1
|
McCubbin AJ, Irwin CG, Costa RJS. Nourishing Physical Productivity and Performance On a Warming Planet - Challenges and Nutritional Strategies to Mitigate Exertional Heat Stress. Curr Nutr Rep 2024; 13:399-411. [PMID: 38995600 PMCID: PMC11327203 DOI: 10.1007/s13668-024-00554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE OF REVIEW: Climate change is predicted to increase the frequency and severity of exposure to hot environments. This can impair health, physical performance, and productivity for active individuals in occupational and athletic settings. This review summarizes current knowledge and recent advancements in nutritional strategies to minimize the impact of exertional-heat stress (EHS). RECENT FINDINGS: Hydration strategies limiting body mass loss to < 3% during EHS are performance-beneficial in weight-supported activities, although evidence regarding smaller fluid deficits (< 2% body mass loss) and weight-dependent activities is less clear due to a lack of well-designed studies with adequate blinding. Sodium replacement requirements during EHS depends on both sweat losses and the extent of fluid replacement, with quantified sodium replacement only necessary once fluid replacement > 60-80% of losses. Ice ingestion lowers core temperature and may improve thermal comfort and performance outcomes when consumed before, but less so during activity. Prevention and management of gastrointestinal disturbances during EHS should focus on high carbohydrate but low FODMAP availability before and during exercise, frequent provision of carbohydrate and/or protein during exercise, adequate hydration, and body temperature regulation. Evidence for these approaches is lacking in occupational settings. Acute kidney injury is a potential concern resulting from inadequate fluid replacement during and post-EHS, and emerging evidence suggests that repeated exposures may increase the risk of developing chronic kidney disease. Nutritional strategies can help regulate hydration, body temperature, and gastrointestinal status during EHS. Doing so minimizes the impact of EHS on health and safety and optimizes productivity and performance outcomes on a warming planet.
Collapse
Affiliation(s)
- Alan J McCubbin
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, Victoria, 3168, Australia.
| | - Christopher G Irwin
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Ricardo J S Costa
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, Victoria, 3168, Australia
| |
Collapse
|
2
|
Shaban M, Amer FGM, Shaban MM. The impact of nursing sustainable prevention program on heat strain among agricultural elderly workers in the context of climate change. Geriatr Nurs 2024; 58:215-224. [PMID: 38838403 DOI: 10.1016/j.gerinurse.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND This study assesses a geriatric nursing-led sustainable heat prevention program for elderly agricultural workers. It targets those aged 60 and above, addressing the heightened risk of heat strain in the era of climate change. METHODS A community-based quasi-experimental design involved 120 elderly agricultural workers, divided into intervention and control groups. The program, spanning three months, included education on hydration, rest, protective clothing, and recognition of heat-related illnesses. RESULTS The intervention led by geriatric nursing professionals showed significant improvements in heat strain metrics. The Heat Strain Score Index (HSSI) and the Observational-Perceptual Heat Strain Risk Assessment (OPHSRA) Index indicated increased safety levels and reduced risk categories among participants. CONCLUSIONS The study demonstrates the effectiveness of a geriatric nursing-led, tailored prevention program in reducing heat strain among elderly agricultural workers. It highlights the crucial role of nursing in adapting healthcare practices to the challenges posed by climate change. TRIAL REGISTRATION ClinicalTrials.gov, ID NCT06192069 retrospectively registered.
Collapse
|
3
|
Habibi P, Razmjouei J, Moradi A, Mahdavi F, Fallah-Aliabadi S, Heydari A. Climate change and heat stress resilient outdoor workers: findings from systematic literature review. BMC Public Health 2024; 24:1711. [PMID: 38926816 PMCID: PMC11210127 DOI: 10.1186/s12889-024-19212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE Global warming has led to an increase in the number and intensity of extreme heat events, posing a significant threat to the health and safety of workers, especially those working outdoors, as they often have limited access to cooling strategies. The present systematic literature review (a) summarizes the current knowledge on the impacts of climate change on outdoor workers, (b) provides historical background on this issue, (c) explores factors that reduce and increase thermal stress resilience, (d) discusses the heat mitigation strategies, and (e) provides an overview of existing policy and legal frameworks on occupational heat exposure among outdoor workers. MATERIALS AND METHODS In this systematic review, we searched scientific databases including Scopus (N = 855), Web of Science (N = 828), and PubMed (N = 202). Additionally, we identified relevant studies on climate change and heat-stress control measures through Google Scholar (N = 116) using specific search terms. In total, we monitored 2001 articles pertaining to worker populations (men = 2921; women = 627) in various outdoor climate conditions across 14 countries. After full-text assessment, 55 studies were selected for inclusion, and finally, 29 eligible papers were included for data extraction. RESULTS Failure to implement effective control strategies for outdoor workers will result in decreased resilience to thermal stress. The findings underscore a lack of awareness regarding certain adaptation strategies and interventions aimed at preventing and enhancing resilience to the impact of climate change on heat stress prevalence among workers in outdoor tropical and subtropical environments. However, attractive alternative solutions from the aspects of economic and ecological sustainability in the overall assessment of heat stress resilience can be referred to acclimatization, shading, optimized clothing properties and planned breaks. CONCLUSION The integration of climate change adaptation strategies into occupational health programs can enhance occupational heat resilience among outdoor workers. Conducting cost-benefit evaluations of health and safety measures for thermal stress adaptation strategies among outdoor workers is crucial for professionals and policymakers in low- and middle-income tropical and subtropical countries. In this respect, complementary measures targeting hydration, work-rest regimes, ventilated garments, self-pacing, and mechanization can be adopted to protect outdoor workers. Risk management strategies, adaptive measures, heat risk awareness, practical interventions, training programs, and protective policies should be implemented in hot-dry and hot-humid climates to boost the tolerance and resilience of outdoor workers.
Collapse
Affiliation(s)
- Peymaneh Habibi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaleh Razmjouei
- Health, Safety & Environment (HSE), Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Amirhossein Moradi
- Safety and Risk Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, NL, Canada
| | - Farank Mahdavi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Fallah-Aliabadi
- Department of Health in Emergencies and Disasters, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Accident Prevention and Crisis Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahad Heydari
- Department of Health in Disaster and Emergencies, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
4
|
Vecellio DJ, Vanos JK. Aligning thermal physiology and biometeorological research for heat adaptation and resilience in a changing climate. J Appl Physiol (1985) 2024; 136:1322-1328. [PMID: 38385187 PMCID: PMC11365541 DOI: 10.1152/japplphysiol.00098.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Affiliation(s)
- Daniel J Vecellio
- Center for Healthy Aging, Pennsylvania State University, University Park, Pennsylvania, United States
- Virginia Climate Center, George Mason University, Fairfax, Virginia, United States
| | - Jennifer K Vanos
- School of Sustainability, Arizona State University, Tempe, Arizona, United States
| |
Collapse
|
5
|
Bach AJE, Thepaksorn P, Hom Thepaksorn EK, Borg DN, Rutherford S, Osborne NJ, Darssan D, Phung D. Practical cooling interventions for preventing heat strain in indoor factory workers in Thailand. Am J Ind Med 2024; 67:556-561. [PMID: 38698682 DOI: 10.1002/ajim.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Occupational heat stress, exacerbated by factors such as climate change and insufficient cooling solutions, endangers the health and productivity of workers, especially in low-resource workplaces. OBJECTIVE To evaluate the effectiveness of two cooling strategies in reducing physiological strain and productivity of piece-rate workers over a 9-h work shift in a southern Thailand sawmill. METHODS In a crossover randomized control trial design, 12 (33 ± 7 y; 1.58 ± 0.05 m; 51 ± 9 kg; n = 5 females) medically screened sawmill workers were randomly allocated into three groups comprising an established phase change material vest (VEST), an on-site combination cooling oasis (OASIS) (i.e., hydration, cold towels, fans, water dousing), and no cooling (CON) across 3 consecutive workdays. Physiological strain was measured via core temperature telemetry and heart rate monitoring. Productivity was determined by counting the number of pallets of wood sorted, stacked, and stowed each day. RESULTS Relative to CON, OASIS lowered core temperature by 0.25°C [95% confidence interval = 0.24, 0.25] and heart rate by 7 bpm [6, 9] bpm, compared to 0.17°C [0.17, 0.18] and 10 [9,12] bpm reductions with VEST. It was inconclusive whether productivity was statistically lower in OASIS compared to CON (mean difference [MD] = 2.5 [-0.2, 5.2]), and was not statistically different between VEST and CON (MD = 1.4 [-1.3, 4.1]). CONCLUSIONS Both OASIS and VEST were effective in reducing physiological strain compared to no cooling. Their effect on productivity requires further investigation, as even small differences between interventions could lead to meaningful disparities in piece-rate worker earnings over time.
