1
|
Peng F, He R, Liu Y, Xie Y, Xiong G, Li X, Wang M, Zhao C, Zhang H, Xu S, Qin R. MiR-200b-3p elevates 5-FU sensitivity in cholangiocarcinoma cells via autophagy inhibition by targeting KLF4. Noncoding RNA Res 2024; 9:1098-1110. [PMID: 39022678 PMCID: PMC11254509 DOI: 10.1016/j.ncrna.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Cholangiocarcinoma is one of the most lethal human cancers, and chemotherapy failure is a major cause of recurrence and poor prognosis. We previously demonstrated that miR-200 family members are downregulated in clinical samples of cholangiocarcinoma and inhibit cholangiocarcinoma tumorigenesis and metastasis. However, the role of differentially expressed miR-200b-3p in 5-fluorouracil chemosensitivity remains unclear. Here, we examined how miR-200b-3p modulates 5-fluorouracil chemosensitivity in cholangiocarcinoma. We observed that miR-200b-3p was associated with 5-fluorouracil sensitivity in cholangiocarcinoma and increased 5-fluorouracil-induced mitochondrial apoptosis in cholangiocarcinoma cells. Mechanistically, miR-200b-3p suppressed autophagy in cholangiocarcinoma cells to mediate 5-fluorouracil sensitivity. Further, we identified KLF4 as an essential target of miR-200b-3p in cholangiocarcinoma. Notably, the miR-200b-3p/KLF4/autophagy pathway augmented the chemosensitivity of cholangiocarcinoma cells to 5-fluorouracil. Our findings underscore the key role of miR-200b-3p in chemosensitivity to 5-fluorouracil and highlight the miR-200b-3p/KLF4/autophagy axis as a potential therapeutic target for cholangiocarcinoma.
Collapse
Affiliation(s)
- Feng Peng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhui Liu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xie
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunle Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Simiao Xu
- Division of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, Hubei, 430030, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
2
|
Gao Y, Ju Y, Ren X, Zhang L, Yin X. Enhanced infection efficiency and cytotoxicity mediated by vpx-containing lentivirus in chimeric antigen receptor macrophage (CAR-M). Heliyon 2023; 9:e21886. [PMID: 38058430 PMCID: PMC10696197 DOI: 10.1016/j.heliyon.2023.e21886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
Genetically modified macrophage infusion has been proven to be a novel treatment for cancer. One of the most important processes in macrophage-based therapy is the efficient transfer of genes. HIV-1-derived lentiviruses were widely used as delivery vectors in chimeric antigen receptor T and NK cell construction. While macrophages are relatively refractory to this lentiviral vector transduction as a result of the myeloid-specific restriction factor SAMHD1, which inhibited the virion cycle through exhausting the dNTPs pool and degradating RNAs. An efficient macrophage transduction strategy has been developed via packaging the HIV-2 accessory protein Vpx into the virion. Vpx counteracts SAMHD1 through CRL4 (DCAF1) E3 ubiquitin ligase mediated SAMHD1 degradation, yet the influence by the introduction of Vpx on macrophage has not been fully evaluated. Here, we constructed the chimeric lentiviral vector HIV-1-Vpx and systematically analyzed the infection efficiency of this vector in time-dependent manner. Our results showed that the simplified chimeric virus exhibited dramatically enhanced infection in human macrophages compared to normal lentivirus. Moreover, transcriptome sequencing was performed to evaluate the cellular status after chimeric virus infection. The sequencing results indicated that Vpx introduction promoted macrophage remodeling towards a proinflammatory phenotype, without affecting classic M1/M2 cell surface markers. Our results suggest that the Vpx-containing lentivirus could be used as an ideal tool for the generation of genetically engineered macrophages with high gene transfer efficiency and poised proinflammatory gene sets, especially for solid tumor treatment.
Collapse
Affiliation(s)
- Yun Gao
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yue Ju
- Roc Rock Biotechnology (Shenzhen), Shenzhen, 518118, China
| | - Xiaomeng Ren
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Luo Zhang
- Research Center of Bioengineering, the Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiushan Yin
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
- Roc Rock Biotechnology (Shenzhen), Shenzhen, 518118, China
| |
Collapse
|
3
|
Wang K, Kong F, Qiu Y, Chen T, Fu J, Jin X, Su Y, Gu Y, Hu Z, Li J. Autophagy regulation and protein kinase activity of PIK3C3 controls sertoli cell polarity through its negative regulation on SCIN (scinderin). Autophagy 2023; 19:2934-2957. [PMID: 37450577 PMCID: PMC10549198 DOI: 10.1080/15548627.2023.2235195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Sertoli cells are highly polarized testicular cells that provide a nurturing environment for germ cell development and maturation during spermatogenesis. The class III phosphatidylinositol 3-kinase (PtdIns3K) plays core roles in macroautophagy in various cell types; however, its role in Sertoli cells remains unclear. Here, we generated a mouse line in which the gene encoding the catalytic subunit, Pik3c3, was specifically deleted in Sertoli cells (cKO) and found that after one round of normal spermatogenesis, the cKO mice quickly became infertile and showed disruption of Sertoli cell polarity and impaired spermiogenesis. Subsequent proteomics and phosphoproteomics analyses enriched the F-actin cytoskeleton network involved in the disorganized Sertoli-cell structure in cKO testis which we identified a significant increase of the F-actin negative regulator SCIN (scinderin) and the reduced phosphorylation of HDAC6, an α-tubulin deacetylase. Our results further demonstrated that the accumulation of SCIN in cKO Sertoli cells caused the disorder and disassembly of the F-actin cytoskeleton, which was related to the failure of SCIN degradation through the autophagy-lysosome pathway. Additionally, we found that the phosphorylation of HDAC6 at site S59 by PIK3C3 was essential for its degradation through the ubiquitin-proteasome pathway. As a result, the HDAC6 that accumulated in cKO Sertoli cells deacetylated SCIN at site K189 and led to a disorganized F-actin cytoskeleton. Taken together, our findings elucidate a new mechanism for PIK3C3 in maintaining the polarity of Sertoli cells, in which both its autophagy regulation or protein kinase activities are required for the stabilization of the actin cytoskeleton.Abbreviations: ACTB: actin, beta; AR: androgen receptor; ATG14: autophagy related 14; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; BTB: blood-testis barrier; CASP3: caspase 3; CDC42: cell division cycle 42; CDH2: cadherin 2; CHX: cycloheximide; CTNNA1: catenin (cadherin associated protein), alpha 1; CYP11A1: cytochrome P450, family 11, subfamily A, polypeptide 1; EBSS: Earle's balanced salt solution; ES: ectoplasmic specialization; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCNA: germ cell nuclear acidic protein; GJA1: gap junction protein, alpha 1; H2AX: H2A.X variant histone; HDAC6: histone deacetylase 6; KIT: KIT proto-oncogene, receptor tyrosine kinase; LAMP1: lysosomal associated membrane protein 1; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OCLN: occludin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PNA: arachis hypogaea lectin; RAC1: Rac family small GTPase 1; SCIN: scinderin; SQSTM1/p62: sequestosome 1; SSC: spermatogonia stem cell; STK11: serine/threonine kinase 11; TJP1: tight junction protein 1; TubA: tubastatin A; TUBB3: tubulin beta 3 class III; TUNEL: TdT-mediated dUTP nick-end labeling; UB: ubiquitin; UVRAG: UV radiation resistance associated gene; VIM: vimentin; WT1: WT1 transcription factor; ZBTB16: zinc finger and BTB domain containing 16.
Collapse
Affiliation(s)
- Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Kong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayi Fu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Jin
- Department of Center of Reproductive Medicine, Wuxi Maternity and Child Health Care Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Ke J, Zhang DG, Liu SZ, Luo Z. Functional analysis of selenok, selenot and selenop promoters and their regulation by selenium in yellow catfish Pelteobagrus fulvidraco. Gene 2023; 873:147461. [PMID: 37149273 DOI: 10.1016/j.gene.2023.147461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
The selenok, selenot and selenop are three key selenoproteins involved in stress response. Our study, using the yellow catfish Pelteobagrus fulvidraco as the experimental animal, obtained the 1993-bp, 2000-bp and 1959-bp sequences of selenok, selenot and selenop promoters, respectively, and predicted the binding sites of several transcriptional factors on their promoters, such as Forkhead box O 4 (FoxO4), activating transcription factor 4 (ATF4), Kruppel-like factor 4 (KLF4) and nuclear factor erythroid 2-related factor 2 (NRF2). Selenium (Se) increased the activities of the selenok, selenot and selenop promoters. FoxO4 and Nrf2 can directly bind with selenok promoter and controlled selenok promoter activities positively; KLF4 and Nrf2 can directly bind with selenot promoter and controlled selenot promoter activities positively; FoxO4 and ATF4 can directly bind to selenop promoter and regulated selenop promoter activities positively. Se promoted FoxO4 and Nrf2 binding to selenok promoter, KLF4 and Nrf2 binding to selenot promoter, and FoxO4 and ATF4 binding to selenop promoter. Thus, we provide the first evidence for FoxO4 and Nrf2 bindnig elements in selenok promoter, KLF4 and Nrf2 binding elements in selenot promoter, and FoxO4 and ATF4 binding elements in selenop promoter, and offer novel insight into regulatory mechanism of these selenoproteins induced by Se.
