1
|
Gupta G, Wang Z, Kissling VM, Gogos A, Wick P, Buerki-Thurnherr T. Boron Nitride Nanosheets Induce Lipid Accumulation and Autophagy in Human Alveolar Lung Epithelial Cells Cultivated at Air-Liquid Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308148. [PMID: 38290809 DOI: 10.1002/smll.202308148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/29/2023] [Indexed: 02/01/2024]
Abstract
Hexagonal boron nitride (hBN) is an emerging 2D material attracting significant attention due to its superior electrical, chemical, and therapeutic properties. However, inhalation toxicity mechanisms of hBN in human lung cells are poorly understood. Here, cellular interaction and effects of hBN nanosheets is investigated in alveolar epithelial cells cultured on porous inserts and exposed under air-liquid interface conditions for 24 h. hBN is taken up by the cells as determined in a label-free manner via RAMAN-confocal microscopy, ICP-MS, TEM, and SEM-EDX. No significant (p > 0.05) effects are observed on cell membrane integrity (LDH release), epithelial barrier integrity (TEER), interleukin-8 cytokine production or reactive oxygen production at tested dose ranges (1, 5, and 10 µg cm-2). However, it is observed that an enhanced accumulation of lipid granules in cells indicating the effect of hBN on lipid metabolism. In addition, it is observed that a significant (p < 0.05) and dose-dependent (5 and 10 µg cm-2) induction of autophagy in cells after exposure to hBN, potentially associated with the downstream processing and breakdown of excess lipid granules to maintain lipid homeostasis. Indeed, lysosomal co-localization of lipid granules supporting this argument is observed. Overall, the results suggest that the continuous presence of excess intracellular lipids may provoke adverse outcomes in the lungs.
Collapse
Affiliation(s)
- Govind Gupta
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Ziting Wang
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Vera M Kissling
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| |
Collapse
|
2
|
Lin H, Buerki-Thurnherr T, Kaur J, Wick P, Pelin M, Tubaro A, Carniel FC, Tretiach M, Flahaut E, Iglesias D, Vázquez E, Cellot G, Ballerini L, Castagnola V, Benfenati F, Armirotti A, Sallustrau A, Taran F, Keck M, Bussy C, Vranic S, Kostarelos K, Connolly M, Navas JM, Mouchet F, Gauthier L, Baker J, Suarez-Merino B, Kanerva T, Prato M, Fadeel B, Bianco A. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS NANO 2024; 18:6038-6094. [PMID: 38350010 PMCID: PMC10906101 DOI: 10.1021/acsnano.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Tina Buerki-Thurnherr
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Jasreen Kaur
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Peter Wick
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Mauro Tretiach
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
Université de Toulouse, CNRS, INPT,
UPS, 31062 Toulouse CEDEX 9, France
| | - Daniel Iglesias
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Giada Cellot
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Valentina Castagnola
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabio Benfenati
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, 16163 Genoa, Italy
| | - Antoine Sallustrau
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Sandra Vranic
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - Florence Mouchet
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Laury Gauthier
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - James Baker
- TEMAS Solutions GmbH, 5212 Hausen, Switzerland
| | | | - Tomi Kanerva
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bengt Fadeel
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Alberto Bianco
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
3
|
Deleye L, Franchi F, Trevisani M, Loiacono F, Vercellino S, Debellis D, Liessi N, Armirotti A, Vázquez E, Valente P, Castagnola V, Benfenati F. Few-layered graphene increases the response of nociceptive neurons to irritant stimuli. NANOSCALE 2024; 16:2419-2431. [PMID: 38226500 DOI: 10.1039/d3nr03790h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The unique properties of few-layered graphene (FLG) make it interesting for a variety of applications, including biomedical applications, such as tissue engineering and drug delivery. Although different studies focus on applications in the central nervous system, its interaction with the peripheral nervous system has been so far overlooked. Here, we investigated the effects of exposure to colloidal dispersions of FLG on the sensory neurons of the rat dorsal root ganglia (DRG). We found that the FLG flakes were actively internalized by sensory neurons, accumulated in large intracellular vesicles, and possibly degraded over time, without major toxicological concerns, as neuronal viability, morphology, protein content, and basic electrical properties of DRG neurons were preserved. Interestingly, in our electrophysiological investigation under noxious stimuli, we observed an increased functional response upon FLG treatment of the nociceptive subpopulation of DRG neurons in response to irritants specific for chemoreceptors TRPV1 and TRPA1. The observed effects of FLG on DRG neurons may open-up novel opportunities for applications of these materials in specific disease models.
Collapse
Affiliation(s)
- Lieselot Deleye
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
| | - Francesca Franchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Martina Trevisani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- Department of Experimental Medicine, Section of Physiology, University of Genova, Genoa, 16132, Italy.
| | - Fabrizio Loiacono
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Silvia Vercellino
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, IIT, Via Morego 30, 16163, Genoa, Italy
| | - Nara Liessi
- Analytical Chemistry Facility, IIT, via Morego, 30, 16163, Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, IIT, via Morego, 30, 16163, Genoa, Italy
| | - Ester Vázquez
- Facultad de Ciencias Químicas, Universidad Castilla La-Mancha, Ciudad Real, 13071 Spain
| | - Pierluigi Valente
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genova, Genoa, 16132, Italy.
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
4
|
Zimmermann M, Gerken LRH, Wee S, Kissling VM, Neuer AL, Tsolaki E, Gogos A, Lukatskaya MR, Herrmann IK. X-ray radio-enhancement by Ti 3C 2T x MXenes in soft tissue sarcoma. Biomater Sci 2023; 11:7826-7837. [PMID: 37878039 PMCID: PMC10697419 DOI: 10.1039/d3bm00607g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Radiotherapy is a cornerstone of cancer treatment. However, due to the low tissue specificity of ionizing radiation, damage to the surrounding healthy tissue of the tumor remains a significant challenge. In recent years, radio-enhancers based on inorganic nanomaterials have gained considerable interest. Beyond the widely explored metal and metal oxide nanoparticles, 2D materials, such as MXenes, could present potential benefits because of their inherently large specific surface area. In this study, we highlight the promising radio-enhancement properties of Ti3C2Tx MXenes. We demonstrate that atomically thin layers of titanium carbides (Ti3C2Tx MXenes) are efficiently internalized and well-tolerated by mammalian cells. Contrary to MXenes suspended in aqueous buffers, which fully oxidize within days, yielding rice-grain shaped rutile nanoparticles, the MXenes internalized by cells oxidize at a slower rate. This is consistent with cell-free experiments that have shown slower oxidation rates in cell media and lysosomal buffers compared to dispersants without antioxidants. Importantly, the MXenes exhibit robust radio-enhancement properties, with dose enhancement factors reaching up to 2.5 in human soft tissue sarcoma cells, while showing no toxicity to healthy human fibroblasts. When compared to oxidized MXenes and commercial titanium dioxide nanoparticles, the intact 2D titanium carbide flakes display superior radio-enhancement properties. In summary, our findings offer evidence for the potent radio-enhancement capabilities of Ti3C2Tx MXenes, marking them as a promising candidate for enhancing radiotherapy.
Collapse
Affiliation(s)
- Monika Zimmermann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Shianlin Wee
- Electrochemical Energy Systems Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Vera M Kissling
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Anna L Neuer
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Elena Tsolaki
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Maria R Lukatskaya
- Electrochemical Energy Systems Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
- The Ingenuity Lab, University Hospital Balgrist, Balgrist Campus, Forchstrasse 340, 8008 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland
| |
Collapse
|
5
|
Peng M, Vercauteren M, Grootaert C, Rajkovic A, Boon N, Janssen C, Asselman J. Cellular and bioenergetic effects of polystyrene microplastic in function of cell type, differentiation status and post-exposure time. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122550. [PMID: 37716692 DOI: 10.1016/j.envpol.2023.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
The ubiquity of microplastics (MPs) in food sources and personal care products increasingly raises concerns on human health. However, little is known about the duration of the effects of MPs and whether effects depend on cellular differentiation status. Herein, cellular and bioenergetic effects of MPs in different exposure scenarios on four types of human cell lines derived from lung (A549 and BEAS-2B), colon (Caco-2) and liver (HepG2) were investigated. These cell lines are models for the major exposure routes in the body (inhalation, ingestion and physiological transport through the liver by the portal vein). To this aim, different scenarios were implemented by exposing undifferentiated and differentiated cells to single dosing of 2-μm polystyrene (PS) (102-105 particles/mL) for 48 h and 12 days. The undifferentiated Caco-2 cells with short exposure (48 h) showed the highest uptake rate of PS yet without significant cellular and mitochondrial responses. The biological effects, with the exception of ROS production, were not influenced by differentiation states of A549 and Caco-2 cells although differentiated cells showed much weaker ability to internalize PS. However, PS had significantly long-term impacts on cellular and mitochondrial functions even after the initial exposure period. In particular, Caco-2 cells that were post-exposed for 12 days after single PS dosing suffered higher oxidative stress and exhibited mitochondrial dysfunction than that for short exposure. Correspondingly, we observed that PS particles still remained in cell membrane and even in nuclei with high retention rate by 14-d post exposure during which metabolism and exchange of internalization and release occurred in cells. This indicates PS could induce chronic stress and even harmful effects on human cells after single intake that persists for a long time. This study paves the way for assessing the influence of PS on human health at low particle concentrations and with multiple exposure scenarios.
