1
|
Zong X, Yang S, Tang Z, Li X, Long D, Wang D. 1,25-(OH) 2D 3 promotes hair growth by inhibiting NLRP3/IL-1β and HIF-1α/IL-1β signaling pathways. J Nutr Biochem 2024; 132:109695. [PMID: 38936782 DOI: 10.1016/j.jnutbio.2024.109695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Vitamin D is a crucial vitamin that participates in various biological processes through the Vitamin D Receptor (VDR). While there are studies suggesting that VDR might regulate hair growth through ligand-independent mechanisms, the efficacy of Vitamin D in treating hair loss disorders has also been reported. Here, through in vivo experiments in mice, in vitro organ culture of hair follicles, and cellular-level investigations, we demonstrate that 1,25-(OH)2D3 promotes mouse hair regeneration, prolongs the hair follicle anagen, and enhances the proliferation and migration capabilities of dermal papilla cells and outer root sheath keratinocytes in a VDR-dependent manner. Transcriptome analysis of VDR-knockout mouse skin reveals the involvement of HIF-1α, NLRP3, and IL-1β in these processes. Finally, we confirm that 1,25-(OH)2D3 can counteract the inhibitory effects of DHT on hair growth. These findings suggest that 1,25-(OH)2D3 has a positive impact on hair growth and may serve as a potential therapeutic agent for androgenetic alopecia (AGA).
Collapse
Affiliation(s)
- Xiule Zong
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shengbo Yang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziting Tang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuemei Li
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Daijing Long
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
García-Pola M, Rodríguez-Fonseca L. Role of Vitamin D in Oral Lichen Planus: A Case Control Study. Nutrients 2024; 16:2761. [PMID: 39203896 PMCID: PMC11357441 DOI: 10.3390/nu16162761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND It has been reported that vitamin D deficiency may be associated with the development of oral lichen planus (OLP). Given the high prevalence of vitamin D deficiency in many countries, we sought to determine whether it constitutes a comorbidity of OLP. METHODS One hundred and twenty patients clinically and histologically diagnosed with OLP were evaluated for their serum vitamin D levels. The results were compared to results from a control series of the same number of subjects matched for age and sex. RESULTS Vitamin D deficiency was diagnosed in 45% (n = 54) of OLP patients and in 26.7% (n = 32) of the control group. Vitamin D supplements were being taken by 32 (26.7%) OLP patients and 15 (12.5%) subjects in the control group. A multivariate logistic regression model showed that OLP was associated with vitamin D deficiency [OR: 2.24 (1.28-3.98, p = 0.005)] and vitamin D supplementation [OR: 2.51 (1.25-5.22, p = 0.011)], even after controlling for confounding variables such as sex, age ≤60>, tobacco, and alcohol. CONCLUSION The association between OLP patients and vitamin D deficiency or vitamin D supplementation suggests that further research might explore the benefits of vitamin D supplements in managing OLP patients.
Collapse
Affiliation(s)
- María García-Pola
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Sciences of the Health, Oviedo University, 33006 Oviedo, Spain;
| | | |
Collapse
|
3
|
Shalaby R, Nawawy ME, Selim K, Bahaa S, Refai SE, Maksoud AE, Sayed ME, Essawy A, Elshaer A, ElShaer M, Kamel MM, Gamil Y. The role of vitamin D in amelioration of oral lichen planus and its effect on salivary and tissue IFN-γ level: a randomized clinical trial. BMC Oral Health 2024; 24:813. [PMID: 39020381 PMCID: PMC11256592 DOI: 10.1186/s12903-024-04239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Oral lichen planus (OLP) is a common, prevalent, immune-mediated, inflammatory disease affecting both the skin and oral mucosa and is considered one of the potentially malignant diseases. Since OLP is regarded as an immunologically mediated disease, some studies suggest the use of vitamin D (VD) for its management as it exhibits immune-modulatory, anti-inflammatory, and antimicrobial properties, as well as anti-proliferative, pro-differentiative, and anti-angiogenic effects. VD has demonstrated a suppressive effect on TH1 pro-inflammatory cytokines, including IFN-γ while augmenting the secretion of anti-inflammatory cytokines. At the same time, VD deficiency is a prevalent public issue. Therefore, the present study aimed to investigate the role of VD as an adjunct to steroids in the management of VD-deficient OLP patients as well as its inhibitory effect on IFN-γ through measurement of salivary and tissue IFN-γ levels in OLP patients. METHODS A total of 40 patients with ulcerative or erythematous OLP, diagnosed according to the World Health Organization's (WHO) modified criteria for OLP, were randomly allocated into one of the two study groups to receive either systemic steroids in addition to VD supplements (Group A) or systemic steroids only (Group B). Blood samples were collected for the measurement of serum VD level (SVDL) using the enzyme-linked immunosorbent assay (ELISA) to involve only patients with VD deficiency or insufficiency (≤ 30 ng/ml). Clinical evaluation of the lesion involved objective signs and subjective symptoms. Also, changes in salivary and tissue INF-γ levels (in pg/mL and pg/mg, respectively) were determined using the ELISA technique. All parameters were measured at baseline and after 4 weeks of treatment. The clinical pharmacy team devised a checklist to record all team interventions. The interventions were categorized into six domains, including drug interactions and/or adverse reactions, medication dose issues, drug selection issues, support with medication history, patient-related concerns, and suggestions for dental medication. RESULTS After one month of treatment, a significantly greater number of patients in group A showed complete pain relief and resolution of clinical lesions, as well as a greater number of patients showing a reduction in the clinical severity of lesions than in group B (P = 0.005). Also, there was a statistically significant reduction in average VAS pain scores and clinical scores in group A compared to group B after 1 month of treatment (P = 0.001 and 0.002, respectively). Furthermore, there was a statistically significant greater reduction in salivary and tissue IFN-γ levels in group A than in group B (P ≤ 0.001 and 0.029, respectively) after 1 month of treatment. CONCLUSION Current evidence suggests a significant preventive and therapeutic role for VD as an adjunct to standard therapies indicated for OLP lesions. These protective and therapeutic functions are achieved through the suppressive effect of VD on pro-inflammatory cytokines, particularly IFN-γ. Also, salivary IFN-γ appears to be a valuable prognostic marker for monitoring the progression of OLP. In addition, the inter-professional collaboration between dentists and clinical pharmacists helped to deliver complete, patient-centered primary care and ensured the quality of the medications included in patient kits, thus improving patient treatment and management. Nevertheless, further studies with larger sample sizes, longer follow-ups, and standardized designs may still be needed.
Collapse
Affiliation(s)
- Rania Shalaby
- Oral Medicine, Diagnosis, and Periodontology, Faculty of Dentistry, Fayoum University, Fayoum, Egypt.
| | - Marwa El Nawawy
- Oral Medicine, Diagnosis, and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Khaled Selim
- Oral Medicine, Diagnosis, and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Samah Bahaa
- Oral Medicine, Diagnosis, and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Sahar El Refai
- Oral Pathology, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Mahitab El Sayed
- Clinical Pharmacy Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Aya Essawy
- Clinical Pharmacy Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Asmaa Elshaer
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed ElShaer
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Moataz Maher Kamel
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Yasmine Gamil
- Department of Oral Medicine, Diagnosis, and Periodontology, Faculty of Oral and Dental Surgery, Modern University for Technology and Information, MTI University, Cairo, Egypt
| |
Collapse
|
4
|
Lee YG, Lee D, Cha H, Ahn J, Koo HS, Hwang SY, Lee G, Kang YJ. The therapeutic effects of vitamin D3 administration on the embryo implantation. Biomed Pharmacother 2024; 176:116853. [PMID: 38850663 DOI: 10.1016/j.biopha.2024.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
Various adjuvants have been tested clinically for patients with problems with embryo implantation during in vitro fertilization (IVF)-embryo transfer (ET). Vitamin D3, an essential modulator of various physiological processes, has received attention as an important adjuvant for successful pregnancy, as many studies have shown a strong association between vitamin D deficiency and implantation failure and fetal growth restriction. However, vitamin D has been widely utilized in different protocols, resulting in non-reproducible and debatable outcomes. In the present study, we demonstrated that cyclic intrauterine administration of vitamin D3 increased endometrial receptivity and angiogenesis, which could be attributed to increased recruitment of uterus-resident natural killer cells. In particular, cyclic treatment of vitamin D3 promoted stable attachment of the embryo onto endometrial cells in vitro, suggesting its merit during the early stage of embryo implantation to support the initial maternal-fetal interactions. Our findings suggest that women with repeated implantation failure may benefit from the use of vitamin D3 as a risk-free adjuvant prior to IVF-ET procedures to improve the uterine environment, and make it favorable for embryo implantation.