Collapse
Affiliation(s)
- Jiang Ke
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Dian-Guang Zhang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Sheng-Zan Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
5
|
Yin Y, Zhou Y, Yang X, Xu Z, Yang B, Luo P, Yan H, He Q. The participation of non-canonical autophagic proteins in the autophagy process and their potential as therapeutic targets. Expert Opin Ther Targets 2023; 27:71-86. [PMID: 36735300 DOI: 10.1080/14728222.2023.2177151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Autophagy is a conserved catabolic process that helps recycle intracellular components to maintain homeostasis. The completion of autophagy requires the synergistic effect of multiple canonical autophagic proteins. Defects in autophagy machinery have been reported to promote diseases, rendering autophagy a bone fide health-modifying agent. However, the clinical implication of canonical pan-autophagic activators or inhibitors has often led to undesirable side effects, making it urgent to find a safer autophagy-related therapeutic target. The discovery of non-canonical autophagic proteins has been found to specifically affect the development of diseases without causing a universal impact on autophagy and has shed light on finding a safer way to utilize autophagy in the therapeutic context. AREAS COVERED This review summarizes recently discovered non-canonical autophagic proteins, how these proteins influence autophagy, and their potential therapeutic role in the disease due to their interaction with autophagy. EXPERT OPINION Several therapies have been studied thus far and continued research is needed to identify the potential that non-canonical autophagic proteins have for treating certain diseases. In the meantime, continue to uncover new non-canonical autophagic proteins and examine which are likely to have therapeutic implications.
Collapse
Affiliation(s)
- Yiming Yin
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yourong Zhou
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochun Yang
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Yan
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
He Z, Du J, Zhang Y, Xu Y, Huang Q, Zhou Q, Wu M, Li Y, Zhang X, Zhang H, Cai Y, Ye K, Wang X, Zhang Y, Han Q, Xiao J. Kruppel-like factor 2 contributes to blood-spinal cord barrier integrity and functional recovery from spinal cord injury by augmenting autophagic flux. Theranostics 2023; 13:849-866. [PMID: 36632224 PMCID: PMC9830435 DOI: 10.7150/thno.74324] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Increasing evidence suggests that acute traumatic spinal cord injury (SCI)-induced defects in autophagy and autophagy-lysosomal pathway (ALP) may contribute to endothelial barrier disruption following injury. Recently, Kruppel-like factor 2 (KLF2) was reported as a key molecular switch on regulating autophagy. Whether KLF2 coordinates endothelial endothelial ALP in SCI is not known. Methods: Genetic manipulations of KLF2 were performed in bEnd.3 cells and SCI model. Western blot, qRT-PCR, immunofluorescence staining and Lyso-Tracker Red staining, Evans blue dye extravasation, behavioral assessment via Basso mouse scale (BMS), electrophysiology and footprint analysis were performed. Results: In SCI, autophagy flux disruption in endothelial cells contributes to TJ proteins degradation, leading to blood-spinal cord barrier (BSCB) impairment. Furthermore, the KLF2 level was decreased in SCI, overexpression of which alleviated TJ proteins loss and BSCB damage, which improve motor function recovery in SCI mice, while knockdown of KLF2 displayed the opposite effects. At the molecular level, KLF2 overexpression alleviated the TJ proteins degradation and the endothelial permeability by tuning the ALP dysfunction caused by SCI and oxygen glucose deprivation (OGD). Conclusions: Endothelial KLF2 as one of the key contributors to SCI-mediated ALP dysfunction and BSCB disruption. KLF2 could be a promising pharmacological target for the management and treatment of SCI.
Collapse
Affiliation(s)
- Zili He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiqing Du
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu Zhang
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yitie Xu
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qian Huang
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qingwei Zhou
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Min Wu
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yao Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, 315040, China
| | - Hongyu Zhang
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuepiao Cai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Keyong Ye
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiangyang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yingze Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051 China
| | - Qi Han
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian Xiao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
7
|
Zhang R, Xie L, Wu F, Xu J, Lu L, Cao L, Li L, Meng W, Zhang H, Shao C, Li X, Chen D. ALG-bFGF Hydrogel Inhibiting Autophagy Contributes to Protection of Blood-Spinal Cord Barrier Integrity via PI3K/Akt/FOXO1/KLF4 Pathway After SCI. Front Pharmacol 2022; 13:828896. [PMID: 35330841 PMCID: PMC8940228 DOI: 10.3389/fphar.2022.828896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Promoting blood–spinal cord barrier (BSCB) repair at the early stage plays a crucial role in treatment of spinal cord injury (SCI). Excessive activation of autophagy can prevent recovery of BSCB after SCI. Basic fibroblast growth factor (bFGF) has been shown to promote BSCB repair and locomotor function recovery in SCI. However, the therapeutic effect of bFGF via direct administration on SCI is limited because of its rapid degradation and dilution at injury site. Based on these considerations, controlled release of bFGF in the lesion area is becoming an attractive strategy for SCI repair. At present, we have designed a sustained-release system of bFGF (called ALG-bFGF) using sodium alginate hydrogel, which is able to load large amounts of bFGF and suitable for in situ administration of bFGF in vivo. Here, traumatic SCI mice models and oxygen glucose deprivation (OGD)–stimulated human brain microvascular endothelial cells were performed to explore the effects and the underlying mechanisms of ALG-bFGF in promoting SCI repair. After a single in situ injection of ALG-bFGF hydrogel into the injured spinal cord, sustained release of bFGF from ALG hydrogel distinctly prevented BSCB destruction and improved motor functional recovery in mice after SCI, which showed better therapeutic effect than those in mice treated with bFGF solution or ALG. Evidences have demonstrated that autophagy is involved in maintaining BSCB integrity and functional restoration in animals after SCI. In this study, SCI/OGD exposure–induced significant upregulations of autophagy activation-related proteins (Beclin1, ATG5, LC3II/I) were distinctly decreased by ALG-bFGF hydrogel near the baseline and not less than it both in vivo and in vitro, and this inhibitory effect contributed to prevent BSCB destruction. Finally, PI3K inhibitor LY294002 and KLF4 inhibitor NSC-664704 were applied to further explore the underlying mechanism by which ALG-bFGF attenuated autophagy activation to alleviate BSCB destruction after SCI. The results further indicated that ALG-bFGF hydrogel maintaining BSCB integrity by inhibiting autophagy activation was regulated by PI3K/Akt/FOXO1/KLF4 pathway. In summary, our current study revealed a novel mechanism by which ALG-bFGF hydrogel improves BSCB and motor function recovery after SCI, providing an effective therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Renkan Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ling Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangfang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ji Xu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Leilei Lu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lin Cao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Meng
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chuxiao Shao
- Department of Hepatopancreatobiliary Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Daqing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Tong J, Ji B, Gao YH, Lin H, Ping F, Chen F, Liu XB. Sirt6 regulates autophagy in AGE-treated endothelial cells via KLF4. Nutr Metab Cardiovasc Dis 2022; 32:755-764. [PMID: 35123854 DOI: 10.1016/j.numecd.2021.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS High glucose and its byproducts are important factors causing dysfunction of endothelial cells. Autophagy is critical for endothelial cellular homeostasis. However, the specific molecular mechanism of how autophagy is regulated in endothelial cells under high-glucose condition remains unknown. We aim to explore the role Sirt6 plays in regulating autophagy in AGE-treated endothelial cells and how this function is exerted via KLF4. METHODS AND RESULTS Our results indicate that autophagy level increased in AGE-treated endothelial cells alongside with higher Sirt6 and KLF4 expression level. What's more, knock-in of Sirt6 by adenovirus led to augmented autophagy level while knockdown of Sirt6 led to the opposite. We also verified that Sirt6 affected KLF4 expression positively but KLF4 didn't influence Sirt6 expression level while knocking out of KLF4 impaired Sirt6-enhanced autophagy. Finally we found that STZ-induced diabetic mice showed more autophagosomes in endothelium and Sirt6 knockdown by adeno-associated virus reduced the number of autophagosomes. Knockdown of Sirt6 also caused impaired endothelium integrity but echocardiography indicated there were no significant functional differences. CONCLUSION Our research reveals more about how Sirt6 regulates autophagy in endothelial cells under high-glucose simulated condition and provides further insight into the relationships between Sirt6 and KLF4.