Collapse
Affiliation(s)
- Miao Peng
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium.
| | - Maaike Vercauteren
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Technology and Ecology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Colin Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| |
Collapse
|
6
|
Cristina Julio-Gonzalez L, Garcia-Cañas V, Rico F, Hernandez-Hernandez O. Transglycosylation catalysed by Caco-2 membrane disaccharidases: A new approach to understand carbohydrates digestibility. Food Res Int 2023; 172:113067. [PMID: 37689856 DOI: 10.1016/j.foodres.2023.113067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 09/11/2023]
Abstract
Under appropriate experimental conditions, some glycoside hydrolases can catalyze transglycosylation reactions; a hypothesis associated with this is that the glycosidic linkages formed will be preferentially hydrolyzed under optimal conditions. Therefore, the hydrolytic and transglycosylation activities of isolated membranes from differentiated Caco-2 cells on sucrose, maltose and isomaltulose were evaluated. After the enzymatic reactions, the di- and trisaccharides obtained were identified by gas chromatography coupled to a mass spectrometer. Differentiated Caco-2 cell membranes exerted hydrolytic and transglycosylation activities towards the studied disaccharides. The obtained di- and trisaccharides were detected for the first time using human cell models. Due to the absence of maltase-glucoamylase complex (MGAM) in Caco-2 cells, and the known hydrolytic activity of sucrase-isomaltase (SI) towards sucrose, maltose and isomaltulose, it is plausible that the glycosidic linkages obtained after the transglycosylation reaction, mainly α-glucosyl-fructoses and α-glucosyl-glucoses, were carried out by SI complex. This approach can be used as a model to explain carbohydrate digestibility in the small intestine and as a tool to design new oligosaccharides with low intestinal digestibility.
Collapse
Affiliation(s)
- Lesbia Cristina Julio-Gonzalez
- Institute of Food Science Research, CIAL (CSIC-UAM), Madrid-28049, Spain; Faculty of Engineering, Universidad de Cartagena, Cartagena de Indias, Colombia
| | | | - Fabian Rico
- Faculty of Engineering, Universidad de Cartagena, Cartagena de Indias, Colombia
| | | |
Collapse
|
7
|
Grilli F, Hassan EM, Variola F, Zou S. Harnessing graphene oxide nanocarriers for siRNA delivery in a 3D spheroid model of lung cancer. Biomater Sci 2023; 11:6635-6649. [PMID: 37609774 DOI: 10.1039/d3bm00732d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Gene therapy has been recently proposed as an effective strategy for cancer treatment. A significant body of literature proved the effectiveness of nanocarriers to deliver therapeutic agents to 2D tumour models, which are simple but not always representative of the in vivo reality. In this study, we analyze the efficiency of 3D spheroids combined with a minimally modified graphene oxide (GO)-based nanocarrier for siRNA delivery as a new system for cell transfection. Small interfering RNA (siRNA) targeting cluster of differentiation 47 (CD47; CD47_siRNA) was used as an anti-tumour therapeutic agent to silence the genes expressing CD47. This is a surface marker able to send a "don't eat me" signal to macrophages to prevent their phagocytosis. Also, we report the analysis of different GO formulations, in terms of size (small: about 100 nm; large: >650 nm) and functionalization (unmodified or modified with polyethylene glycol (PEG) and the dendrimer PAMAM), aiming to establish the efficiency of unmodified GO as a nanocarrier for the transfection of A549 lung cancer spheroids. Small modified GO (smGO) showed the highest transfection efficiency values (>90%) in 3D models. Interestingly, small unmodified GO (sGO) was found to be promising for transfection, with efficiency values >80% using a higher siRNA ratio (i.e., 3 : 1). These results demonstrated the higher efficiency of spheroids compared to 2D models for transfection, and the high potential of unmodified GO to carry siRNA, providing a promising new in vitro model system for the analysis of anticancer gene therapies.
Collapse
Affiliation(s)
- Francesca Grilli
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Eman M Hassan
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
8
|
Cebadero-Domínguez Ó, Diez-Quijada L, López S, Sánchez-Ballester S, Puerto M, Cameán AM, Jos A. Impact of Gastrointestinal Digestion In Vitro Procedure on the Characterization and Cytotoxicity of Reduced Graphene Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2285. [PMID: 37630872 PMCID: PMC10457766 DOI: 10.3390/nano13162285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The growing interest in graphene derivatives is a result of their variety of applications in many fields. Due to their use, the oral route could be a potential way of entrance for the general population. This work assesses the biotransformation of reduced graphene oxide (rGO) after an in vitro digestion procedure (mouth, gastric, intestinal, and colon digestion), and its toxic effects in different cell models (HepG2, Caco-2, and 3D intestinal model). The characterization of rGO digestas evidenced the agglomeration of samples during the in vitro gastrointestinal (g.i.) digestion. Internalization of rGO was only evident in Caco-2 cells exposed to the colonic phase and no cellular defects were observed. Digestas of rGO did not produce remarkable cytotoxicity in any of the experimental models employed at the tested concentrations (up to 200 µg/mL), neither an inflammatory response. Undigested rGO has shown cytotoxic effects in Caco-2 cells, therefore these results suggest that the digestion process could prevent the systemic toxic effects of rGO. However, additional studies are necessary to clarify the interaction of rGO with the g.i. tract and its biocompatibility profile.
Collapse
Affiliation(s)
- Óscar Cebadero-Domínguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| | - Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| | - Sergio López
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, 41012 Seville, Spain;
| | - Soraya Sánchez-Ballester
- Packaging, Transport and Logistic Research Institute, Albert Einstein, 1, Paterna, 46980 Valencia, Spain;
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| | - Ana M. Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| |
Collapse
|
9
|
Fernández-Pampín N, González Plaza JJ, García-Gómez A, Peña E, Garroni S, Poddighe M, Rumbo C, Barros R, Martel-Martín S, Aparicio S, Tamayo-Ramos JA. Toxicological assessment of pristine and degraded forms of graphene functionalized with MnOx nanoparticles using human in vitro models representing different exposure routes. Sci Rep 2023; 13:11846. [PMID: 37481626 PMCID: PMC10363126 DOI: 10.1038/s41598-023-38993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
The development of novel advanced nanomaterials (NMs) with outstanding characteristics for their use in distinct applications needs to be accompanied by the generation of knowledge on their potential toxicological impact, in particular, that derived from different occupational risk exposure routes, such as inhalation, ingestion, and skin contact. The harmful effects of novel graphene-metal oxide composites on human health are not well understood, many toxicological properties have not been investigated yet. The present study has evaluated several toxicological effects associated with graphene decorated with manganese oxide nanoparticles (GNA15), in a comparative assessment with those induced by simple graphene (G2), on human models representing inhalation (A549 cell line), ingestion (HT29 cell line) and dermal routes (3D reconstructed skin). Pristine and degraded forms of these NMs were included in the study, showing to have different physicochemical and toxicological properties. The degraded version of GNA15 (GNA15d) and G2 (G2d) exhibited clear structural differences with their pristine counterparts, as well as a higher release of metal ions. The viability of respiratory and gastrointestinal models was reduced in a dose-dependent manner in the presence of both GNA15 and G2 pristine and degraded forms. Besides this, all NMs induced the production of reactive oxygen species (ROS) in both models. However, the degraded forms showed to induce a higher cytotoxicity effect. In addition, we found that none of the materials produced irritant effects on 3D reconstructed skin when present in aqueous suspensions. These results provide novel insights into the potentially harmful effects of novel multicomponent NMs in a comprehensive manner. Furthermore, the integrity of the NMs can play a role in their toxicity, which can vary depending on their composition and the exposure route.
Collapse
Affiliation(s)
- Natalia Fernández-Pampín
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Juan José González Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | | | - Elisa Peña
- Gnanomat, C/Faraday 7, 28049, Madrid, Spain
| | - Sebastiano Garroni
- Department of Chemical, Physics, Mathematics and Natural Science, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Matteo Poddighe
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Chemical, Physics, Mathematics and Natural Science, CR-INSTM, University of Sassari, Via Vienna, 2, 07100, Sassari, Italy
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Sonia Martel-Martín
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Santiago Aparicio
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
10
|
Castagnola V, Deleye L, Podestà A, Jaho E, Loiacono F, Debellis D, Trevisani M, Ciobanu DZ, Armirotti A, Pisani F, Flahaut E, Vazquez E, Bramini M, Cesca F, Benfenati F. Interactions of Graphene Oxide and Few-Layer Graphene with the Blood-Brain Barrier. NANO LETTERS 2023; 23:2981-2990. [PMID: 36917703 PMCID: PMC10103300 DOI: 10.1021/acs.nanolett.3c00377] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Thanks to their biocompatibility and high cargo capability, graphene-based materials (GRMs) might represent an ideal brain delivery system. The capability of GRMs to reach the brain has mainly been investigated in vivo and has highlighted some controversy. Herein, we employed two in vitro BBB models of increasing complexity to investigate the bionano interactions with graphene oxide (GO) and few-layer graphene (FLG): a 2D murine Transwell model, followed by a 3D human multicellular assembloid, to mimic the complexity of the in vivo architecture and intercellular crosstalk. We developed specific methodologies to assess the translocation of GO and FLG in a label-free fashion and a platform applicable to any nanomaterial. Overall, our results show good biocompatibility of the two GRMs, which did not impact the integrity and functionality of the barrier. Sufficiently dispersed subpopulations of GO and FLG were actively uptaken by endothelial cells; however, the translocation was identified as a rare event.