Collapse
Affiliation(s)
- Yu-Gyeong Lee
- Department of Biomedical Science, School of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea
| | - Danbi Lee
- Department of Biomedical Science, School of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea
| | - Hwijae Cha
- Department of Biomedical Science, School of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea; Department of Medicine, Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, South Korea
| | - Jungho Ahn
- Department of Biochemistry, Research Institute for Basic Medical Science, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea; Department of Microbiology, Research Institute for Basic Medical Science, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea
| | - Hwa Seon Koo
- CHA Fertility Center Bundang, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, South Korea; Best of ME Fertility Clinic, 390 Gangnam-daero, Gangnam-gu, Seoul-si 06232, South Korea
| | - Sun-Young Hwang
- Department of Biomedical Science, School of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea
| | - Gaeun Lee
- Department of Biomedical Science, School of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea
| | - Youn-Jung Kang
- Department of Biochemistry, Research Institute for Basic Medical Science, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea.
| |
Collapse
|
5
|
Wang P, Nie J, Li J, Ye C, Chen J, Zhang Z, Li B. VDRA downregulate β-catenin/Smad3 and DNA damage and repair associated with improved prognosis in ccRCC patients. Int J Biol Macromol 2024; 263:130405. [PMID: 38403213 DOI: 10.1016/j.ijbiomac.2024.130405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The clear cell renal cell carcinoma (ccRCC) spotlighted the poorest survival, while chromophobe renal cell carcinoma (chRCC) was associated with the best survival. Earlier studies corroborated vitamin D receptor (VDR) was a promising molecular for improving the prognosis of RCC. In contrast to VDRA, the one of VDR isoforms, VDRB1 (VDR isoform B1) has an N-terminal extension of 50 amino acids and is less ligand-dependent. However, the functional differences between VDRA and VDRB1, and their roles in the prognosis of ccRCC and chRCC, have not been investigated. In the present study, we uncovered that the transcripts related to vitamin D pathway and cellular calcium signaling were effectively decreased in the context of ccRCC, yet failed to exert a comparable effect within chRCC. Specially, minimally levels of VDRA wherein kidneys of patients suffering from ccRCC predict shorter survival time. In addition, the protein expressions for β-catenin/Smad3 pathway and DNA damage and repair pathways were obviously impeded in VDRA-overexpressed ccRCC cells, yet this inhibitory effect was conspicuously absent in enable VDRB1 cells. Our results provide a new idea to improve the prognosis of ccRCC via VDRA upregulation.
Collapse
Affiliation(s)
- Ping Wang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jin Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jiafu Li
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Caiyong Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jianwu Chen
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Fujian Province, China.
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China.
| | - Bingyan Li
- Deparment of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Li Y, Zhao P, Jiang B, Liu K, Zhang L, Wang H, Tian Y, Li K, Liu G. Modulation of the vitamin D/vitamin D receptor system in osteoporosis pathogenesis: insights and therapeutic approaches. J Orthop Surg Res 2023; 18:860. [PMID: 37957749 PMCID: PMC10644527 DOI: 10.1186/s13018-023-04320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Osteoporosis is a prevalent bone disorder characterized by low bone mineral density (BMD) and deteriorated bone microarchitecture, leading to an increased risk of fractures. Vitamin D (VD), an essential nutrient for skeletal health, plays a vital role in maintaining bone homeostasis. The biological effects of VD are primarily mediated through the vitamin D receptor (VDR), a nuclear receptor that regulates the transcription of target genes involved in calcium and phosphate metabolism, bone mineralization, and bone remodeling. In this review article, we conduct a thorough literature search of the PubMed and EMBASE databases, spanning from January 2000 to September 2023. Utilizing the keywords "vitamin D," "vitamin D receptor," "osteoporosis," and "therapy," we aim to provide an exhaustive overview of the role of the VD/VDR system in osteoporosis pathogenesis, highlighting the most recent findings in this field. We explore the molecular mechanisms underlying VDR's effects on bone cells, including osteoblasts and osteoclasts, and discuss the impact of VDR polymorphisms on BMD and fracture risk. Additionally, we examine the interplay between VDR and other factors, such as hormonal regulation, genetic variants, and epigenetic modifications, that contribute to osteoporosis susceptibility. The therapeutic implications of targeting the VDR pathway for osteoporosis management are also discussed. By bringing together these diverse aspects, this review enhances our understanding of the VD/VDR system's critical role in the pathogenesis of osteoporosis and highlights its significance as a potential therapeutic target.
Collapse
Affiliation(s)
- Yanqi Li
- Central Laboratory, Huabei Petroleum Administration Bureau General Hospital, Huidaozhan Avenue, Renqiu City, 062552, Hebei Province, China
| | - Pengfei Zhao
- Central Laboratory, Huabei Petroleum Administration Bureau General Hospital, Huidaozhan Avenue, Renqiu City, 062552, Hebei Province, China
| | - Biyun Jiang
- Central Laboratory, Huabei Petroleum Administration Bureau General Hospital, Huidaozhan Avenue, Renqiu City, 062552, Hebei Province, China
| | - Kangyong Liu
- Biotecnovo (Beijing) Co. Ltd., Building 12, Yard 20, Guangde Street, Beijing Economic and Technological Development Zone, Beijing, 100176, China
| | - Lei Zhang
- Biotecnovo (Beijing) Co. Ltd., Building 12, Yard 20, Guangde Street, Beijing Economic and Technological Development Zone, Beijing, 100176, China
| | - Haotian Wang
- Clinical School of Medicine, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yansheng Tian
- Central Laboratory, Huabei Petroleum Administration Bureau General Hospital, Huidaozhan Avenue, Renqiu City, 062552, Hebei Province, China.
| | - Kun Li
- No.1 Department of Orthopedics, Langfang People's Hospital, No 37, Xinhua Rd, Langfang, 065000, Heibei, China.
| | - Guoqi Liu
- Biotecnovo (Beijing) Co. Ltd., Building 12, Yard 20, Guangde Street, Beijing Economic and Technological Development Zone, Beijing, 100176, China.
| |
Collapse
|
7
|
Su Z, Lu J, Ling Z, Li W, Yang X, Cheng B, Tao X. Upregulation of IL-37 in epithelial cells: A potential new mechanism of T cell inhibition induced by tacrolimus. Biochem Pharmacol 2023; 216:115796. [PMID: 37690572 DOI: 10.1016/j.bcp.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Oral lichen planus (OLP) is a chronic T cell-mediated mucocutaneous disease characterized by T cell infiltration at the connective tissue-epithelium interface. Traditionally, topical corticosteroids are used as the first-line drugs to treat OLP. However, long-term use of corticosteroids may lead to drug tolerance, secondary candidiasis, and autoimmune adrenal insufficiency. Although topical tacrolimus has often been recommended for short-term use in corticosteroid-refractory OLP, the precise role of tacrolimus in epithelial cells remains elusive. This study showed that tacrolimus could directly upregulate the expression of IL-37 in human gingival epithelial cells by promoting the TGF-βRI/Smad3 pathway independently of calcineurin inhibition and MAPKs. In contrast, dexamethasone, one of the corticosteroids, did not have the same effect. Moreover, IL-37 could inhibit the proliferation of activated T cells and the secretion of effector cytokines and alleviate epithelial cell apoptosis and death caused by activated T cells ina co-culturesystem. Furthermore, compared with healthy controls, IL-37 and p-Smad3 levels significantly increased in the oral mucosa affected by OLP, especially in the epithelium. IL-37 might have mediated a negative feedback mechanism to curb excessive inflammation in OLP. However, the expression of IL-37 was not associated with the infiltration of CD8+ T cells and Tregs in OLP, implying that IL-37 might mostly affect T cell activation rather than T cell differentiation and migration. Overall, this study discovered a potential novel mechanism by which tacrolimus might indirectly inhibit T cell-mediated immune damage by upregulating IL-37 in human gingival epithelial cells.
Collapse
Affiliation(s)
- Zhangci Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China
| | - Jingyi Lu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China
| | - Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China
| | - Wei Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China
| | - Xi Yang
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China.
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China.
