergence of malaria in America. Proc AMIA Symp 2023; 36:745-750. [PMID: 37829240 PMCID: PMC10566419 DOI: 10.1080/08998280.2023.2255514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Plasmodium is a genus of parasites that comprises different species. The species falciparum, vivax, malariae, ovale, and knowlesi are known to cause a vector-borne illness called malaria, and among these, falciparum is known to cause major complications. The vector, the Anopheles mosquito, is commonly found in warmer regions close to the equator, and hence transmission and numbers of cases tend to be higher in Sub-Saharan Africa, South Asia, and Central America. The number of cases of malaria in the United States has remained stable over the years with low transmission rates, and the disease is mostly seen in the population with a recent travel history to endemic regions. The main reason behind this besides the weather conditions is that economically developed countries have eliminated mosquitos. However, there have been reports of locally reported cases with Plasmodium vivax in areas such as Florida and Texas in patients with no known travel history. This paper aims to familiarize US physicians with the pathophysiology, clinical features, and diagnostic modalities of malaria, as well as available treatment options.
Collapse
Affiliation(s)
- Vasu Bansal
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Jaskaran Munjal
- Internal Medicine, Shri Ram Murti Smarak Institute of Medical Sciences, Bareilly, Uttar Pradesh, India
| | | | - Vasu Gupta
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OhioUSA
| | - Ashwani Garg
- Penn State Milton S. Hershey Medical Center, Hershey, PennsylvaniaUSA
| | | | - Rohit Jain
- Penn State Milton S. Hershey Medical Center, Hershey, PennsylvaniaUSA
| |
Collapse
|
12
|
Hui C, Bosch A, Mwizerwa O, McColl J, Corbeil A, Malcolmson C, Levy DM, Bismilla Z, Morris SK. Case Report: A Case of Bone Marrow Necrosis and Hyperinflammation in a 10-Year-Old Boy after Plasmodium falciparum Infection. Am J Trop Med Hyg 2023; 109:611-615. [PMID: 37487563 PMCID: PMC10484272 DOI: 10.4269/ajtmh.22-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/14/2023] [Indexed: 07/26/2023] Open
Abstract
A 10-year-old boy with sickle cell disease (SCD) type SC presented with fever and abdominal pain after travel to Ghana and was diagnosed with Plasmodium falciparum infection. Despite adequate antimalarial treatment, he developed evidence of hyperinflammation with marked elevated ferritin, C-reactive protein, and triglycerides and subsequent bone marrow necrosis, characterized by elevated nucleated red blood cells and significant bone pain. This case report highlights the possible association between malaria and bone marrow necrosis in patients with SCD. Important considerations in treatment and workup of patients presenting with malaria and hyperinflammation are discussed.
Collapse
Affiliation(s)
- Caitlyn Hui
- Division of Pediatric Infectious Diseases, The Hospital for Sick Children, Toronto, Canada
- Department of Pediatrics, Temerty Faculty of Medicine, The University of Toronto, Toronto, Canada
| | - Alessandra Bosch
- Department of Pediatrics, Temerty Faculty of Medicine, The University of Toronto, Toronto, Canada
- The Division of Pediatric Hematology/Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Oscar Mwizerwa
- Department of Pediatrics, Temerty Faculty of Medicine, The University of Toronto, Toronto, Canada
- Division of Pediatric Rheumatology, The Hospital for Sick Children, Toronto, Canada
| | - Jeanine McColl
- Department of Pediatrics, Temerty Faculty of Medicine, The University of Toronto, Toronto, Canada
- Division of Pediatric Rheumatology, The Hospital for Sick Children, Toronto, Canada
| | - Antoine Corbeil
- Microbiology and Laboratory Science, Public Health Ontario, Toronto, Canada
| | - Caroline Malcolmson
- Department of Pediatrics, Temerty Faculty of Medicine, The University of Toronto, Toronto, Canada
- The Division of Pediatric Hematology/Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Deborah M. Levy
- Department of Pediatrics, Temerty Faculty of Medicine, The University of Toronto, Toronto, Canada
- Division of Pediatric Rheumatology, The Hospital for Sick Children, Toronto, Canada
| | - Zia Bismilla
- Department of Pediatrics, Temerty Faculty of Medicine, The University of Toronto, Toronto, Canada
- Division of Pediatric Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Shaun K. Morris
- Division of Pediatric Infectious Diseases, The Hospital for Sick Children, Toronto, Canada
- Department of Pediatrics, Temerty Faculty of Medicine, The University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202944. [PMID: 36300890 PMCID: PMC9798991 DOI: 10.1002/advs.202202944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.
Collapse
Affiliation(s)
- Oscar Bate Akide Ndunge
- Department of Internal MedicineSection of Infectious DiseasesYale University School of Medicine300 Cedar StreetNew HavenCT06510USA
| | - Nicole Kilian
- Centre for Infectious Diseases, ParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Mootaz M. Salman
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
14
|
Abstract
Neurocritical care (NCC) is an emerging field within critical care medicine, reflecting the widespread prevalence of neurologic injury in critically ill patients. Morbidity and mortality from neurocritical illness (NCI) have been reduced substantially in resource-rich settings (RRS), owing to the development of advanced technologies, neuro-specific units, and subspecialized medical training. Despite shouldering much of the burden of NCI worldwide, resource-limited settings (RLS) face immense hurdles when implementing guidelines generated in RRS. This review summarizes the current epidemiology, management, and outcomes of the most common NCIs in RLS and offers commentary on future directions in NCC practiced in RLS.
Collapse
|
15
|
Lampro L, George EC. Outcomes reported in trials of treatments for severe malaria: The need for a core outcome set. Trop Med Int Health 2022; 27:767-775. [PMID: 35916146 PMCID: PMC9545330 DOI: 10.1111/tmi.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
OBJECTIVES Malaria is one of the most important parasitic infectious diseases worldwide. Despite the scale-up of effective antimalarials, mortality rates from severe malaria (SM) remain significantly high; thus, numerous trials are investigating both antimalarials and adjunctive therapy. This review aimed to summarise all the outcome measures used in trials in the last 10 years to see the need for a core outcome set. METHODS A systematic review was undertaken to summarise outcomes of individually randomised trials assessing treatments for SM in adults and children. We searched key databases and trial registries between 1 January 2010 and 30 July 2020. Non-randomised trials were excluded to allow comparison of similar trials. Trial characteristics including phase, region, population, interventions, were summarised. All primary and secondary outcomes were extracted and categorised using a taxonomy table. RESULTS Twenty-seven of 282 screened trials met our inclusion criteria, including 10,342 patients from 19 countries: 19 (70%) trials from Africa and 8 (30%) from Asia. A large amount of heterogeneity was observed in the selection of outcomes and instruments, with 101 different outcomes measures recorded, 78/101 reported only in a single trial. Parasitological outcomes (17 studies), neurological status (14 studies), death (14 studies) and temperature (10 studies), were the most reported outcomes. Where an outcome was reported in >1 study it was often measured differently: temperature (4 different measures), renal function (7 measures), nervous system (13 measures) and parasitology (10 measures). CONCLUSION Outcomes used in SM trials are inconsistent and heterogeneous. Absence of consensus for outcome measures used impedes research synthesis and comparability of different interventions. This systematic review demonstrates the need to develop a standardised collection of core outcomes for clinical trials of treatments for SM and next steps to include the development of a panel of experts in the field, a Delphi process, and a consensus meeting.
Collapse
Affiliation(s)
- Lamprini Lampro
- Medical Research Council Clinical Trials Unit at University College London, London, UK.,Intensive Care National Audit and Research Centre, London, UK
| | - Elizabeth C George
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| |
Collapse
|
16
|
Plasmodium falciparum and TNF-α Differentially Regulate Inflammatory and Barrier Integrity Pathways in Human Brain Endothelial Cells. mBio 2022; 13:e0174622. [PMID: 36036514 PMCID: PMC9601155 DOI: 10.1128/mbio.01746-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection characterized by the loss of blood-brain barrier (BBB) integrity, which is associated with brain swelling and mortality in patients. P. falciparum-infected red blood cells and inflammatory cytokines, like tumor necrosis factor alpha (TNF-α), have been implicated in the development of cerebral malaria, but it is still unclear how they contribute to the loss of BBB integrity. Here, a combination of transcriptomic analysis and cellular assays detecting changes in barrier integrity and endothelial activation were used to distinguish between the effects of P. falciparum and TNF-α on a human brain microvascular endothelial cell (HBMEC) line and in primary human brain microvascular endothelial cells. We observed that while TNF-α induced high levels of endothelial activation, it only caused a small increase in HBMEC permeability. Conversely, P. falciparum-infected red blood cells (iRBCs) led to a strong increase in HBMEC permeability that was not mediated by cell death. Distinct transcriptomic profiles of TNF-α and P. falciparum in HBMECs confirm the differential effects of these stimuli, with the parasite preferentially inducing an endoplasmic reticulum stress response. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics.