Collapse
Affiliation(s)
- Aaron J E Bach
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
- Cities Research Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Phayong Thepaksorn
- Trang Research Centre for Occupational Health, Sirindhorn College of Public Health, Khuan Thani, Trang, Thailand
- The Presidential Office, Praboromarajchanok Institute, Nonthaburi, Thailand
| | - Elizabeth K Hom Thepaksorn
- Trang Research Centre for Occupational Health, Sirindhorn College of Public Health, Khuan Thani, Trang, Thailand
| | - David N Borg
- School of Exercise and Nutrition Science, Queensland University of Technology, Brisbane, Australia
| | - Shannon Rutherford
- Cities Research Institute, Griffith University, Gold Coast, Queensland, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Nicholas J Osborne
- School of Public Health, The University of Queensland, Brisbane, Australia
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Australia
- School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
- European Centre for Environment and Human Health, University of Exeter, Penryn, UK
| | - Darsy Darssan
- School of Public Health, The University of Queensland, Brisbane, Australia
| | - Dung Phung
- School of Public Health, The University of Queensland, Brisbane, Australia
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Gibb K, Beckman S, Vergara XP, Heinzerling A, Harrison R. Extreme Heat and Occupational Health Risks. Annu Rev Public Health 2024; 45:315-335. [PMID: 38166501 DOI: 10.1146/annurev-publhealth-060222-034715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Climate change poses a significant occupational health hazard. Rising temperatures and more frequent heat waves are expected to cause increasing heat-related morbidity and mortality for workers across the globe. Agricultural, construction, military, firefighting, mining, and manufacturing workers are at particularly high risk for heat-related illness (HRI). Various factors, including ambient temperatures, personal protective equipment, work arrangements, physical exertion, and work with heavy equipment may put workers at higher risk for HRI. While extreme heat will impact workers across the world, workers in low- and middle-income countries will be disproportionately affected. Tracking occupational HRI will be critical to informing prevention and mitigation strategies. Renewed investment in these strategies, including workplace heat prevention programs and regulatory standards for indoor and outdoor workers, will be needed. Additional research is needed to evaluate the effectiveness of interventions in order to successfully reduce the risk of HRI in the workplace.
Collapse
Affiliation(s)
- Kathryn Gibb
- Occupational Health Branch, California Department of Public Health, Richmond, California, USA;
| | - Stella Beckman
- Occupational Health Branch, California Department of Public Health, Richmond, California, USA;
| | | | - Amy Heinzerling
- Occupational Health Branch, California Department of Public Health, Richmond, California, USA;
| | - Robert Harrison
- Occupational Health Branch, California Department of Public Health, Richmond, California, USA;
| |
Collapse
|
7
|
Abstract
Ubiquitous environmental exposures increase cardiovascular disease risk via diverse mechanisms. This review examines personal strategies to minimize this risk. With regard to fine particulate air pollution exposure, evidence exists to recommend the use of portable air cleaners and avoidance of outdoor activity during periods of poor air quality. Other evidence may support physical activity, dietary modification, omega-3 fatty acid supplementation, and indoor and in-vehicle air conditioning as viable strategies to minimize adverse health effects. There is currently insufficient data to recommend specific personal approaches to reduce the adverse cardiovascular effects of noise pollution. Public health advisories for periods of extreme heat or cold should be observed, with limited evidence supporting a warm ambient home temperature and physical activity as strategies to limit the cardiovascular harms of temperature extremes. Perfluoroalkyl and polyfluoroalkyl substance exposure can be reduced by avoiding contact with perfluoroalkyl and polyfluoroalkyl substance-containing materials; blood or plasma donation and cholestyramine may reduce total body stores of perfluoroalkyl and polyfluoroalkyl substances. However, the cardiovascular impact of these interventions has not been examined. Limited utilization of pesticides and safe handling during use should be encouraged. Finally, vasculotoxic metal exposure can be decreased by using portable air cleaners, home water filtration, and awareness of potential contaminants in ground spices. Chelation therapy reduces physiological stores of vasculotoxic metals and may be effective for the secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Luke J Bonanni
- Grossman School of Medicine (L.J.B.), NYU Langone Health, New York, NY
| | | |
Collapse
|
8
|
Deshayes TA, Hsouna H, Braham MAA, Arvisais D, Pageaux B, Ouellet C, Jay O, Maso FD, Begon M, Saidi A, Gendron P, Gagnon D. Work-rest regimens for work in hot environments: A scoping review. Am J Ind Med 2024; 67:304-320. [PMID: 38345435 DOI: 10.1002/ajim.23569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 03/16/2024]
Abstract
BACKGROUND To limit exposures to occupational heat stress, leading occupational health and safety organizations recommend work-rest regimens to prevent core temperature from exceeding 38°C or increasing by ≥1°C. This scoping review aims to map existing knowledge of the effects of work-rest regimens in hot environments and to propose recommendations for future research based on identified gaps. METHODS We performed a search of 10 databases to retrieve studies focused on work-rest regimens under hot conditions. RESULTS Forty-nine articles were included, of which 35 were experimental studies. Most studies were conducted in laboratory settings, in North America (71%), on healthy young adults, with 94% of the 642 participants being males. Most studies (66%) employed a protocol duration ≤240 min (222 ± 162 min, range: 37-660) and the time-weighted average wet-bulb globe temperature was 27 ± 4°C (range: 18-34). The work-rest regimens implemented were those proposed by the American Conference of Governmental and Industrial Hygiene (20%), National Institute of Occupational Safety and Health (11%), or the Australian Army (3%). The remaining studies (66%) did not mention how the work-rest regimens were derived. Most studies (89%) focused on physical tasks only. Most studies (94%) reported core temperature, whereas only 22% reported physical and/or mental performance outcomes, respectively. Of the 35 experimental studies included, 77% indicated that core temperature exceeded 38°C. CONCLUSIONS Although work-rest regimens are widely used, few studies have investigated their physiological effectiveness. These studies were mainly short in duration, involved mostly healthy young males, and rarely considered the effect of work-rest regimens beyond heat strain during physical exertion.
Collapse
Affiliation(s)
- Thomas A Deshayes
- Montreal Heart Institute, Montréal, Québec, Canada
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Hsen Hsouna
- Montreal Heart Institute, Montréal, Québec, Canada
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Mounir A A Braham
- Département des sciences de l'activité physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Département d'anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Denis Arvisais
- Bibliothèque des sciences de la santé, Université de Montréal, Montréal, Québec, Canada
| | - Benjamin Pageaux
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, Québec, Canada
| | - Capucine Ouellet
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal, Québec, Canada
| | - Ollie Jay
- Heat and Health Research Incubator, University of Sydney, Sydney, New South Wales, Australia
| | - Fabien D Maso
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, Québec, Canada
| | - Mickael Begon
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche du CHU Sainte-Justine, Montréal, Québec, Canada
| | - Alireza Saidi
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal, Québec, Canada
| | - Philippe Gendron
- Département des sciences de l'activité physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Daniel Gagnon
- Montreal Heart Institute, Montréal, Québec, Canada
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
9
|
Brown HA, Topham TH, Clark B, Ioannou LG, Flouris AD, Smallcombe JW, Telford RD, Jay O, Périard JD. Quantifying Exercise Heat Acclimatisation in Athletes and Military Personnel: A Systematic Review and Meta-analysis. Sports Med 2024; 54:727-741. [PMID: 38051495 DOI: 10.1007/s40279-023-01972-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Athletes and military personnel are often expected to compete and work in hot and/or humid environments, where decrements in performance and an increased risk of exertional heat illness are prevalent. A physiological strategy for reducing the adverse effects of heat stress is to acclimatise to the heat. OBJECTIVE The aim of this systematic review was to quantify the effects of relocating to a hotter climate to undergo heat acclimatisation in athletes and military personnel. ELIGIBILITY CRITERIA Studies investigating the effects of heat acclimatisation in non-acclimatised athletes and military personnel via relocation to a hot climate for < 6 weeks were included. DATA SOURCES MEDLINE, SPORTDiscus, CINAHL Plus with Full Text and Scopus were searched from inception to June 2022. RISK OF BIAS A modified version of the McMaster critical review form was utilised independently by two authors to assess the risk of bias. DATA SYNTHESIS A Bayesian multi-level meta-analysis was conducted on five outcome measures, including resting core temperature and heart rate, the change in core temperature and heart rate during a heat response test and sweat rate. Wet-bulb globe temperature (WBGT), daily training duration and protocol length were used as predictor variables. Along with posterior means and 90% credible intervals (CrI), the probability of direction (Pd) was calculated. RESULTS Eighteen articles from twelve independent studies were included. Fourteen articles (nine studies) provided data for the meta-analyses. Whilst accounting for WBGT, daily training duration and protocol length, population estimates indicated a reduction in resting core temperature and heart rate of - 0.19 °C [90% CrI: - 0.41 to 0.05, Pd = 91%] and - 6 beats·min-1 [90% CrI: - 16 to 5, Pd = 83%], respectively. Furthermore, the rise in core temperature and heart rate during a heat response test were attenuated by - 0.24 °C [90% CrI: - 0.67 to 0.20, Pd = 85%] and - 7 beats·min-1 [90% CrI: - 18 to 4, Pd = 87%]. Changes in sweat rate were conflicting (0.01 L·h-1 [90% CrI: - 0.38 to 0.40, Pd = 53%]), primarily due to two studies demonstrating a reduction in sweat rate following heat acclimatisation. CONCLUSIONS Data from athletes and military personnel relocating to a hotter climate were consistent with a reduction in resting core temperature and heart rate, in addition to an attenuated rise in core temperature and heart rate during an exercise-based heat response test. An increase in sweat rate is also attainable, with the extent of these adaptations dependent on WBGT, daily training duration and protocol length. PROSPERO REGISTRATION CRD42022337761.