Collapse
Affiliation(s)
- Jing Tong
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bing Ji
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan-Hua Gao
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Lin
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fan Ping
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Chen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xue-Bo Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
9
|
Çetiner BG, Terzi MY. Effect of Glucose Starvation on Cell Viability Parameters in A549 and BEAS-2B Cell Lines. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Abstract
Evidence for the importance of zinc for all immune cells and for mounting an efficient and balanced immune response to various environmental stressors has been accumulating in recent years. This article describes the role of zinc in fundamental biological processes and summarizes our current knowledge of zinc's effect on hematopoiesis, including differentiation into immune cell subtypes. In addition, the important role of zinc during activation and function of immune cells is detailed and associated with the specific immune responses to bacteria, parasites, and viruses. The association of zinc with autoimmune reactions and cancers as diseases with increased or decreased immune responses is also discussed. This article provides a broad overview of the manifold roles that zinc, or its deficiency, plays in physiology and during various diseases. Consequently, we discuss why zinc supplementation should be considered, especially for people at risk of deficiency. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | | | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
11
|
Blum A, Mostow K, Jackett K, Kelty E, Dakpa T, Ryan C, Hagos E. KLF4 Regulates Metabolic Homeostasis in Response to Stress. Cells 2021; 10:830. [PMID: 33917010 PMCID: PMC8067718 DOI: 10.3390/cells10040830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Cancerous cells are detrimental to the human body and can be incredibly resilient against treatments because of the complexities of molecular carcinogenic pathways. In particular, cancer cells are able to sustain increased growth under metabolic stress due to phenomena like the Warburg effect. Krüppel-like factor 4 (KLF4), a context-dependent transcription factor that can act as both a tumor suppressor and an oncogene, is involved in many molecular pathways that respond to low glucose and increased reactive oxygen species (ROS), raising the question of its role in metabolic stress as a result of increased proliferation of tumor cells. In this study, metabolic assays were performed, showing enhanced efficiency of energy production in cells expressing KLF4. Western blotting showed that KLF4 increases the expression of essential glycolytic proteins. Furthermore, we used immunostaining to show that KLF4 increases the localization of glucose transporter 1 (GLUT1) to the cellular membrane. 2',7'-Dichlorodihydrofluorescein diacetate (H2DCF-DA) was used to analyze the production of ROS, and we found that KLF4 reduces stress-induced ROS within cells. Finally, we demonstrated increased autophagic death in KLF4-expressing cells in response to glucose starvation. Collectively, these results relate KLF4 to non-Warburg metabolic behaviors that support its role as a tumor suppressor and could make KLF4 a target for new cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Engda Hagos
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (A.B.); (K.M.); (K.J.); (E.K.); (T.D.); (C.R.)
| |
Collapse
|
12
|
Transcriptomic Changes Associated with Loss of Cell Viability Induced by Oxysterol Treatment of a Retinal Photoreceptor-Derived Cell Line: An In Vitro Model of Smith-Lemli-Opitz Syndrome. Int J Mol Sci 2021; 22:ijms22052339. [PMID: 33652836 PMCID: PMC7956713 DOI: 10.3390/ijms22052339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Smith–Lemli–Opitz Syndrome (SLOS) results from mutations in the gene encoding the enzyme DHCR7, which catalyzes conversion of 7-dehydrocholesterol (7DHC) to cholesterol (CHOL). Rats treated with a DHCR7 inhibitor serve as a SLOS animal model, and exhibit progressive photoreceptor-specific cell death, with accumulation of 7DHC and oxidized sterols. To understand the basis of this cell type specificity, we performed transcriptomic analyses on a photoreceptor-derived cell line (661W), treating cells with two 7DHC-derived oxysterols, which accumulate in tissues and bodily fluids of SLOS patients and in the rat SLOS model, as well as with CHOL (negative control), and evaluated differentially expressed genes (DEGs) for each treatment. Gene enrichment analysis and compilation of DEG sets indicated that endoplasmic reticulum stress, oxidative stress, DNA damage and repair, and autophagy were all highly up-regulated pathways in oxysterol-treated cells. Detailed analysis indicated that the two oxysterols exert their effects via different molecular mechanisms. Changes in expression of key genes in highlighted pathways (Hmox1, Ddit3, Trib3, and Herpud1) were validated by immunofluorescence confocal microscopy. The results extend our understanding of the pathobiology of retinal degeneration and SLOS, identifying potential new druggable targets for therapeutic intervention into these and other related orphan diseases.
Collapse
|
13
|
Liuzzi JP, Pazos R. Interplay Between Autophagy and Zinc. J Trace Elem Med Biol 2020; 62:126636. [PMID: 32957075 DOI: 10.1016/j.jtemb.2020.126636] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Autophagy is a conserved catabolic process that plays an important role in cellular homeostasis. The study of the interplay between autophagy and zinc has gained interest over the last years. Multiple studies have indicated that zinc stimulates autophagy and is critical for basal and induced autophagy in mammalian cells. Conversely, autophagy is induced by zinc starvation in yeast. There are no studies analyzing the role of zinc in either Microautophagy or Chaperone-Mediated-Autophagy. The mechanisms by which zinc modulates autophagy are still poorly understood. Studies examining loss of function of genes involved in cellular zinc homeostasis have provided novel insights into the role of zinc in autophagy. Autophagy may help cells adapt to changes in zinc availability in medium by controlling zinc mobilization, recycling, and secretion. Zinc is a key player in toxic and protective autophagy.
Collapse
Affiliation(s)
- Juan P Liuzzi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, 11200 SW 8th Street, AHC5, Miami, FL 33199, USA.
| | - Rebecca Pazos
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, 11200 SW 8th Street, AHC5, Miami, FL 33199, USA.
| |
Collapse
|
14
|
Song JY, Fan B, Che L, Pan YR, Zhang SM, Wang Y, Bunik V, Li GY. Suppressing endoplasmic reticulum stress-related autophagy attenuates retinal light injury. Aging (Albany NY) 2020; 12:16579-16596. [PMID: 32858529 PMCID: PMC7485697 DOI: 10.18632/aging.103846] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023]
Abstract
Excessive light exposure is a principal environmental factor, which can cause damage to photoreceptors and retinal pigment epithelium (RPE) cells and may accelerate the progression of age-related macular degeneration (AMD). In this study, oxidative stress, endoplasmic reticulum (ER) stress and autophagy caused by light exposure were evaluated in vitro and in vivo. Light exposure caused severe photo-oxidative stress and ER stress in photoreceptors (661W cells) and RPE cells (ARPE-19 cells). Suppressing either oxidative stress or ER stress was protective against light damage in 661W and ARPE-19 cells and N-acetyl-L-cysteine treatment markedly inhibited the activation of ER stress caused by light exposure. Moreover, suppressing autophagy with 3-methyladenine significantly attenuated light-induced cell death. Additionally, inhibiting ER stress either by knocking down PERK signals or with GSK2606414 treatment remarkably suppressed prolonged autophagy and protected the cells against light injury. In vivo experiments verified neuroprotection via inhibiting ER stress-related autophagy in light-damaged retinas of mice. In conclusion, the above results suggest that light-induced photo-oxidative stress may trigger subsequent activation of ER stress and prolonged autophagy in photoreceptors and RPE cells. Suppressing ER stress may abrogate over-activated autophagy and protect the retina against light injury.