Collapse
|
17
|
Abstract
IMPORTANCE Malaria is caused by protozoa parasites of the genus Plasmodium and is diagnosed in approximately 2000 people in the US each year who have returned from visiting regions with endemic malaria. The mortality rate from malaria is approximately 0.3% in the US and 0.26% worldwide. OBSERVATIONS In the US, most malaria is diagnosed in people who traveled to an endemic region. More than 80% of people diagnosed with malaria in the US acquired the infection in Africa. Of the approximately 2000 people diagnosed with malaria in the US in 2017, an estimated 82.4% were adults and about 78.6% were Black or African American. Among US residents diagnosed with malaria, 71.7% had not taken malaria chemoprophylaxis during travel. In 2017 in the US, P falciparum was the species diagnosed in approximately 79% of patients, whereas P vivax was diagnosed in an estimated 11.2% of patients. In 2017 in the US, severe malaria, defined as vital organ involvement including shock, pulmonary edema, significant bleeding, seizures, impaired consciousness, and laboratory abnormalities such as kidney impairment, acidosis, anemia, or high parasitemia, occurred in approximately 14% of patients, and an estimated 0.3% of those receiving a diagnosis of malaria in the US died. P falciparum has developed resistance to chloroquine in most regions of the world, including Africa. First-line therapy for P falciparum malaria in the US is combination therapy that includes artemisinin. If P falciparum was acquired in a known chloroquine-sensitive region such as Haiti, chloroquine remains an alternative option. When artemisinin-based combination therapies are not available, atovaquone-proguanil or quinine plus clindamycin is used for chloroquine-resistant malaria. P vivax, P ovale, P malariae, and P knowlesi are typically chloroquine sensitive, and treatment with either artemisinin-based combination therapy or chloroquine for regions with chloroquine-susceptible infections for uncomplicated malaria is recommended. For severe malaria, intravenous artesunate is first-line therapy. Treatment of mild malaria due to a chloroquine-resistant parasite consists of a combination therapy that includes artemisinin or chloroquine for chloroquine-sensitive malaria. P vivax and P ovale require additional therapy with an 8-aminoquinoline to eradicate the liver stage. Several options exist for chemoprophylaxis and selection should be based on patient characteristics and preferences. CONCLUSIONS AND RELEVANCE Approximately 2000 cases of malaria are diagnosed each year in the US, most commonly in travelers returning from visiting endemic areas. Prevention and treatment of malaria depend on the species and the drug sensitivity of parasites from the region of acquisition. Intravenous artesunate is first-line therapy for severe malaria.
Collapse
Affiliation(s)
- Johanna P Daily
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York
| | - Aurelia Minuti
- D. Samuel Gottesman Library, Albert Einstein College of Medicine, Bronx, New York
| | - Nazia Khan
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
18
|
Chandana M, Anand A, Ghosh S, Das R, Beura S, Jena S, Suryawanshi AR, Padmanaban G, Nagaraj VA. Malaria parasite heme biosynthesis promotes and griseofulvin protects against cerebral malaria in mice. Nat Commun 2022; 13:4028. [PMID: 35821013 PMCID: PMC9276668 DOI: 10.1038/s41467-022-31431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
Heme-biosynthetic pathway of malaria parasite is dispensable for asexual stages, but essential for mosquito and liver stages. Despite having backup mechanisms to acquire hemoglobin-heme, pathway intermediates and/or enzymes from the host, asexual parasites express heme pathway enzymes and synthesize heme. Here we show heme synthesized in asexual stages promotes cerebral pathogenesis by enhancing hemozoin formation. Hemozoin is a parasite molecule associated with inflammation, aberrant host-immune responses, disease severity and cerebral pathogenesis. The heme pathway knockout parasites synthesize less hemozoin, and mice infected with knockout parasites are protected from cerebral malaria and death due to anemia is delayed. Biosynthetic heme regulates food vacuole integrity and the food vacuoles from knockout parasites are compromised in pH, lipid unsaturation and proteins, essential for hemozoin formation. Targeting parasite heme synthesis by griseofulvin-a FDA-approved antifungal drug, prevents cerebral malaria in mice and provides an adjunct therapeutic option for cerebral and severe malaria.
Collapse
Affiliation(s)
- Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Subhashree Beura
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Sarita Jena
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | | | - Govindarajan Padmanaban
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|
19
|
Tian Y, Zheng Z, Wang X, Liu S, Gu L, Mu J, Zheng X, Li Y, Shen S. Establishment and evaluation of glucose-modified nanocomposite liposomes for the treatment of cerebral malaria. J Nanobiotechnology 2022; 20:318. [PMID: 35794597 PMCID: PMC9258070 DOI: 10.1186/s12951-022-01493-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening neurological complication caused by Plasmodium falciparum. About 627,000 patients died of malaria in 2020. Currently, artemisinin and its derivatives are the front-line drugs used for the treatment of cerebral malaria. However, they cannot target the brain, which decreases their effectiveness. Therefore, increasing their ability to target the brain by the nano-delivery system with brain-targeted materials is of great significance for enhancing the effects of antimalarials and reducing CM mortality. This study used glucose transporter 1 (GLUT1) on the blood-brain barrier as a target for a synthesized cholesterol-undecanoic acid-glucose conjugate. The molecular dynamics simulation found that the structural fragment of glucose in the conjugate faced the outside the phospholipid bilayers, which was conducive to the recognition of brain-targeted liposomes by GLUT1. The fluorescence intensity of the brain-targeted liposomes (na-ATS/TMP@lipoBX) in the mouse brain was significantly higher than that of the non-targeted liposomes (na-ATS/TMP@lipo) in vivo (P < 0.001) after intranasal administration. The infection and recurrence rate of the mice receiving na-ATS/TMP@lipoBX treatment were significantly decreased, which had more advantages than those of other administration groups. The analysis of pharmacokinetic data showed that na-ATS/TMP@lipoBX could enter the brain in both systemic circulation and nasal-brain pathway to treat malaria. Taken together, these results in this study provide a new approach to the treatment of cerebral malaria.
Collapse
Affiliation(s)
- Ya Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- The Hospital of Nanbu County, Sichuan, People's Republic of China
| | - Zhongyuan Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xi Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Shuzhi Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Liwei Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jing Mu
- Chinese Traditional Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xiaojun Zheng
- Pharmacy Department of the first hospital of Shanxi Medical University, Shanxi, 10114, People's Republic of China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Shuo Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
20
|
Mota S, Bensalel J, Park DH, Gonzalez S, Rodriguez A, Gallego-Delgado J. Treatment Reducing Endothelial Activation Protects against Experimental Cerebral Malaria. Pathogens 2022; 11:643. [PMID: 35745497 PMCID: PMC9229727 DOI: 10.3390/pathogens11060643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral malaria (CM) is the most severe neurological complication of malaria caused by Plasmodium falciparum infection. The available antimalarial drugs are effective at clearing the parasite, but the mortality rate remains as high as 20% of CM cases. At the vascular level, CM is characterized by endothelial activation and dysfunction. Several biomarkers of endothelial activation have been associated with CM severity and mortality, making the brain vascular endothelium a potential target for adjunctive therapies. Statins and Angiotensin II Receptor Blockers (ARBs) are drugs used to treat hypercholesterolemia and hypertension, respectively, that have shown endothelial protective activity in other diseases. Here, we used a combination of a statin (atorvastatin) and an ARB (irbesartan) as adjunctive therapy to conventional antimalarial drugs in a mouse experimental model of CM. We observed that administration of atorvastatin-irbesartan combination decreased the levels of biomarkers of endothelial activation, such as the von Willebrand factor and angiopoietin-1. After mice developed neurological signs of CM, treatment with the combination plus conventional antimalarial drugs increased survival rates of animals 3-4 times compared to treatment with antimalarial drugs alone, with animals presenting lower numbers and smaller hemorrhages in the brain. Taken together, our results support the hypothesis that inhibiting endothelial activation would greatly reduce the CM-associated pathology and mortality.