Collapse
Affiliation(s)
- Harry A Brown
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Thomas H Topham
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Brad Clark
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Leonidas G Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Andreas D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - James W Smallcombe
- Faculty of Medicine and Health, Heat and Health Research Incubator, The University of Sydney, Sydney, NSW, Australia
| | - Richard D Telford
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Ollie Jay
- Faculty of Medicine and Health, Heat and Health Research Incubator, The University of Sydney, Sydney, NSW, Australia
| | - Julien D Périard
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia.
| |
Collapse
|
10
|
Del Ferraro S, Falcone T, Morabito M, Bonafede M, Marinaccio A, Gao C, Molinaro V. Mitigating heat effects in the workplace with a ventilation jacket: Simulations of the whole-body and local human thermophysiological response with a sweating thermal manikin in a warm-dry environment. J Therm Biol 2024; 119:103772. [PMID: 38145612 DOI: 10.1016/j.jtherbio.2023.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Climate change is increasingly affecting human well-being and will inevitably impact on occupational sectors in terms of costs, productivity, workers' health and injuries. Among the cooling garment developed to reduce heat strain, the ventilation jacket could be considered for possible use in workplaces, as it is wearable without limiting the user's mobility and autonomy. In this study, simulations with a sweating manikin are carried out to investigate the effects of a short-sleeved ventilation jacket on human thermophysiological responses in a warm-dry scenario. Simulations were performed in a climatic chamber (air temperature = 30.1 °C; air velocity = 0.29 m/s; relative humidity = 30.0 %), considering two constant levels of metabolic rate M (M1 = 2.4 MET; M2 = 3.2 MET), a sequence of these two (Work), and three levels of fan velocities (lf = 0; lf=2; lf=4). The results revealed a more evident impact on the mean skin temperature (Tsk) compared to the rectal temperature (Tre), with significant decreases (compared to fan-off) at all M levels, for Tsk from the beginning and for Tre from the 61st minute. Skin temperatures of the torso zones decreased significantly (compared to fan-off) at all M levels, and a greater drop was registered for the Back. The fans at the highest level (lf=4) were significantly effective in improving whole-body and local thermal sensations when compared to fan-off, at all M levels. At the intermediate level (lf=2), the statistical significance varied with thermal zone, M and time interval considered. The results of the simulations also showed that the Lower Torso needs to be monitored at M2 level, as the drop in skin temperature could lead to local overcooling and thermal discomfort. Simulations showed the potential effectiveness of the ventilation jacket, but human trials are needed to verify its cooling power in real working conditions.
Collapse
Affiliation(s)
- Simona Del Ferraro
- Laboratory of Ergonomics and Physiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| | - Tiziana Falcone
- Laboratory of Ergonomics and Physiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| | - Marco Morabito
- Institute of BioEconomy (IBE), National Research Council, Via Madonna Del Piano 10, 50019, Sesto Fiorentino, FI, Italy; Centre of Bioclimatology, University of Florence, Piazzale Delle Cascine 18, 50144, Florence, Italy.
| | - Michela Bonafede
- Laboratory of Occupational and Environmental Epidemiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Stefano Gradi 55, 00143, Rome, Italy.
| | - Alessandro Marinaccio
- Laboratory of Occupational and Environmental Epidemiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Stefano Gradi 55, 00143, Rome, Italy.
| | - Chuansi Gao
- Aerosol and Climate Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, Sölvegatan 26, Lund, Sweden.
| | - Vincenzo Molinaro
- Laboratory of Ergonomics and Physiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| |
Collapse
|
11
|
Vanos J, Guzman-Echavarria G, Baldwin JW, Bongers C, Ebi KL, Jay O. A physiological approach for assessing human survivability and liveability to heat in a changing climate. Nat Commun 2023; 14:7653. [PMID: 38030628 PMCID: PMC10687011 DOI: 10.1038/s41467-023-43121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Most studies projecting human survivability limits to extreme heat with climate change use a 35 °C wet-bulb temperature (Tw) threshold without integrating variations in human physiology. This study applies physiological and biophysical principles for young and older adults, in sun or shade, to improve current estimates of survivability and introduce liveability (maximum safe, sustained activity) under current and future climates. Our physiology-based survival limits show a vast underestimation of risks by the 35 °C Tw model in hot-dry conditions. Updated survivability limits correspond to Tw~25.8-34.1 °C (young) and ~21.9-33.7 °C (old)-0.9-13.1 °C lower than Tw = 35 °C. For older female adults, estimates are ~7.2-13.1 °C lower than 35 °C in dry conditions. Liveability declines with sun exposure and humidity, yet most dramatically with age (2.5-3.0 METs lower for older adults). Reductions in safe activity for younger and older adults between the present and future indicate a stronger impact from aging than warming.
Collapse
Affiliation(s)
- Jennifer Vanos
- School of Sustainability, Arizona State University, Tempe, AZ, USA.
| | - Gisel Guzman-Echavarria
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
| | - Jane W Baldwin
- Department of Earth System Science, University of California Irvine, Irvine, CA, USA
- Lamont-Doherty Earth Observatory, Palisades, NY, USA
| | - Coen Bongers
- Department of Medical Sciences, Radboud university medical center, Nijmegen, The Netherlands
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| | - Kristie L Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Ollie Jay
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Crowe J, Knechtle B, Rojas-Valverde D. Editorial: Acute and long-term health issues of occupational exposure to heat and high physical loads. Front Physiol 2023; 14:1304229. [PMID: 37885798 PMCID: PMC10599243 DOI: 10.3389/fphys.2023.1304229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Affiliation(s)
- Jennifer Crowe
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Beat Knechtle
- Institute for Family Medicine, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD-NARS), Escuela Ciencias del Movimiento Humano y Calidad de Vida, Universidad Nacional de Costa Rica, Heredia, Costa Rica
- Sport Injury Clinic, Escuela Ciencias del Movimiento Humano y Calidad de Vida, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| |
Collapse
|
13
|
Bach AJ, Palutikof JP, Tonmoy FN, Smallcombe JW, Rutherford S, Joarder AR, Hossain M, Jay O. Retrofitting passive cooling strategies to combat heat stress in the face of climate change: A case study of a ready-made garment factory in Dhaka, Bangladesh. ENERGY AND BUILDINGS 2023; 286:112954. [PMID: 37601430 PMCID: PMC7614966 DOI: 10.1016/j.enbuild.2023.112954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The ready-made garment industry is critical to the Bangladesh economy. There is an urgent need to improve current working conditions and build capacity for heat mitigation as conditions worsen due to climate change. We modelled a typical, mid-sized, non-air-conditioned factory in Bangladesh and simulated how the indoor thermal environment is altered by four rooftop retrofits (1. extensive green roof, 2. rooftop shading, 3. white cool roof, 4. insulated white cool roof) on present-day and future decades under different climate scenarios. Simulations showed that all strategies reduce indoor air temperatures by around 2 °C on average and reduce the number of present-day annual work-hours during which wetbulb globe temperature exceeds the standardised limits for moderate work rates by up to 603 h - the equivalent of 75 (8 h) working days per year. By 2050 under a high-emissions scenario, indoor conditions with a rooftop intervention are comparable to present-day conditions. To reduce the growing need for carbon-intensive air-conditioning, sustainable heat mitigation strategies need to be incorporated into a wider range of solutions at the individual, building, and urban level. The results presented here have implications for factory planning and retrofit design, and may inform policies targeting worker health, well-being, and productivity.
Collapse
Affiliation(s)
- Aaron J.E. Bach
- National Climate Change Adaptation Research Facility (NCCARF), Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Jean P. Palutikof
- National Climate Change Adaptation Research Facility (NCCARF), Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Fahim N. Tonmoy
- National Climate Change Adaptation Research Facility (NCCARF), Griffith University, Gold Coast, QLD, Australia
- BMT Group, Brisbane, QLD, Australia
| | - James W. Smallcombe
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| | - Shannon Rutherford
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| | - Ashikur R. Joarder
- Department of Architecture, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Monir Hossain
- Department of Architecture, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Ollie Jay
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Fang Z, Mao Y, Zhu Y, Lu J, Zheng Z, Chen X. Human thermal physiological response of wearing personal protective equipment: An educational building semi-open space experimental investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162779. [PMID: 36924973 PMCID: PMC10014506 DOI: 10.1016/j.scitotenv.2023.162779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
With the outbreak and spread of the COVID-19 epidemic, HCWs are frequently required to wear personal protective equipment (PPE) for nucleic acid sample collection in semi-open transition spaces. Wearing PPE causes significant psychological and physical stress in HCWs. In this study, operative temperature (Top) and wet-bulb globe temperature (WBGT) were used to assess thermal conditions through field experiments, while multiple physiological parameters were measured in the subjects. The results indicated that the subjects showed statistically significant differences in thermal perception and physiological parameters with and without PPE. Using observed increases in heart rate (HR), auditory canal temperature (Tac), mean skin temperature (MST), and end-tidal CO2 pressure, subjects were shown to have an increased metabolic rate and heat storage while wearing PPE. Additionally, a decrease in oxygen concentration was also observed, and this decrease may be linked to fatigue and cognitive impairment. Moreover, HR, MST, and Tac showed a significant linear relationship, which increased with temperature and operative temperature, and the HR response was stronger with PPE than without PPE. The neutral, preferred, and acceptable temperatures were significantly lower with PPE than without PPE, and the deviations for neutral Top/WBGT were 9.5/7.1 °C and preferred Top/WBGT was 2.2/4.0 °C, respectively. Moreover, the upper limits of acceptable WBGT, 29.4 °C with PPE and 20.4 °C without PPE, differed significantly between the two phases. Furthermore, the recorded physiological parameter responses and thermal perception responses of the subjects while wearing PPE indicated that they were at risk of thermal stress. Overall, these results suggest that people who wear PPE should focus on their health and thermal stress. This study provides a reference for the development of strategies to counteract heat stress and improve thermal comfort.
Collapse
Affiliation(s)
- Zhaosong Fang
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Yudong Mao
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Yongcheng Zhu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaxin Lu
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Zhimin Zheng
- School of Civil Engineering, Guangzhou University, Guangzhou, China.
| | - Xiaohui Chen
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Callihan M, Cole H, Stokley H, Gunter J, Clamp K, Martin A, Doherty H. Comparison of Slate Safety Wearable Device to Ingestible Pill and Wearable Heart Rate Monitor. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020877. [PMID: 36679676 PMCID: PMC9865127 DOI: 10.3390/s23020877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND With the increase in concern for deaths and illness related to the increase in temperature globally, there is a growing need for real-time monitoring of workers for heat stress indicators. The purpose of this study was to determine the usability of the Slate Safety (SS) wearable physiological monitoring system. METHODS Twenty nurses performed a common task in a moderate or hot environment while wearing the SS device, the Polar 10 monitor, and having taken the e-Celsius ingestible pill. Data from each device was compared for correlation and accuracy. RESULTS High correlation was determined between the SS wearable device and the Polar 10 system (0.926) and the ingestible pill (0.595). The SS was comfortable to wear and easily monitored multiple participants from a distance. CONCLUSIONS The Slate Safety wearable device demonstrated accuracy in measuring core temperature and heart rate while not restricting the motion of the worker, and provided a remote monitoring platform for physiological parameters.