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
8
|
Agamia NF, Sorror OA, Sayed NM, Ghazala RA, Echy SM, Moussa DH, Melnik BC. Overexpression of hypoxia-inducible factor-1α in hidradenitis suppurativa: the link between deviated immunity and metabolism. Arch Dermatol Res 2023; 315:2107-2118. [PMID: 36961533 PMCID: PMC10366312 DOI: 10.1007/s00403-023-02594-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/13/2023] [Accepted: 02/23/2023] [Indexed: 03/25/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is the master transcription factor of glycolysis, Th17 cell differentiation and suppression of regulatory T cells. In the skin and serum of patients with psoriasis vulgaris, increased expression of HIF-1α has been reported, whereas HIF-1α expression in the skin and serum of patients with hidradenitis suppurativa (HS) has not yet been studied. The objective of the study is to demonstrate is there a role for HIF-1α in the pathogenesis of hidradenitis suppurativa, and its relation to HS severity. Twenty patients suffering from hidradenitis suppurativa were included in the study. Punch biopsies were taken from lesional skin for the determination of HIF-1α expression by immunohistochemical staining, and HIF-1α gene expression by quantitative reverse transcription real time PCR. Quantification of HIF-1α protein concentration was done by enzyme-linked immunosorbent assay. Twenty socio-demographically cross-matched healthy volunteers served as controls. We found increased serum levels of HIF-1α. Literature-derived evidence indicates that the major clinical triggering factors of HS, obesity, and smoking are associated with hypoxia and enhanced HIF-1α expression. Pro-inflammatory cytokines such as tumor necrosis factor-[Formula: see text] via upregulation of nuclear factor [Formula: see text]B enhance HIF-1α expression. HIF-1α plays an important role for keratinocyte proliferation, especially for keratinocytes of the anagen hair follicle, which requires abundant glycolysis providing sufficient precursors molecules for biosynthetic pathways. Metformin via inhibition of mTORC1 as well as adalimumab attenuate HIF-1α expression, the key mediator between Th17-driven deviated immunity and keratinocyte hyperproliferation. In accordance with psoriasis, our study identifies HS as an HIF-1α-driven inflammatory skin disease and offers a new rationale for the prevention and treatment of HS by targeting HIF-1[Formula: see text] overexpression.
Collapse
Affiliation(s)
- Naglaa Fathi Agamia
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Osama Ahmed Sorror
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Naglaa Mohamed Sayed
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Rasha Abdelmawla Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Sammar Mohamed Echy
- Department of Clinical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Doaa Helmy Moussa
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Bodo Clemens Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
9
|
Chen X, Arias Z, Omori K, Yamamoto T, Shinoda-Ito Y, Takashiba S. Autophagy as a potential mechanism underlying the biological effect of 1,25-Dihydroxyvitamin D3 on periodontitis: a narrative review. BMC Oral Health 2023; 23:90. [PMID: 36782172 PMCID: PMC9923934 DOI: 10.1186/s12903-023-02802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The major active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), is known for its wide bioactivity in periodontal tissues. Although the exact mechanisms underlying its protective action against periodontitis remain unclear, recent studies have shown that 1,25D3 regulates autophagy. Autophagy is vital for intracellular pathogen invasion control, inflammation regulation, and bone metabolic balance in periodontal tissue homeostasis, and its regulation could be an interesting pathway for future periodontal studies. Since vitamin D deficiency is a worldwide health problem, its role as a potential regulator of autophagy provides new insights into periodontal diseases. Based on this premise, this narrative literature review aimed to investigate the possible connection between 1,25D3 and autophagy in periodontitis. A comprehensive literature search was conducted on PubMed using the following keywords (e.g., vitamin D, autophagy, periodontitis, pathogens, epithelial cells, immunity, inflammation, and bone loss). In this review, the latest studies on the protective action of 1,25D3 against periodontitis and the regulation of autophagy by 1,25D3 are summarized, and the potential role of 1,25D3-activated autophagy in the pathogenesis of periodontitis is analyzed. 1,25D3 can exert a protective effect against periodontitis through different signaling pathways in the pathogenesis of periodontitis, and at least part of this regulatory effect is achieved through the activation of the autophagic response. This review will help clarify the relationship between 1,25D3 and autophagy in the homeostasis of periodontal tissues and provide perspectives for researchers to optimize prevention and treatment strategies in the future.
Collapse
Affiliation(s)
- Xiaoting Chen
- grid.261356.50000 0001 1302 4472Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, Japan
| | - Zulema Arias
- grid.261356.50000 0001 1302 4472Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, Japan
| | - Kazuhiro Omori
- grid.412342.20000 0004 0631 9477Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Tadashi Yamamoto
- grid.261356.50000 0001 1302 4472Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, Japan
| | - Yuki Shinoda-Ito
- grid.261356.50000 0001 1302 4472Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, Japan.
| |
Collapse
|
10
|
Shin U, You H, Lee GY, Son Y, Han SN. The effects of 1,25(OH) 2D 3 treatment on metabolic reprogramming and maturation in bone marrow-derived dendritic cells from control and diabetic mice. J Steroid Biochem Mol Biol 2023; 225:106197. [PMID: 36183994 DOI: 10.1016/j.jsbmb.2022.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023]
Abstract
Activated dendritic cells (DCs) undergo significant metabolic reprogramming, which is characterized by an increase in aerobic glycolysis and a concurrent progressive loss of oxidative phosphorylation. The modulation of metabolic reprogramming is believed to be closely related to the function of DCs. Vitamin D has been reported to inhibit the maturation of DCs. DC dysfunction has been reported in diabetic patients, and hyperglycemia is associated with impaired glycolytic metabolism in immune cells. Therefore, vitamin D and diabetes may affect intracellular metabolism, thereby regulating the activity of DCs. We investigated the effect of in vitro treatment of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on metabolic reprogramming and maturation of bone marrow-derived dendritic cells (BMDCs) from diabetic mouse. Six-week-old male C57BLKS/J-m+/m+ mice (CON) and C57BLKS/J-db/db mice (db/db) were fed with a 10% kcal fat diet for seven weeks. BMDCs were generated by culturing bone marrow cells from the mice with rmGM-CSF (20 ng/mL) in the absence or presence of 10 nM 1,25(OH)2D3. The maturation of BMDCs was induced via lipopolysaccharide (LPS, 50 ng/mL) stimulation for 24 h. LPS stimulation induced iNOS protein expression and decreased the mitochondrial respiration, while increased lactate production and the expression of glycolytic pathway-related genes (Glut1 and Pfkfb3) in BMDCs from both CON and db/db groups. In LPS-stimulated mature BMDCs, 1,25(OH)2D3 treatment decreased the expression of surface markers related to immunostimulatory functions (MHC class II, CD80, CD86, and CD40) and production of IL-12p70 in both CON and db/db groups. While the mRNA level of the gene related to glucose uptake (Glut1) was increased in both groups, lactate production was decreased by 1,25(OH)2D3 treatment. mTORC1 activity was suppressed following 1,25(OH)2D3 treatment. Collectively, our findings confirmed that metabolic reprogramming occurred in BMDCs following LPS stimulation. In vitro 1,25(OH)2D3 treatment induced tolerogenic phenotypes by reducing the expression of surface markers, as well as cytokine production. However, no significant difference was observed regarding the effects of 1,25(OH)2D3 treatment on metabolic conversion and maturation of BMDCs between the control and diabetic mice. Additionally, the decreased aerobic glycolysis induced by the 1,25(OH)2D3 treatment appeared to be associated with the diminished maturation of BMDCs, and mTORC1 appears to play a key role in the 1,25(OH)2D3-mediated regulation of glycolysis.
Collapse
Affiliation(s)
- Ungue Shin
- Department of Food and Nutrition, Seoul National University, Seoul, the Republic of Korea.
| | - Hyeyoung You
- Department of Food and Nutrition, Seoul National University, Seoul, the Republic of Korea.
| | - Ga Young Lee
- Department of Food and Nutrition, Seoul National University, Seoul, the Republic of Korea.
| | - YeKyoung Son
- Department of Food and Nutrition, Seoul National University, Seoul, the Republic of Korea.
| | - Sung Nim Han
- Department of Food and Nutrition, Seoul National University, Seoul, the Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul, the Republic of Korea.