Collapse
Affiliation(s)
- Sabrina Mota
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (S.M.); (D.H.P.); (S.G.)
| | - Johanna Bensalel
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, NY 10468, USA;
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Do Hee Park
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (S.M.); (D.H.P.); (S.G.)
| | - Sandra Gonzalez
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (S.M.); (D.H.P.); (S.G.)
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (S.M.); (D.H.P.); (S.G.)
| | - Julio Gallego-Delgado
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, NY 10468, USA;
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| |
Collapse
|
21
|
Marino A, Bivona DA, Bonacci P. Updates in central nervous system malaria: literature review and considerations. Curr Opin Infect Dis 2022; 35:255-261. [PMID: 35665720 PMCID: PMC10815005 DOI: 10.1097/qco.0000000000000829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Cerebral malaria (CM) represents one of the most common and severe complications of Plasmodium falciparum infection, leading to high morbidity and mortality along with challenging sequelae, especially in children. RECENT FINDINGS Although CM pathogenesis remains unclear due to the few studies made and the difficulty to analyze affected patients, there are valid theories involving P. falciparum endothelium interactions, and clinical manifestations have been better investigated and differentiated between adults and children. SUMMARY At the time of writing, diagnostic management is based on fast severe malaria identification by blood smear (thin and thick). However, newer techniques involving molecular testing (such as PCR or LAMP) and biomarkers identification are now available. It is also important to check patients' cerebral functions. As regards therapeutic management, although we could rely on several options, artesunate represents the gold standard treatment. Cerebral complications such as seizures and coma need to be managed as well.
Collapse
Affiliation(s)
- Andrea Marino
- Department of Biomedical and Biotechnological Sciences
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, Catania, Italy
| | | | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences
| |
Collapse
|
22
|
In Silico Prediction of Plasmodium falciparum Cytoadherence Inhibitors That Disrupt Interaction between gC1qR-DBLβ12 Complex. Pharmaceuticals (Basel) 2022; 15:ph15060691. [PMID: 35745611 PMCID: PMC9230678 DOI: 10.3390/ph15060691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Malaria causes about half a million deaths per year, mainly in children below 5 years of age. Cytoadherence of Plasmodium falciparum infected erythrocytes in brain and placenta has been linked to severe malaria and malarial related deaths. Cytoadherence is mediated by binding of human receptor gC1qR to the DBLβ12 domain of a P. falciparum erythrocyte membrane protein family 1 (PfEMP1) protein. In the present work, molecular dynamic simulation was extensively studied for the gC1qR-DBLβ12 complex. The stabilized protein complex was used to study the protein–protein interface interactions and mapping of interactive amino acid residues as hotspot were performed. Prediction of inhibitors were performed by using virtual protein–protein inhibitor database Timbal screening of about 15,000 compounds. In silico mutagenesis studies, binding profile and protein ligand interaction fingerprinting were used to strengthen the screening of the potential inhibitors of gC1qR-DBLβ12 interface. Six compounds were selected and were further subjected to the MAIP analysis and ADMET studies. From these six compounds, the compounds 3, 5, and 6 were found to outperform on all screening criteria from the rest selected compounds. These compounds may provide novel drugs to treat and manage severe falciparum malaria. Additionally. the identified hotspots can be used in future for designing novel interventions for disruption of interface interactions, such as through peptides or vaccines. Futher in vitro and in vivo studies are required for the confirmation of these compounds as potential inhibitors of gC1qR-DBLβ12 interaction.
Collapse
|
23
|
Matteucci KC, Correa AAS, Costa DL. Recent Advances in Host-Directed Therapies for Tuberculosis and Malaria. Front Cell Infect Microbiol 2022; 12:905278. [PMID: 35669122 PMCID: PMC9163498 DOI: 10.3389/fcimb.2022.905278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, and malaria, caused by parasites from the Plasmodium genus, are two of the major causes of death due to infectious diseases in the world. Both diseases are treatable with drugs that have microbicidal properties against each of the etiologic agents. However, problems related to treatment compliance by patients and emergence of drug resistant microorganisms have been a major problem for combating TB and malaria. This factor is further complicated by the absence of highly effective vaccines that can prevent the infection with either M. tuberculosis or Plasmodium. However, certain host biological processes have been found to play a role in the promotion of infection or in the pathogenesis of each disease. These processes can be targeted by host-directed therapies (HDTs), which can be administered in conjunction with the standard drug treatments for each pathogen, aiming to accelerate their elimination or to minimize detrimental side effects resulting from exacerbated inflammation. In this review we discuss potential new targets for the development of HDTs revealed by recent advances in the knowledge of host-pathogen interaction biology, and present an overview of strategies that have been tested in vivo, either in experimental models or in patients.
Collapse
Affiliation(s)
- Kely C. Matteucci
- Plataforma de Medicina Translacional Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André A. S. Correa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Diego L. Costa,
| |
Collapse
|
24
|
Masimbi O, Schurer JM, Rafferty E, Ndahimana JDA, Amuguni JH. A cost analysis of the diagnosis and treatment of malaria at public health facilities and communities in three districts in Rwanda. Malar J 2022; 21:150. [PMID: 35570297 PMCID: PMC9107714 DOI: 10.1186/s12936-022-04158-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Malaria is a potentially fatal disease spread by the bites of Plasmodium-infected Anopheles mosquitoes. Despite long-term efforts to control malaria in Rwanda, malaria incidence increased from 48 to 403 cases/1000 individuals between 2012 and 2016. The diagnosis and treatment of malaria occurs at multiple levels, but the costs of these activities are not well understood. This research was conducted to estimate the direct medical costs incurred by the Ministry of Health in diagnosing and treating malaria in three districts of Rwanda in 2018.
Methods
A cross-sectional and retrospective costing analysis was conducted in three districts that represented low (5–200 cases per 1000 individuals), moderate (> 200–400 cases per 1000 individuals), and high (> 400 cases per 1000 individuals) endemicity regions. Data on malaria cases managed at three healthcare levels (community, health centre, district hospital) was obtained from national databases. The direct medical costs of cases per malaria severity (‘simple malaria’, ‘simple malaria with minor digestive symptoms’, and ‘severe malaria’) were calculated based on the minimum package of health services provided. Total costs for each of the three districts were also calculated.
Results
A total of 298,381 malaria cases were recorded in Burera, Kirehe, and Southern Kayonza districts in 2018. The average unit cost per case ranged from USD 1.36 (for simple malaria at the community level) to USD 92.80 (for severe malaria with cerebral complications at district hospitals). Simple malaria cases managed at health centres and district hospitals were more than two-fold (USD 2.99–USD 3.00) and more than eight-fold (USD 12.10–USD 12.12) higher, respectively, than those managed in the community (USD 1.36). Overall, the Ministry of Health incurred USD 645,647.68 in direct medical costs related to malaria management across the three districts in 2018. Changes in disease rates from different endemicity regions and costs of anti-malarial oral medications significantly impacted the study results.
Conclusion
In Rwanda, severe malaria results in much higher expenses compared to other malaria types. Prompt diagnosis and appropriate treatment are crucial to prevent the progression of simple malaria to severe malaria, to reduce Ministry of Health malaria expenditures, and to reduce community transmission.