Collapse
|
16
|
Ferrari GN, Leal GCL, Thom de Souza RC, Galdamez EVC. Impact of climate change on occupational health and safety: A review of methodological approaches. Work 2022; 74:485-499. [PMID: 36314181 DOI: 10.3233/wor-211303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The working population is exposed daily to unavoidable climatic conditions due to their occupational settings. Effects of the weather such as rain, heat, and air pollution may increase the risk of diseases, injuries, accidents, and even death during labor. OBJECTIVE This paper aims to summarize the impacts of climate change on workers' health, safety and performance, identifying the risks, affected workplaces and the range of methodological approaches used to assess this problem. METHODS A thorough systematic mapping was conducted in seven scientific international databases: Emerald, IEEE Xplore, Science Direct, Scielo, Scopus, SpringerLink, and Web of Science. Three research questions guided the extraction process resulting in 170 articles regarding the impacts of climate change on occupational health and safety. RESULTS We found an accentuated trend in observational studies applying primary and secondary data collection. Many studies focused on the association between rising temperatures and occupational hazards, mainly in outdoor work settings such as agriculture. The variation of temperature was the most investigated impact of climate change. CONCLUSIONS We established a knowledge base on how to explore the impacts of climate change on workers' well-being and health. Researchers and policymakers benefit from this review, which explores the suitable methods found in the literature and highlights the most recurring risks and their consequences to occupational health and safety.
Collapse
Affiliation(s)
- Guilherme Neto Ferrari
- Postgraduate Program in Production Engineering, Production Engineering Department, State University of Maringá, Maringá, PR, Brazil
| | - Gislaine Camila Lapasini Leal
- Postgraduate Program in Production Engineering, Production Engineering Department, State University of Maringá, Maringá, PR, Brazil
| | | | - Edwin Vladimir Cardoza Galdamez
- Postgraduate Program in Production Engineering, Production Engineering Department, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
17
|
Chau PH, Lau KKL, Qian XX, Luo H, Woo J. Visits to the accident and emergency department in hot season of a city with subtropical climate: association with heat stress and related meteorological variables. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1955-1971. [PMID: 35900375 PMCID: PMC9330976 DOI: 10.1007/s00484-022-02332-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/08/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Literature reporting the association between heat stress defined by universal thermal climate index (UTCI) and emergency department visits is mainly conducted in Europe. This study aimed to investigate the association between heat stress, as defined by the UTCI, and visits to the accident and emergency department (AED) in Hong Kong, which represents a subtropical climate region. METHODS A retrospective study involving 13,438,846 AED visits in the public sector from May 2000 to September 2016, excluding 2003 and 2009, was conducted in Hong Kong. Age-sex-specific ANCOVA models of daily AED rates on heat stress and prolonged heat stress, adjusting for air quality, prolonged poor air quality, typhoon, rainstorm, year, day of the week, public holiday, summer vacation, and fee charging, were used. RESULTS On a day with strong heat stress (32.1 °C ≤ UTCI ≤ 38.0 °C), the AED visit rate (per 100,000) increased by 0.9 (95% CI: 0.5, 1.3) and 1.7 (95% CI: 1.3, 2.1) for females and males aged 19-64 and 4.1 (95% CI: 2.7, 5.4) and 4.1 (95% CI: 2.6, 5.6) for females and males aged ≥ 65, while keeping other variables constant. On a day with very strong heat stress (38.1 °C ≤ UTCI ≤ 46.0 °C), the corresponding rates increased by 0.6 (95% CI: 0.1, 1.2), 2.2 (95% CI: 1.7, 2.7), 4.9 (95% CI: 3.1, 6.7), and 4.7 (95% CI: 2.7, 6.6), respectively. The effect size of heat stress associated with AED visit rates was negligible among those aged ≤ 18. Heat stress showed the greatest effect size for males aged 19-64 among all subgroups. CONCLUSION Biothermal condition from heat stress was associated with the health of the citizens in a city with a subtropical climate and reflected in the increase of daily AED visit. Public health recommendations have been made accordingly for the prevention of heat-related AED visits.
Collapse
Affiliation(s)
- Pui Hing Chau
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Kevin Ka-Lun Lau
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Xing Xing Qian
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hao Luo
- Department of Social Work and Social Administration, Faculty of Social Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jean Woo
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Tang T, Zhou X, Zhang Y, Feng X, Liu W, Fang Z, Zheng Z. Investigation into the thermal comfort and physiological adaptability of outdoor physical training in college students. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:155979. [PMID: 35580671 DOI: 10.1016/j.scitotenv.2022.155979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Over the last few decades, increase in global temperatures have led to a deterioration in the quality of open spaces, urban vitality, and public health. Strenuous physical training under hot conditions outdoors increases the potential for developing heat illnesses. It is therefore necessary to examine the relationships between human physiological indices, psychological responses, and outdoor thermal indices to predict and evaluate human thermal safety in hot environments. A 9-day experiment was conducted in September 2019, which tested the thermal comfort and cognitive ability of 1102 students. Their physiological parameters (Heart rate, Auditory canal temperature) were recorded before and after physical training. Results showed that there were significant differences in the thermal sensation vote before and after physical training. The classification of heat stress was modified based on the MTSV regression model and PET. The maximum acceptable PET was 23.0 °C before physical training and 21.7 °C after physical training. When PET ≥ 40.1 °C, a reduction in physical training intensity is recommended. When PET ≥ 45.7 °C, cessation of physical training should take place and sun exposure should be reduced to avoid health hazards. It is important to use the auditory canal temperature instead of the core temperature to calculate the physiological strain index (PSI). More than 15% of the subjects had a PSI ≥ 7.0 during the test. When the body is in a thermally neutral state (MTSV = -0.5- 0.5), PSI ≤ 2.0. When the MTSV ≥3.2, PSI ≥ 7.0, physical training intensity should be reduced, and warning information should be provided. According to the expected distribution of physical training time and rest time, it is recommended that the time of each physical training session should be within 30 min, with a resting period of more than 30 min in hot environments.
Collapse
Affiliation(s)
- Tianwei Tang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoqing Zhou
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuchun Zhang
- Division of Building Science and Technology, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiwen Feng
- School of Mechanical Engineering, Tongji University, Shanghai 200092, China
| | - Weiwei Liu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Zhaosong Fang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Zhimin Zheng
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Del Ferraro S, Falcone T, Morabito M, Messeri A, Bonafede M, Marinaccio A, Gao C, Molinaro V. A potential wearable solution for preventing heat strain in workplaces: The cooling effect and the total evaporative resistance of a ventilation jacket. ENVIRONMENTAL RESEARCH 2022; 212:113475. [PMID: 35588774 DOI: 10.1016/j.envres.2022.113475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 05/14/2023]
Abstract
The increase in average seasonal temperatures has an impact in the occupational field, especially for those sectors whose work activities are performed outdoors (agricultural, road and construction sectors). Among the adaptation measures and solutions developed to counteract occupational heat strain, personal cooling garments represent a wearable technology designed to remove heat from the human body, enhancing human performance. This study aims to investigate the effectiveness and the cooling power of a specific cooling garment, i.e. a ventilation jacket, by quantifying the evaporative heat losses and the total evaporative resistance both when worn alone and in combination with a work ensemble, at three adjustments of air ventilation speed. Standardised "wet" tests in a climatic chamber were performed on a sweating manikin in isothermal conditions considering three clothing ensembles (single jacket, work ensemble and a combination of both) and three adjustments of fan velocity. Results showed a significant increase (p < 0.001) in evaporative heat loss values when the fan velocity increased, particularly within the trunk zones for all the considered clothing ensembles, showing that fans enhanced the dissipation by evaporation. The cooling power, quantified in terms of percent changes of evaporative heat loss, showed values exceeding 100% when fans were on, in respect to the condition of fans-off, for the trunk zones except for the Chest. A significant (p < 0.01) decrease (up to 42.3%) in the total evaporative resistance values of the jacket, coupled with the work ensemble, was found compared to the fans-off condition. Results confirmed and quantified the cooling effect of the ventilation jacket which enhanced the evaporative heat losses of the trunk zones, helping the body to dissipate heat and showing the potential for a heat adaptation measure to be developed.