| |
Collapse
|
11
|
Zhang H, Xu B, Liu J, Guo B, Sun H, Yang Q. SDHB reduction promotes oral lichen planus by impairing mitochondrial respiratory function. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1367. [PMID: 36660661 PMCID: PMC9843364 DOI: 10.21037/atm-22-5999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Background Oral lichen planus (OLP) is a type of chronic inflammatory disorder, which represents a potential risk of malignant transformation. Understanding the mechanism of OLP-related malignant transformation could reduce the risk of cancer. Accumulating evidence indicates that the expression of succinate dehydrogenase enzyme B (SDHB) is associated with the carcinogenesis of oral squamous cell carcinoma (OSCC). However, the function and underlying mechanism of SDHB in OLP remains unknown. Methods In this study, we examined the expression of SDHB in tissues from OLP patients and normal oral mucosa (NOM) through immunohistochemical (IHC) staining, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and western blot (WB). Adenosine triphosphate (ATP) assay, reactive oxygen species (ROS) assay, mitochondrial membrane potential (MMP) assay, and glucose uptake assay were used to explore the function of SDHB in mitochondrial injury and bioenergetic changes in OLP cell model and SDHB-overexpressing cells. Results In current study, we found that the messenger RNA (mRNA) and protein expression of SDHB was significantly decreased in OLP patients, accompanied by the accumulation of succinate. In the lipopolysaccharide (LPS) or CoCl2-stimulated OLP cell model, the expression of SDHB was decreased along with treatment time and concentration. Mechanistically, decreased SDHB enhanced hypoxia-inducible factor (HIF)-1α activity, induced mitochondrial injury, bioenergetic changes, and cytokine release. Overexpression of SDHB could reverse the above biological process and switch bioenergetic metabolism during OLP process. Conclusions Our study suggests that SDHB reduction promotes OLP by impairing mitochondrial respiratory function.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Beiyun Xu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Liu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Guo
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hongying Sun
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiaozhen Yang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
de Lanna CA, da Silva BNM, de Melo AC, Bonamino MH, Alves LDB, Pinto LFR, Cardoso AS, Antunes HS, Boroni M, Cohen Goldemberg D. Oral Lichen Planus and Oral Squamous Cell Carcinoma share key oncogenic signatures. Sci Rep 2022; 12:20645. [PMID: 36450755 PMCID: PMC9712651 DOI: 10.1038/s41598-022-24801-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
To investigate similarities in the gene profile of Oral Lichen Planus and Oral Squamous Cell Carcinoma that may justify a carcinogenic potential, we analyzed the gene expression signatures of Oral Lichen Planus and Oral Squamous Cell Carcinoma in early and advanced stages. Based on gene expression data from public databases, we used a bioinformatics approach to compare expression profiles, estimate immune infiltrate composition, identify differentially and co-expressed genes, and propose putative therapeutic targets and associated drugs. Our results revealed gene expression patterns related to processes of keratinization, keratinocyte differentiation, cell proliferation and immune response in common between Oral Lichen Planus and early and advanced Oral Squamous Cell Carcinoma, with the cornified envelope formation and antigen processing cross-presentation pathways in common between Oral Lichen Planus and early Oral Squamous Cell Carcinoma. Together, these results reveal that key tumor suppressors and oncogenes such as PI3, SPRR1B and KRT17, as well as genes associated with different immune processes such as CXCL13, HIF1A and IL1B are dysregulated in OLP.
Collapse
Affiliation(s)
- Cristóvão Antunes de Lanna
- grid.419166.dLaboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, 20231-050 Brazil
| | - Beatriz Nascimento Monteiro da Silva
- grid.419166.dDivision of Clinical Research and Technological Development of the National Cancer Institute José Alencar Gomes da Silva (INCA), Rio de Janeiro, RJ Brazil
| | - Andreia Cristina de Melo
- grid.419166.dDivision of Clinical Research and Technological Development of the National Cancer Institute José Alencar Gomes da Silva (INCA), Rio de Janeiro, RJ Brazil
| | - Martín H. Bonamino
- grid.419166.dImmunology and Tumor Biology Program-Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil ,grid.418068.30000 0001 0723 0931Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Lísia Daltro Borges Alves
- grid.419166.dDivision of Clinical Research and Technological Development of the National Cancer Institute José Alencar Gomes da Silva (INCA), Rio de Janeiro, RJ Brazil
| | - Luis Felipe Ribeiro Pinto
- grid.419166.dMolecular Carcinogenesis Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Abel Silveira Cardoso
- grid.8536.80000 0001 2294 473XDepartment of Oral Pathology and Oral Diagnosis, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Héliton Spíndola Antunes
- grid.419166.dDivision of Clinical Research and Technological Development of the National Cancer Institute José Alencar Gomes da Silva (INCA), Rio de Janeiro, RJ Brazil
| | - Mariana Boroni
- grid.419166.dLaboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, 20231-050 Brazil ,grid.411087.b0000 0001 0723 2494Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, 13083-970 Brazil
| | - Daniel Cohen Goldemberg
- grid.419166.dDivision of Clinical Research and Technological Development of the National Cancer Institute José Alencar Gomes da Silva (INCA), Rio de Janeiro, RJ Brazil ,grid.83440.3b0000000121901201Latin American Cooperative Oncology Group (LACOG)-Head and Neck, University College London (UCL), London, UK
| |
Collapse
|
13
|
Chen G, Shi F, Yin W, Guo Y, Liu A, Shuai J, Sun J. Gut microbiota dysbiosis: The potential mechanisms by which alcohol disrupts gut and brain functions. Front Microbiol 2022; 13:916765. [PMID: 35966709 PMCID: PMC9372561 DOI: 10.3389/fmicb.2022.916765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Alcohol use disorder (AUD) is a high-risk psychiatric disorder and a key cause of death and disability in individuals. In the development of AUD, there is a connection known as the microbiota-gut-brain axis, where alcohol use disrupts the gut barrier, resulting in changes in intestinal permeability as well as the gut microbiota composition, which in turn impairs brain function and worsens the patient’s mental status and gut activity. Potential mechanisms are explored by which alcohol alters gut and brain function through the effects of the gut microbiota and their metabolites on immune and inflammatory pathways. Alcohol and microbiota dysregulation regulating neurotransmitter release, including DA, 5-HT, and GABA, are also discussed. Thus, based on the above discussion, it is possible to speculate on the gut microbiota as an underlying target for the treatment of diseases associated with alcohol addiction. This review will focus more on how alcohol and gut microbiota affect the structure and function of the gut and brain, specific changes in the composition of the gut microbiota, and some measures to mitigate the changes caused by alcohol exposure. This leads to a potential intervention for alcohol addiction through fecal microbiota transplantation, which could normalize the disruption of gut microbiota after AUD.
Collapse
Affiliation(s)
- Ganggang Chen
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Fenglei Shi
- Department of Othopaedics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Yin
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Yao Guo
- Shandong Provincial Mental Health Center, Jinan, China
| | - Anru Liu
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Jiacheng Shuai
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Jinhao Sun
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
- *Correspondence: Jinhao Sun,
| |
Collapse
|
14
|
Li Y, He Y, Xiang J, Feng L, Wang Y, Chen R. The Functional Mechanism of MicroRNA in Oral Lichen Planus. J Inflamm Res 2022; 15:4261-4274. [PMID: 35923905 PMCID: PMC9342247 DOI: 10.2147/jir.s369304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/10/2022] [Indexed: 11/23/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are transcribed from the genomes of mammals and other complex organisms, and many of them are alternately spliced and processed into smaller products. Types of ncRNAs include microRNAs (miRNAs), circular RNAs, and long ncRNAs. miRNAs are about 21 nucleotides long and form a broad class of post-transcriptional regulators of gene expression that affect numerous developmental and physiological processes in eukaryotes. They usually act as negative regulators of mRNA expression through complementary binding sequences in the 3’-UTR of the target mRNA, leading to translation inhibition and target degradation. In recent years, the importance of ncRNA in oral lichen planus (OLP), particularly miRNA, has attracted extensive attention. However, the biological functions of miRNAs and their mechanisms in OLP are still unclear. In this review, we discuss the role and function of miRNAs in OLP, and we also describe their potential functional roles as biomarkers for the diagnosis of OLP. MiRNAs are promising new therapeutic targets, but more work is needed to understand their biological functions.
Collapse
Affiliation(s)
- Yunshan Li
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Yaodong He
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Junwei Xiang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
- Correspondence: Yuanyin Wang; Ran Chen, College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China, Email ;
| | - Ran Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| |
Collapse
|
15
|
Ge X, Wang Y, Xie H, Li R, Zhang F, Zhao B, Du J. 1,25(OH) 2 D 3 blocks IFNβ production through regulating STING in epithelial layer of oral lichen planus. J Cell Mol Med 2022; 26:3751-3759. [PMID: 35644988 PMCID: PMC9258715 DOI: 10.1111/jcmm.17409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Stimulator of interferon genes (STING) is reported to exert vital functions in inflammatory responses and autoimmune diseases. Nevertheless, the status and roles of STING in oral lichen planus (OLP) remain elusive. Here, we state that STING and its downstream cytokine interferon‐β (IFNβ) expression is boosted in the oral keratinocytes from patients suffering OLP in comparison with those from healthy participants. Mechanistically, transcription factor GATA‐binding protein 1 (GATA1) which is highly increased in diseased samples specifically interacts with its element in the promoter of STING to enhance STING transcripts. 1,25(OH)2D3, the active form of vitamin D, is capable of restricting STING and IFNβ increases in oral keratinocyte models resembling OLP in vitro. Moreover, there is a negative correlation between vitamin D receptor (VDR) and STING or IFNβ in human samples. Using plasmids and small interfering RNA transfection technologies, we find 1,25(OH)2D3 regulates STING and IFNβ through a mechanism controlled by the hypoxia‐inducible factor‐1α (HIF‐1α)‐GATA1 axis. Collectively, our findings unveil that 1,25(OH)2D3 lowers STING and IFNβ overexpression in the context of OLP.