Collapse
|
25
|
Rosa-Gonçalves P, Ribeiro-Gomes FL, Daniel-Ribeiro CT. Malaria Related Neurocognitive Deficits and Behavioral Alterations. Front Cell Infect Microbiol 2022; 12:829413. [PMID: 35281436 PMCID: PMC8904205 DOI: 10.3389/fcimb.2022.829413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 01/29/2023] Open
Abstract
Typical of tropical and subtropical regions, malaria is caused by protozoa of the genus Plasmodium and is, still today, despite all efforts and advances in controlling the disease, a major issue of public health. Its clinical course can present either as the classic episodes of fever, sweating, chills and headache or as nonspecific symptoms of acute febrile syndromes and may evolve to severe forms. Survivors of cerebral malaria, the most severe and lethal complication of the disease, might develop neurological, cognitive and behavioral sequelae. This overview discusses the neurocognitive deficits and behavioral alterations resulting from human naturally acquired infections and murine experimental models of malaria. We highlighted recent reports of cognitive and behavioral sequelae of non-severe malaria, the most prevalent clinical form of the disease worldwide. These sequelae have gained more attention in recent years and therapies for them are required and demand advances in the understanding of neuropathogenesis. Recent studies using experimental murine models point to immunomodulation as a potential approach to prevent or revert neurocognitive sequelae of malaria.
Collapse
Affiliation(s)
- Pamela Rosa-Gonçalves
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
- Laboratório de Biologia, campus Duque de Caxias, Colégio Pedro II, Duque de Caxias, Brazil
- *Correspondence: Pamela Rosa-Gonçalves,
| | - Flávia Lima Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Kumar SP, Babu PP. NADPH Oxidase: a Possible Therapeutic Target for Cognitive Impairment in Experimental Cerebral Malaria. Mol Neurobiol 2021; 59:800-820. [PMID: 34782951 DOI: 10.1007/s12035-021-02598-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
Long-term cognitive impairment associated with seizure-induced hippocampal damage is the key feature of cerebral malaria (CM) pathogenesis. One-fourth of child survivors of CM suffer from long-lasting neurological deficits and behavioral anomalies. However, mechanisms on hippocampal dysfunction are unclear. In this study, we elucidated whether gp91phox isoform of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) (a potent marker of oxidative stress) mediates hippocampal neuronal abnormalities and cognitive dysfunction in experimental CM (ECM). Mice symptomatic to CM were rescue treated with artemether monotherapy (ARM) and in combination with apocynin (ARM + APO) adjunctive based on scores of Rapid Murine Come behavior Scale (RMCBS). After a 30-day survivability period, we performed Barnes maze, T-maze, and novel object recognition cognitive tests to evaluate working and reference memory in all the experimental groups except CM. Sensorimotor tests were conducted in all the cohorts to assess motor coordination. We performed Golgi-Cox staining to illustrate cornu ammonis-1 (CA1) pyramidal neuronal morphology and study overall hippocampal neuronal density changes. Further, expression of NOX2, NeuN (neuronal marker) in hippocampal CA1 and dentate gyrus was determined using double immunofluorescence experiments in all the experimental groups. Mice administered with ARM monotherapy and APO adjunctive treatment exhibited similar survivability. The latter showed better locomotor and cognitive functions, reduced ROS levels, and hippocampal NOX2 immunoreactivity in ECM. Our results show a substantial increase in hippocampal NeuN immunoreactivity and dendritic arborization in ARM + APO cohorts compared to ARM-treated brain samples. Overall, our study suggests that overexpression of NOX2 could result in loss of hippocampal neuronal density and dendritic spines of CA1 neurons affecting the spatial working and reference memory during ECM. Notably, ARM + APO adjunctive therapy reversed the altered neuronal morphology and oxidative damage in hippocampal neurons restoring long-term cognitive functions after CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Phanithi Prakash Babu
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
27
|
Agamah FE, Damena D, Skelton M, Ghansah A, Mazandu GK, Chimusa ER. Network-driven analysis of human-Plasmodium falciparum interactome: processes for malaria drug discovery and extracting in silico targets. Malar J 2021; 20:421. [PMID: 34702263 PMCID: PMC8547565 DOI: 10.1186/s12936-021-03955-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/16/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The emergence and spread of malaria drug resistance have resulted in the need to understand disease mechanisms and importantly identify essential targets and potential drug candidates. Malaria infection involves the complex interaction between the host and pathogen, thus, functional interactions between human and Plasmodium falciparum is essential to obtain a holistic view of the genetic architecture of malaria. Several functional interaction studies have extended the understanding of malaria disease and integrating such datasets would provide further insights towards understanding drug resistance and/or genetic resistance/susceptibility, disease pathogenesis, and drug discovery. METHODS This study curated and analysed data including pathogen and host selective genes, host and pathogen protein sequence data, protein-protein interaction datasets, and drug data from literature and databases to perform human-host and P. falciparum network-based analysis. An integrative computational framework is presented that was developed and found to be reasonably accurate based on various evaluations, applications, and experimental evidence of outputs produced, from data-driven analysis. RESULTS This approach revealed 8 hub protein targets essential for parasite and human host-directed malaria drug therapy. In a semantic similarity approach, 26 potential repurposable drugs involved in regulating host immune response to inflammatory-driven disorders and/or inhibiting residual malaria infection that can be appropriated for malaria treatment. Further analysis of host-pathogen network shortest paths enabled the prediction of immune-related biological processes and pathways subverted by P. falciparum to increase its within-host survival. CONCLUSIONS Host-pathogen network analysis reveals potential drug targets and biological processes and pathways subverted by P. falciparum to enhance its within malaria host survival. The results presented have implications for drug discovery and will inform experimental studies.
Collapse
Affiliation(s)
- Francis E Agamah
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Delesa Damena
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michelle Skelton
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anita Ghansah
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Gaston K Mazandu
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- African Institute for Mathematical Sciences, 5-7 Melrose Road, Muizenberg, Cape Town, 7945, South Africa.
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
28
|
Zheng Z, Liu H, Wang X, Zhang Y, Qu S, Yang Y, Deng S, Chen L, Zhu X, Li Y. Artesunate and Tetramethylpyrazine Exert Effects on Experimental Cerebral Malaria in a Mechanism of Protein S-Nitrosylation. ACS Infect Dis 2021; 7:2836-2849. [PMID: 34254783 DOI: 10.1021/acsinfecdis.1c00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cerebral malaria (CM) is caused by Plasmodium falciparum, resulting in severe sequelae; one of its pathogenic factors is the low bioavailability of nitric oxide (NO). Our previous study suggested that the combination of artesunate (AS) and tetramethylpyrazine (TMP) exerts an adjuvant therapeutic effect on the symptoms of experimental CM (ECM) and that NO regulation plays an important role. In the present study, we further verified the effects of AS+TMP on cerebral blood flow (CBF) and detected NO-related indicators. We focused on the role of NO through S-nitrosoproteome based on previous proteomics data and explored the mechanism of AS+TMP for improving pathological ECM symptoms. We observed that AS+TMP reduces adhesion, increases CBF, and regulates NO synthase (NOS) activity, thereby regulating the level of S-nitrosothiols, such as metabolism-related or neuro-associated receptors, for improving ECM symptoms. These results demonstrated that AS+TMP could be an effective strategy in adjuvant therapy of CM.
Collapse
Affiliation(s)
- Zhongyuan Zheng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Liu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xi Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Zhang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuiqing Qu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanmin Yang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuoqiu Deng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lina Chen
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
29
|
Díaz R, Troncoso J, Jakob E, Skugor S. "Limiting access to iron decreases infection of Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis". BMC Vet Res 2021; 17:155. [PMID: 33849522 PMCID: PMC8043062 DOI: 10.1186/s12917-021-02853-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vertebrate hosts limit the availability of iron to microbial pathogens in order to nutritionally starve the invaders. The impact of iron deficiency induced by the iron chelator deferoxamine mesylate (DFO) was investigated in Atlantic salmon SHK-1 cells infected with the facultative intracellular bacterium Piscirickettsia salmonis. RESULTS Effects of the DFO treatment and P. salmonis on SHK-1 cells were gaged by assessing cytopathic effects, bacterial load and activity, and gene expression profiles of eight immune biomarkers at 4- and 7-days post infection (dpi) in the control group, groups receiving single treatments (DFO or P. salmonis) and their combination. The chelator appears to be well-tolerated by host cells, while it had a negative impact on the number of bacterial cells and associated cytotoxicity. DFO alone had minor effects on gene expression of SHK-1 cells, including an early activation of IL-1β at 4 dpi. In contrast to few moderate changes induced by single treatments (either infection or chelator), most genes had highest upregulation in the infected groups receiving DFO. The mildest induction of hepcidin-1 (antimicrobial peptide precursor and regulator of iron homeostasis) was observed in cells exposed to DFO alone, followed by P. salmonis infected cells while the addition of DFO to infected cells further increased the mRNA abundance of this gene. Transcripts encoding TNF-α (immune signaling) and iNOS (immune effector) showed sustained increase at both time points in this group while cathelicidin-1 (immune effector) and IL-8 (immune signaling) were upregulated at 7 dpi. The stimulation of protective gene responses seen in infected cultures supplemented with DFO coincided with the reduction of bacterial load and activity (judged by the expression of P. salmonis 16S rRNA), and damage to cultured host cells. CONCLUSION The absence of immune gene activation under normal iron conditions suggests modulation of host responses by P. salmonis. The negative effect of iron deficiency on bacteria likely allowed host cells to respond in a more protective manner to the infection, further decreasing its progression. Presented findings encourage in vivo exploration of iron chelators as a promising strategy against piscirickettsiosis.