Collapse
Affiliation(s)
- Simona Del Ferraro
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Laboratory of Ergonomics and Physiology, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| | - Tiziana Falcone
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Laboratory of Ergonomics and Physiology, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy; Unit of Advanced Robotics and Human-Centred Technologies, Campus Bio-Medico University of Rome, Rome, Italy.
| | - Marco Morabito
- Institute of BioEconomy (IBE), National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy; Centre of Bioclimatology, University of Florence, Piazzale delle Cascine 18, 50144, Florence, Italy.
| | - Alessandro Messeri
- Tuscany Region, LaMMA Consortium - Weather Forecaster and Researcher at Laboratory of Monitoring and Environmental Modelling for Sustainable Development, 50019, Sesto Fiorentino, Florence, Italy; Fondazione per il Clima e la Sostenibilità, Via G.Caproni 8, 50145, Florence, Italy.
| | - Michela Bonafede
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Laboratory of Occupational and Environmental Epidemiology, Via Stefano Gradi 55, 00143, Rome, Italy.
| | - Alessandro Marinaccio
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Laboratory of Occupational and Environmental Epidemiology, Via Stefano Gradi 55, 00143, Rome, Italy.
| | - Chuansi Gao
- Thermal Environment Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, Lund, Sweden.
| | - Vincenzo Molinaro
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Laboratory of Ergonomics and Physiology, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| |
Collapse
|
20
|
Ioannou LG, Foster J, Morris NB, Piil JF, Havenith G, Mekjavic IB, Kenny GP, Nybo L, Flouris AD. Occupational heat strain in outdoor workers: A comprehensive review and meta-analysis. Temperature (Austin) 2022; 9:67-102. [PMID: 35655665 PMCID: PMC9154804 DOI: 10.1080/23328940.2022.2030634] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
The present comprehensive review (i) summarizes the current knowledge on the impacts of occupational heat stress on outdoor workers, (ii) provides a historical background on this issue, (iii) presents a meta-analysis of published data, (iv) explores inter-individual and intra-individual factors, (v) discusses the available heat mitigation strategies, (vi) estimates physical work capacity, labour productivity, and metabolic rate for the year 2030, and (vii) provides an overview of existing policy and legal frameworks on occupational heat exposure. Meta-analytic findings from 38 field studies that involved monitoring 2,409 outdoor workers across 41 jobs in 21 countries suggest that occupational heat stress increases the core (r = 0.44) and skin (r = 0.44) temperatures, as well as the heart rate (r = 0.38) and urine specific gravity (r = 0.13) of outdoor workers (all p < 0.05). Moreover, it diminishes the capacity of outdoor workers for manual labour (r = -0.82; p < 0.001) and is responsible for more than two thirds of the reduction in their metabolic rate. Importantly, our analysis shows that physical work capacity is projected to be highly affected by the ongoing anthropogenic global warming. Nevertheless, the metabolic rate and, therefore, labour productivity are projected to remain at levels higher than the workers' physical work capacity, indicating that people will continue to work more intensely than they should to meet their financial obligations for food and shelter. In this respect, complementary measures targeting self-pacing, hydration, work-rest regimes, ventilated garments, and mechanization can be adopted to protect outdoor workers.
Collapse
Affiliation(s)
- Leonidas G. Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Josh Foster
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nathan B. Morris
- Department of Human Physiology & Nutrition, University of Colorado, Springs, Colorado, USA
| | - Jacob F. Piil
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, UK
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Ioannou LG, Tsoutsoubi L, Mantzios K, Vliora M, Nintou E, Piil JF, Notley SR, Dinas PC, Gourzoulidis GA, Havenith G, Brearley M, Mekjavic IB, Kenny GP, Nybo L, Flouris AD. Indicators to assess physiological heat strain – Part 3: Multi-country field evaluation and consensus recommendations. Temperature (Austin) 2022; 9:274-291. [PMID: 36249710 PMCID: PMC9559325 DOI: 10.1080/23328940.2022.2044739] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In a series of three companion papers published in this Journal, we identify and validate the available thermal stress indicators (TSIs). In this third paper, we conducted field experiments across nine countries to evaluate the efficacy of 61 meteorology-based TSIs for assessing the physiological strain experienced by individuals working in the heat. We monitored 372 experi-enced and acclimatized workers during 893 full work shifts. We continuously assessed core body temperature, mean skin temperature, and heart rate data together with pre/post urine specific gravity and color. The TSIs were evaluated against 17 published criteria covering physiological parameters, practicality, cost effectiveness, and health guidance issues. Simple meteorological parameters explained only a fraction of the variance in physiological heat strain (R2 = 0.016 to 0.427; p < 0.001), reflecting the importance of adopting more sophisticated TSIs. Nearly all TSIs correlated with mean skin temperature (98%), mean body temperature (97%), and heart rate (92%), while 66% of TSIs correlated with the magnitude of dehydration and 59% correlated with core body temperature (r = 0.031 to 0.602; p < 0.05). When evaluated against the 17 published criteria, the TSIs scored from 4.7 to 55.4% (max score = 100%). The indoor (55.4%) and outdoor (55.1%) Wet-Bulb Globe Temperature and the Universal Thermal Climate Index (51.7%) scored higher compared to other TSIs (4.7 to 42.0%). Therefore, these three TSIs have the highest potential to assess the physiological strain experienced by individuals working in the heat.
Collapse
Affiliation(s)
- Leonidas G. Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Denmark
| | - Lydia Tsoutsoubi
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Konstantinos Mantzios
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Maria Vliora
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Eleni Nintou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Jacob F. Piil
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Denmark
| | | | - Petros C. Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | | | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, UK
| | - Matt Brearley
- National Critical Care and Trauma Response Centre, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Thermal Hyperformance, Pty Ltd, Takura, Qld, Australia
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Slovenia
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Denmark
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, ON, Canada
| |
Collapse
|
22
|
Bouchama A, Abuyassin B, Lehe C, Laitano O, Jay O, O'Connor FG, Leon LR. Classic and exertional heatstroke. Nat Rev Dis Primers 2022; 8:8. [PMID: 35115565 DOI: 10.1038/s41572-021-00334-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
In the past two decades, record-breaking heatwaves have caused an increasing number of heat-related deaths, including heatstroke, globally. Heatstroke is a heat illness characterized by the rapid rise of core body temperature above 40 °C and central nervous system dysfunction. It is categorized as classic when it results from passive exposure to extreme environmental heat and as exertional when it develops during strenuous exercise. Classic heatstroke occurs in epidemic form and contributes to 9-37% of heat-related fatalities during heatwaves. Exertional heatstroke sporadically affects predominantly young and healthy individuals. Under intensive care, mortality reaches 26.5% and 63.2% in exertional and classic heatstroke, respectively. Pathological studies disclose endothelial cell injury, inflammation, widespread thrombosis and bleeding in most organs. Survivors of heatstroke may experience long-term neurological and cardiovascular complications with a persistent risk of death. No specific therapy other than rapid cooling is available. Physiological and morphological factors contribute to the susceptibility to heatstroke. Future research should identify genetic factors that further describe individual heat illness risk and form the basis of precision-based public health response. Prioritizing research towards fundamental mechanism and diagnostic biomarker discovery is crucial for the design of specific management approaches.
Collapse
Affiliation(s)
- Abderrezak Bouchama
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia.
| | - Bisher Abuyassin
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Cynthia Lehe
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Orlando Laitano
- Department of Nutrition & Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Ollie Jay
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Francis G O'Connor
- Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|
23
|
Morrissey MC, Brewer GJ, Williams WJ, Quinn T, Casa DJ. Impact of occupational heat stress on worker productivity and economic cost. Am J Ind Med 2021; 64:981-988. [PMID: 34590324 DOI: 10.1002/ajim.23297] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Heat stress is a growing concern in the occupational setting as it endangers worker health, safety, and productivity. Heat-related reductions in physical work capacity and missed workdays directly and indirectly cause productivity losses and may substantially affect the economic wellbeing of the organization. This review highlights the physiological, physical, psychological, and financial harms of heat stress on worker productivity and proposes strategies to quantify heat-related productivity losses. Heat stress produces a vicious-cycle feedback loop that result in adverse outcomes on worker health, safety, and productivity. We propose a theoretical model for implementing an occupational heat safety plan that disrupts this loop, preventing heat-related productivity losses while improving worker health and safety.
Collapse
Affiliation(s)
- Margaret C. Morrissey
- Department of Kinesiology, Korey Stringer Institute University of Connecticut Storrs Connecticut USA
| | - Gabrielle J. Brewer
- Department of Kinesiology, Korey Stringer Institute University of Connecticut Storrs Connecticut USA
| | - Warren Jon Williams
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) National Personal Protective Technology Laboratory (NPPTL) Pittsburgh Pennsylvania USA
| | - Tyler Quinn
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) National Personal Protective Technology Laboratory (NPPTL) Pittsburgh Pennsylvania USA
| | - Douglas J. Casa
- Department of Kinesiology, Korey Stringer Institute University of Connecticut Storrs Connecticut USA
| |
Collapse
|
24
|
Current and projected regional economic impacts of heatwaves in Europe. Nat Commun 2021; 12:5807. [PMID: 34608159 PMCID: PMC8490455 DOI: 10.1038/s41467-021-26050-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Extreme heat undermines the working capacity of individuals, resulting in lower productivity, and thus economic output. Here we analyse the present and future economic damages due to reduced labour productivity caused by extreme heat in Europe. For the analysis of current impacts, we focused on heatwaves occurring in four recent anomalously hot years (2003, 2010, 2015, and 2018) and compared our findings to the historical period 1981–2010. In the selected years, the total estimated damages attributed to heatwaves amounted to 0.3–0.5% of European gross domestic product (GDP). However, the identified losses were largely heterogeneous across space, consistently showing GDP impacts beyond 1% in more vulnerable regions. Future projections indicate that by 2060 impacts might increase in Europe by a factor of almost five compared to the historical period 1981–2010 if no further mitigation or adaptation actions are taken, suggesting the presence of more pronounced effects in the regions where these damages are already acute. Heatwaves are becoming increasingly frequent and more intense, causing severe economic impacts through reduced labour productivity. Here, the authors show that economic damages in Europe exceed 1% of the GDP in vulnerable areas, which might increase by a factor of almost five in the medium term without climate action.