Collapse
Affiliation(s)
- Jing-Yao Song
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Lin Che
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Yi-Ran Pan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Si-Ming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Department of Hemooncolog, Second Hospital of Jilin University, Changchun, China
| | - Victoria Bunik
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Magalhães Rebelo AP, Dal Bello F, Knedlik T, Kaar N, Volpin F, Shin SH, Giacomello M. Chemical Modulation of Mitochondria-Endoplasmic Reticulum Contact Sites. Cells 2020; 9:cells9071637. [PMID: 32646031 PMCID: PMC7408517 DOI: 10.3390/cells9071637] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Contact sites between mitochondria and endoplasmic reticulum (ER) are points in which the two organelles are in close proximity. Due to their structural and functional complexity, their exploitation as pharmacological targets has never been considered so far. Notwithstanding, the number of compounds described to target proteins residing at these interfaces either directly or indirectly is rising. Here we provide original insight into mitochondria–ER contact sites (MERCs), with a comprehensive overview of the current MERCs pharmacology. Importantly, we discuss the considerable potential of MERCs to become a druggable target for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ana Paula Magalhães Rebelo
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Federica Dal Bello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Tomas Knedlik
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Natasha Kaar
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Fabio Volpin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Sang Hun Shin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Marta Giacomello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- Correspondence: ; Tel.: +39-049-827-6300
| |
Collapse
|
16
|
Wang J, Dang MN, Day ES. Inhibition of Wnt signaling by Frizzled7 antibody-coated nanoshells sensitizes triple-negative breast cancer cells to the autophagy regulator chloroquine. NANO RESEARCH 2020; 13:1693-1703. [PMID: 33304449 PMCID: PMC7723362 DOI: 10.1007/s12274-020-2795-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 05/06/2023]
Abstract
Despite improvements in our understanding of the biology behind triple-negative breast cancer (TNBC), it remains a devastating disease due to lack of an effective targeted therapy. Inhibiting Wnt signaling is a promising strategy to combat TNBC because Wnt signaling drives TNBC progression, chemoresistance, and stemness. However, Wnt inhibition can lead to upregulation of autophagy, which confers therapeutic resistance. This provides an opportunity for combination therapy, as autophagy inhibitors applied concurrently with Wnt inhibitors could increase treatment efficacy. Here, we applied the autophagy inhibitor chloroquine (CQ) to TNBC cells in combination with Frizzled7 antibody-coated nanoshells (FZD7-NS) that suppress Wnt signaling by blocking Wnt ligand/FZD7 receptor interactions, and evaluated this dual treatment in vitro. We found that FZD7-NS can inhibit Axin2 and CyclinD1, two targets of canonical Wnt signaling, and increase the expression of LC3, an autophagy marker. When FZD7-NS and CQ are applied together, they reduce the expression of several stemness genes in TNBC cells, leading to inhibition of TNBC cell migration and self-renewal. Notably, co-delivery of FZD7-NS and CQ is more effective than either therapy alone or the combination of CQ with free FZD7 antibodies. This demonstrates that the nanocarrier design is important to its therapeutic utility. Overall, these findings indicate that combined regulation of Wnt signaling and autophagy by FZD7-NS and CQ is a promising strategy to combat TNBC.
Collapse
Affiliation(s)
- Jianxin Wang
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Megan N Dang
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA
| |
Collapse
|
17
|
Xue Z, Zhang Y, Liu Y, Zhang C, Shen XD, Gao F, Busuttil RW, Zheng S, Kupiec-Weglinski JW, Ji H. PACAP neuropeptide promotes Hepatocellular Protection via CREB-KLF4 dependent autophagy in mouse liver Ischemia Reperfusion Injury. Am J Cancer Res 2020; 10:4453-4465. [PMID: 32292507 PMCID: PMC7150481 DOI: 10.7150/thno.42354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Organ ischemia reperfusion injury (IRI), associated with acute hepatocyte death, remains an unresolved problem in clinical orthotopic liver transplantation (OLT). Autophagy, an intracellular self-digesting progress, is responsible for cell reprograming required to regain post-stress homeostasis. Methods: Here, we analyzed the cytoprotective mechanism of pituitary adenylate cyclase-activating polypeptide (PACAP)-promoted hepatocellular autophagy in a clinically relevant mouse model of extended hepatic cold storage (4 °C UW solution for 20 h) followed by syngeneic OLT. Results: In contrast to 41.7% of liver graft failure by day 7 post-transplant in control group, PACAP treatment significantly improved graft survival (91.7% by day 14), and promoted autophagy-associated regeneration programs in OLT. In parallel in vitro studies, PACAP-enhanced autophagy ameliorated cellular damage (LDH/ALT levels), and diminished necrosis in H2O2-stressed primary hepatocytes. Interestingly, PACAP not only induced nuclear cAMP response element-binding protein (CREB), but also triggered reprogramming factor Kruppel-like factor 4 (KLF4) expression in IR-stressed OLT. Indeed, CREB inhibition attenuated hepatic autophagy and recreated hepatocellular injury in otherwise PACAP-protected livers. Furthermore, CREB inhibition suppressed PACAP-induced KLF4 expression, whereas KLF4 blockade abolished PACAP-promoted autophagy and neutralized PACAP-mediated hepatoprotection both in vivo and in vitro. Conclusion: Current study documents the essential neural regulation of PACAP-promoted autophagy in hepatocellular homeostasis in OLT, which provides the emerging therapeutic principle to combat hepatic IRI in OLT.
Collapse
|
18
|
Xu ZD, Wang Y, Liang G, Liu ZQ, Ma WH, Chu CT, Wei HF. Propofol affects mouse embryonic fibroblast survival and proliferation in vitro via ATG5- and calcium-dependent regulation of autophagy. Acta Pharmacol Sin 2020; 41:303-310. [PMID: 31645660 PMCID: PMC7471456 DOI: 10.1038/s41401-019-0303-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/29/2019] [Indexed: 12/03/2022] Open
Abstract
Propofol is a commonly used intravenous anesthetic agent, which has been found to affect cell survival and proliferation especially in early life. Our previous studies show that propofol-induced neurodegeneration and neurogenesis are closely associated with cell autophagy. In the present study we explored the roles of autophagy-related gene 5 (ATG5) in propofol-induced autophagy in mouse embryonic fibroblasts (MEF) in vitro. We showed that ATG5 was functionally related to propofol-induced cell survival and damage: propofol significantly enhanced cell survival and proliferation at a clinically relevant dose (10 µM), but caused cell death at an extremely high concentration (200 µM) in ATG5−/− MEF, but not in WT cells. The dual effects found in ATG5−/− MEF could be blocked by intracellular Ca2+ channel antagonists. We also found that propofol evoked a moderate (promote cell growth) and extremely high (cause apoptosis) cytosolic Ca2+ elevation at the concentrations of 10 µM and 200 µM, respectively, only in ATG5−/− MEF. In addition, ATG5−/− MEF themselves released more Ca2+ in cytosolic space and endoplasmic reticulum compared with WT cells, suggesting that autophagy deficiency made intracellular calcium signaling more vulnerable to external stimuli (propofol). Altogether, our results reveal that ATG5 plays a crucial role in propofol regulation of cell survival and proliferation by affecting intracellular Ca2+ homeostasis.
Collapse
|
19
|
Song JY, Wang XG, Zhang ZY, Che L, Fan B, Li GY. Endoplasmic reticulum stress and the protein degradation system in ophthalmic diseases. PeerJ 2020; 8:e8638. [PMID: 32117642 PMCID: PMC7036270 DOI: 10.7717/peerj.8638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/26/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Endoplasmic reticulum (ER) stress is involved in the pathogenesis of various ophthalmic diseases, and ER stress-mediated degradation systems play an important role in maintaining ER homeostasis during ER stress. The purpose of this review is to explore the potential relationship between them and to find their equilibrium sites. Design This review illustrates the important role of reasonable regulation of the protein degradation system in ER stress-mediated ophthalmic diseases. There were 128 articles chosen for review in this study, and the keywords used for article research are ER stress, autophagy, UPS, ophthalmic disease, and ocular. Data sources The data are from Web of Science, PubMed, with no language restrictions from inception until 2019 Jul. Results The ubiquitin proteasome system (UPS) and autophagy are important degradation systems in ER stress. They can restore ER homeostasis, but if ER stress cannot be relieved in time, cell death may occur. However, they are not independent of each other, and the relationship between them is complementary. Therefore, we propose that ER stability can be achieved by adjusting the balance between them. Conclusion The degradation system of ER stress, UPS and autophagy are interrelated. Because an imbalance between the UPS and autophagy can cause cell death, regulating that balance may suppress ER stress and protect cells against pathological stress damage.