Collapse
Affiliation(s)
- Rodrigo Díaz
- Cargill Innovation Centre, Camino a Pargua km 57, Colaco km 5, Calbuco, Puerto Montt, Chile
| | - José Troncoso
- Cargill Innovation Centre, Camino a Pargua km 57, Colaco km 5, Calbuco, Puerto Montt, Chile
| | - Eva Jakob
- Cargill Innovation Centre, Camino a Pargua km 57, Colaco km 5, Calbuco, Puerto Montt, Chile
| | - Stanko Skugor
- Cargill Innovation Centre, Dirdalsstranda 51, 4335, Dirdal, Norway.
| |
Collapse
|
30
|
Dual Anti-Malarial and GSK3β-Mediated Cytokine-Modulating Activities of Quercetin Are Requisite of Its Potential as a Plant-Derived Therapeutic in Malaria. Pharmaceuticals (Basel) 2021; 14:ph14030248. [PMID: 33803419 PMCID: PMC7999989 DOI: 10.3390/ph14030248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Although death in malaria is attributed to cerebrovascular blockage and anaemia, overwhelming cytokine production can contribute to the severity of the disease. Therefore, mitigation of dysregulated inflammatory signalling may provide further benefit for malaria treatment. Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is known to inhibit glycogen synthase kinase-3β (GSK3β), a potent regulator of both pro- and anti-inflammatory effects. Quercetin is therefore a potential therapeutic to modulate the imbalanced cytokine production during malarial infection. Anti-malarial effects of quercetin were evaluated in murine models of severe and cerebral malaria using Plasmodium berghei NK65 and ANKA strains, respectively. Western blotting and analysis of cytokines were carried out to determine the GSK3β-mediated cytokine-modulating effects of quercetin in infected animals. Quercetin (25 mg/kg BW) treatment in P. berghei NK65-infected animals resulted in 60.7 ± 2.4% suppression of parasitaemia and significantly decreased serum levels of TNF-α and IFN-γ, whilst levels of IL-10 and IL-4 were elevated significantly. Western analysis revealed that pGSK3β (Ser9) increased 2.7-fold in the liver of quercetin-treated NK65-infected animals. Treatment of P. berghei ANKA-infected mice with quercetin (15 mg/kg BW) increased (2.3-fold) pGSK3β (Ser9) in the brains of infected animals. Quercetin is a potential plant-derived therapeutic for malaria on the basis that it can elicit anti-malarial and GSK3β-mediated cytokine-modulating effects.
Collapse
|
31
|
Patel H, Dunican C, Cunnington AJ. Predictors of outcome in childhood Plasmodium falciparum malaria. Virulence 2020; 11:199-221. [PMID: 32063099 PMCID: PMC7051137 DOI: 10.1080/21505594.2020.1726570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum malaria is classified as either uncomplicated or severe, determining clinical management and providing a framework for understanding pathogenesis. Severe malaria in children is defined by the presence of one or more features associated with adverse outcome, but there is wide variation in the predictive value of these features. Here we review the evidence for the usefulness of these features, alone and in combination, to predict death and other adverse outcomes, and we consider the role that molecular biomarkers may play in augmenting this prediction. We also examine whether a more personalized approach to predicting outcome for specific presenting syndromes of severe malaria, particularly cerebral malaria, has the potential to be more accurate. We note a general need for better external validation in studies of outcome predictors and for the demonstration that predictors can be used to guide clinical management in a way that improves survival and long-term health.
Collapse
Affiliation(s)
- Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
32
|
Zou Y, Tuo F, Zhang Z, Guo J, Yuan Y, Zhang H, Xu Z, Pan Z, Tang Y, Deng C, Julie N, Wu W, Guo W, Li C, Huang X, Xu Q, Song J, Wang Q. Safety and Efficacy of Adjunctive Therapy With Artesunate in the Treatment of Severe Malaria: A Systematic Review and Meta-Analysis. Front Pharmacol 2020; 11:596697. [PMID: 33343367 PMCID: PMC7748123 DOI: 10.3389/fphar.2020.596697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: The purpose of this meta-analysis of longitudinal studies is to determine the safety and efficacy of artesunate combined with other forms of adjunctive therapies for severe malaria. Methods: Following the PRISMA guidelines, we searched multiple databases with the search terms "artesunate" and "adjunctive therapy" and "severe malaria" in July 2020. If the search showed a randomized controlled trial, the study was included in this meta-analysis. The random-effects model was used to calculate the combined incidence rate and relative risk or risk difference. Results: This meta-analysis included nine longitudinal studies with 724 participants. We found that the mortality rates in the artesunate monotherapy group and the artesunate + adjuvant therapy group are similar (RD = -0.02, 95% confidence interval: -0.06-0.02). The incidence of adverse reactions in the artesunate monotherapy group and the artesunate + adjuvant therapy group was also similar. Conclusion: No significant differences in safety and efficacy were observed between the artesunate monotherapy group and the artesunate + adjuvant therapy group. Higher quality and rigorously designed randomized controlled studies are needed to validate our findings.
Collapse
Affiliation(s)
- Yuanyuan Zou
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Tuo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqi Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiawen Guo
- Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueming Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyong Xu
- Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyi Pan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yexiao Tang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nadia Julie
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanting Wu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenfeng Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changqing Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Jiang X, Chen L, Zheng Z, Chen Y, Weng X, Guo Y, Li K, Yang T, Qu S, Liu H, Li Y, Zhu X. Synergistic Effect of Combined Artesunate and Tetramethylpyrazine in Experimental Cerebral Malaria. ACS Infect Dis 2020; 6:2400-2409. [PMID: 32786270 DOI: 10.1021/acsinfecdis.0c00124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intravenous artesunate is effective against cerebral malaria (CM), but high mortality and neurological sequelae in survivors are inevitable. We investigated the effect of combined artesunate and tetramethylpyrazine using mouse models of experimental cerebral malaria (ECM). Artesunate + tetramethylpyrazine reduced microvascular blockage and improved neurological function, including the rapid murine coma and behavior scale (RMCBS), leading to improved survival and reduced pathology in ECM. This combination downregulated the expression of adhesion molecules and sequestration of parasitized red blood cells (pRBCs), increased cerebral blood flow, nerve growth factor (b-NGF), vascular endothelial growth factor A (VEGF-A), and neurotrophin (brain-derived neurotrophic factor (BDNF), neurotrophic factor-3 (NT-3)) levels, and alleviated hippocampal neuronal damage and astrocyte activation. Down- (n = 128) and upregulated (n = 64) proteins were identified in the artesunate group, while up- (n = 217) and downregulated (n = 177) proteins were identified in the artesunate + tetramethylpyrazine group, presenting a significantly altered proteome profile. KEGG analysis showed that 166 differentially expressed proteins were enriched in the Art group and 234, in the artesunate + tetramethylpyrazine group. The neuroprotective effects of artesunate + tetramethylpyrazine were mainly related to proteins involved in axon development and transportation between blood and brain. These results suggested that artesunate + tetramethylpyrazine could be a potential adjuvant therapy against CM, but this will have to be confirmed in future studies and trials.