Collapse
|
25
|
Piil JF, Kingma B, Morris NB, Christiansen L, Ioannou LG, Flouris AD, Nybo L. Proposed framework for forecasting heat-effects on motor-cognitive performance in the Summer Olympics. Temperature (Austin) 2021; 8:262-283. [PMID: 34485620 PMCID: PMC8409751 DOI: 10.1080/23328940.2021.1957367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heat strain impairs performance across a broad spectrum of sport disciplines. The impeding effects of hyperthermia and dehydration are often ascribed to compromised cardiovascular and muscular functioning, but expert performance also depends on appropriately tuned sensory, motor and cognitive processes. Considering that hyperthermia has implications for central nervous system (CNS) function and fatigue, it is highly relevant to analyze how heat stress forecasted for the upcoming Olympics may influence athletes. This paper proposes and demonstrates the use of a framework combining expected weather conditions with a heat strain and motor-cognitive model to analyze the impact of heat and associated factors on discipline- and scenario-specific performances during the Tokyo 2021 games. We pinpoint that hyperthermia-induced central fatigue may affect prolonged performances and analyze how hyperthermia may impair complex motor-cognitive performance, especially when accompanied by either moderate dehydration or exposure to severe solar radiation. Interestingly, several short explosive performances may benefit from faster cross-bridge contraction velocities at higher muscle temperatures in sport disciplines with little or no negative heat-effect on CNS fatigue or motor-cognitive performance. In the analyses of scenarios and Olympic sport disciplines, we consider thermal impacts on “motor-cognitive factors” such as decision-making, maximal and fine motor-activation as well as the influence on central fatigue and pacing. From this platform, we also provide perspectives on how athletes and coaches can identify risks for their event and potentially mitigate negative motor-cognitive effects for and optimize performance in the environmental settings projected.
Collapse
Affiliation(s)
- Jacob Feder Piil
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Boris Kingma
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,TNO, the Netherlands Organization for Applied Scientific Research, Unit Defense, Safety & Security, Soesterberg, The Netherlands
| | - Nathan B Morris
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Leonidas G Ioannou
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Andreas D Flouris
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| |
Collapse
|
26
|
Jay O, Capon A, Berry P, Broderick C, de Dear R, Havenith G, Honda Y, Kovats RS, Ma W, Malik A, Morris NB, Nybo L, Seneviratne SI, Vanos J, Ebi KL. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet 2021; 398:709-724. [PMID: 34419206 DOI: 10.1016/s0140-6736(21)01209-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/19/2020] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Heat extremes (ie, heatwaves) already have a serious impact on human health, with ageing, poverty, and chronic illnesses as aggravating factors. As the global community seeks to contend with even hotter weather in the future as a consequence of global climate change, there is a pressing need to better understand the most effective prevention and response measures that can be implemented, particularly in low-resource settings. In this Series paper, we describe how a future reliance on air conditioning is unsustainable and further marginalises the communities most vulnerable to the heat. We then show that a more holistic understanding of the thermal environment at the landscape and urban, building, and individual scales supports the identification of numerous sustainable opportunities to keep people cooler. We summarise the benefits (eg, effectiveness) and limitations of each identified cooling strategy, and recommend optimal interventions for settings such as aged care homes, slums, workplaces, mass gatherings, refugee camps, and playing sport. The integration of this information into well communicated heat action plans with robust surveillance and monitoring is essential for reducing the adverse health consequences of current and future extreme heat.
Collapse
Affiliation(s)
- Ollie Jay
- Thermal Ergonomics Laboratory, The University of Sydney, Sydney, NSW, Australia; Sydney School of Health Sciences, The University of Sydney, Sydney, NSW, Australia; Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| | - Anthony Capon
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia; Monash Sustainable Development Institute, Monash University, Melbourne, VIC, Australia
| | - Peter Berry
- Faculty of Environment, University of Waterloo, ON, Canada
| | - Carolyn Broderick
- School of Medical Sciences, UNSW Medicine, Sydney, UNSW, Australia; The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Richard de Dear
- Indoor Environmental Quality Laboratory, School of Architecture, Design, and Planning, The University of Sydney, Sydney, NSW, Australia
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, UK
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - R Sari Kovats
- NIHR Health Protection Research Unit in Environmental Change and Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Wei Ma
- School of Public Health, Shandong University, Jinan, China; Climate Change and Health Center, Shandong University, Jinan, China
| | - Arunima Malik
- School of Physics, Faculty of Science, ISA, The University of Sydney, Sydney, NSW, Australia; Discipline of Accounting, Business School, The University of Sydney, Sydney, NSW, Australia
| | - Nathan B Morris
- Thermal Ergonomics Laboratory, The University of Sydney, Sydney, NSW, Australia; Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars Nybo
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Sonia I Seneviratne
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Jennifer Vanos
- School of Sustainability, Arizona State University, AZ, USA
| | - Kristie L Ebi
- Center for Health and the Global Environment, University of Washington, WA, USA
| |
Collapse
|
27
|
Presbitero A, Melnikov VR, Krzhizhanovskaya VV, Sloot PMA. A unifying model to estimate the effect of heat stress in the human innate immunity during physical activities. Sci Rep 2021; 11:16688. [PMID: 34404876 PMCID: PMC8371171 DOI: 10.1038/s41598-021-96191-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Public health is threatened by climate change and extreme temperature events worldwide. Differences in health predispositions, access to cooling infrastructure and occupation raises an issue of heat-related health inequality in those vulnerable and disadvantaged demographic groups. To address these issues, a comprehensive understanding of the effect of elevated body temperatures on human biological systems and overall health is urgently needed. In this paper we look at the inner workings of the human innate immunity under exposure to heat stress induced through exposure to environment and physical exertion. We couple two experimentally validated computational models: the innate immune system and thermal regulation of the human body. We first study the dynamics of critical indicators of innate immunity as a function of human core temperature. Next, we identify environmental and physical activity regimes that lead to core temperature levels that can potentially compromise the performance of the human innate immunity. Finally, to take into account the response of innate immunity to various intensities of physical activities, we utilise the dynamic core temperatures generated by a thermal regulation model. We compare the dynamics of all key players of the innate immunity for a variety of stresses like running a marathon, doing construction work, and leisure walking at speed of 4 km/h, all in the setting of a hot and humid tropical climate such as present in Singapore. We find that exposure to moderate heat stress leading to core temperatures within the mild febrile range (37, 38][Formula: see text], nudges the innate immune system into activation and improves the efficiency of its response. Overheating corresponding to core temperatures beyond 38[Formula: see text], however, has detrimental effects on the performance of the innate immune system, as it further induces inflammation, which causes a series of reactions that may lead to the non-resolution of the ongoing inflammation. Among the three physical activities considered in our simulated scenarios (marathon, construction work, and walking), marathon induces the highest level of inflammation that challenges the innate immune response with its resolution. Our study advances the current state of research towards understanding the implications of heat exposure for such an essential physiological system as the innate immunity. Although we find that among considered physical activities, a marathon of 2 h and 46 min induces the highest level of inflammation, it must be noted that construction work done on a daily basis under the hot and humid tropical climate, can produce a continuous level of inflammation triggering moieties stretched at a longer timeline beating the negative effects of running a marathon. Our study demonstrates that the performance of the innate immune system can be severely compromised by the exposure to heat stress and physical exertion. This poses significant risks to health especially to those with limited access to cooling infrastructures. This is due in part to having low income, or having to work on outdoor settings, which is the case for construction workers. These risks to public health should be addressed through individual and population-level measures via behavioural adaptation and provision of the cooling infrastructure in outdoor environments.
Collapse
Affiliation(s)
- Alva Presbitero
- grid.464507.40000 0001 2219 7447Asian Institute of Management, Makati, Philippines ,grid.35915.3b0000 0001 0413 4629National Center of Cognitive Research, ITMO University, St. Petersburg, Russian Federation
| | - Valentin R. Melnikov
- grid.7177.60000000084992262Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands ,grid.59025.3b0000 0001 2224 0361Complexity Institute, Nanyang Technological University, Singapore, Singapore ,Future Cities Laboratory, Singapore-ETH Centre, Singapore, Singapore
| | - Valeria V. Krzhizhanovskaya
- grid.35915.3b0000 0001 0413 4629National Center of Cognitive Research, ITMO University, St. Petersburg, Russian Federation ,grid.7177.60000000084992262Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter M. A. Sloot
- grid.35915.3b0000 0001 0413 4629National Center of Cognitive Research, ITMO University, St. Petersburg, Russian Federation ,grid.7177.60000000084992262Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands ,grid.484678.1Complexity Science Hub Vienna, Vienna, Austria
| |
Collapse
|
28
|
Morris NB, Piil JF, Morabito M, Messeri A, Levi M, Ioannou LG, Ciuha U, Pogačar T, Kajfež Bogataj L, Kingma B, Casanueva A, Kotlarski S, Spirig C, Foster J, Havenith G, Sotto Mayor T, Flouris AD, Nybo L. The HEAT-SHIELD project — Perspectives from an inter-sectoral approach to occupational heat stress. J Sci Med Sport 2021; 24:747-755. [DOI: 10.1016/j.jsams.2021.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
|
29
|
Morrissey MC, Casa DJ, Brewer GJ, Adams WM, Hosokawa Y, Benjamin CL, Grundstein AJ, Hostler D, McDermott BP, McQuerry ML, Stearns RL, Filep EM, DeGroot DW, Fulcher J, Flouris AD, Huggins RA, Jacklitsch BL, Jardine JF, Lopez RM, McCarthy RB, Pitisladis Y, Pryor RR, Schlader ZJ, Smith CJ, Smith DL, Spector JT, Vanos JK, Williams WJ, Vargas NT, Yeargin SW. Heat Safety in the Workplace: Modified Delphi Consensus to Establish Strategies and Resources to Protect the US Workers. GEOHEALTH 2021; 5:e2021GH000443. [PMID: 34471788 PMCID: PMC8388206 DOI: 10.1029/2021gh000443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 06/04/2023]
Abstract
The purpose of this consensus document was to develop feasible, evidence-based occupational heat safety recommendations to protect the US workers that experience heat stress. Heat safety recommendations were created to protect worker health and to avoid productivity losses associated with occupational heat stress. Recommendations were tailored to be utilized by safety managers, industrial hygienists, and the employers who bear responsibility for implementing heat safety plans. An interdisciplinary roundtable comprised of 51 experts was assembled to create a narrative review summarizing current data and gaps in knowledge within eight heat safety topics: (a) heat hygiene, (b) hydration, (c) heat acclimatization, (d) environmental monitoring, (e) physiological monitoring, (f) body cooling, (g) textiles and personal protective gear, and (h) emergency action plan implementation. The consensus-based recommendations for each topic were created using the Delphi method and evaluated based on scientific evidence, feasibility, and clarity. The current document presents 40 occupational heat safety recommendations across all eight topics. Establishing these recommendations will help organizations and employers create effective heat safety plans for their workplaces, address factors that limit the implementation of heat safety best-practices and protect worker health and productivity.