Collapse
Affiliation(s)
- Jing-Yao Song
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| | - Xue-Guang Wang
- Department of Traumatic Orthopedics, Third People's Hospital of Jinan, Jinan, China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| | - Lin Che
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| |
Collapse
|
20
|
Roldán JS, Cassola A, Castillo DS. Optimization of recombinant Zika virus NS1 protein secretion from HEK293 cells. ACTA ACUST UNITED AC 2020; 25:e00434. [PMID: 32095434 PMCID: PMC7033529 DOI: 10.1016/j.btre.2020.e00434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/09/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
Stable recombinant ZIKV NS1-His-expressing HEK293 cells were generated. Rapamycin treatment followed by serum starvation leads to a 29-fold increase in recombinant ZIKV NS1 protein secretion. The purified recombinant ZIKV NS1 hexamer is a reliable biological tool for clinical diagnosis and surveillance purposes.
Sensitive, accurate and cost-effective diagnostic tests are urgently needed to detect Zika virus (ZIKV) infection. Nonstructural 1 (NS1) glycoprotein is an excellent diagnostic marker since it is released in a hexameric conformation from infected cells into the patient's bloodstream early in the course of the infection. We established a stable rZNS1-His-expression system in HEK293 cells through lentiviral transduction. A novel optimization approach to enhance rZNS1-His protein secretion in the mammalian expression system was accomplished through 50 nM rapamycin incubation followed by serum-free media incubation for 9 days, reaching protein yields of ∼10 mg/l of culture medium. Purified rZNS1-His hexamer was recognized by anti-NS1 antibodies in ZIKV patient's serum, and showed the ability to induce a humoral response in immunized mice. The obtained recombinant protein is a reliable biological tool that can potentially be applied in the development of diagnostic tests to detect ZIKV in infected patients during the acute phase.
Collapse
Affiliation(s)
- Julieta S Roldán
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" (IIBIO), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Alejandro Cassola
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" (IIBIO), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Daniela S Castillo
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" (IIBIO), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| |
Collapse
|
21
|
Fan X, Hou T, Zhang S, Guan Y, Jia J, Wang Z. The cellular responses of autophagy, apoptosis, and 5-methylcytosine level in zebrafish cells upon nutrient deprivation stress. CHEMOSPHERE 2020; 241:124989. [PMID: 31590028 DOI: 10.1016/j.chemosphere.2019.124989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Here we reported the stress responses of nutrient deprivation and extended observation of autophagy, apoptosis, and DNA methylation in zebrafish embryonic fibroblast (ZF4) cells. Our results showed that serum deprivation resulted in the changes of cell shape and adherent ability, the suppressed cell growth and viability, and the inhibited proliferation and cell cycle. Besides, the appearance of lysosome and autophagosome/autolysosome with significantly increased expression of mRNAs (ulk1a, becn1, atg12, sqstm1, maplc3, and lamp1) and proteins (Atg12, Becn1, Sqstm1, and Lamp1) indicate the autophagic activity was boosted at initial stage but relatively weakened at 48 h of serum starvation. When autophagy no longer mitigate for the stress, cell apoptosis detected by the mRNA expression of caspases, Bcl-2/Bax expression, and Annexin V/PI was gradually enhanced to execute the death plan upon prolonged starvation process. Furthermore, the methyl group metabolism was increased in accordance with autophagic activity and was suppressed by enhanced apoptotic activity. These data suggested that the recycle activity induced by autophagy could compensate the substrates and reactions of DNA transmethylation, which obviously increased 5-methylcytosine (5 mC) level in ZF4 cells. In summary, our results discovered the cellular responses under prolonged serum starvation stress and elaborated the switch from autophagy to apoptosis and corresponding correlation with 5 mC level changes in teleost fish in vitro.
Collapse
Affiliation(s)
- Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuai Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
22
|
Cells deficient for Krüppel-like factor 4 exhibit mitochondrial dysfunction and impaired mitophagy. Eur J Cell Biol 2020; 99:151061. [DOI: 10.1016/j.ejcb.2019.151061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/09/2019] [Accepted: 11/28/2019] [Indexed: 01/19/2023] Open
|
23
|
Metformin Suppresses Self-Renewal Ability and Tumorigenicity of Osteosarcoma Stem Cells via Reactive Oxygen Species-Mediated Apoptosis and Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9290728. [PMID: 31827709 PMCID: PMC6885828 DOI: 10.1155/2019/9290728] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is the most frequently diagnosed primary malignant bone sarcoma in children and adolescents. Recent studies have shown that cancer stem cells (CSCs), a cluster of tumor cells with the ability to self-renew, play an essential role in tumor recurrence and metastasis. Thus, it is necessary to develop therapeutic strategies specifically targeting CSCs. Metformin, the first-line drug for type 2 diabetes, exhibits antineoplastic activities in various kinds of tumors. New evidence has suggested that metformin may target CSCs and prevent their recurrence. However, the underlying specific mechanisms remain unclear. In this study, we found that metformin significantly suppressed the self-renewal ability of osteosarcoma stem cells (OSCs) and induced G0/G1 phase arrest by blocking the activity of cyclin-dependent kinases. Furthermore, metformin induced apoptosis through a mitochondria-dependent pathway, leading to the collapse of the mitochondrial transmembrane potential and the production of reactive oxygen species (ROS). Importantly, metformin acted directly on the mitochondria, which resulted in decreased ATP synthesis. This change allowed access to the downstream AMPK kinase, and the activation of AMPK led to the reversal of the mTOR pathway, triggering autophagy. Particularly, metformin-mediated autophagy disturbed the homeostasis of stemness and pluripotency in the OSCs. Additionally, our mouse xenograft model confirmed the potential therapeutic use of metformin in targeting OSCs. In conclusion, our findings suggest that metformin suppresses the self-renewal ability and tumorigenicity of OSCs via ROS-mediated apoptosis and autophagy.
Collapse
|
24
|
Rabiee Motmaen S, Tavakol S, Joghataei MT, Barati M. Acidic pH derived from cancer cells as a double-edged knife modulates wound healing through DNA repair genes and autophagy. Int Wound J 2019; 17:137-148. [PMID: 31714008 DOI: 10.1111/iwj.13248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Wound healing is a sequester program that involves diverse cell signalling cascades. Notwithstanding, complete signal transduction pathways underpinning acidic milieu derived from cancer cells is not clear, yet. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, fluorescein diacetate/propidium iodide staining, and cell cycle flow cytometry revealed that acidic media decreased cell viability and cell number along with enhanced dead cells and S-phase arrest in normal fibroblasts. Notably, the trends of intracellular reactive oxygen species production and lactate dehydrogenase release significantly increased with time. It seems the downregulation of Klf4 is in part due to acidosis-induced DNA damage. It promoted cells towards S-phase arrest and diminished cell proliferation. Klf4 downregulation had a direct correlation with the P53 level while acidic microenvironment promotes cells towards cell death mechanisms including apoptosis and autophagy. Noteworthily, the unchanged levels of Rb and Mlh1 indicated in those genes had no dominant role in the repairing of DNA damage in fibroblasts treated with the acidic microenvironment. Therefore, cells owing to not entering to mitosis and accumulation of DNA damage were undergone cell death to preserve cell homeostasis. Since acidic media decreased the level of tumour suppressor and DNA repair genes and altered the normal survival pathways in fibroblasts, caution should be exercised to not lead to cancer rather than wound healing.