Collapse
Affiliation(s)
- Xiaohui Jiang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Lina Chen
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Zhongyuan Zheng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Yuan Guo
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Kai Li
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Ting Yang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Shuiqing Qu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Hui Liu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Yujie Li
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| | - Xiaoxin Zhu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimen Nei Avenue, Beijing 100700, China
| |
Collapse
|
34
|
Kumar SP, Babu PP. Aberrant Dopamine Receptor Signaling Plays Critical Role in the Impairment of Striatal Neurons in Experimental Cerebral Malaria. Mol Neurobiol 2020; 57:5069-5083. [PMID: 32833186 DOI: 10.1007/s12035-020-02076-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/14/2020] [Indexed: 01/19/2023]
Abstract
One-fourth survivors of cerebral malaria (CM) retain long-term cognitive and behavioral deficits. Structural abnormalities in striatum are reported in 80% of children with CM. Dopamine receptors (D1 and D2) are widely expressed in striatal medium spiny neurons (MSNs) that regulate critical physiological functions related to behavior and cognition. Dysregulation of dopamine receptors alters the expression of downstream proteins such as dopamine- and cAMP-regulated phosphoprotein (DARPP), Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα), and p25/cyclin-dependent kinase 5 (cdk5). However, the role of dopamine receptor signaling dysfunction on the outcome of striatal neuron degeneration is unknown underlying the pathophysiology of CM. Using experimental CM (ECM), the present study attempted to understand the role of aberrant dopamine receptor signaling and its possible relation in causing MSNs morphological impairment. The effect of antimalarial drug artemether (ARM) rescue therapy was also assessed after ECM on the outcome of dopamine receptors downstream signaling. ECM was induced in C57BL/6 mice (male and female) infecting with Plasmodium berghei ANKA (PbA) parasite that reiterates the clinical setting of CM. We demonstrated that ECM caused a significant increase in the expression of D1, D2 receptors, phosphorylated DARPP, p25, cdk5, CaMKIIα, and D1-D2 heteromers. A substantial increase in neuronal damage observed in the dorsolateral striatum region of ECM brains (particularly in MSNs) as revealed by increased Fluoro-Jade C staining, reduced dendritic spine density, and impaired dendritic arborization with varicosities. While the ARM rescue therapy significantly altered the effects of ECM induced dopamine receptor signaling dysfunction and neurodegeneration. Overall, our data suggest that dysregulation of dopamine receptor signaling plays an important role in the degeneration of MSNs, and the ARM rescue therapy might provide better insights to develop effective therapeutic strategies for CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- Neuroscience Laboratory (F-23/71), Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Phanithi Prakash Babu
- Neuroscience Laboratory (F-23/71), Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Malaria threatens the lives of over 200 million individuals with the disease each year. Plasmodium falciparum is the predominant cause of severe malaria which may be lethal and result in neurocognitive sequelae despite appropriate treatment. We review recent advances regarding the pathophysiology of severe malaria and treatment recommendations for severe disease in the United States. RECENT FINDINGS Infected red blood cell (iRBC) sequestration in microvascular beds is a critical factor in the development of severe malaria syndromes. Interactions between iRBC variant adhesive peptides and the endothelial protein C receptor (EPCR) result in perturbations of coagulation and cytopreservation pathways. Alterations in the protein C/EPCR axis are implicated in cerebral malaria, respiratory distress, and anemia. Brain MRIs reveal the posterior reversible encephalopathy syndrome in cerebral malaria patients. Transcriptomic analysis reveals commonalities in disease pathogenesis in children and adults despite differences in clinical presentation. US guidelines for severe malaria treatment currently recommend intravenous artesunate including in pregnant women and children. SUMMARY Despite advances in our understanding of malarial pathogenesis much remains unknown. Antimalarial agents eradicate parasites but no treatments are available to prevent or ameliorate severe malaria or prevent disease sequelae. Further study is needed to develop effective adjunctive therapies.
Collapse
|
36
|
Varo R, Erice C, Johnson S, Bassat Q, Kain KC. Clinical trials to assess adjuvant therapeutics for severe malaria. Malar J 2020; 19:268. [PMID: 32709257 PMCID: PMC7382078 DOI: 10.1186/s12936-020-03340-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/17/2020] [Indexed: 01/07/2023] Open
Abstract
Despite potent anti-malarial treatment, mortality rates associated with severe falciparum malaria remain high. To attempt to improve outcome, several trials have assessed a variety of potential adjunctive therapeutics, however none to date has been shown to be beneficial. This may be due, at least partly, to the therapeutics chosen and clinical trial design used. Here, we highlight three themes that could facilitate the choice and evaluation of putative adjuvant interventions for severe malaria, paving the way for their assessment in randomized controlled trials. Most clinical trials of adjunctive therapeutics to date have been underpowered due to the large number of participants required to reach mortality endpoints, rendering these study designs challenging and expensive to conduct. These limitations may be mitigated by the use of risk-stratification of participants and application of surrogate endpoints. Appropriate surrogate endpoints include direct measures of pathways causally involved in the pathobiology of severe and fatal malaria, including markers of host immune and endothelial activation and microcirculatory dysfunction. We propose using circulating markers of these pathways to identify high-risk participants that would be most likely to benefit from adjunctive therapy, and further by adopting these biomarkers as surrogate endpoints; moreover, choosing interventions that target deleterious host immune responses that directly contribute to microcirculatory dysfunction, multi-organ dysfunction and death; and, finally, prioritizing where possible, drugs that act on these pathways that are already approved by the FDA, or other regulators, for other indications, and are known to be safe in target populations, including children. An emerging understanding of the critical role of the host response in severe malaria pathogenesis may facilitate both clinical trial design and the search of effective adjunctive therapeutics.
Collapse
Affiliation(s)
- Rosauro Varo
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique
| | - Clara Erice
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | | | - Quique Bassat
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kevin C Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, ON, Canada. .,Department of Medicine, Division of Infectious Diseases, Tropical Disease Unit, University of Toronto, Toronto, Canada.
| |
Collapse
|
37
|
Schiess N, Villabona-Rueda A, Cottier KE, Huether K, Chipeta J, Stins MF. Pathophysiology and neurologic sequelae of cerebral malaria. Malar J 2020; 19:266. [PMID: 32703204 PMCID: PMC7376930 DOI: 10.1186/s12936-020-03336-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebral malaria (CM), results from Plasmodium falciparum infection, and has a high mortality rate. CM survivors can retain life-long post CM sequelae, including seizures and neurocognitive deficits profoundly affecting their quality of life. As the Plasmodium parasite does not enter the brain, but resides inside erythrocytes and are confined to the lumen of the brain's vasculature, the neuropathogenesis leading to these neurologic sequelae is unclear and under-investigated. Interestingly, postmortem CM pathology differs in brain regions, such as the appearance of haemorragic punctae in white versus gray matter. Various host and parasite factors contribute to the risk of CM, including exposure at a young age, parasite- and host-related genetics, parasite sequestration and the extent of host inflammatory responses. Thus far, several proposed adjunctive treatments have not been successful in the treatment of CM but are highly needed. The region-specific CM neuro-pathogenesis leading to neurologic sequelae is intriguing, but not sufficiently addressed in research. More attention to this may lead to the development of effective adjunctive treatments to address CM neurologic sequelae.
Collapse
Affiliation(s)
- Nicoline Schiess
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Meyer 6-113, Baltimore, MD, 21287, USA
| | - Andres Villabona-Rueda
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Karissa E Cottier
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA.,BioIVT, 1450 South Rolling Road, Baltimore, MD, USA
| | | | - James Chipeta
- Department of Paediatrics, University Teaching Hospital, Nationalist Road, Lusaka, Zambia
| | - Monique F Stins
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
38
|
Silva RCMC, Travassos LH, Paiva CN, Bozza MT. Heme oxygenase-1 in protozoan infections: A tale of resistance and disease tolerance. PLoS Pathog 2020; 16:e1008599. [PMID: 32692767 PMCID: PMC7373268 DOI: 10.1371/journal.ppat.1008599] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heme oxygenase (HO-1) mediates the enzymatic cleavage of heme, a molecule with proinflammatory and prooxidant properties. HO-1 activity deeply impacts host capacity to tolerate infection through reduction of tissue damage or affecting resistance, the ability of the host to control pathogen loads. In this Review, we will discuss the contribution of HO-1 in different and complex protozoan infections, such as malaria, leishmaniasis, Chagas disease, and toxoplasmosis. The complexity of these infections and the pleiotropic effects of HO-1 constitute an interesting area of study and an opportunity for drug development.