Collapse
Affiliation(s)
- Margaret C. Morrissey
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Douglas J. Casa
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Gabrielle J. Brewer
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - William M. Adams
- Department of KinesiologyUniversity of North Carolina at GreensboroGreensboroNCUSA
| | - Yuri Hosokawa
- Faculty of Sports SciencesWaseda UniversitySaitamaJapan
| | | | | | - David Hostler
- Department of Exercise and Nutrition SciencesCenter for Research and Education in Special EnvironmentsBuffaloNYUSA
| | - Brendon P. McDermott
- Department of Health, Human Performance and RecreationUniversity of ArkansasFayettevilleARUSA
| | | | - Rebecca L. Stearns
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Erica M. Filep
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - David W. DeGroot
- Fort Benning Heat CenterMartin Army Community HospitalFort BenningGAUSA
| | | | - Andreas D. Flouris
- Department of Exercise ScienceFAME LaboratoryUniversity of ThessalyTrikalaGreece
| | - Robert A. Huggins
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | | | - John F. Jardine
- Department of KinesiologyKorey Stringer InstituteUniversity of ConnecticutMansfieldCTUSA
| | - Rebecca M. Lopez
- School of Physical Therapy & Rehabilitation SciencesMorsani College of MedicineUniversity of South FloridaTampaFLUSA
| | | | - Yannis Pitisladis
- Collaborating Centre of Sports MedicineUniversity of BrightonBrightonUK
| | - Riana R. Pryor
- Department of Exercise and Nutrition SciencesCenter for Research and Education in Special EnvironmentsBuffaloNYUSA
| | - Zachary J. Schlader
- Department of KinesiologySchool of Public HealthIndiana UniversityBloomingtonIAUSA
| | - Caroline J. Smith
- Department of Health and Exercise ScienceAppalachian State UniversityBooneNCUSA
| | - Denise L. Smith
- Department of Health and Human Physiological SciencesFirst Responder Health and Safety LaboratorySkidmore CollegeSaratoga SpringsNYUSA
| | - June T. Spector
- Department of Environmental and Occupational Health SciencesSchool of Public HealthUniversity of WashingtonSeattleWAUSA
| | | | - W. Jon Williams
- Centers for Disease Control and Prevention (CDC)National Personal Protective Technology Laboratory (NPPTL)National Institute for Occupational Safety and Health (NIOSH)PittsburghPAUSA
| | - Nicole T. Vargas
- Faculty of Health SciencesUniversity of SydneySydneyNSWAustralia
| | - Susan W. Yeargin
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| |
Collapse
|
30
|
Ioannou LG, Tsoutsoubi L, Mantzios K, Gkikas G, Piil JF, Dinas PC, Notley SR, Kenny GP, Nybo L, Flouris AD. The Impacts of Sun Exposure on Worker Physiology and Cognition: Multi-Country Evidence and Interventions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7698. [PMID: 34300148 PMCID: PMC8303297 DOI: 10.3390/ijerph18147698] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND A set of four case-control (n = 109), randomized-controlled (n = 7), cross-sectional (n = 78), and intervention (n = 47) studies was conducted across three countries to investigate the effects of sun exposure on worker physiology and cognition. METHODS Physiological, subjective, and cognitive performance data were collected from people working in ambient conditions characterized by the same thermal stress but different solar radiation levels. RESULTS People working under the sun were more likely to experience dizziness, weakness, and other symptoms of heat strain. These clinical impacts of sun exposure were not accompanied by changes in core body temperature but, instead, were linked with changes in skin temperature. Other physiological responses (heart rate, skin blood flow, and sweat rate) were also increased during sun exposure, while attention and vigilance were reduced by 45% and 67%, respectively, compared to exposure to a similar thermal stress without sunlight. Light-colored clothes reduced workers' skin temperature by 12-13% compared to darker-colored clothes. CONCLUSIONS Working under the sun worsens the physiological heat strain experienced and compromises cognitive function, even when the level of heat stress is thought to be the same as being in the shade. Wearing light-colored clothes can limit the physiological heat strain experienced by the body.
Collapse
Affiliation(s)
- Leonidas G. Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (L.T.); (K.M.); (G.G.); (P.C.D.)
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, 2100 Copenhagen, Denmark; (J.F.P.); (L.N.)
| | - Lydia Tsoutsoubi
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (L.T.); (K.M.); (G.G.); (P.C.D.)
| | - Konstantinos Mantzios
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (L.T.); (K.M.); (G.G.); (P.C.D.)
| | - Giorgos Gkikas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (L.T.); (K.M.); (G.G.); (P.C.D.)
| | - Jacob F. Piil
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, 2100 Copenhagen, Denmark; (J.F.P.); (L.N.)
| | - Petros C. Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (L.T.); (K.M.); (G.G.); (P.C.D.)
| | - Sean R. Notley
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.R.N.); (G.P.K.)
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.R.N.); (G.P.K.)
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, 2100 Copenhagen, Denmark; (J.F.P.); (L.N.)
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (L.T.); (K.M.); (G.G.); (P.C.D.)
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.R.N.); (G.P.K.)
| |
Collapse
|
31
|
Bose-O'Reilly S, Daanen H, Deering K, Gerrett N, Huynen MMTE, Lee J, Karrasch S, Matthies-Wiesler F, Mertes H, Schoierer J, Shumake-Guillemot J, van den Hazel P, Frank van Loenhout JA, Nowak D. COVID-19 and heat waves: New challenges for healthcare systems. ENVIRONMENTAL RESEARCH 2021; 198:111153. [PMID: 33857461 PMCID: PMC8056477 DOI: 10.1016/j.envres.2021.111153] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 05/12/2023]
Abstract
Heat waves and Covid-19 overlap, as this pandemic continues into summer 2021. Using a narrative review, we identified overlapping risk groups and propose coping strategies. The high-risk groups for heat-related health problems as well as for high-risk COVID-19 groups overlap considerably (elderly with pre-existing health conditions). Health care facilities will again be challenged by Covid-19 during heat waves. Health care personnel are also at risk of developing heat related health problems during hot periods due to the use of personal protective equipment to shield themselves from SARS-CoV-2 and must therefore be protected from excessive heat periods. Some existing recommendations for heat health protection contradict recommendations for COVID-19 protection. This paper provides a preliminary overview of possible strategies and interventions to tackle these ambiguities. The existing recommendations for protection against heat-related illnesses need revisions to determine whether they include essential aspects of infection control and occupational safety and how they may be supplemented.
Collapse
Affiliation(s)
- Stephan Bose-O'Reilly
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 1, 80336, Munich, Germany; Institute for Public Health, Medical Decision Making and HTA, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Eduard-Wallnöfer Zentrum 1, 6060, Hall i.T., Austria; University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John and the University Hospital, University of Regensburg, Regensburg, Germany.
| | - Hein Daanen
- Department of Human Movement Sciences. Faculty of Behavioral and Movement Sciences. Vrije Universiteit Amsterdam. Van der Boechorststraat 7, 1081, BT Amsterdam, the Netherlands
| | - Katharina Deering
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 1, 80336, Munich, Germany
| | - Nicola Gerrett
- Department of Human Movement Sciences. Faculty of Behavioral and Movement Sciences. Vrije Universiteit Amsterdam. Van der Boechorststraat 7, 1081, BT Amsterdam, the Netherlands
| | | | - Jason Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; Global Asia Institute, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, 28 Medical Dr, Singapore 117456, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Stefan Karrasch
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 1, 80336, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Centre for Environment and Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Franziska Matthies-Wiesler
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Centre for Environment and Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Hanna Mertes
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 1, 80336, Munich, Germany
| | - Julia Schoierer
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 1, 80336, Munich, Germany
| | | | - Peter van den Hazel
- International Network on Children's Health, Environment and Safety (INCHES), Ellecom, the Netherlands
| | - Joris Adriaan Frank van Loenhout
- Centre for Research on the Epidemiology of Disasters (CRED), Institute of Health and Society, UCLouvain, Clos Chapelle-Aux-Champs 30, 1200, Woluwé-Saint-Lambert (Brussels), Belgium
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 1, 80336, Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
32
|
Ioannou LG, Mantzios K, Tsoutsoubi L, Nintou E, Vliora M, Gkiata P, Dallas CN, Gkikas G, Agaliotis G, Sfakianakis K, Kapnia AK, Testa DJ, Amorim T, Dinas PC, Mayor TS, Gao C, Nybo L, Flouris AD. Occupational Heat Stress: Multi-Country Observations and Interventions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6303. [PMID: 34200783 PMCID: PMC8296111 DOI: 10.3390/ijerph18126303] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Occupational heat exposure can provoke health problems that increase the risk of certain diseases and affect workers' ability to maintain healthy and productive lives. This study investigates the effects of occupational heat stress on workers' physiological strain and labor productivity, as well as examining multiple interventions to mitigate the problem. METHODS We monitored 518 full work-shifts obtained from 238 experienced and acclimatized individuals who work in key industrial sectors located in Cyprus, Greece, Qatar, and Spain. Continuous core body temperature, mean skin temperature, heart rate, and labor productivity were collected from the beginning to the end of all work-shifts. RESULTS In workplaces where self-pacing is not feasible or very limited, we found that occupational heat stress is associated with the heat strain experienced by workers. Strategies focusing on hydration, work-rest cycles, and ventilated clothing were able to mitigate the physiological heat strain experienced by workers. Increasing mechanization enhanced labor productivity without increasing workers' physiological strain. CONCLUSIONS Empowering laborers to self-pace is the basis of heat mitigation, while tailored strategies focusing on hydration, work-rest cycles, ventilated garments, and mechanization can further reduce the physiological heat strain experienced by workers under certain conditions.