Collapse
Affiliation(s)
- Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yaxian Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Hanting Xie
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
16
|
Xu P, Shao RR, Zhang S, Tan ZW, Guo YT, He Y. The mechanism on Prevotella melaninogenica promoting the inflammatory progression of oral lichen planus. Clin Exp Immunol 2022; 209:215-224. [PMID: 35605143 DOI: 10.1093/cei/uxac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/25/2022] [Accepted: 05/21/2022] [Indexed: 11/14/2022] Open
Abstract
Oral lichen planus (OLP) is a common chronic inflammatory disease occurring in the oral mucosa. Bacteria is a key driver of mucosal immune response and can induce changes in gene expression and function of epithelial keratinocytes. IL-36γ can induce the expression of antimicrobial peptides, cytokines and chemokines, and is widely involved in many chronic inflammatory diseases. Our aim is to explore the role of IL-36γ in pathological process of OLP when Prevotella melaninogenica (P. melaninogenica) invades oral mucosa. The expression of IL-36γ in OLP lesions and mice was detected by immunohistochemistry. Recombinant human IL-36Gamma (rhIL-36γ) was used to treat oral keratinocytes and the expression levels of inflammatory cytokines were detected by qRT-PCR and ELISA. The expression of IL-36γ and TRPV1 was detected by western blotting following co-culturing P. melaninogenica with oral keratinocytes. The mRNA expression of IL-36γ was detected by qRT-PCR. From our results, IL-36γ was upregulated in OLP lesions. Exogenous rhIL-36γ promoted the expression of pro-inflammatory cytokines and antibacterial peptides in oral keratinocytes. The expression of IL-36γ was significantly increased following the stimulation of P. melaninogenica in oral keratinocytes and mice. TRPV1 activation was induced by P. melaninogenica and its activation enhanced the expression of IL-36γ. IL-36Ra could reduce the inflammation in OLP in vitro. In summary, overexpression of IL-36γ in OLP lesions could promote its pathogenesis by inducing inflammation. P. melaninogenica invasion of oral keratinocytes could induce the expression of IL-36γ by the activation of TRPV1, thereby regulating the interaction between bacteria and oral epithelial cells.
Collapse
Affiliation(s)
- Pan Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Ru-Ru Shao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Shi Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Zheng-Wu Tan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Yi-Ting Guo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Yuan He
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Zanetta P, Ormelli M, Amoruso A, Pane M, Azzimonti B, Squarzanti DF. Probiotics as Potential Biological Immunomodulators in the Management of Oral Lichen Planus: What's New? Int J Mol Sci 2022; 23:ijms23073489. [PMID: 35408849 PMCID: PMC8998608 DOI: 10.3390/ijms23073489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Oral lichen planus (OLP) is a T cell-mediated chronic inflammatory disorder with multifactorial aetiology and malignant transformation potential. Despite the treatments so far identified, new tailored and safe specific measures are needed. Recently, human microbiota imbalance has been linked to several immune-mediated diseases, opening new therapeutic perspectives for probiotics; besides their ability to directly interact with the host microbiota, they also display a strain-specific immune-modulatory effect. Thus, this non-systematic review aims to elucidate the molecular pathways underlying probiotic activity, mainly those of Lactobacilli and Bifidobacteria and their metabolites in OLP pathogenesis and malignant transformation, focusing on the most recent in vitro and in vivo research evidence. Findings related to their activity in other immune-mediated diseases are here included, suggesting a probiotic translational use in OLP. Probiotics show immune-modulatory and microbiota-balancing activities; they protect the host from pathogens, hamper an excessive effector T cell response, reduce nuclear factor-kappa B (NF-kB) signalling and basal keratinocytes abnormal apoptosis, shifting the mucosal response towards the production of anti-inflammatory cytokines, thus preventing uncontrolled damage. Therefore, probiotics could be a highly encouraging prevention and immunotherapeutic approach for a safer and more sustainable OLP management.
Collapse
Affiliation(s)
- Paola Zanetta
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
| | - Margherita Ormelli
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
| | - Angela Amoruso
- Probiotical Research Srl, Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Marco Pane
- Probiotical Research Srl, Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
- Correspondence: (B.A.); (D.F.S.); Tel.: +39-0321-660-870 (B.A.)
| | - Diletta Francesca Squarzanti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
- Correspondence: (B.A.); (D.F.S.); Tel.: +39-0321-660-870 (B.A.)
| |
Collapse
|
18
|
Usategui-Martín R, Rigual R, Ruiz-Mambrilla M, Fernández-Gómez JM, Dueñas A, Pérez-Castrillón JL. Molecular Mechanisms Involved in Hypoxia-Induced Alterations in Bone Remodeling. Int J Mol Sci 2022; 23:ijms23063233. [PMID: 35328654 PMCID: PMC8953213 DOI: 10.3390/ijms23063233] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
Bone is crucial for the support of muscles and the protection of vital organs, and as a reservoir of calcium and phosphorus. Bone is one of the most metabolically active tissues and is continuously renewed to adapt to the changes required for healthy functioning. To maintain normal cellular and physiological bone functions sufficient oxygen is required, as evidence has shown that hypoxia may influence bone health. In this scenario, this review aimed to analyze the molecular mechanisms involved in hypoxia-induced bone remodeling alterations and their possible clinical consequences. Hypoxia has been associated with reduced bone formation and reduced osteoblast matrix mineralization due to the hypoxia environment inhibiting osteoblast differentiation. A hypoxic environment is involved with increased osteoclastogenesis and increased bone resorptive capacity of the osteoclasts. Clinical studies, although with contradictory results, have shown that hypoxia can modify bone remodeling.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- IOBA, University of Valladolid, 47011 Valladolid, Spain
- Correspondence: (R.U.-M.); (J.L.P.-C.)
| | - Ricardo Rigual
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- IBGM, University of Valladolid, 47003 Valladolid, Spain
| | - Marta Ruiz-Mambrilla
- Department of Surgery, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
| | - José-María Fernández-Gómez
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
| | - Antonio Dueñas
- Department of Medicine, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Department of Toxicology, Río Hortega University Hospital, 47012 Valladolid, Spain
| | - José Luis Pérez-Castrillón
- Department of Medicine, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Department of Internal Medicine, Río Hortega University Hospital, 47012 Valladolid, Spain
- Correspondence: (R.U.-M.); (J.L.P.-C.)
| |
Collapse
|
19
|
Athanassiou L, Mavragani CP, Koutsilieris M. The Immunomodulatory Properties of Vitamin D. Mediterr J Rheumatol 2022; 33:7-13. [PMID: 35611096 PMCID: PMC9092099 DOI: 10.31138/mjr.33.1.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Since its discovery, vitamin D was shown to have both immunostimulatory and immunomodulatory effects on the immune system. A growing body of evidence so far linked vitamin D deficiency with the development and severity of several systemic and organ specific autoimmune/inflammatory diseases, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In the present report, the multiple and diverse effects of vitamin D on the immune system are reviewed.
Collapse
Affiliation(s)
- Lambros Athanassiou
- Department of Physiology, Medical School, University of Athens, Athens, Greece
| | | | | |
Collapse
|
20
|
Ge Y, Luo J, Li D, Li C, Huang J, Yu H, Lin X, Li Y, Man M, Zhang J, Zhang J, Hu L. Deficiency of vitamin D receptor in keratinocytes augments dermal fibrosis and inflammation in a mouse model of HOCl-induced scleroderma. Biochem Biophys Res Commun 2022; 591:1-6. [PMID: 34986435 DOI: 10.1016/j.bbrc.2021.12.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 01/06/2023]
Abstract
Scleroderma, characterized by extensive fibrosis and vascular alterations, involves excessive fibroblast activation, uncontrolled inflammation, and abnormal collagen deposition. Previous studies showed that administrations of either 1,25(OH)2D3 or vitamin D analog effectively decreased or reversed skin fibrosis by regulating the extracellular matrix homeostasis. The actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR), a transcription regulator crucial for skin homeostasis. Although evidence suggests that keratinocyte-fibroblast interaction influences the development of scleroderma, the role of keratinocytes in scleroderma remains unknown. Here, we demonstrated that the ablation of VDR in keratinocytes greatly exacerbated dermal fibrosis in HOCl-induced scleroderma in mice. The deficiency of VDR in the epidermis marked increased dermal thickness, inflammatory cell infiltration, and severe collagen deposition in comparison to the control group in HOCl-treated skin. Moreover, significant elevations in expression levels of mRNA for collagen overproduction (Col1A1, Col1A2, Col3A1, α-SMA, MMP9, TGF-β1) and proinflammatory cytokines (IL-1β, IL-6, CXCL1, CXCL2) were observed in VDR conditional KO versus control mice following HOCl treatment. Collectively, these results suggest that VDR in keratinocytes plays a pivotal role in scleroderma progression, and the interplay between keratinocytes and fibroblasts deserves more attention regarding the exploration of the pathogenesis and treatment for scleroderma.