Collapse
Affiliation(s)
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad T Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Barati
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Hodges AJ, Hudson NO, Buck-Koehntop BA. Cys 2His 2 Zinc Finger Methyl-CpG Binding Proteins: Getting a Handle on Methylated DNA. J Mol Biol 2019:S0022-2836(19)30567-4. [PMID: 31628952 DOI: 10.1016/j.jmb.2019.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation is an essential epigenetic modification involved in the maintenance of genomic stability, preservation of cellular identity, and regulation of the transcriptional landscape needed to maintain cellular function. In an increasing number of disease conditions, DNA methylation patterns are inappropriately distributed in a manner that supports the disease phenotype. Methyl-CpG binding proteins (MBPs) are specialized transcription factors that read and translate methylated DNA signals into recruitment of protein assemblies that can alter local chromatin architecture and transcription. MBPs thus play a key intermediary role in gene regulation for both normal and diseased cells. Here, we highlight established and potential structure-function relationships for the best characterized members of the zinc finger (ZF) family of MBPs in propagating DNA methylation signals into downstream cellular responses. Current and future investigations aimed toward expanding our understanding of ZF MBP cellular roles will provide needed mechanistic insight into normal and disease state functions, as well as afford evaluation for the potential of these proteins as epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Amelia J Hodges
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Nicholas O Hudson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Bethany A Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
26
|
Gong J, Zhan H, Li Y, Zhang W, Jin J, He Q. Krüppel‑like factor 4 ameliorates diabetic kidney disease by activating autophagy via the mTOR pathway. Mol Med Rep 2019; 20:3240-3248. [PMID: 31432191 PMCID: PMC6755248 DOI: 10.3892/mmr.2019.10585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is diagnosed increasingly frequently and represents a serious threat to human health. Krüppel‑like factor 4 (KLF4) has aroused attention due to its potential effect on podocytes and in ameliorating proteinuria associated with glomerulopathy. The purpose of the present study was to investigate the potential role of KLF4 in DKD. It was hypothesized that KLF4 impacts diabetic nephropathy by mediating the podocyte autophagic process. A KLF4 plasmid vector was constructed, and podocytes were transfected and incubated with DKD mice serum for in vitro experiments. A db/db spontaneous DKD mouse model was also established for in vivo study. After treatment, the level of serum creatinine (Scr), blood urea nitrogen (BUN), and 24‑h urinary protein was determined. Immunofluorescence and periodic acid‑Schiff staining, western blotting, flow cytometry and a TUNEL assay were performed to observe changes in glomerular morphology and the level of apoptosis, cytoskeleton proteins, epithelial‑mesenchymal transition (EMT) biomarkers, autophagic proteins and mTOR pathway proteins in each group. KLF4 overexpression significantly reduced the level of urinary albumin, Scr, BUN and attenuated mesangial matrix expansion, as well as mesangial cell proliferation in DKD mice. KLF4 overexpression also inhibited podocyte apoptosis and downregulated vimentin and α‑smooth muscle actin, and upregulated E‑cadherin and nephrin, both in vivo and in vitro. Moreover, the microtubule associated protein 1 light chain 3α (LC3)‑II/LC3‑I ratio and LC3‑II fluorescence was significantly increased in the vector‑KLF4 group compared to the negative control vector group both in vivo and in vitro. Finally, a decrease in the level of phosphorylated (p)‑mTOR and p‑S6K protein expression was observed following KLF4 overexpression in vitro. The present findings suggested that KLF4 plays a renoprotective role in DKD, which is associated with the activation of podocyte autophagy, and may be involved in the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jianguang Gong
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Huifang Zhan
- Department of Emergency, Zhejiang University Hospital, Hangzhou, Zhejiang 310058, P.R. China
| | - Yiwen Li
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Wei Zhang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
27
|
Ni T, Gao F, Zhang J, Lin H, Luo H, Chi J, Guo H. Impaired autophagy mediates hyperhomocysteinemia-induced HA-VSMC phenotypic switching. J Mol Histol 2019; 50:305-314. [PMID: 31028566 DOI: 10.1007/s10735-019-09827-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/22/2019] [Indexed: 01/07/2023]
Abstract
Hyperhomocysteinemia (HHcy) is a highly-related risk factor in vascular smooth muscle cell (VSMC) phenotypic modulation and atherosclerosis. Growing evidence indicated that autophagy is involved in pathological arterial changes. However, the risk mechanisms by which homocysteine and VSMC autophagy interact with cardiovascular disease are poorly understood. This study verified the homocysteine-responsive endoplasmic reticulum protein promotion of VSMC phenotypic switching, and the formation of atherosclerotic plaque in vitro. We found that impaired autophagy, as evidenced by decreased levels of MAP1LC3B II/MAP1LC3B I, has a vital role in HHcy-induced human aortic (HA)-VSMC phenotypic switching, with a decrease in contractile proteins (SM α-actin and calponin) and an increase in osteopontin. Knockdown of the essential autophagy gene Atg7 by small interfering RNA promoted HA-VSMC phenotypic switching, indicating that impaired autophagy induces phenotypic switching in these cells. HHcy co-treatment with rapamycin triggered autophagy, which alleviated HA-VSMC phenotypic switching. Finally, we found that Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor for maintaining genomic stability by resisting oxidative stress and restoring autophagy, is closely involved in this process. HHcy clearly decreased KLF4 expression. KLF4-specific siRNA aggravated defective autophagy and phenotypic switching. Mechanistically, KLF4 regulated the HHcy-induced decrease in HA-VSMC autophagy via the m-TOR signaling pathway. In conclusion, these results demonstrated that the KLF4-dependent rapamycin signaling pathway is a novel mechanism underlying HA-VSMC phenotypic switching and is crucial for HHcy-induced HA-VSMCs with defective autophagy to accelerate early atherosclerosis.
Collapse
Affiliation(s)
- Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou, 310012, Zhejiang, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hui Lin
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
28
|
Salmon M, Spinosa M, Zehner ZE, Upchurch GR, Ailawadi G. Klf4, Klf2, and Zfp148 activate autophagy-related genes in smooth muscle cells during aortic aneurysm formation. Physiol Rep 2019; 7:e14058. [PMID: 31025534 PMCID: PMC6483937 DOI: 10.14814/phy2.14058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/08/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a progressive dilation of the aorta that is characterized by an initial influx of inflammatory cells followed by a pro-inflammatory, migratory, proliferative, and eventually apoptotic smooth muscle cell phenotype. In recent years, the mechanisms related to the initial influx of inflammatory cells have become well-studied; the mechanisms related to chronic aneurysm formation, smooth muscle cell apoptosis and death are less well-characterized. Autophagy is a generally believed to be a protective cellular mechanism that functions to recycle defective proteins and cellular organelles to maintain cellular homeostasis. Our goal with the present study was to investigate the role of autophagy in smooth muscle cells during AAA formation. Levels of the autophagy factors, Beclin, and LC3 were elevated in human and mouse AAA tissue via both qPCR and immunohistochemical analysis. Confocal staining in human and mouse AAA tissue demonstrated Beclin and LC3 were present in smooth muscle cells during AAA formation. Treatment of smooth muscle cells with porcine pancreatic elastase or interleukin (IL)-1β activated autophagy-related genes in vitro while treatment with a siRNA to Kruppel-like transcription factor 4 (Klf4), Kruppel-like transcription factor 2 (Klf2) or Zinc-finger protein 148 (Zfp148) separately inhibited activation of autophagy genes. Chromatin immunoprecipitation assays demonstrated that Klf4, Klf2, and Zfp148 separately bind autophagy genes in smooth muscle cells following elastase treatment. These results demonstrate that autophagy is an important mechanism related to Klfs in smooth muscle cells during AAA formation.
Collapse
Affiliation(s)
- Morgan Salmon
- Department of SurgeryUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Michael Spinosa
- Department of SurgeryUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Zendra E. Zehner
- Department of BiochemistryVirginia Commonwealth University Medical CenterRichmondVirginiaUSA
| | | | - Gorav Ailawadi
- Department of SurgeryUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- The Robert M. Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| |
Collapse
|
29
|
Brauer PR, Kim JH, Ochoa HJ, Stratton ER, Black KM, Rosencrans W, Stacey E, Hagos EG. Krüppel-like factor 4 mediates cellular migration and invasion by altering RhoA activity. ACTA ACUST UNITED AC 2018; 24:1-10. [PMID: 29498307 DOI: 10.1080/15419061.2018.1444034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Kru¨ppel like factor 4 (KLF4) is a transcription factor that regulates genes related to differentiation and proliferation. KLF4 also plays a role in metastasis via epithelial to mesenchymal transition. Here, we investigate the function of Klf4 in migration and invasion using mouse embryonic fibroblasts and the RKO human colon cancer cell line. Compared to wild-type, cells lacking Klf4 exhibited increased migration-associated phenotypes. In addition, overexpression of Klf4 in Klf4-/- MEFs attenuated the presence of stress fibers to wild-type levels. An invasion assay suggested that lack of Klf4 resulted in increased invasive capacity. Finally, analysis of RhoA showed elevated RhoA activity in both RKO and MEF cells. Taken together, our results strongly support the novel role of KLF4 in a post-translational regulatory mechanism where KLF4 indirectly modulates the actin cytoskeleton morphology via activity of RhoA in order to inhibit cellular migration and invasion.