Collapse
Affiliation(s)
- Valentina Castagnola
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Lieselot Deleye
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alice Podestà
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Edra Jaho
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fabrizio Loiacono
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Doriana Debellis
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego, 30, 16163 Genova, Italy
| | - Martina Trevisani
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Experimental Medicine, Università
degli Studi di Genova, 16132 Genova, Italy
| | - Dinu Zinovie Ciobanu
- Analytical
Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Pisani
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
UMR 5085, CNRS-INP-UPS, Université
Toulouse 3 Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Ester Vazquez
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | - Mattia Bramini
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Cell Biology, Universidad de Granada, C. Fuentenueva s/n, 18071 Granada, Spain
| | - Fabrizia Cesca
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Fabio Benfenati
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
11
|
Peng G, Sinkko HM, Alenius H, Lozano N, Kostarelos K, Bräutigam L, Fadeel B. Graphene oxide elicits microbiome-dependent type 2 immune responses via the aryl hydrocarbon receptor. NATURE NANOTECHNOLOGY 2023; 18:42-48. [PMID: 36509925 PMCID: PMC9879769 DOI: 10.1038/s41565-022-01260-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
The gut microbiome produces metabolites that interact with the aryl hydrocarbon receptor (AhR), a key regulator of immune homoeostasis in the gut1,2. Here we show that oral exposure to graphene oxide (GO) modulates the composition of the gut microbiome in adult zebrafish, with significant differences in wild-type versus ahr2-deficient animals. Furthermore, GO was found to elicit AhR-dependent induction of cyp1a and homing of lck+ cells to the gut in germ-free zebrafish larvae when combined with the short-chain fatty acid butyrate. To obtain further insights into the immune responses to GO, we used single-cell RNA sequencing to profile cells from whole germ-free embryos as well as cells enriched for lck. These studies provided evidence for the existence of innate lymphoid cell (ILC)-like cells3 in germ-free zebrafish. Moreover, GO endowed with a 'corona' of microbial butyrate triggered the induction of ILC2-like cells with attributes of regulatory cells. Taken together, this study shows that a nanomaterial can influence the crosstalk between the microbiome and immune system in an AhR-dependent manner.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hanna M Sinkko
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Human Microbiome Research Program (HUMI), University of Helsinki, Helsinki, Finland
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Human Microbiome Research Program (HUMI), University of Helsinki, Helsinki, Finland
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Bellaterra, Spain
| | - Kostas Kostarelos
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Bellaterra, Spain
- National Graphene Institute, and Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Lars Bräutigam
- Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Dabrowski B, Zuchowska A, Brzozka Z. Graphene oxide internalization into mammalian cells – a review. Colloids Surf B Biointerfaces 2022; 221:112998. [DOI: 10.1016/j.colsurfb.2022.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/07/2022]
|
13
|
Pérez-Amor MÁ, Barrios L, Armengol G, Barquinero JF. Differential Radiosensitizing Effect of 50 nm Gold Nanoparticles in Two Cancer Cell Lines. BIOLOGY 2022; 11:1193. [PMID: 36009820 PMCID: PMC9404963 DOI: 10.3390/biology11081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Radiation therapy is widely used as an anti-neoplastic treatment despite the adverse effects it can cause in non-tumoral tissues. Radiosensitizing agents, which can increase the effect of radiation in tumor cells, such as gold nanoparticles (GNPs), have been described. To evaluate the radiosensitizing effect of 50 nm GNPs, we carried out a series of studies in two neoplastic cell lines, Caco2 (colon adenocarcinoma) and SKBR3 (breast adenocarcinoma), qualitatively evaluating the internalization of the particles, determining with immunofluorescence the number of γ-H2AX foci after irradiation with ionizing radiation (3 Gy) and evaluating the viability rate of both cell lines after treatment by means of an MTT assay. Nanoparticle internalization varied between cell lines, though they both showed higher internalization degrees for functionalized GNPs. The γ-H2AX foci counts for the different times analyzed showed remarkable differences between cell lines, although they were always significantly higher for functionalized GNPs in both lines. Regarding cell viability, in most cases a statistically significant decreasing tendency was observed when treated with GNPs, especially those that were functionalized. Our results led us to conclude that, while 50 nm GNPs induce a clear radiosensitizing effect, it is highly difficult to describe the magnitude of this effect as universal because of the heterogeneity found between cell lines.
Collapse
Affiliation(s)
- Miguel Ángel Pérez-Amor
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Leonardo Barrios
- Unit of Cell Biology, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Joan Francesc Barquinero
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
14
|
Chortarea S, Kuru OC, Netkueakul W, Pelin M, Keshavan S, Song Z, Ma B, Gómes J, Abalos EV, Luna LAVD, Loret T, Fordham A, Drummond M, Kontis N, Anagnostopoulos G, Paterakis G, Cataldi P, Tubaro A, Galiotis C, Kinloch I, Fadeel B, Bussy C, Kostarelos K, Buerki-Thurnherr T, Prato M, Bianco A, Wick P. Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129053. [PMID: 35650742 DOI: 10.1016/j.jhazmat.2022.129053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Graphene-related materials (GRMs) are subject to intensive investigations and considerable progress has been made in recent years in terms of safety assessment. However, limited information is available concerning the hazard potential of GRM-containing products such as graphene-reinforced composites. In the present study, we conducted a comprehensive investigation of the potential biological effects of particles released through an abrasion process from reduced graphene oxide (rGO)-reinforced composites of polyamide 6 (PA6), a widely used engineered thermoplastic polymer, in comparison to as-produced rGO. First, a panel of well-established in vitro models, representative of the immune system and possible target organs such as the lungs, the gut, and the skin, was applied. Limited responses to PA6-rGO exposure were found in the different in vitro models. Only as-produced rGO induced substantial adverse effects, in particular in macrophages. Since inhalation of airborne materials is a key occupational concern, we then sought to test whether the in vitro responses noted for these materials would translate into adverse effects in vivo. To this end, the response at 1, 7 and 28 days after a single pulmonary exposure was evaluated in mice. In agreement with the in vitro data, PA6-rGO induced a modest and transient pulmonary inflammation, resolved by day 28. In contrast, rGO induced a longer-lasting, albeit moderate inflammation that did not lead to tissue remodeling within 28 days. Taken together, the present study suggests a negligible impact on human health under acute exposure conditions of GRM fillers such as rGO when released from composites at doses expected at the workplace.
Collapse
Affiliation(s)
- Savvina Chortarea
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Ogul Can Kuru
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Woranan Netkueakul
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sandeep Keshavan
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Julio Gómes
- Avanzare Innovacion Tecnologica S.L. 26370 Navarrete, Spain
| | - Elvira Villaro Abalos
- Instituto de Tecnologías Químicas de La Rioja (InterQuímica), 26370 Navarrete, Spain
| | - Luis Augusto Visani de Luna
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Thomas Loret
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Alexander Fordham
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Matthew Drummond
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nikolaos Kontis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Paterakis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Pietro Cataldi
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Costas Galiotis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece; Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Ian Kinloch
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Catalan Institute of Nanoscience and Nanotechnology (ICN2), and Barcelona Institute of Science and Technology (BIST), Barcelona 08193, Spain
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia San Sebastián, Spain; Basque Foundation for Science (IKERBASQUE), 48013 Bilbao, Spain
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland.
| |
Collapse
|
15
|
Qin H, Ji Y, Li G, Xu X, Zhang C, Zhong W, Xu S, Yin Y, Song J. MicroRNA-29b/graphene oxide–polyethyleneglycol–polyethylenimine complex incorporated within chitosan hydrogel promotes osteogenesis. Front Chem 2022; 10:958561. [PMID: 35936077 PMCID: PMC9354773 DOI: 10.3389/fchem.2022.958561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) play a pivotal role in regulating a number of physiologic and pathologic processes including bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation, making them a candidate used to promote osteogenesis. However, due to intrinsic structure and characteristics, “naked” miRNAs are unstable in serum and could not pass across the cellular membrane. Nano delivery systems seem to be a solution to these issues. Recently, graphene oxide (GO)-based nanomaterials are considered to be promising for gene delivery due to their unique physiochemical characteristics such as high surface area, biocompatibility, and easy modification. In this work, a GO-based nanocomplex functionalized by polyethyleneglycol (PEG) and polyethylenimine (PEI) was prepared for loading and delivering miR-29b, which participates in multiple steps of bone formation. The nanocomplex revealed good biocompatibility, miRNA loading capacity, and transfection efficiency. The miR-29b/GO-PEG-PEI nanocomplex was capsulated into chitosan (CS) hydrogel for osteogenesis. In vitro and in vivo evaluation indicated that miR-29b/GO-PEG-PEI@CS composite hydrogel was able to promote BMSC osteogenic differentiation and bone regeneration. All these results indicate that PEG/PEI functionalized GO could serve as a promising candidate for miRNA cellular delivery, and the miR-29b/GO-PEG-PEI@CS hydrogel has the potential for repairing bone defects in vivo.