Collapse
Affiliation(s)
- Yicheng Ge
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Jing Luo
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Dan Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Chenxi Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Junkai Huang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Haoyue Yu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xinyi Lin
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Yingxi Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Maoqiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Junling Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354, Bei Road, Hongqiao District, Tianjin, 300120, China
| | - Jing Zhang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
21
|
Cadamuro M, Lasagni A, Sarcognato S, Guido M, Fabris R, Strazzabosco M, Strain AJ, Simioni P, Villa E, Fabris L. The Neglected Role of Bile Duct Epithelial Cells in NASH. Semin Liver Dis 2022; 42:34-47. [PMID: 34794182 DOI: 10.1055/s-0041-1739455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide, and affects 25% of the population in Western countries. NAFLD is the hepatic manifestation of the metabolic syndrome, linked to insulin resistance, which is the common pathogenetic mechanism. In approximately 40% of NAFLD patients, steatosis is associated with necro-inflammation and fibrosis, resulting in nonalcoholic steatohepatitis (NASH), a severe condition that may progress to cirrhosis and liver cancer. Although the hepatocyte represents the main target of the disease, involvement of the bile ducts occurs in a subset of patients with NASH, and is characterized by ductular reaction and activation of the progenitor cell compartment, which incites portal fibrosis and disease progression. We aim to dissect the multiple biological effects that adipokines and metabolic alterations exert on cholangiocytes to derive novel information on the mechanisms driven by insulin resistance, which promote fibro-inflammation and carcinogenesis in NASH.
Collapse
Affiliation(s)
| | - Alberto Lasagni
- Division of General Medicine, Padua University-Hospital, Padua, Italy
| | | | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy.,Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Roberto Fabris
- Division of Clinica Medica 3, Center for the Study and the Integrated Management of Obesity, Padua University-Hospital, Padua, Italy
| | - Mario Strazzabosco
- Department of Internal Medicine, Digestive Disease Section, Liver Center, Yale University, New Haven, Connecticut
| | - Alastair J Strain
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Paolo Simioni
- Division of General Medicine, Padua University-Hospital, Padua, Italy.,Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Erica Villa
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, Modena, Italy
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy.,Division of General Medicine, Padua University-Hospital, Padua, Italy.,Department of Internal Medicine, Digestive Disease Section, Liver Center, Yale University, New Haven, Connecticut
| |
Collapse
|
22
|
Cho DH, Lee GY, An JH, Han SN. The Effects of 1,25(OH)2D3 treatment on Immune Responses and Intracellular Metabolic Pathways of Bone Marrow-Derived Dendritic Cells from Lean and Obese Mice. IUBMB Life 2021; 74:378-390. [PMID: 34962347 DOI: 10.1002/iub.2592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Vitamin D affects differentiation, maturation, and activation of dendritic cells (DCs). Obesity-related immune dysfunction is associated with metabolic changes in immune cells. Objectives of the study are to investigate the effects of vitamin D and obesity on immune responses and markers related to immunometabolism of bone marrow-derived dendritic cells (BMDCs). Bone marrow cells (BMCs) were isolated from lean and obese mice, and BMDCs were generated by culturing BMCs with rmGM-CSF. BMDCs were treated with 1 or 10 nM of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and maturation was induced by LPS (50 ng/mL) stimulation for 24 h. Cell phenotypes, cytokine productions, and expression of proteins and genes involved in Akt/mTOR signaling pathway and glycolytic pathway were determined. 1,25(OH)2D3 treatment inhibited differentiation of BMDCs (CD11c+ %), expression of phenotypes related with DC function (MHC class II and CD86) and production of IL-12p70 in both lean and obese mice. The expression of PD-L1 and the ratio of IL-10/IL-12p70 were increased by 1,25(OH)2D3. With 1,25(OH)2D3 treatment, Akt/mTOR signaling pathway was suppressed, and expression of genes related to glycolysis (Glut1, Pfkfb4, Hif1A) was increased. The upregulation of glycolysis-related genes observed with 1,25(OH)2D3 treatment seems to be associated with the induction of tolerogenic features of BMDCs from lean and obese mice, and Hif1A seems to have a potential role in conveying the effect of 1,25(OH)2D3 on glycolysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Da Hye Cho
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Jeong Hee An
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
Todosenko N, Vulf M, Yurova K, Khaziakhmatova O, Mikhailova L, Litvinova L. Causal Links between Hypovitaminosis D and Dysregulation of the T Cell Connection of Immunity Associated with Obesity and Concomitant Pathologies. Biomedicines 2021; 9:1750. [PMID: 34944566 PMCID: PMC8698424 DOI: 10.3390/biomedicines9121750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
Subclinical inflammation in morbid obesity is associated with immune activation and the development of concomitant diseases. Impaired immune homeostasis and immune cell dysregulation in adipose tissue are associated with phenotypic and functional changes in the pool of T lymphocytes and the development of chronic hypovitaminosis D. Low vitamin D levels in obesity lead to the activation, proliferation and production of pro-inflammatory mediators by T cells. Hypovitaminosis D is the cause of a decrease in the functional potential of regulatory and anti-inflammatory lymphocytes and the maintenance of the inflammatory response. The exact molecular genetic mechanisms of the effect of vitamin D on T lymphocytes have not been fully elucidated. Therefore, uncovering the functional role of T cells and their relationship to vitamin D homeostasis in the context of obesity development may contribute to the development of new pathogenetic methods for clinical prediction of the risk of metabolic, oncologic, autoimmune and infectious complications. The review presents the molecular genetic mechanisms of the effect of vitamin D on adipose tissue resident T lymphocytes and the characteristics of vitamin D receptor expression, and analyzes the phenotypic and functional characteristics of potentially pathogenic T lymphocytes in relation to the development of obesity and its associated complications.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (K.Y.); (O.K.); (L.L.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (K.Y.); (O.K.); (L.L.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (K.Y.); (O.K.); (L.L.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (K.Y.); (O.K.); (L.L.)
| | - Larisa Mikhailova
- Department of Therapy Medical Institute, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia;
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (K.Y.); (O.K.); (L.L.)
| |
Collapse
|
24
|
Li D, Xu Y, Wang K, Yang Z, Li H, Lei S, Wang S. Maternal Vit D supplementation in AMA mice and the role of Vit D/VDR signaling in the offspring's cognition. Am J Transl Res 2021; 13:12650-12661. [PMID: 34956480 PMCID: PMC8661169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the molecular mechanism underlying the effect of maternal vitamin D (Vit D) supplementation before pregnancy in advanced maternal age (AMA) mice on the offspring's cognitive function. METHODS Thirty-two-week-old female mice either received 10 IU/g body weight vitamin D3 dissolved in 200 μl corn oil (32W+VD group), or 200 μl corn oil (32W group) per day for one week. Another group of eight-week-old female mice received the same amount of corn oil as 32W group was set as normal reproductive age control (8W group). Then the three groups of female mice were mating with ten-week-old male mice at 2:1 ratio, the offspring were weaned at the age of 3 weeks and housed until the age of 6 weeks. Vit D metabolites and enzymes involved in Vit D metabolism were measured in both mothers and their offspring. Vit D receptor (VDR) and synaptic markers were determined in the offspring hippocampus. Vit D response elements in HIF-1α promoter were predicted, and VDR transcriptional target genes and related signaling molecules were also detected. RESULTS Vit D intervention markedly improved the serum 1,25 dihydroxy vitamin D3 (1,25(OH)2D3) concentration in early pregnancy, middle pregnancy and late pregnancy stages in AMA mice. The hippocampal 1,25(OH)2D3 levels in the offspring showed the similar pattern. Subsequently, the expression of Cyp27b1, the gene encoding enzyme that converts 25(OH)D3 to 1,25(OH)2D3, in the hippocampus of the offspring from AMA mice was significantly lower than that of the offspring from normal female mice, and was restored by Vit D supplementation. VDR (Vit D receptor), which mediates the cellular actions of active 1,25(OH)2D3, was also rescued by Vit D supplementation, especially in dentate gyrus (DG) region of hippocampus. Concurrently, the synaptic markers NR1, NR2A, and PSD-93 in the hippocampus were reversed in 32W+VD group. Finally, we found that Vit D supplementation may affect PI3K-AKT, PLC-ERK1/2, and p38-MAPK signaling molecules by mediating HIF1α expression via VDR. CONCLUSION Our findings highlight the biological significance of maternal Vit D supplementation before pregnancy on Vit D metabolism, and signaling molecules in the offspring, underlying the potential mechanism of the cognitive impairment in the offspring born to AMA mice.