Collapse
Affiliation(s)
- Rafael C. M. C. Silva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leonardo H. Travassos
- Laboratório de Imunoreceptores e Sinalização, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia N. Paiva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo T. Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
39
|
Varo R, Chaccour C, Bassat Q. Update on malaria. Med Clin (Barc) 2020; 155:395-402. [PMID: 32620355 DOI: 10.1016/j.medcli.2020.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/25/2023]
Abstract
Despite recent successful efforts to reduce the global malaria burden, this disease remains a significant global health problem. Only in 2018, malaria caused 228 million clinical episodes, 2-4 million of which were severe malaria cases, and 405,000 were fatal. Most of the malaria attributable mortality occurred among children in sub-Saharan Africa. Nowadays, rapid diagnostic tests and artemisinin derivatives are two of the main pillars for the management of malaria. However, considering the current situation, these strategies are not sufficient to maintain a reducing trend in malaria incidence and mortality. New insights into the pathophysiology of malaria have highlighted the importance of the host response to infection. Understanding this response would help to develop new diagnostic and therapeutic tools. Vector and parasite drug resistance are two major challenges for malaria control that require special attention. The most advanced malaria vaccine (RTS,S) is currently being piloted in 3 African countries.
Collapse
Affiliation(s)
- Rosauro Varo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Carlos Chaccour
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Ifakara Health Institute, Ifakara, United Republic of Tanzania; Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Deu (University of Barcelona), Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Publica (CIBERESP), Madrid, Spain.
| |
Collapse
|
40
|
Panda PK, Sharawat IK, Panda PK. Case Report: An Adolescent Girl with Isolated Neuropsychiatric Features and Apparent Post-Malaria Neurological Syndrome. Am J Trop Med Hyg 2020; 102:1030-1032. [PMID: 32067632 DOI: 10.4269/ajtmh.19-0791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The post-malaria neurological syndrome (PMNS) is an unusual and relatively underreported complication of malaria, which usually occurs after the resolution of acute febrile illness and the patient is free from parasitemia. The clinical spectrum of the PMNS varies from acute-onset cerebellar ataxia to significant encephalopathy with focal deficits resembling acute disseminated encephalomyelitis. Uncommon presentations of PMNS include Guillain-Barre syndrome, postural tremor, or even isolated neuropsychiatric features. Although in a significant proportion of PMNS cases clinical resolution occurs with conservative treatment only, corticosteroids have been used in an attempt to hasten recoveries. Here, we present a case of a 12-year-old girl with acute onset, isolated neuropsychiatric features, following Plasmodium falciparum malaria. Neuroimaging, clinical examination, and cerebrospinal fluid studies were within normal limits. The child recovered completely after treatment with methylprednisolone pulse therapy. This case report illustrates the need for creating awareness about this uncommon complication of malaria. In view of the uncommon complication, early diagnosis and prompt treatment might help in the early resolution of symptoms.
Collapse
Affiliation(s)
- Prateek Kumar Panda
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, India
| | - Indar Kumar Sharawat
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, India
| | | |
Collapse
|
41
|
Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria. Cell Mol Immunol 2020; 17:799-806. [PMID: 32541835 PMCID: PMC7294524 DOI: 10.1038/s41423-020-0482-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022] Open
Abstract
Malaria is one of the deadliest infectious diseases in the world. Immune responses to Plasmodium falciparum malaria vary among individuals and between populations. Human genetic variation in immune system genes is likely to play a role in this heterogeneity. Natural killer (NK) cells produce inflammatory cytokines in response to malaria infection, kill intraerythrocytic Plasmodium falciparum parasites by cytolysis, and participate in the initiation and development of adaptive immune responses to plasmodial infection. These functions are modulated by interactions between killer-cell immunoglobulin-like receptors (KIRs) and human leukocyte antigens (HLAs). Therefore, variations in KIR and HLA genes can have a direct impact on NK cell functions. Understanding the role of KIRs and HLAs in immunity to malaria can help to better characterize antimalarial immune responses. In this review, we summarize the different KIRs and HLAs associated with immunity to malaria thus far.
Collapse
|
42
|
Georgiadou A, Cunnington AJ. Shedding of the Vascular Endothelial Glycocalyx: A Common Pathway to Severe Malaria? Clin Infect Dis 2020; 69:1721-1723. [PMID: 30698670 DOI: 10.1093/cid/ciz043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 01/14/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Athina Georgiadou
- Section of Pediatrics, Department of Medicine, Imperial College London, United Kingdom
| | - Aubrey J Cunnington
- Section of Pediatrics, Department of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
43
|
Coenzyme Q10 and cerebral malaria in mice: Questionable interpretations, improbable usefulness in humans. Parasitol Int 2020; 74:101969. [DOI: 10.1016/j.parint.2019.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/03/2019] [Indexed: 11/19/2022]
|
44
|
Alegana VA, Khazenzi C, Akech SO, Snow RW. Estimating hospital catchments from in-patient admission records: a spatial statistical approach applied to malaria. Sci Rep 2020; 10:1324. [PMID: 31992809 PMCID: PMC6987150 DOI: 10.1038/s41598-020-58284-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/07/2020] [Indexed: 01/20/2023] Open
Abstract
Admission records are seldom used in sub-Saharan Africa to delineate hospital catchments for the spatial description of hospitalised disease events. We set out to investigate spatial hospital accessibility for severe malarial anaemia (SMA) and cerebral malaria (CM). Malaria admissions for children between 1 month and 14 years old were identified from prospective clinical surveillance data recorded routinely at four referral hospitals covering two complete years between December 2015 to November 2016 and November 2017 to October 2018. These were linked to census enumeration areas (EAs) with an age-structured population. A novel mathematical-statistical framework that included EAs with zero observations was used to predict hospital catchment for malaria admissions adjusting for spatial distance. From 5766 malaria admissions, 5486 (95.14%) were linked to specific EA address, of which 272 (5%) were classified as cerebral malaria while 1001 (10%) were severe malaria anaemia. Further, results suggest a marked geographic catchment of malaria admission around the four sentinel hospitals although the extent varied. The relative rate-ratio of hospitalisation was highest at <1-hour travel time for SMA and CM although this was lower outside the predicted hospital catchments. Delineation of catchments is important for planning emergency care delivery and in the use of hospital data to define epidemiological disease burdens. Further hospital and community-based studies on treatment-seeking pathways to hospitals for severe disease would improve our understanding of catchments.
Collapse
Affiliation(s)
- Victor A Alegana
- Kenya Medical Research Institute - Wellcome Trust Research Programme, P.O. Box, 43640-00100, Nairobi, Kenya.
- Geography and Environmental Science, University of Southampton, SO17 1BJ, Southampton, UK.
- Faculty of Science and Technology, Lancaster University, LA1 4YR, Lancaster, UK.
| | - Cynthia Khazenzi
- Kenya Medical Research Institute - Wellcome Trust Research Programme, P.O. Box, 43640-00100, Nairobi, Kenya
| | - Samuel O Akech
- Kenya Medical Research Institute - Wellcome Trust Research Programme, P.O. Box, 43640-00100, Nairobi, Kenya
| | - Robert W Snow
- Kenya Medical Research Institute - Wellcome Trust Research Programme, P.O. Box, 43640-00100, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7LJ, Oxford, UK
| |
Collapse
|
45
|
Zhao S, Duan H, Yang Y, Yan X, Fan K. Fenozyme Protects the Integrity of the Blood-Brain Barrier against Experimental Cerebral Malaria. NANO LETTERS 2019; 19:8887-8895. [PMID: 31671939 DOI: 10.1021/acs.nanolett.9b03774] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cerebral malaria is a lethal complication of malaria infection characterized by central nervous system dysfunction and is often not effectively treated by antimalarial combination therapies. It has been shown that the sequestration of the parasite-infected red blood cells that interact with cerebral vessel endothelial cells and the damage of the blood-brain barrier (BBB) play critical roles in the pathogenesis. In this study, we developed a ferritin nanozyme (Fenozyme) composed of recombinant human ferritin (HFn) protein shells that specifically target BBB endothelial cells (BBB ECs) and the inner Fe3O4 nanozyme core that exhibits reactive oxygen species-scavenging catalase-like activity. In the experimental cerebral malaria (ECM) mouse model, administration of the Fenozyme, but not HFn, markedly ameliorated the damage of BBB induced by the parasite and improved the survival rate of infected mice significantly. Further investigations found that Fenozyme, as well as HFn, was able to polarize the macrophages in the liver to the M1 phenotype and promote the elimination of malaria in the blood. Thus, the catalase-like activity of the Fenozyme is required for its therapeutic effect in the mouse model. Moreover, the Fenozyme significantly alleviated the brain inflammation and memory impairment in ECM mice that had been treated with artemether, indicating that combining Fenozyme with an antimalarial drug is a novel strategy for the treatment of cerebral malaria.