Collapse
Affiliation(s)
- Han Qin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yujie Ji
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Guangyue Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohui Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shihan Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Jinlin Song,
| |
Collapse
|
16
|
Šestáková B, Schröterová L, Bezrouk A, Čížková D, Elkalaf M, Havelek R, Rudolf E, Králová V. The Effect of Chronic Exposure of Graphene Nanoplates on the Viability and Motility of A549 Cells. NANOMATERIALS 2022; 12:nano12122074. [PMID: 35745421 PMCID: PMC9227066 DOI: 10.3390/nano12122074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/07/2022]
Abstract
Graphene and its derivatives are popular nanomaterials used worldwide in many technical fields and biomedical applications. Due to such massive use, their anticipated accumulation in the environment is inevitable, with a largely unknown chronic influence on living organisms. Although repeatedly tested in chronic in vivo studies, long-term cell culture experiments that explain the biological response to these nanomaterials are still scarce. In this study, we sought to evaluate the biological responses of established model A549 tumor cells exposed to a non-toxic dose of pristine graphene for eight weeks. Our results demonstrate that the viability of the A549 cells exposed to the tested graphene did not change as well as the rate of their growth and proliferation despite nanoplatelet accumulation inside the cells. In addition, while the enzymatic activity of mitochondrial dehydrogenases moderately increased in exposed cells, their overall mitochondrial damage along with energy production changes was also not detected. Conversely, chronic accumulation of graphene nanoplates in exposed cells was detected, as evidenced by electron microscopy associated with impaired cellular motility.
Collapse
Affiliation(s)
- Blanka Šestáková
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic; (B.Š.); (E.R.); (V.K.)
| | - Ladislava Schröterová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic; (B.Š.); (E.R.); (V.K.)
- Correspondence: ; Tel.: +420-495-816-284
| | - Aleš Bezrouk
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Dana Čížková
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Moustafa Elkalaf
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic; (B.Š.); (E.R.); (V.K.)
| | - Věra Králová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic; (B.Š.); (E.R.); (V.K.)
| |
Collapse
|
17
|
Joshi A, Soni A, Acharya S. In vitro models and ex vivo systems used in inflammatory bowel disease. IN VITRO MODELS 2022. [PMID: 37519330 PMCID: PMC9036838 DOI: 10.1007/s44164-022-00017-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal condition. Ulcerative colitis and Crohn’s disease are types of inflammatory bowel disease. Over many decades, the disease has been a topic of study, with experts still trying to figure out its cause and pathology. Researchers have established many in vivo animal models, in vitro cell lines, and ex vivo systems to understand its cause ultimately and adequately identify a therapy. However, in vivo animal models cannot be regarded as good models for studying IBD since they cannot completely simulate the disease. Furthermore, because species differences are a crucial subject of concern, in vitro cell lines and ex vivo systems can be employed to recreate the condition properly. In vitro models serve as the starting point for biological and medical research. Ex vivo and in vitro models for replicating gut physiology have been developed. This review aims to present a clear understanding of several in vitro and ex vivo models of IBD and provide insights into their benefits and limits and their value in understanding intestinal physiology.
Collapse
Affiliation(s)
- Abhishek Joshi
- Department of Pharmacology, SSR College of Pharmacy, Union Territory of Dadra 396230 Sayli, Silvassa, India
| | - Arun Soni
- Department of Pharmacology, SSR College of Pharmacy, Union Territory of Dadra 396230 Sayli, Silvassa, India
| | - Sanjeev Acharya
- Department of Pharmacognosy, SSR College of Pharmacy, Union Territory of Dadra 396230 Sayli, Silvassa, India
| |
Collapse
|
18
|
Brand W, van Kesteren PCE, Swart E, Oomen AG. Overview of potential adverse health effects of oral exposure to nanocellulose. Nanotoxicology 2022; 16:217-246. [PMID: 35624082 DOI: 10.1080/17435390.2022.2069057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanocellulose is an emerging material for which several food-related applications are foreseen, for example, novel food, functional food, food additive or in food contact materials. Nanocellulose materials can display a range of possible shapes (fibers, crystals), sizes and surface modifications. For food-related applications in the EU, information on the safety of substances must be assessed. The present review summarizes the current knowledge on (possible) adverse health effects of nanocellulose upon oral exposure, keeping EU regulatory aspects in mind. The overview indicates that toxicity data, especially from in vivo studies, are limited and outcomes are not unambiguous. The hazard assessment is further complicated by: the diversity in morphologies and surface modifications, lack of standard reference materials, limited knowledge about intestinal fate and absorption, analytical difficulties in biological matrices, dispersion issues, the possible presence of impurities and interferences within biological assays. Two subchronic in vivo toxicity studies show no indications of toxicity for two specific nanocellulose materials, even at high doses. However, these studies may have missed certain early or nano-specific toxic effects, such as inflammation potential, for which other, subacute studies provide some indications. Most in vitro studies show no cytotoxicity; however, several indicate that effects on oxidative stress and inflammatory responses depend on differences in size or surface treatments. Further, too few studies assessed genotoxicity of nanocelluloses. Therefore, immunotoxicity, oxidative stress and genotoxicity require further attention, as do absorption and effects on nutrient uptake. Recommendations for future research facilitating the safety assessment and safe-by-design of nanocellulose in food-related applications are provided.
Collapse
Affiliation(s)
- Walter Brand
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Petra C E van Kesteren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elmer Swart
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
19
|
Vercellino S, Kokalari I, Liz Cantoral M, Petseva V, Cursi L, Casoli F, Castagnola V, Boselli L, Fenoglio I. Biological interactions of ferromagnetic iron oxide-carbon nanohybrids with alveolar epithelial cells. Biomater Sci 2022; 10:3514-3526. [PMID: 35603779 DOI: 10.1039/d2bm00220e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Iron oxide nanoparticles (IONPs) have been largely investigated in a plethora of biological fields for their interesting physical-chemical properties, which make them suitable for application in cancer therapy, neuroscience, and imaging. Several encouraging results have been reported in these contexts. However, the possible toxic effects of some IONP formulations can limit their applicability. In this work, IONPs were synthesized with a carbon shell (IONP@C), providing enhanced stability both as colloidal dispersion and in the biological environment. We conducted a careful multiparametric evaluation of IONP@C biological interactions in vitro, providing them with an in vivo-like biological identity. Our hybrid nanoformulation showed no cytotoxic effects on a widely employed model of alveolar epithelial cells for a variety of concentrations and exposure times. The IONP@C were efficiently internalized and TEM analysis allowed the protective role of the carbon shell against intracellular degradation to be assessed. Intracellular redistribution of the IONP@C from the lysosomes to the lamellar bodies was also observed after 72 hours.
Collapse
Affiliation(s)
- Silvia Vercellino
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ida Kokalari
- Dept. of Chemistry, Università di Torino, via P. Giuria 7, 10125 Torino, Italy. .,Delft University of Technology, Dept. of Chemical Engineering, Van der Maasweg 9, 2629 HZ DELFT, The Netherlands
| | - Mayra Liz Cantoral
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. .,Dept. of Chemistry, Università di Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Vanya Petseva
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Francesca Casoli
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| | - Valentina Castagnola
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. .,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Luca Boselli
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. .,Nanobiointeractions and Nanodiagnostics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ivana Fenoglio
- Dept. of Chemistry, Università di Torino, via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
20
|
Feng W, Wang J, Li B, Liu Y, Xu D, Cheng K, Zhuang J. Graphene oxide leads to mitochondrial-dependent apoptosis by activating ROS-p53-mPTP pathway in intestinal cells. Int J Biochem Cell Biol 2022; 146:106206. [PMID: 35398141 DOI: 10.1016/j.biocel.2022.106206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2022]
Abstract
Owing to its unique physical and chemical properties, graphene oxide (GO) has a wide range of applications in biomedical field. However, with the gradual improvement of biosafety investigations on nanomaterials, growing literatures have pointed out that GO could lead to oxidative stress, aggravation of inflammatory responses, and even irreversible lesions in human multi-tissues, while its damage to small intestinal remained unclear. In this study, we conducted an in-depth study on the toxicological effect of GO on intestinal tissues, and further clarified its toxic effect and molecular mechanism on inducing intestinal cell death. Firstly, we characterized the shape size, potential value, Fourier Transform infrared spectroscopy (FT-IR) characterization and pro-oxidant properties of GO nanosheets. The cytotoxicity of different concentrations of GO to Caco-2 and IEC-6 cell lines was thereafter observed, which was specifically manifested as invoking NADPH Oxidase 1 (NOX1) proteins, accompanied generation of reactive oxygen species (ROS). Since that, more p53 flowed into mitochondria to combine with cyclophilin D (CYPD), thus induced mitochondrial permeability transition pore (mPTP) opening. Through ROS-CyPD-mPTP signaling pathway, GO exerted imbalance of mitochondrial homeostasis, while released cytochrome c (CytC) would ultimate caspase-dependent cell apoptosis. In vivo experiment also confirmed that the microstructure of small intestine was damaged, and the apoptosis rate and oxidative markers were significantly increased in GO-treated Sprague- Dawley (SD) rats (40 mg/kg once every other day from day 1 to day 9 by oral gavage). Based on these findings, we conclude that the adverse effects of oral exposure of GO on the biological system mainly concentrate in the digestive tract, and clarify the key role of ROS-mitochondrial homeostasis-apoptosis axis in GO-derived intestinal toxicity. Considering all these results and the fact that GO exhibited intestinal toxicity, we believe that this research providing a safety reference for its biomedical applications.