Collapse
Affiliation(s)
- Dao Li
- Department of Preventive Medicine, School of Health Sciences, Wuhan UniversityWuhan 430071, Hubei, China
- Fundamental Medical Center, Wuhan City CollegeWuhan 430071, Hubei, China
| | - Yawen Xu
- Department of Preventive Medicine, School of Health Sciences, Wuhan UniversityWuhan 430071, Hubei, China
| | - Kai Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan UniversityWuhan 430071, Hubei, China
| | - Zhuanhong Yang
- Department of Preventive Medicine, School of Health Sciences, Wuhan UniversityWuhan 430071, Hubei, China
- Department of Prevention Care, Guangyuan Central HospitalGuangyuan 628000, Sichuan, China
| | - Hui Li
- Department of Preventive Medicine, School of Health Sciences, Wuhan UniversityWuhan 430071, Hubei, China
- Medical Department, Taixing People’s HospitalTaizhou 225300, Jiangsu, China
| | - Sijia Lei
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen UniversityGuangzhou 510275, Guangdong, China
| | - Suqing Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan UniversityWuhan 430071, Hubei, China
| |
Collapse
|
25
|
Wang X, Ge X, Liao W, Cao Y, Li R, Zhang F, Zhao B, Du J. ZFP36 promotes VDR mRNA degradation to facilitate cell death in oral and colonic epithelial cells. Cell Commun Signal 2021; 19:85. [PMID: 34380509 PMCID: PMC8355874 DOI: 10.1186/s12964-021-00765-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Vitamin D receptor (VDR) plays a vital protective role in oral and colonic epithelial cells. Albeit we know that VDR expression is reduced in the mucosal epithelial layers of autoimmune diseases, the mechanism by which VDR is decreased remains elusive. METHODS VDR and zinc finger protein 36 (ZFP36) levels in human samples and cell lines were detected by real-time PCR, western blot and immunostaining. Luciferase report assay was used to test cis-elements in VDR gene promoter, real-time PCR was applied to measure mRNA decay and western blot was performed to evaluate protein degradation. RNA affinity chromatography assay was used to test protein-mRNA interaction. Co-immunoprecipitation was used to detect protein-protein interaction. The role of ZFP36 in AU-rich elements (AREs) in the 3' untranslated region (UTR) of VDR mRNA was also measured by luciferase report assay. RESULTS We identify ZFP36 can bind with the AREs in the 3'UTR of VDR mRNA, leading to mRNA degradation in oral and colonic epithelial cells under inflammatory circumstance. Either ZFP36 protein or AREs of VDR mRNA mutation abolishes this protein-mRNA binding process. After the key amino acid's mutation, ZFP36 fails to decrease VDR mRNA expression. We also find that VDR physically binds with Y box-binding protein 1 (YBX-1) to block YBX-1's nuclear translocation and ameliorate cell death in the presence of inflammation. CONCLUSION These findings provide insights into the cause of VDR decrease in oral and colonic epithelial cells under inflammatory condition and explain how VDR maintains cell viability in these cells. Video abstract.
Collapse
Affiliation(s)
- Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Child Dental and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Wang Liao
- Department of Cardiology, Hainan General Hospital, Hainan Clinical Medicine Research Institution, Haikou, China
| | - Yong Cao
- Division of Gastroenterology, Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Child Dental and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
26
|
Motahari P, Pournaghi Azar F, Rasi A. Role of Vitamin D and Vitamin D Receptor in Oral Lichen Planus: A Systematic Review. Ethiop J Health Sci 2021; 30:615-622. [PMID: 33897222 PMCID: PMC8054464 DOI: 10.4314/ejhs.v30i4.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Oral lichen planus (OLP) is known to be a chronic inflammatory disease associated with various other systemic disorders. Studies have shown that vitamin D deficiency can be involved in the pathogenesis of lichen planus. The aim of this study was to investigate the role of vitamin D and vitamin D receptor in OLP. Methods In this review study, all English and Persian articles were searched by relevant keywords from the Google scholar, PubMed, science direct, Cochrane, Scopus and Sid databases until January 2020. Results From the 16 articles obtained after reviewing the abstracts, finally 14 appropriate articles were included in this study. Conclusion According to the results of the studies, vitamin D deficiency may be associated with an increased risk of OLP lesions.
Collapse
Affiliation(s)
- Paria Motahari
- Assistant Professor, Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Pournaghi Azar
- Assistant Professor, Department of Restorative Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arefeh Rasi
- Dentist, Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Gatera VA, Lesmana R, Musfiroh I, Judistiani RTD, Setiabudiawan B, Abdulah R. Vitamin D Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in A549 Cells by Downregulating Inflammatory Cytokines. Med Sci Monit Basic Res 2021; 27:e931481. [PMID: 34103463 PMCID: PMC8202123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Studies have shown that lung inflammation affects lung function, with life-threatening results. Vitamin D may play an important role in inhibiting inflammatory cytokines. Vitamin D deficiency is related to several lung problems, including respiratory distress syndrome, alveolar inflammation, epithelial damage, and hypoxia. Few studies have evaluated the benefits of vitamin D in preventing inflammation in alveolar cells. MATERIAL AND METHODS We developed a cell inflammation model induced by lipopolysaccharide (LPS) treatment. The effects of vitamin D on LPS-induced inflammation in A549 cells were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the anti-inflammatory mechanism of vitamin D was evaluated using western blot analysis. RESULTS Our results indicated that vitamin D promoted A549 cell survival following LPS-induced inflammation by downregulating nuclear factor nuclear factor kappa light chain enhancer of activated B cells, tumor necrosis factor-alpha, interleukin (IL)-1ß, IL-6, and IL-12. CONCLUSIONS Our results indicated that vitamin D has the potential to manage lung inflammation, although further studies are needed.
Collapse
Affiliation(s)
- Vesara A. Gatera
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacy, Faculty of Health, Singaperbangsa University, Karawang, Indonesia
| | - Ronny Lesmana
- Division of Physiology, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Budi Setiabudiawan
- Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
28
|
Warren MF, Livingston KA. Implications of Vitamin D Research in Chickens can Advance Human Nutrition and Perspectives for the Future. Curr Dev Nutr 2021; 5:nzab018. [PMID: 33977215 PMCID: PMC7929256 DOI: 10.1093/cdn/nzab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The risk of vitamin D insufficiency in humans is a global problem that requires improving ways to increase vitamin D intake. Supplements are a primary means for increasing vitamin D intake, but without a clear consensus on what constitutes vitamin D sufficiency, there is toxicity risk with taking supplements. Chickens have been used in many vitamin-D-related research studies, especially studies involving vitamin D supplementation. Our state-of-the-art review evaluates vitamin D metabolism and how the different hydroxylated forms are synthesized. We provide an overview of how vitamin D is absorbed, transported, excreted, and what tissues in the body store vitamin D metabolites. We also discuss a number of studies involving vitamin D supplementation with broilers and laying hens. Vitamin D deficiency and toxicity are also described and how they can be caused. The vitamin D receptor (VDR) is important for vitamin D metabolism; however, there is much more to understand about VDR in chickens. Potential research aims involving vitamin D and chickens should explore VDR mechanisms that could lead to newer insights into VDR. Utilizing chickens in future research to help elucidate vitamin D mechanisms has great potential to advance human nutrition. Finding ways to increase vitamin D intake will be necessary because the coronavirus disease 2019 (COVID-19) pandemic is leading to increased risk of vitamin D deficiency in many populations. Chickens can provide a dual purpose with addressing pandemic-caused vitamin D deficiency: 1) vitamin D supplementation gives chickens added-value with the possibility of leading to vitamin-D-enriched meat and egg products; and 2) using chickens in research provides data for translational research. We believe expanding vitamin-D-related research in chickens to include more nutritional aims in vitamin D status has great implications for developing better strategies to improve human health.