Collapse
Affiliation(s)
- Shuai Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
- College of Life Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hongxia Duan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine , Chinese Academy of Medicine Sciences , Suzhou 215133 , China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
- College of Life Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
- Joint Laboratory of Nanozymes in Zhengzhou University, Academy of Medical Sciences , Zhengzhou University , 40 Daxue Road , Zhengzhou 450052 , China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
- Joint Laboratory of Nanozymes in Zhengzhou University, Academy of Medical Sciences , Zhengzhou University , 40 Daxue Road , Zhengzhou 450052 , China
| |
Collapse
|
46
|
Erice C, Kain KC. New insights into microvascular injury to inform enhanced diagnostics and therapeutics for severe malaria. Virulence 2019; 10:1034-1046. [PMID: 31775570 PMCID: PMC6930010 DOI: 10.1080/21505594.2019.1696621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Severe malaria (SM) has high mortality and morbidity rates despite treatment with potent antimalarials. Disease onset and outcome is dependent upon both parasite and host factors. Infected erythrocytes bind to host endothelium contributing to microvascular occlusion and dysregulated inflammatory and immune host responses, resulting in endothelial activation and microvascular damage. This review focuses on the mechanisms of host endothelial and microvascular injury. Only a small percentage of malaria infections (≤1%) progress to SM. Early recognition and treatment of SM can improve outcome, but we lack triage tools to identify SM early in the course of infection. Current point-of-care pathogen-based rapid diagnostic tests do not address this critical barrier. Immune and endothelial activation have been implicated in the pathobiology of SM. We hypothesize that measuring circulating mediators of these pathways at first clinical presentation will enable early triage and treatment of SM. Moreover, that host-based interventions that modulate these pathways will stabilize the microvasculature and improve clinical outcome over that of antimalarial therapy alone.
Collapse
Affiliation(s)
- Clara Erice
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Kevin C Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
47
|
Plewes K, Leopold SJ, Kingston HWF, Dondorp AM. Malaria: What's New in the Management of Malaria? Infect Dis Clin North Am 2019; 33:39-60. [PMID: 30712767 DOI: 10.1016/j.idc.2018.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The global burden of malaria remains high, with 216 million cases causing 445,000 deaths in 2016 despite first-line treatment with artemisinin-based combination therapy. Decreasing transmission in Africa shifts the risk for severe malaria to older age groups as premunition wanes. Prompt diagnosis and treatment with intravenous artesunate in addition to appropriate supportive management are critical to reduce deaths from severe malaria. Effective individual management is challenging in settings with limited resources for higher-level care. Adjunctive therapies targeting the underlying pathophysiological pathways have the potential to reduce mortality. Resistance to artemisinin derivatives and their partner drugs threaten malaria management and control.
Collapse
Affiliation(s)
- Katherine Plewes
- Malaria Department, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 3/F 60th, Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok 10400, Thailand; Department of Medicine, University of British Columbia, Vancouver General Hospital, 452D Heather Pavilion East, 2733 Heather Street, Vancouver, British Columbia V5Z 3J5, Canada
| | - Stije J Leopold
- Malaria Department, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 3/F 60th, Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok 10400, Thailand
| | - Hugh W F Kingston
- Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK; Malaria Department, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 3/F 60th, Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok 10400, Thailand
| | - Arjen M Dondorp
- Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK; Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 3/F 60th, Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok 10400, Thailand.
| |
Collapse
|
48
|
Tran TM, Crompton PD. Decoding the complexities of human malaria through systems immunology. Immunol Rev 2019; 293:144-162. [PMID: 31680289 DOI: 10.1111/imr.12817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
The complexity of the Plasmodium parasite and its life cycle poses a challenge to our understanding of the host immune response against malaria. Studying human immune responses during natural and experimental Plasmodium infections can enhance our understanding of malaria-protective immunity and inform the design of disease-modifying adjunctive therapies and next-generation malaria vaccines. Systems immunology can complement conventional approaches to facilitate our understanding of the complex immune response to the highly dynamic malaria parasite. In this review, recent studies that used systems-based approaches to evaluate human immune responses during natural and experimental Plasmodium falciparum and Plasmodium vivax infections as well as during immunization with candidate malaria vaccines are summarized and related to each other. The potential for next-generation technologies to address the current limitations of systems-based studies of human malaria are discussed.
Collapse
Affiliation(s)
- Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
49
|
Human cerebral malaria: 2019 mini review. Rev Neurol (Paris) 2019; 175:445-450. [DOI: 10.1016/j.neurol.2019.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/05/2023]
|
50
|
Leopold SJ, Watson JA, Jeeyapant A, Simpson JA, Phu NH, Hien TT, Day NPJ, Dondorp AM, White NJ. Investigating causal pathways in severe falciparum malaria: A pooled retrospective analysis of clinical studies. PLoS Med 2019; 16:e1002858. [PMID: 31442221 PMCID: PMC6707545 DOI: 10.1371/journal.pmed.1002858] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/25/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Severe falciparum malaria is a medical emergency characterised by potentially lethal vital organ dysfunction. Patient fatality rates even with parenteral artesunate treatment remain high. Despite considerable research into adjuvant therapies targeting organ and tissue dysfunction, none have shown efficacy apart from renal replacement therapy. Understanding the causal contributions of clinical and laboratory abnormalities to mortality is essential for the design and evaluation of novel therapeutic interventions. METHODS AND FINDINGS We used a structural model causal inference approach to investigate causal relationships between epidemiological, laboratory, and clinical variables in patients with severe falciparum malaria enrolled in clinical trials and their in-hospital mortality. Under this causal model, we analysed records from 9,040 hospitalised children (0-12 years, n = 5,635) and adults (n = 3,405, 12-87 years) with severe falciparum malaria from 15 countries in Africa and Asia who were studied prospectively over the past 35 years. On admission, patient covariates associated with increased in-hospital mortality were severity of acidosis (odds ratio [OR] 2.10 for a 7-mEq/L increase in base deficit [95% CI 1.93-2.28]), renal impairment (OR 1.71 for a 2-fold increase in blood urea nitrogen [95% CI 1.58, 1.86]), coma (OR 3.59 [95% CI 3.07-4.21]), seizures (OR 1.40 [95% CI 1.16-1.68]), shock (OR 1.51 [95% CI 1.14-1.99]), and presumed pulmonary oedema (OR 1.58 [95% CI 1.04-2.39]). Lower in-hospital mortality was associated with moderate anaemia (OR 0.87 for a decrease of 10 percentage points in haematocrit [95% CI 0.80-0.95]). Circulating parasite density was not associated with mortality (OR 1.02 for a 6-fold increase [95% CI 0.94-1.11]), so the pathological effects of parasitaemia appear to be mediated entirely by the downstream effects of sequestration. Treatment with an artemisinin derivative decreased mortality compared with quinine (OR 0.64 [95% CI 0.56-0.74]). These estimates were consistent across children and adults (mainly representing African and Asian patients, respectively). Using inverse probability weighting, transfusion was not estimated to be beneficial in children with admission haematocrit values between 15% and 25% (OR 0.99 [95% CI 0.97-1.02]). Except for the effects of artemisinin treatment and transfusion, causal interpretations of these estimates could be biased by unmeasured confounding from severe bacterial sepsis, immunity, and duration of illness. CONCLUSION These data suggest that moderate anaemia is associated with a reduced risk of death in severe falciparum malaria. This is possibly a direct causal association. The severe anaemia threshold criteria for a definition of severe falciparum malaria should be reconsidered.
Collapse
Affiliation(s)
- Stije J. Leopold
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James A. Watson
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Atthanee Jeeyapant
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nguyen H. Phu
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Tran T. Hien
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Nicholas P. J. Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M. Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|