Collapse
Affiliation(s)
- Weiyu Feng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jinbang Wang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Baodong Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yonggang Liu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dongli Xu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ke Cheng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Zhuang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
21
|
Ardoña HAM, Zimmerman JF, Shani K, Kim SH, Eweje F, Bitounis D, Parviz D, Casalino E, Strano M, Demokritou P, Parker KK. Differential modulation of endothelial cytoplasmic protrusions after exposure to graphene-family nanomaterials. NANOIMPACT 2022; 26:100401. [PMID: 35560286 PMCID: PMC9812361 DOI: 10.1016/j.impact.2022.100401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 05/14/2023]
Abstract
Engineered nanomaterials offer the benefit of having systematically tunable physicochemical characteristics (e.g., size, dimensionality, and surface chemistry) that highly dictate the biological activity of a material. Among the most promising engineered nanomaterials to date are graphene-family nanomaterials (GFNs), which are 2-D nanomaterials (2DNMs) with unique electrical and mechanical properties. Beyond engineering new nanomaterial properties, employing safety-by-design through considering the consequences of cell-material interactions is essential for exploring their applicability in the biomedical realm. In this study, we asked the effect of GFNs on the endothelial barrier function and cellular architecture of vascular endothelial cells. Using micropatterned cell pairs as a reductionist in vitro model of the endothelium, the progression of cytoskeletal reorganization as a function of GFN surface chemistry and time was quantitatively monitored. Here, we show that the surface oxidation of GFNs (graphene, reduced graphene oxide, partially reduced graphene oxide, and graphene oxide) differentially affect the endothelial barrier at multiple scales; from the biochemical pathways that influence the development of cellular protrusions to endothelial barrier integrity. More oxidized GFNs induce higher endothelial permeability and the increased formation of cytoplasmic protrusions such as filopodia. We found that these changes in cytoskeletal organization, along with barrier function, can be potentiated by the effect of GFNs on the Rho/Rho-associated kinase (ROCK) pathway. Specifically, GFNs with higher surface oxidation elicit stronger ROCK2 inhibitory behavior as compared to pristine graphene sheets. Overall, findings from these studies offer a new perspective towards systematically controlling the surface-dependent effects of GFNs on cytoskeletal organization via ROCK2 inhibition, providing insight for implementing safety-by-design principles in GFN manufacturing towards their targeted biomedical applications.
Collapse
Affiliation(s)
- Herdeline Ann M Ardoña
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - John F Zimmerman
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Kevin Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Su-Hwan Kim
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Feyisayo Eweje
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Evan Casalino
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Michael Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University Boston, MA 02115, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA.
| |
Collapse
|
22
|
In vitro toxicity evaluation of graphene oxide and reduced graphene oxide on Caco-2 cells. Toxicol Rep 2022; 9:1130-1138. [DOI: 10.1016/j.toxrep.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
|
23
|
Ahmed J, Mulla MZ, Vahora A, Bher A, Auras R. Morphological, barrier and thermo-mechanical properties of high-pressure treated polylactide graphene oxide reinforced composite films. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Magne TM, de Oliveira Vieira T, Costa B, Alencar LMR, Ricci-Junior E, Hu R, Qu J, Zamora-Ledezma C, Alexis F, Santos-Oliveira R. Factors affecting the biological response of Graphene. Colloids Surf B Biointerfaces 2021; 203:111767. [PMID: 33878553 DOI: 10.1016/j.colsurfb.2021.111767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology has gained significant importance in different fields of medical, electronic, and environmental science. This technology is founded on the use of materials at the nanoscale scale (1-100 nanometers) for various purposes, particularly in the biomedical area, where its application is growing daily due to the need of materials with advanced properties. Over the past few years, there has been a growing use for graphene and its derivative composite materials. However, different physico-chemical properties influence its biological response; therefore, further studies to explain the interactions of these nanomaterials with biological systems are critical. This review presents the current advances in the applications of graphene in biomedicine with a focus on the physico-chemical characteristics of the graphene family and their influences on biological interactions.
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | - Thamires de Oliveira Vieira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | - Bianca Costa
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | | | - Eduardo Ricci-Junior
- Federal University of Rio de Janeiro, Laboratory of Nanomedicine, Av. Carlos Chagas Filho, 373, Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-170, Brazil
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair: Orthobiology, Biomaterials & Tissue Engineering Group. UCAM - Universidad Católica de Murcia, Avda. Los Jerónimos 135, Guadalupe, 30107, Murcia, Spain
| | - Frank Alexis
- School of Physical Sciences and Nanotechnology, Yachay Tech University, 100119, Urcuquí, Ecuador
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Av Manuel caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000, Brazil.
| |
Collapse
|
25
|
Liu S, Xu A, Gao Y, Xie Y, Liu Z, Sun M, Mao H, Wang X. Graphene oxide exacerbates dextran sodium sulfate-induced colitis via ROS/AMPK/p53 signaling to mediate apoptosis. J Nanobiotechnology 2021; 19:85. [PMID: 33766052 PMCID: PMC7995754 DOI: 10.1186/s12951-021-00832-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 03/14/2021] [Indexed: 12/30/2022] Open
Abstract
Background Graphene oxide (GO), a novel carbon-based nanomaterial, has promising applications in biomedicine. However, it induces potential cytotoxic effects on the gastrointestinal (GI) tract cells, and these effects have been largely uncharacterized. The present study aimed to explore the toxic effects of GO on the intestinal tract especially under pre-existing inflammatory conditions, such as inflammatory bowel disease (IBD), and elucidate underlying mechanisms. Results Our findings indicated that oral gavage of GO worsened acute colitis induced by 2.5% dextran sodium sulfate (DSS) in mice. In vitro, GO exacerbated DSS-induced inflammation and apoptosis in the FHC cell line, an ideal model of intestinal epithelial cells (IECs). Further, the potential mechanism underlying GO aggravated mice colitis and cell inflammation was explored. Our results revealed that GO treatment triggered apoptosis in FHC cells through the activation of reactive oxygen species (ROS)/AMP-activated protein kinase (AMPK)/p53 pathway, as evidenced by the upregulation of cytochrome c (Cytc), Bax, and cleaved caspase-3 (c-cas3) and the downregulation of Bcl-2. Interestingly, pretreatment with an antioxidant, N-acetyl-L-cysteine, and a specific inhibitor of AMPK activation, Compound C (Com.C), effectively inhibited GO-induced apoptosis in FHC cells. Conclusions Our data demonstrate that GO-induced IECs apoptosis via ROS/AMPK/p53 pathway activation accounts for the exacerbation of colitis in vivo and aggravation of inflammation in vitro. These findings provide a new insight into the pathogenesis of IBD induced by environmental factors. Furthermore, our findings enhance our understanding of GO as a potential environmental toxin, which helps delineate the risk of exposure to patients with disturbed intestinal epithelial barrier/inflammatory disorders such as IBD. ![]()
Collapse
Affiliation(s)
- Siliang Liu
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Angao Xu
- Huizhou Medicine Institute, Huizhou, 516003, People's Republic of China
| | - Yanfei Gao
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yue Xie
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zhipeng Liu
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Meiling Sun
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Hua Mao
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xinying Wang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
26
|
Hempt C, Hirsch C, Hannig Y, Rippl A, Wick P, Buerki-Thurnherr T. Investigating the effects of differently produced synthetic amorphous silica (E 551) on the integrity and functionality of the human intestinal barrier using an advanced in vitro co-culture model. Arch Toxicol 2020; 95:837-852. [PMID: 33319326 PMCID: PMC7904742 DOI: 10.1007/s00204-020-02957-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
E 551, also known as synthetic amorphous silica (SAS), is the second most produced food additive. However, according to the re-evaluation of E 551 by the European Food Safety Authority (EFSA) in 2018, the amount of available data on the oral toxicity of food grade E 551 is still insufficient for reliable risk assessment. To close this gap, this study aimed to investigate six food-grade SAS with distinct physicochemical properties on their interaction with the intestinal barrier using advanced in vitro intestinal co-cultures and to identify potential structure-activity relationships. A mucus-secreting Caco-2/HT-29/Raji co-culture model was treated with up to 50 µg/ml SAS for 48 h, which represents a dose range relevant to dietary exposure. No effects on cell viability, barrier integrity, microvilli function or the release of inflammatory cytokine were detected after acute exposure. Slight biological responses were observed for few SAS materials on iron uptake and gene expression levels of mucin 1 and G-protein coupled receptor 120 (GPR120). There was no clear correlation between SAS properties (single or combined) and the observed biological responses. Overall, this study provides novel insights into the short-term impact of food-relevant SAS with distinct characteristics on the intestinal epithelium including a range of intestine-specific functional endpoints. In addition, it highlights the importance of using advanced intestinal co-cultures embracing relevant cell types as well as a protective mucus barrier to achieve a comprehensive understanding of the biological response of food additives at the intestinal barrier in vitro.