Collapse
Affiliation(s)
- Philip R Brauer
- a Department of Biology , Colgate University , Hamilton , NY , USA
| | - Jee Hun Kim
- a Department of Biology , Colgate University , Hamilton , NY , USA
| | - Humberto J Ochoa
- a Department of Biology , Colgate University , Hamilton , NY , USA.,b Center for Cancer Research, Lab of Cancer Biology and Genetics , National Cancer Institute , Bethesda , MD , USA
| | | | - Kathryn M Black
- a Department of Biology , Colgate University , Hamilton , NY , USA.,c School of Medicine , Tulane University , New Orleans , LA , USA
| | | | - Eliza Stacey
- a Department of Biology , Colgate University , Hamilton , NY , USA
| | - Engda G Hagos
- a Department of Biology , Colgate University , Hamilton , NY , USA
| |
Collapse
|
30
|
Feng Wang H, Xuan He H. Regulation of Yamanaka factors during H5N1 virus infection in A549 cells and HEK293T cells. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1541760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Hai Feng Wang
- School of Environmental Engineering, Central Plains Specialty Food Engineering & Technology Research Center, Yellow River Conservancy Technical Institute, Kaifeng, PR China
| | - Hong Xuan He
- National Research Center for Wildlife-Borne Diseases, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
31
|
Lleonart ME, Abad E, Graifer D, Lyakhovich A. Reactive Oxygen Species-Mediated Autophagy Defines the Fate of Cancer Stem Cells. Antioxid Redox Signal 2018; 28:1066-1079. [PMID: 28683561 DOI: 10.1089/ars.2017.7223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Significance: A fraction of tumorigenic cells, also known as tumor initiating or cancer stem cells (CSCs), is thought to drive tumor growth, metastasis, and chemoresistance. However, little is known regarding mechanisms that convey relevant pathways contributing to their self-renewal, proliferation, and differentiation abilities. Recent Advances: Recent works on CSCs provide evidence on the role of redox disruption and regulation of autophagic flux. This has been linked to increased DNA repair capacity and chemoresistance. Critical Issues: The current review summarizes the most recent studies assessing the role of redox homeostasis, autophagy, and chemoresistance in CSCs, including some novel findings on microRNAs and their role in horizontal transfer within cancer cell populations. Future Directions: Rational anticancer therapy and prevention should rely on the fact that cancer is a redox disease with the CSCs being the apex modulated by redox-mediated autophagy. Antioxid. Redox Signal. 28, 1066-1079.
Collapse
Affiliation(s)
- Matilde E Lleonart
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Etna Abad
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Dmitry Graifer
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alex Lyakhovich
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Barcelona, Spain.,Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,ICRC-FNUSA, International Clinical Research Center and St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
32
|
Hansson B, Wasserstrom S, Morén B, Periwal V, Vikman P, Cushman SW, Göransson O, Storm P, Stenkula KG. Intact glucose uptake despite deteriorating signaling in adipocytes with high-fat feeding. J Mol Endocrinol 2018; 60:199-211. [PMID: 29339400 PMCID: PMC7459392 DOI: 10.1530/jme-17-0195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/27/2022]
Abstract
To capture immediate cellular changes during diet-induced expansion of adipocyte cell volume and number, we characterized mature adipocytes during a short-term high-fat diet (HFD) intervention. Male C57BL6/J mice were fed chow diet, and then switched to HFD for 2, 4, 6 or 14 days. Systemic glucose clearance was assessed by glucose tolerance test. Adipose tissue was dissected for RNA-seq and cell size distribution analysis using coulter counting. Insulin response in isolated adipocytes was monitored by glucose uptake assay and Western blotting, and confocal microscopy was used to assess autophagic activity. Switching to HFD was accompanied by an immediate adipocyte size expansion and onset of systemic insulin resistance already after two days, followed by recruitment of new adipocytes. Despite an initially increased non-stimulated and preserved insulin-stimulated glucose uptake, we observed a decreased phosphorylation of insulin receptor substrate-1 (IRS-1) and protein kinase B (PKB). After 14 days of HFD, both the insulin-stimulated phosphorylation of Akt substrate of 160 kDa (AS160) and glucose uptake was blunted. RNA-seq analysis of adipose tissue revealed transient changes in gene expression at day four, including highly significant upregulation of Trp53inp, previously demonstrated to be involved in autophagy. We confirmed increased autophagy, measured as an increased density of LC3-positive puncta and decreased p62 expression after 14 days of HFD. In conclusion, HFD rapidly induced systemic insulin resistance, whereas insulin-stimulated glucose uptake remained intact throughout 6 days of HFD feeding. We also identified autophagy as an early cellular process that potentially influences adipocyte function upon switching to HFD.
Collapse
Affiliation(s)
- Björn Hansson
- Department of Experimental Medical ScienceLund University, Lund, Sweden
| | | | - Björn Morén
- Department of Experimental Medical ScienceLund University, Lund, Sweden
| | - Vipul Periwal
- National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of Health, Bethesda, Maryland, USA
| | - Petter Vikman
- Department of Clinical SciencesLund University, Malmö, Sweden
| | - Samuel W Cushman
- National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of Health, Bethesda, Maryland, USA
| | - Olga Göransson
- Department of Experimental Medical ScienceLund University, Lund, Sweden
| | - Petter Storm
- Department of Clinical SciencesLund University, Malmö, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical ScienceLund University, Lund, Sweden
| |
Collapse
|
33
|
Inhibition of Starvation-Triggered Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in ARPE-19 Cells by Taurine through Modulating the Expression of Calpain-1 and Calpain-2. Int J Mol Sci 2017; 18:ijms18102146. [PMID: 29036897 PMCID: PMC5666828 DOI: 10.3390/ijms18102146] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex disease with multiple initiators and pathways that converge on death for retinal pigment epithelial (RPE) cells. In this study, effects of taurine on calpains, autophagy, endoplasmic reticulum (ER) stress, and apoptosis in ARPE-19 cells (a human RPE cell line) were investigated. We first confirmed that autophagy, ER stress and apoptosis in ARPE-19 cells were induced by Earle’s balanced salt solution (EBSS) through starvation to induce RPE metabolic stress. Secondly, inhibition of ER stress by 4-phenyl butyric acid (4-PBA) alleviated autophagy and apoptosis, and suppression of autophagy by 3-methyl adenine (3-MA) reduced the cell apoptosis, but the ER stress was minimally affected. Thirdly, the apoptosis, ER stress and autophagy were inhibited by gene silencing of calpain-2 and overexpression of calpain-1, respectively. Finally, taurine suppressed both the changes of the important upstream regulators (calpain-1 and calpain-2) and the activation of ER stress, autophagy and apoptosis, and taurine had protective effects on the survival of ARPE-19 cells. Collectively, this data indicate that taurine inhibits starvation-triggered endoplasmic reticulum stress, autophagy, and apoptosis in ARPE-19 cells by modulating the expression of calpain-1 and calpain-2.
Collapse
|
34
|
Hsieh PN, Zhou G, Yuan Y, Zhang R, Prosdocimo DA, Sangwung P, Borton AH, Boriushkin E, Hamik A, Fujioka H, Fealy CE, Kirwan JP, Peters M, Lu Y, Liao X, Ramírez-Bergeron D, Feng Z, Jain MK. A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction. Nat Commun 2017; 8:914. [PMID: 29030550 PMCID: PMC5640649 DOI: 10.1038/s41467-017-00899-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/04/2017] [Indexed: 01/02/2023] Open
Abstract
Loss of protein and organelle quality control secondary to reduced autophagy is a hallmark of aging. However, the physiologic and molecular regulation of autophagy in long-lived organisms remains incompletely understood. Here we show that the Kruppel-like family of transcription factors are important regulators of autophagy and healthspan in C. elegans, and also modulate mammalian vascular age-associated phenotypes. Kruppel-like family of transcription factor deficiency attenuates autophagy and lifespan extension across mechanistically distinct longevity nematode models. Conversely, Kruppel-like family of transcription factor overexpression extends nematode lifespan in an autophagy-dependent manner. Furthermore, we show the mammalian vascular factor Kruppel-like family of transcription factor 4 has a conserved role in augmenting autophagy and improving vessel function in aged mice. Kruppel-like family of transcription factor 4 expression also decreases with age in human vascular endothelium. Thus, Kruppel-like family of transcription factors constitute a transcriptional regulatory point for the modulation of autophagy and longevity in C. elegans with conserved effects in the murine vasculature and potential implications for mammalian vascular aging.KLF family transcription factors (KLFs) regulate many cellular processes, including proliferation, survival and stress responses. Here, the authors position KLFs as important regulators of autophagy and lifespan in C. elegans, a role that may extend to the modulation of age-associated vascular phenotypes in mammals.