Collapse
Affiliation(s)
- Leonidas G. Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Konstantinos Mantzios
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Lydia Tsoutsoubi
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Eleni Nintou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Maria Vliora
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Paraskevi Gkiata
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Constantinos N. Dallas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Giorgos Gkikas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Gerasimos Agaliotis
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Kostas Sfakianakis
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Areti K. Kapnia
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Davide J. Testa
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Tânia Amorim
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Petros C. Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| | - Tiago S. Mayor
- SIMTECH Laboratory, Transport Phenomena Research Centre, Engineering Faculty of Porto University, 4200-465 Porto, Portugal;
| | - Chuansi Gao
- Thermal Environment Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, 22100 Lund, Sweden;
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (L.G.I.); (K.M.); (L.T.); (E.N.); (M.V.); (P.G.); (C.N.D.); (G.G.); (G.A.); (K.S.); (A.K.K.); (D.J.T.); (T.A.); (P.C.D.)
| |
Collapse
|
33
|
Morrison SA, Périard JD, De Boever P, Daanen HAM. Editorial: The Effects of Climate Change and Environmental Factors on Exercising Children and Youth. Front Sports Act Living 2021; 3:690171. [PMID: 34124664 PMCID: PMC8192850 DOI: 10.3389/fspor.2021.690171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Shawnda A Morrison
- Center for Climate Change and Active Children, Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Julien D Périard
- Faculty of Health, Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | - Patrick De Boever
- Department of Biology, University of Antwerp, Antwerp, Belgium.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Ioannou LG, Mantzios K, Tsoutsoubi L, Panagiotaki Z, Kapnia AK, Ciuha U, Nybo L, Flouris AD, Mekjavic IB. Effect of a Simulated Heat Wave on Physiological Strain and Labour Productivity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3011. [PMID: 33804091 PMCID: PMC7998810 DOI: 10.3390/ijerph18063011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The aim of the study was to investigate the effect of a simulated heat-wave on the labour productivity and physiological strain experienced by workers. METHODS Seven males were confined for ten days in controlled ambient conditions. A familiarisation day was followed by three (pre, during, and post-heat-wave) 3-day periods. During each day volunteers participated in a simulated work-shift incorporating two physical activity sessions each followed by a session of assembly line task. Conditions were hot (work: 35.4 °C; rest: 26.3 °C) during, and temperate (work: 25.4 °C; rest: 22.3 °C) pre and post the simulated heat-wave. Physiological, biological, behavioural, and subjective data were collected throughout the study. RESULTS The simulated heat-wave undermined human capacity for work by increasing the number of mistakes committed, time spent on unplanned breaks, and the physiological strain experienced by the participants. Early adaptations were able to mitigate the observed implications on the second and third days of the heat-wave, as well as impacting positively on the post-heat-wave period. CONCLUSIONS Here, we show for first time that a controlled simulated heat-wave increases workers' physiological strain and reduces labour productivity on the first day, but it promotes adaptations mitigating the observed implications during the subsequent days.
Collapse
Affiliation(s)
- Leonidas G. Ioannou
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (U.C.); (I.B.M.)
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42131 Trikala, Greece; (K.M.); (L.T.); (Z.P.); (A.K.K.); (A.D.F.)
| | - Konstantinos Mantzios
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42131 Trikala, Greece; (K.M.); (L.T.); (Z.P.); (A.K.K.); (A.D.F.)
| | - Lydia Tsoutsoubi
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42131 Trikala, Greece; (K.M.); (L.T.); (Z.P.); (A.K.K.); (A.D.F.)
| | - Zoe Panagiotaki
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42131 Trikala, Greece; (K.M.); (L.T.); (Z.P.); (A.K.K.); (A.D.F.)
| | - Areti K. Kapnia
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42131 Trikala, Greece; (K.M.); (L.T.); (Z.P.); (A.K.K.); (A.D.F.)
| | - Ursa Ciuha
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (U.C.); (I.B.M.)
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42131 Trikala, Greece; (K.M.); (L.T.); (Z.P.); (A.K.K.); (A.D.F.)
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (U.C.); (I.B.M.)
| |
Collapse
|
35
|
de Korte JQ, Bongers CCWG, Catoire M, Kingma BRM, Eijsvogels TMH. Cooling vests alleviate perceptual heat strain perceived by COVID-19 nurses. Temperature (Austin) 2021; 9:103-113. [PMID: 35655667 PMCID: PMC9154750 DOI: 10.1080/23328940.2020.1868386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Cooling vests alleviate heat strain. We quantified the perceptual and physiological heat strain and assessed the effects of wearing a 21°C phase change material cooling vest on these measures during work shifts of COVID-19 nurses wearing personal protective equipment (PPE). Seventeen nurses were monitored on two working days, consisting of a control (PPE only) and a cooling vest day (PPE + cooling vest). Sub-PPE air temperature, gastrointestinal temperature (Tgi), and heart rate (HR) were measured continuously. Thermal comfort (2 [1–4] versus 1 [1–2], pcondtition < 0.001) and thermal sensation (5 [4–7] versus 4 [2–7], pcondition < 0.001) improved in the cooling vest versus control condition. Only 18% of nurses reported thermal discomfort and 36% a (slightly) warm thermal sensation in the cooling vest condition versus 81% and 94% in the control condition (OR (95%CI) 0.05 (0.01–0.29) and 0.04 (<0.01–0.35), respectively). Accordingly, perceptual strain index was lower in the cooling vest versus control condition (5.7 ± 1.5 versus 4.3 ± 1.7, pcondition < 0.001, respectively). No differences were observed for the physiological heat strain index Tgi and rating of perceived exertion across conditions. Average HR was slightly lower in the cooling vest versus the control condition (85 ± 12 versus 87 ± 11, pcondition = 0.025). Although the physiological heat strain among nurses using PPE was limited, substantial perceptual heat strain was experienced. A 21°C phase change material cooling vest can successfully alleviate the perceptual heat strain encountered by nurses wearing PPE.
Collapse
Affiliation(s)
- Johannus Q. de Korte
- Radboud university medical center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands
| | - Coen C. W. G. Bongers
- Radboud university medical center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands
| | - Milène Catoire
- TNO, the Netherlands Organization for Applied Sciences, Department of Human Performance, Unit Defence, Safety and Security, Soesterberg, The Netherlands
| | - Boris R. M. Kingma
- TNO, the Netherlands Organization for Applied Sciences, Department of Human Performance, Unit Defence, Safety and Security, Soesterberg, The Netherlands
- University of Copenhagen, Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, Copenhagen, Denmark
| | - Thijs M. H. Eijsvogels
- Radboud university medical center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Morris NB, Levi M, Morabito M, Messeri A, Ioannou LG, Flouris AD, Samoutis G, Pogačar T, Bogataj LK, Piil JF, Nybo L. Health vs. wealth: Employer, employee and policy-maker perspectives on occupational heat stress across multiple European industries. Temperature (Austin) 2020; 8:284-301. [PMID: 34485621 PMCID: PMC8409781 DOI: 10.1080/23328940.2020.1852049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/16/2023] Open
Abstract
Successful implementation of cooling strategies obviously depends on identifying effective interventions, but in industrial settings, it is equally important to consider feasibility and economic viability. Many cooling interventions are available, but the decision processes affecting adoption by end-users are not well elucidated. We therefore arranged two series of meetings with stakeholders to identify knowledge gaps, receive feedback on proposed cooling interventions, and discuss factors affecting implementation of heat-health interventions. This included four meetings attended by employers, employees, and health and safety officers (n = 41), and three meetings attended primarily by policy makers (n = 74), with feedback obtained via qualitative and quantitative questionnaires and focus group discussions. On a 10-point scale, both employers and employees valued worker safety (9.1 ± 1.8; mean±SD) and health (8.5 ± 1.9) as more important than protecting company profits (6.3 ± 2.3). Of the respondents, 41% were unaware of any cooling strategies at their company and of those who were aware, only 30% thought the interventions were effective. Following presentation of proposed interventions, the respondents rated "facilitated hydration", "optimization of clothing/protective equipment", and "rescheduling of work tasks" as the top-three preferred solutions. The main barriers for adopting cooling interventions were cost, feasibility, employer perceptions, and legislation. In conclusion, preventing negative health and safety effects was deemed to be more important than preventing productivity loss. Regardless of work sector or occupation, both health and wealth were emphasized as important parameters and considered as somewhat interrelated. However, a large fraction of the European worker force lacks information on effective measures to mitigate occupational heat stress. List of abbreviations: OH-Stress: Occupational heat stress; WBGT: Wet Bulb Globe Temperature.
Collapse
Affiliation(s)
- Nathan B. Morris
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Centre for Technology Research and Innovation (CETRI), Lemesos, Cyprus
| | - Miriam Levi
- Epidemiology Unit, Department of Prevention, Local Health Authority Tuscany Center, Florence, Italy
| | - Marco Morabito
- Institute of Bioeconomy (IBE), National Research Council, Florence, Italy
- Center of Bioclimatology (CIBIC), University of Florence, Florence, Italy
| | - Alessandro Messeri
- Institute of Bioeconomy (IBE), National Research Council, Florence, Italy
- Center of Bioclimatology (CIBIC), University of Florence, Florence, Italy
| | - Leonidas G. Ioannou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Andreas D. Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | | | - Tjaša Pogačar
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Lučka Kajfež Bogataj
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jacob F. Piil
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|