Collapse
Affiliation(s)
- Claudia Hempt
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Cordula Hirsch
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Yvette Hannig
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Alexandra Rippl
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
| |
Collapse
|
27
|
Ozkan G, Kostka T, Esatbeyoglu T, Capanoglu E. Effects of Lipid-Based Encapsulation on the Bioaccessibility and Bioavailability of Phenolic Compounds. Molecules 2020; 25:E5545. [PMID: 33256012 PMCID: PMC7731217 DOI: 10.3390/molecules25235545] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Phenolic compounds (quercetin, rutin, cyanidin, tangeretin, hesperetin, curcumin, resveratrol, etc.) are known to have health-promoting effects and they are accepted as one of the main proposed nutraceutical group. However, their application is limited owing to the problems related with their stability and water solubility as well as their low bioaccessibility and bioavailability. These limitations can be overcome by encapsulating phenolic compounds by physical, physicochemical and chemical encapsulation techniques. This review focuses on the effects of encapsulation, especially lipid-based techniques (emulsion/nanoemulsion, solid lipid nanoparticles, liposomes/nanoliposomes, etc.), on the digestibility characteristics of phenolic compounds in terms of bioaccessibility and bioavailability.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (G.O.); (E.C.)
| | - Tina Kostka
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (G.O.); (E.C.)
| |
Collapse
|
28
|
Al-Ani LA, Kadir FA, Hashim NM, Julkapli NM, Seyfoddin A, Lu J, AlSaadi MA, Yehye WA. The impact of curcumin-graphene based nanoformulation on cellular interaction and redox-activated apoptosis: An in vitro colon cancer study. Heliyon 2020; 6:e05360. [PMID: 33163675 PMCID: PMC7609448 DOI: 10.1016/j.heliyon.2020.e05360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Natural plants derivatives have gained enormous merits in cancer therapy applications upon formulation with nanomaterials. Curcumin, as a popular research focus has acquired such improvements surpassing its disadvantageous low bioavailability. To this point, the available research data had confirmed the importance of nanomaterial type in orienting cellular response and provoking different toxicological and death mechanisms that may range from physical membrane damage to intracellular changes. This in turn underlines the poorly studied field of nanoformulation interaction with cells as the key determinant in toxicology outcomes. In this work, curcumin-AuNPs-reduced graphene oxide nanocomposite (CAG) was implemented as a model, to study the impact on cellular membrane integrity and the possible redox changes using colon cancer in vitro cell lines (HT-29 and SW-948), representing drug-responsive and resistant subtypes. Morphological and biochemical methods of transmission electron microscopy (TEM), apoptosis assay, reactive oxygen species (ROS) and antioxidants glutathione and superoxide dismutase (GSH and SOD) levels were examined with consideration to suitable protocols and vital optimizations. TEM micrographs proved endocytic uptake with succeeding cytoplasm deposition, which unlike other nanomaterials studied previously, conserved membrane integrity allowing intracellular cytotoxic mechanism. Apoptosis was confirmed with gold-standard morphological features observed in micrographs, while redox parameters revealed a time-dependent increase in ROS accompanied with regressive GSH and SOD levels. Collectively, this work demonstrates the success of graphene as a platform for curcumin intracellular delivery and cytotoxicity, and further highlights the importance of suitable in vitro methods to be used for nanomaterial validation.
Collapse
Affiliation(s)
- Lina A. Al-Ani
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Farkaad A. Kadir
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Najihah M. Hashim
- Department of Pharmaceutical Chemicals, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Nurhidayatullaili M. Julkapli
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology, School of Science, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health & Environmental Sciences, Auckland University of Technology. Auckland, New Zealand
- College of Perfume and Aroma, Shanghai Institute of Technology, Shanghai, China
| | - Mohammed A. AlSaadi
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, Malaysia
- National Chair of Materials Sciences and Metallurgy, University of Nizwa, Nizwa, Sultanate of Oman
| | - Wageeh A. Yehye
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Hempt C, Kaiser JP, Scholder O, Buerki-Thurnherr T, Hofmann H, Rippl A, Schuster TB, Wick P, Hirsch C. The impact of synthetic amorphous silica (E 551) on differentiated Caco-2 cells, a model for the human intestinal epithelium. Toxicol In Vitro 2020; 67:104903. [PMID: 32473318 DOI: 10.1016/j.tiv.2020.104903] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
For several decades, food-grade synthetic amorphous silica (SAS) have been used as a technological additive to reduce caking of food powders. Human exposure is thus inevitable and safety concerns are taken seriously. The toxicity of silica in general and SAS in particular has been studied extensively. Overall, there is little evidence that food-grade SAS pose any health risks to humans. However, from the available data it was often not clear which type of silica was used. Accordingly, the latest report of the European food safety authority requested additional toxicity data for well-characterised "real food-grade SAS". To close this gap, we screened a panel of ten well-defined, food-grade SAS for potential adverse effects on differentiated Caco-2 cells. Precipitated and fumed SAS with low, intermediate and high specific surface area were included to determine structure-activity relationships. In a physiological dose-range up to 50 μg/ml and 48 h of incubation, none of the materials induced adverse effects on differentiated Caco-2 cells. This held true for endpoints of acute cytotoxicity as well as epithelial specific measures of barrier integrity. These results showed that despite considerable differences in production routes and material characteristics, food-relevant SAS did not elicit acute toxicity responses in intestinal epithelial cells.
Collapse
Affiliation(s)
- Claudia Hempt
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Jean-Pierre Kaiser
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Olivier Scholder
- Nanoscale Materials Science Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, Switzerland
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Heinrich Hofmann
- Institute of Materials, Powder Technology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alexandra Rippl
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Tobias B Schuster
- Evonik Resource Efficiency GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Cordula Hirsch
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| |
Collapse
|
30
|
Bitounis D, Parviz D, Cao X, Amadei CA, Vecitis CD, Sunderland EM, Thrall BD, Fang M, Strano MS, Demokritou P. Synthesis and Physicochemical Transformations of Size-Sorted Graphene Oxide during Simulated Digestion and Its Toxicological Assessment against an In Vitro Model of the Human Intestinal Epithelium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907640. [PMID: 32196921 PMCID: PMC7260083 DOI: 10.1002/smll.201907640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 05/05/2023]
Abstract
In the last decade, along with the increasing use of graphene oxide (GO) in various applications, there is also considerable interest in understanding its effects on human health. Only a few experimental approaches can simulate common routes of exposure, such as ingestion, due to the inherent complexity of the digestive tract. This study presents the synthesis of size-sorted GO of sub-micrometer- or micrometer-sized lateral dimensions, its physicochemical transformations across mouth, gastric, and small intestinal simulated digestions, and its toxicological assessment against a physiologically relevant, in vitro cellular model of the human intestinal epithelium. Results from real-time characterization of the simulated digestas of the gastrointestinal tract using multi-angle laser diffraction and field-emission scanning electron microscopy show that GO agglomerates in the gastric and small intestinal phase. Extensive morphological changes, such as folding, are also observed on GO following simulated digestion. Furthermore, X-ray photoelectron spectroscopy reveals that GO presents covalently bound N-containing groups on its surface. It is shown that the GO employed in this study undergoes reduction. Toxicological assessment of the GO small intestinal digesta over 24 h does not point to acute cytotoxicity, and examination of the intestinal epithelium under electron microscopy does not reveal histological alterations. Both sub-micrometer- and micrometer-sized GO variants elicit a 20% statistically significant increase in reactive oxygen species generation compared to the untreated control after a 6 h exposure.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b Cambridge, MA 02139, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| | - Carlo A. Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St Cambridge, MA 02138, USA
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St Cambridge, MA 02138, USA
| | - Elsie M. Sunderland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St Cambridge, MA 02138, USA
| | - Brian D. Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b Cambridge, MA 02139, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| |
Collapse
|
31
|
Hempt C, Gontsarik M, Buerki-Thurnherr T, Hirsch C, Salentinig S. Nanostructure generation during milk digestion in presence of a cell culture model simulating the small intestine. J Colloid Interface Sci 2020; 574:430-440. [PMID: 32344233 DOI: 10.1016/j.jcis.2020.04.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023]
Abstract
HYPOTHESIS The development of advanced oral delivery systems for bioactive compounds requires the fundamental understanding of the digestion process within the gastrointestinal tract. Towards this goal, dynamic invitro digestion models, capable of characterising the molecular as well as colloidal aspects of food, together with their biological interactions with relevant invitro cell culture models, are essential. EXPERIMENTS In this study, we demonstrate a novel digestion model that combines flow-through time resolved small angle X-ray scattering (SAXS) with an invitro Caco-2/HT-29 cell co-culture model that also contained a mucus layer. This set-up allows the dynamic insitu characterisation of colloidal structures and their transport across a viable intestinal cell layer during simulated digestion. FINDINGS An integrated online SAXS - invitro cell co-culture model was developed and applied to study the digestion of nature's own emulsion, milk. The impact of the invitro cell culture on the digestion-triggered formation and evolution of highly ordered nanostructures in milk is demonstrated. Reported is also the crucial role of the mucus layer on top of the cell layer, protecting the cells from degradation by digestive juice components such as lipase. The novel model can open unique possibilities for the dynamic investigation of colloidal structure formation during lipid digestion and their effect on the uptake of bioactive molecules by the cells.