Collapse
Affiliation(s)
- Paishiun N Hsieh
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA.,Department of Pathology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Guangjin Zhou
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Yiyuan Yuan
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Rongli Zhang
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Domenick A Prosdocimo
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Panjamaporn Sangwung
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Anna H Borton
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA.,Department of Pathology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Evgenii Boriushkin
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Anne Hamik
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Hisashi Fujioka
- Electron Microscopy Facility, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Department of Pharmacology, Center for Mitochondrial Diseases, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Ciaran E Fealy
- Department of Biomedical Sciences, Kent State University, Cunningham Hall, Kent, OH, 44242, USA
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH, 44195, USA.,Metabolic Translational Research Center, Cleveland Clinic Foundation, 9500 Euclid Avenue/ M83-02, Cleveland, OH, 44195, USA
| | - Maureen Peters
- Department of Biology, Oberlin College, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Yuan Lu
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Xudong Liao
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Diana Ramírez-Bergeron
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Zhaoyang Feng
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Mukesh K Jain
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA. .,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
35
|
Ghaleb AM, Yang VW. Krüppel-like factor 4 (KLF4): What we currently know. Gene 2017; 611:27-37. [PMID: 28237823 DOI: 10.1016/j.gene.2017.02.025] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell growth, proliferation, and differentiation. Since its discovery in 1996, KLF4 has been gaining a lot of attention, particularly after it was shown in 2006 as one of four factors involved in the induction of pluripotent stem cells (iPSCs). Here we review the current knowledge about the different functions and roles of KLF4 in various tissue and organ systems.
Collapse
Affiliation(s)
- Amr M Ghaleb
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Vincent W Yang
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
36
|
Hsieh PN, Sweet DR, Fan L, Jain MK. Aging and the Krüppel-like factors. TRENDS IN CELL & MOLECULAR BIOLOGY 2017; 12:1-15. [PMID: 29416266 PMCID: PMC5798252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mammalian Krüppel-like factors (KLFs) are a family of zinc-finger containing transcription factors with diverse patterns of expression and a wide array of cellular functions. While their roles in mammalian physiology are well known, there is a growing appreciation for their roles in modulating the fundamental progression of aging. Here we review the current knowledge of Krüppel-like factors with a focus on their roles in processes regulating aging and age-associated diseases.
Collapse
Affiliation(s)
- Paishiun N. Hsieh
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - David R. Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Mukesh K. Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
37
|
Functionalized Fullerene Increases NF-κB Activity and Blocks Genotoxic Effect of Oxidative Stress in Serum-Starving Human Embryo Lung Diploid Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9895245. [PMID: 27635190 PMCID: PMC5011234 DOI: 10.1155/2016/9895245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
Abstract
The influence of a water-soluble [60] fullerene derivative containing five residues of 3-phenylpropionic acid and a chlorine addend appended to the carbon cage (F-828) on serum-starving human embryo lung diploid fibroblasts (HELFs) was studied. Serum deprivation evokes oxidative stress in HELFs. Cultivation of serum-starving HELFs in the presence of 0.1–1 µM F-828 significantly decreases the level of free radicals, inhibits autophagy, and represses expression of NOX4 and NRF2 proteins. The activity of NF-κB substantially grows up in contrast to the suppressed NRF2 activity. In the presence of 0.2–0.25 µM F-828, the DSB rate and apoptosis level dramatically decrease. The maximum increase of proliferative activity of the HELFs and maximum activity of NF-κB are observed at these concentration values. Conclusion. Under the conditions of oxidative stress evoked by serum deprivation the water-soluble fullerene derivative F-828 used in concentrations of 0.1 to 1 µM strongly stimulates the NF-κB activity and represses the NRF2 activity in HELFs.
Collapse
|
38
|
Riz I, Hawley TS, Hawley RG. KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models. Oncotarget 2016; 6:14814-31. [PMID: 26109433 PMCID: PMC4558117 DOI: 10.18632/oncotarget.4530] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) is an incurable clonal plasma cell malignancy. Because of a high rate of immunoglobulin synthesis, the endoplasmic reticulum of MM cells is subjected to elevated basal levels of stress. Consequently, proteasome inhibitors, which exacerbate this stress by inhibiting ubiquitin-proteasome-mediated protein degradation, are an important new class of chemotherapeutic agents being used to combat this disease. However, MM cells still develop resistance to proteasome inhibitors such as carfilzomib. Toward this end, we have established carfilzomib-resistant derivatives of MM cell lines. We found that resistance to carfilzomib was associated with elevated levels of prosurvival autophagy, and Kruppel-like factor 4 (KLF4) was identified as a contributing factor. Expression levels as well as nuclear localization of KLF4 protein were elevated in MM cells with acquired carfilzomib resistance. Chromatin immunoprecipitations indicated that endogenous KLF4 bound to the promoter regions of the SQSTM1 gene encoding the ubiquitin-binding adaptor protein sequestosome/p62 that links the proteasomal and autophagic protein degradation pathways. Ectopic expression of KLF4 induced upregulation of SQSTM1. On the other hand, inhibitors of autophagy sensitized MM cells to carfilzomib, even in carfilzomib-resistant derivatives having increased expression of the multidrug resistance protein P-glycoprotein. Thus, we report here a novel function for KLF4, one of the Yamanaka reprogramming factors, as being a contributor to autophagy gene expression which moderates preclinical proteasome inhibitor efficacy in MM.
Collapse
Affiliation(s)
- Irene Riz
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC, USA
| | - Teresa S Hawley
- Flow Cytometry Core Facility, The George Washington University, Washington, DC, USA
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC, USA
| |
Collapse
|
39
|
Ghaleb AM, Elkarim EA, Bialkowska AB, Yang VW. KLF4 Suppresses Tumor Formation in Genetic and Pharmacological Mouse Models of Colonic Tumorigenesis. Mol Cancer Res 2016; 14:385-96. [PMID: 26839262 DOI: 10.1158/1541-7786.mcr-15-0410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/27/2016] [Indexed: 01/15/2023]
Abstract
UNLABELLED The zinc finger transcription factor Krüppel-like factor 4 (KLF4) is frequently downregulated in colorectal cancer. Previous studies showed that KLF4 is a tumor suppressor in the intestinal tract and plays an important role in DNA damage-repair mechanisms. Here, the in vivo effects of Klf4 deletion were examined from the mouse intestinal epithelium (Klf4(ΔIS)) in a genetic or pharmacological setting of colonic tumorigenesis:Apc(Min/⁺) mutation or carcinogen treatment with azoxymethane (AOM), respectively.Klf4 (ΔIS)/Apc (Min/⁺) mice developed significantly more colonic adenomas with 100% penetrance as compared with Apc(Min/⁺) mice with intact Klf4 (Klf4(fl/fl)/Apc (Min/⁺)). The colonic epithelium of Klf4 (ΔIS)/Apc (Min/⁺)mice showed increased mTOR pathway activity, together with dysregulated epigenetic mechanism as indicated by altered expression of HDAC1 and p300. Colonic adenomas from both genotypes stained positive for γH2AX, indicating DNA double-strand breaks. InKlf4 (ΔIS)/Apc (Min/+) mice, this was associated with reduced nonhomologous end joining (NHEJ) repair and homologous recombination repair (HRR) mechanisms as indicated by reduced Ku70 and Rad51 staining, respectively. In a separate model, following treatment with AOM, Klf4 (ΔIS) mice developed significantly more colonic tumors than Klf4 (fl/fl) mice, with more Klf4 (ΔIS) mice harboring K-Rasmutations than Klf4 (fl/fl)mice. Compared with AOM-treated Klf4 (fl/fl)mice, adenomas of treated Klf4 (ΔIS) mice had suppressed NHEJ and HRR mechanisms, as indicated by reduced Ku70 and Rad51 staining. This study highlights the important role of KLF4 in suppressing the development of colonic neoplasia under different tumor-promoting conditions. IMPLICATIONS The study demonstrates that KLF4 plays a significant role in the pathogenesis of colorectal neoplasia.
Collapse
Affiliation(s)
- Amr M Ghaleb
- Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Enas A Elkarim
- Department of Medicine, Stony Brook University, Stony Brook, New York
| | | | - Vincent W Yang
- Department of Medicine, Stony Brook University, Stony Brook, New York. Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York.
| |
Collapse
|