Collapse
Affiliation(s)
- Claudia Hempt
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Mark Gontsarik
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Cordula Hirsch
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
32
|
Domenech J, Hernández A, Demir E, Marcos R, Cortés C. Interactions of graphene oxide and graphene nanoplatelets with the in vitro Caco-2/HT29 model of intestinal barrier. Sci Rep 2020; 10:2793. [PMID: 32066787 PMCID: PMC7026044 DOI: 10.1038/s41598-020-59755-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Carbon-based nanomaterials are being increasingly used, demanding strong information to support their safety in terms of human health. As ingestion is one of the most important exposure routes in humans, we have determined their potential risk by using an in vitro model simulating the human intestinal barrier and evaluated the effects of both graphene oxide (GO) and graphene nanoplatelets (GNPs). A coculture of differentiated Caco-2/HT29 cells presenting inherent intestinal epithelium characteristics (i.e. mucus secretion, brush border, tight junctions, etc.) were treated with GO or GNPs for 24 h. Different endpoints such as viability, membrane integrity, NPs localization, cytokines secretion, and genotoxic damage were evaluated to have a wide view of their potentially harmful effects. No cytotoxic effects were observed in the cells that constitute the barrier model. In the same way, no adverse effects were detected neither in the integrity of the barrier (TEER) nor in its permeability (LY). Nevertheless, a different bio-adhesion and biodistribution behavior was observed for GO and GNPs by confocal microscopy analysis, with a more relevant uptake of GNPs. No oxidative damage induction was detected, either by the DCFH-DA assay or the FPG enzyme in the comet assay. Conversely, both GO and GNPs were able to induce DNA breaks, as observed in the comet assay. Finally, low levels of anti-inflammatory cytokines were detected, suggesting a weak anti-inflammatory response. Our results show the moderate/severe risk posed by GO/GNPs exposures, given the observed genotoxic effects, suggesting that more extensive genotoxic evaluations must be done to properly assess the genotoxic hazard of these nanomaterials.
Collapse
Affiliation(s)
- Josefa Domenech
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Esref Demir
- Antalya Bilim University, College of Engineering, Department of Material Science and Nanotechnology Engineering, 07190-Dosemealti, Antalya, Turkey
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain. .,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - Constanza Cortés
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
33
|
Scheibe B, Wychowaniec JK, Scheibe M, Peplińska B, Jarek M, Nowaczyk G, Przysiecka Ł. Cytotoxicity Assessment of Ti–Al–C Based MAX Phases and Ti3C2Tx MXenes on Human Fibroblasts and Cervical Cancer Cells. ACS Biomater Sci Eng 2019; 5:6557-6569. [DOI: 10.1021/acsbiomaterials.9b01476] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Błażej Scheibe
- NanoBioMedical Centre, Adam Mickiewicz University, 61 614 Poznań, Poland
- Regional Centre for Advanced Technologies and Materials, Palacký University Olomouc, 771 46 Olomouc, Czech Republic
| | | | - Magdalena Scheibe
- Regional Centre for Advanced Technologies and Materials, Palacký University Olomouc, 771 46 Olomouc, Czech Republic
| | - Barbara Peplińska
- NanoBioMedical Centre, Adam Mickiewicz University, 61 614 Poznań, Poland
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University, 61 614 Poznań, Poland
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University, 61 614 Poznań, Poland
| | - Łucja Przysiecka
- NanoBioMedical Centre, Adam Mickiewicz University, 61 614 Poznań, Poland
| |
Collapse
|
34
|
Vochita G, Oprica L, Gherghel D, Mihai CT, Boukherroub R, Lobiuc A. Graphene oxide effects in early ontogenetic stages of Triticum aestivum L. seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:345-352. [PMID: 31202935 DOI: 10.1016/j.ecoenv.2019.06.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Nanomaterials are being used increasingly in various areas such as electronic devices manufacture, medicine, mechanical devices production, and even food industry. Therefore, the evaluation of their toxicity is mandatory. Graphene oxide (GO) has been shown to have both positive as well as negative impact on different crop plants, depending on species, dose, and duration of exposure. The current study evaluated the impact of GO sheets at different concentrations (500, 1000 and 2000 mg/L) on physiological, biochemical and genetic levels to determine the possible toxic action. Wheat caryopses were treated with GO for 48 h and 7 days. The germination rate and roots elongation decreased in a dose-response manner, except the sample treated with GO at a concentration of 1000 mg/L. Mitotic index has ascendant trend; its increase may be due to the accumulation of prophases GO induced significant accumulation of the cells with aberrations, their presence suggests a clastogenic/aneugenic effect of these carbon nanomaterials. Regarding enzymatic and non-enzymatic antioxidant system defence, the activity varied depending on the dose of GO. Thus, chlorophyll a pigments content decreased significantly at high dose (2000 mg/L), while the carotenoid pigments had lower content at 500 mg/L of GO, and no statistical difference encountered in case of chlorophyll b amount. The antioxidant enzyme activity (CAT, POD, and SOD) was higher at low dose of GO, indicating the presence of oxidative stress generated as a response to the GO treatment. Also, the free radical scavenging activity of the polyphenolic compounds was enhanced upon GO exposure. The GO accumulation has been identified by transmission electron microscopy only at plumules level, near the intercellular space.
Collapse
Affiliation(s)
- Gabriela Vochita
- NIRDBS, Branch Institute of Biological Research Iasi, Lascar Catargi Str. 47, 700107, Iasi, Romania.
| | - Lacramioara Oprica
- Alexandru Ioan Cuza" University, Faculty of Biology, Carol I Bd. 20A, Iasi, 700505, Romania.
| | - Daniela Gherghel
- NIRDBS, Branch Institute of Biological Research Iasi, Lascar Catargi Str. 47, 700107, Iasi, Romania
| | - Cosmin-Teodor Mihai
- NIRDBS, Branch Institute of Biological Research Iasi, Lascar Catargi Str. 47, 700107, Iasi, Romania; Gr.T.Popa" Medicine and Pharmacy University of Iasi, Advanced Center for Research and Development in Experimental Medicine (CEMEX), 9-13. M. Kogalniceanu, Iasi, Romania
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000, Lille, France
| | - Andrei Lobiuc
- CERNESIM Research Center, "Alexandru Ioan Cuza" University of Iasi, Carol I Boulevard 20A, 700506, Iasi, Romania
| |
Collapse
|
35
|
MoS 2 flakes stabilized with DNA/RNA nucleotides: In vitro cell response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:11-22. [PMID: 30948045 DOI: 10.1016/j.msec.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/27/2022]
Abstract
Two-dimensional transition metal dichalcogenides (TMDCs), such as MoS2 and WS2, have recently emerged as nanomaterials with potential use in biomedicine. An attractive means to favor their interaction with biological media is the use of proper biomolecules as exfoliating/dispersing agents. Here, MoS2 flakes were stabilized with different small functional biomolecules such as adenosine monophosphate (AMP), guanosine monophosphate (GMP) and flavin mononucleotide (FMN) through the strong nucleotide-MoS2 interaction of Lewis acid-base type, rather than just on the weak dispersive and hydrophobic forces commonly associated with the use of many surfactants. The impact of the nucleotide-stabilized MoS2 flakes on the viability and cell proliferation, on the production of intracellular reactive oxygen species (ROS), and on the preosteoblast differentiation process (early stage) has been also evaluated, as well as the incorporation and intracellular localization of the nanomaterials by MC3T3-E1 and Saos-2 cells. The nucleotide-stabilized MoS2 flakes were found to exhibit excellent biocompatibility. Furthermore, their incorporation did not affect the integrity of the cell plasma membrane, which makes them ideal candidates for delivering drug/gene directly into cells. The in vitro cell response of tumor cells to these nanomaterials differs from that of undifferentiated cells, which provides the basis for their potential use in cancer therapy.
Collapse
|
36
|
Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, Hischier R, Pelin M, Candotto Carniel F, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS NANO 2018; 12:10582-10620. [PMID: 30387986 DOI: 10.1021/acsnano.8b04758] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine , Karolinska Institutet , 17777 Stockholm , Sweden
| | - Cyrill Bussy
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Sonia Merino
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Ester Vázquez
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | | | | | | | - Laury Gauthier
- CNRS, Université Paul Sabatier , 31062 Toulouse , France
| | - Antti J Koivisto
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Cristina Martín
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| | - Lucia G Delogu
- Department of Chemistry and Pharmacy University of Sassari , Sassari 7100 , Italy
- Istituto di Ricerca Pediatrica , Fondazione Città della Speranza , 35129 Padova , Italy
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | | | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | | | - Mauro Tretiach
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Carbon Nanobiotechnology Laboratory , CIC BiomaGUNE , 20009 San Sebastian , Spain
- Basque Foundation for Science, Ikerbasque , 48013 Bilbao , Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| |
Collapse
|
37
|
Chen L, Wang H, Li X, Nie C, Liang T, Xie F, Liu K, Peng X, Xie J. Highly hydrophilic carbon nanoparticles: uptake mechanism by mammalian and plant cells. RSC Adv 2018; 8:35246-35256. [PMID: 35547047 PMCID: PMC9087372 DOI: 10.1039/c8ra06665e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 11/25/2022] Open
Abstract
As one of the carbon based materials, the potential application of carbon nanoparticles (CNPs) has emerged in the promotion of plant growth. However, knowledge on the biological mechanism of how the CNPs interact with plant cells is limited. In this study, nanostructures of CNPs were examined. The particles exhibited particulate morphology and their size distribution was in the range of 18 to 70 nm, with an average size of 30 nm. Hydrophilic groups of COOH and OH were present on the surface of CNPs, and CNPs showed the common feature of graphitic sp2 hybridization carbons. The CNPs were determined to be biocompatible with these two cell lines, mammalian cells (A549 cells) and plant cells (BY-2 cells). The COOH groups on the surface of CNPs were functionalized via covalent binding with a fluorescent dye for improvement of the fluorescence. The fluorescent carbon nanoparticles (FCNPs) were found to cross the cell membrane and enter cells (A549 cells and BY-2 cells) in an energy-dependent manner. Subsequently, the mechanism of FCNPs interaction with the cell membrane was evaluated in the presence of inhibitors that specifically affect different endocytosis membrane proteins. The FCNPs mainly entered A549 cells through caveolin-mediated endocytosis and macropinocytosis, and clathrin-dependent endocytosis was also involved in the transportation of the FCNPs. Clathrin-independent endocytosis mediated in the internalization of FCNPs in BY-2 cells. The way FCNPs entering cells will provide a fundamental understanding of the influence of CNPs on cell membrane.
Collapse
Affiliation(s)
- Lijuan Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116012 China
| | - Hongbo Wang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Cong Nie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Taibo Liang
- Key Laboratory of Ecological Environment and Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116012 China
| | - Jianping Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| |
Collapse
|
38
|
Magrì D, Sánchez-Moreno P, Caputo G, Gatto F, Veronesi M, Bardi G, Catelani T, Guarnieri D, Athanassiou A, Pompa PP, Fragouli D. Laser Ablation as a Versatile Tool To Mimic Polyethylene Terephthalate Nanoplastic Pollutants: Characterization and Toxicology Assessment. ACS NANO 2018; 12:7690-7700. [PMID: 29944342 DOI: 10.1021/acsnano.8b01331] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The presence of micro- and nanoplastics in the marine environment is raising strong concerns since they can possibly have a negative impact on human health. In particular, the lack of appropriate methodologies to collect the nanoplastics from water systems imposes the use of engineered model nanoparticles to explore their interactions with biological systems, with results not easily correlated with the real case conditions. In this work, we propose a reliable top-down approach based on laser ablation of polymers to form polyethylene terephthalate (PET) nanoplastics, which mimic real environmental nanopollutants, unlike synthetic samples obtained by colloidal chemistry. PET nanoparticles were carefully characterized in terms of chemical/physical properties and stability in different media. The nanoplastics have a ca. 100 nm average dimension, with significant size and shape heterogeneity, and they present weak acid groups on their surface, similarly to photodegraded PET plastics. Despite no toxic effects emerging by in vitro studies on human Caco-2 intestinal epithelial cells, the formed nanoplastics were largely internalized in endolysosomes, showing intracellular biopersistence and long-term stability in a simulated lysosomal environment. Interestingly, when tested on a model of intestinal epithelium, nano-PET showed high propensity to cross the gut barrier, with unpredictable long-term effects on health and potential transport of dispersed chemicals mediated by the nanopollutants.
Collapse
Affiliation(s)
- Davide Magrì
- Smart Materials , Istituto Italiano di Tecnologia , Via Morego, 30 , 16163 Genova , Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering , University of Genova , Via All'Opera Pia, 13 , 16145 Genova , Italy
| | - Paola Sánchez-Moreno
- Nanobiointeractions & Nanodiagnostics , Istituto Italiano di Tecnologia , Via Morego, 30 , 16163 Genova , Italy
| | - Gianvito Caputo
- Smart Materials , Istituto Italiano di Tecnologia , Via Morego, 30 , 16163 Genova , Italy
| | - Francesca Gatto
- Nanobiointeractions & Nanodiagnostics , Istituto Italiano di Tecnologia , Via Morego, 30 , 16163 Genova , Italy
- Department of Engineering for Innovation , University of Salento , Via per Monteroni , 73100 Lecce , Italy
| | - Marina Veronesi
- D3-PharmaChemistry , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics , Istituto Italiano di Tecnologia , Via Morego, 30 , 16163 Genova , Italy
| | - Tiziano Catelani
- Electron Microscopy Facility , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics , Istituto Italiano di Tecnologia , Via Morego, 30 , 16163 Genova , Italy
| | - Athanassia Athanassiou
- Smart Materials , Istituto Italiano di Tecnologia , Via Morego, 30 , 16163 Genova , Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics , Istituto Italiano di Tecnologia , Via Morego, 30 , 16163 Genova , Italy
| | - Despina Fragouli
- Smart Materials , Istituto Italiano di Tecnologia , Via Morego, 30 , 16163 Genova , Italy
| |
Collapse
|
39
|
Guarnieri D, Sánchez-Moreno P, Del Rio Castillo AE, Bonaccorso F, Gatto F, Bardi G, Martín C, Vázquez E, Catelani T, Sabella S, Pompa PP. Biotransformation and Biological Interaction of Graphene and Graphene Oxide during Simulated Oral Ingestion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800227. [PMID: 29756263 DOI: 10.1002/smll.201800227] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Indexed: 05/09/2023]
Abstract
The biotransformation and biological impact of few layer graphene (FLG) and graphene oxide (GO) are studied, following ingestion as exposure route. An in vitro digestion assay based on a standardized operating procedure (SOP) is exploited. The assay simulates the human ingestion of nanomaterials during their dynamic passage through the different environments of the gastrointestinal tract (salivary, gastric, intestinal). Physical-chemical changes of FLG and GO during digestion are assessed by Raman spectroscopy. Moreover, the effect of chronic exposure to digested nanomaterials on integrity and functionality of an in vitro model of intestinal barrier is also determined according to a second SOP. These results show a modulation of the aggregation state of FLG and GO nanoflakes after experiencing the complex environments of the different digestive compartments. In particular, chemical doping effects are observed due to FLG and GO interaction with digestive juice components. No structural changes/degradation of the nanomaterials are detected, suggesting that they are biopersistent when administered by oral route. Chronic exposure to digested graphene does not affect intestinal barrier integrity and is not associated with inflammation and cytotoxicity, though possible long-term adverse effects cannot be ruled out.
Collapse
Affiliation(s)
- Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | - Paola Sánchez-Moreno
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | | | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego, 30, 16136, Genova, Italy
| | - Francesca Gatto
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
- Department of Engineering for Innovation, University of Salento, 73100, Lecce, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | - Cristina Martín
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Tiziano Catelani
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Stefania Sabella
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 30, 16136, Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| |
Collapse
|
40
|
Esquivel-Gaon M, Nguyen NHA, Sgroi MF, Pullini D, Gili F, Mangherini D, Pruna AI, Rosicka P, Sevcu A, Castagnola V. In vitro and environmental toxicity of reduced graphene oxide as an additive in automotive lubricants. NANOSCALE 2018; 10:6539-6548. [PMID: 29577120 DOI: 10.1039/c7nr08597d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the ground-breaking potential of nanomaterials, their safe and sustainable incorporation into an array of industrial markets prompts a deep and clear understanding of their potential toxicity for both humans and the environment. Among the many materials with great potential, graphene has shown promise in a variety of applications; however, the impact of graphene based products on living systems remains poorly understood. In this paper, we illustrate that via exploiting the tribological properties of graphene nanosheets, we can successfully improve both the frictional behaviour and the anti-wear capacity of lubricant oil for mechanical transmission. By virtue of reducing friction and enhancing lubricant lifetimes, we can forecast a reduction in friction based energy loss, in addition to a decrease in the carbon footprint of vehicles. The aforementioned positive environmental impact is further strengthened considering the lack of acute toxicity found in our extensive in vitro investigation, in which both eukaryotic and prokaryotic cells were tested. Collectively, our body of work suggests that by the use of safe nanoadditives we could contribute to reducing the environmental impact of transportation and therein take a positive step towards a more sustainable automotive sector. The workflow proposed here for the evaluation of human and environmental toxicity will allow for the study of nanosized bare graphene material and can be broadly applied to the translation of graphene-based nanomaterials into the market.
Collapse
Affiliation(s)
- Margarita Esquivel-Gaon
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Franz J, Grünebaum J, Schäfer M, Mulac D, Rehfeldt F, Langer K, Kramer A, Riethmüller C. Rhombic organization of microvilli domains found in a cell model of the human intestine. PLoS One 2018; 13:e0189970. [PMID: 29320535 PMCID: PMC5761853 DOI: 10.1371/journal.pone.0189970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023] Open
Abstract
Symmetry is rarely found on cellular surfaces. An exception is the brush border of microvilli, which are essential for the proper function of transport epithelia. In a healthy intestine, they appear densely packed as a 2D-hexagonal lattice. For in vitro testing of intestinal transport the cell line Caco-2 has been established. As reported by electron microscopy, their microvilli arrange primarily in clusters developing secondly into a 2D-hexagonal lattice. Here, atomic force microscopy (AFM) was employed under aqueous buffer conditions on Caco-2 cells, which were cultivated on permeable filter membranes for optimum differentiation. For analysis, the exact position of each microvillus was detected by computer vision; subsequent Fourier transformation yielded the type of 2D-lattice. It was confirmed, that Caco-2 cells can build a hexagonal lattice of microvilli and form clusters. Moreover, a second type of arrangement was discovered, namely a rhombic lattice, which appeared at sub-maximal densities of microvilli with (29 ± 4) microvilli / μm2. Altogether, the findings indicate the existence of a yet undescribed pattern in cellular organization.
Collapse
Affiliation(s)
- Jonas Franz
- Faculty of Physics, Georg-August-Universität, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Theoretical Neurophysics, Göttingen, Germany
| | - Jonas Grünebaum
- Institute for Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, Germany
| | - Marcus Schäfer
- nanoAnalytics GmbH, Centre for Nanotechnology, Münster, Germany
| | - Dennis Mulac
- Institute for Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, Germany
| | - Florian Rehfeldt
- Third Institute of Physics—Biophysics, Georg-August-Universität, Göttingen, Germany
| | - Klaus Langer
- Institute for Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, Germany
| | - Armin Kramer
- Serend-ip GmbH, Centre for Nanotechnology, Münster, Germany
| | | |
Collapse
|