Collapse
Affiliation(s)
- Matthew F Warren
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kimberly A Livingston
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
- Elanco Animal Health, Greenfield, IN, USA
| |
Collapse
|
29
|
Xue G, Gao R, Liu Z, Xu N, Cao Y, Zhao B, Du J. Vitamin D/VDR signaling inhibits colitis by suppressing HIF-1α activation in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2021; 320:G837-G846. [PMID: 33759562 DOI: 10.1152/ajpgi.00061.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vitamin D/vitamin D receptor (VDR) signaling is reported to have a protective effect on the onset or progression of inflammatory bowel diseases (IBD), and hypoxia-inducible factor 1α (HIF-1α) activation is demonstrated to be closely associated with chemical-induced colitis. However, the association between vitamin D/VDR signaling and HIF-1α on IBD development remains a mystery. Here, we showed that HIF-1α expression was largely increased in the colonic epithelial cells of diseased tissues from patients with ulcerative colitis (UC). Consistently, HIF-1α activation was also improved in colonic epithelial cells upon TNFα treatment in a NF-κB pathway-dependent manner. HIF-1α inhibitors treatments ameliorated 2,4,6-trinitrobenzenesulfonic acid (TNBS)- or dextran sulfate sodium (DSS)-induced colitis in animal models. In cell or colitis animal models, vitamin D/VDR signaling suppressed HIF-1α overexpression in colonic epithelial cells via regulating NF-κB pathway, resulting in the inhibition of IFNγ and IL-1β overproductions in these cells. Collectively, these data suggest that vitamin D/VDR signaling relieves colitis development in animal models, at least in part, by suppressing HIF-1α expression in colonic epithelial cells.NEW & NOTEWORTHY This study demonstrates vitamin D/VDR signaling inhibits colitis by suppressing HIF-1α activation in colonic epithelial cells. Since the effect of vitamin D/VDR signaling is only apparent on patients who seem to be vitamin D deficient, the benefits of vitamin D supplementation in patients who are not vitamin D deficient need to be proven.
Collapse
Affiliation(s)
- Gang Xue
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Zhuanzhuan Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Na Xu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yong Cao
- Department of Gastroenterology, Division of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
30
|
Ge X, Xie H, Wang L, Li R, Zhang F, Xu J, Zhao B, Du J. MicroRNA-122 promotes apoptosis of keratinocytes in oral lichen planus through suppressing VDR expression. J Cell Mol Med 2021; 25:3400-3407. [PMID: 33656264 PMCID: PMC8034474 DOI: 10.1111/jcmm.16418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNA‐122 (miR‐122) is known to be up‐regulated by inflammation to exert a variety of biological functions in hepatocellular carcinoma (HCC)‐derived human cell lines. Vitamin D receptor (VDR) is reported to regulate excessive oral keratinocytes apoptosis which compromises oral epithelial barrier in oral lichen planus (OLP). Although many studies have suggested that miR‐122 is capable of regulating cell apoptosis, its effects on the development of OLP and VDR expression are still unclear. Herein, we demonstrate that miR‐122 expression is increased in the epithelial layer of OLP. Mechanically, transcription factor nuclear factor‐κB (NF‐κB) selectively binds with κB element in the promoter of miR‐122 to accelerate gene transcription. The up‐regulation of miR‐122 induces cell apoptosis in human oral keratinocytes (HOKs) by targeting VDR mRNA. In VDR knockout oral keratinocytes, miR‐122 fails to improve caspase 3 activity and cleaved caspase 3 and poly(ADP‐ribose) polymerase (PARP) levels. Moreover, VDR overexpression is able to reverse lipopolysaccharide (LPS)‐ or activated CD4+ T cell–induced miR‐122 up‐regulation and ameliorate miR‐122‐stimulated caspase 3 activity. Collectively, our results suggest that miR‐122 promotes oral keratinocytes apoptosis in OLP through decreasing VDR expression.
Collapse
Affiliation(s)
- Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Hanting Xie
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Jing Xu
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
31
|
Fock EM, Parnova RG. Protective Effect of Mitochondria-Targeted Antioxidants against Inflammatory Response to Lipopolysaccharide Challenge: A Review. Pharmaceutics 2021; 13:pharmaceutics13020144. [PMID: 33499252 PMCID: PMC7910823 DOI: 10.3390/pharmaceutics13020144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is the most abundant proinflammatory agent. Considerable evidence indicates that LPS challenge inescapably causes oxidative stress and mitochondrial dysfunction, leading to cell and tissue damage. Increased mitochondrial reactive oxygen species (mtROS) generation triggered by LPS is known to play a key role in the progression of the inflammatory response. mtROS at excessive levels impair electron transport chain functioning, reduce the mitochondrial membrane potential, and initiate lipid peroxidation and oxidative damage of mitochondrial proteins and mtDNA. Over the past 20 years, a large number of mitochondria-targeted antioxidants (mito-AOX) of different structures that can accumulate inside mitochondria and scavenge free radicals have been synthesized. Their protective role based on the prevention of oxidative stress and the restoration of mitochondrial function has been demonstrated in a variety of common diseases and pathological states. This paper reviews the current data on the beneficial application of different mito-AOX in animal endotoxemia models, in either in vivo or in vitro experiments. The results presented in our review demonstrate the promising potential of approaches based on mito-AOX in the development of new treatment strategies against Gram-negative infections and LPS per se.
Collapse
|
32
|
Zhang L, Cui Y, Yang Y, Wei J, Liu W, Cai L, Wang L, Zhang D, Xie J, Cheng L. The virulence factor GroEL promotes gelatinase secretion from cells in the osteoblast lineage: Implication for direct crosstalk between bacteria and adult cells. Arch Oral Biol 2020; 122:104991. [PMID: 33307322 DOI: 10.1016/j.archoralbio.2020.104991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to demonstrate the influence of the virulence factor GroEL on osteoblast behavior by characterizing the changes of secreted gelatinases. DESIGN ELISA was performed to detect GroEL from samples from patients with or without apical periodontitis. An apical periodontitis model was established in rats and the expression of MMP-2, MMP-9 and NF-κB was evaluated by immunofluorescence staining. The primary osteoblasts and osteoblast-like MC3T3 cells were stimulated with recombinant GroEL, and gelatin zymography was used to determine the activity and expression of MMP-2 and MMP-9. Western blot was used to screen signaling pathways, and immunofluorescence staining was performed to confirm the activated signaling. RESULTS First, we found expression of GroEL to be higher in oral saliva, gingival crevicular fluid and periradicular granulation tissue of patients with apical periodontitis than it was in healthy control patients. We next found that recombinant GroEL could increase the activity of the gelatinases, MMP-2 and MMP-9, which were secreted by both primary osteoblasts and MC3T3 cells. In a rat apical periodontitis model, strong expression of gelatinases was confirmed. Then, we found that GroEL-enhanced gelatinase activity was mediated through activation of NF-κB signaling. Acetylated NF-κB accumulated in the cell nucleus and bound to the promoter of MMP-2 and MMP-9 genes, thus initiating their high expression. CONCLUSION This study reveals a direct interaction between oral bacteria and adult cells by demonstrating that gelatinase secretion is induced by GroEL, which partially explains bone resorption through gelatinase activation.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenjing Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Luling Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Gkotinakou IM, Kechagia E, Pazaitou-Panayiotou K, Mylonis I, Liakos P, Tsakalof A. Calcitriol Suppresses HIF-1 and HIF-2 Transcriptional Activity by Reducing HIF-1/2α Protein Levels via a VDR-Independent Mechanism. Cells 2020; 9:E2440. [PMID: 33182300 PMCID: PMC7695316 DOI: 10.3390/cells9112440] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
Hypoxia-inducible transcription factors 1 and 2 (HIFs) are major mediators of cancer development and progression and validated targets for cancer therapy. Although calcitriol, the biologically active metabolite of vitamin D, was attributed with anticancer properties, there is little information on the effect of calcitriol on HIFs and the mechanism underling this activity. Here, we demonstrate the negative effect of calcitriol on HIF-1/2α protein levels and HIF-1/2 transcriptional activity and elucidate the molecular mechanism of calcitriol action. We also reveal that the suppression of vitamin D receptor (VDR) expression by siRNA does not abrogate the negative regulation of HIF-1α and HIF-2α protein levels and HIF-1/2 transcriptional activity by calcitriol, thus testifying that the mechanism of these actions is VDR independent. At the same time, calcitriol significantly reduces the phosphorylation of Akt protein kinase and its downstream targets and suppresses HIF-1/2α protein synthesis by inhibiting HIF1A and EPAS1 (Endothelial PAS domain-containing protein 1) mRNA translation, without affecting their mRNA levels. On the basis of the acquired data, it can be proposed that calcitriol reduces HIF-1α and HIF-2α protein levels and inhibits HIF-1 and HIF-2 transcriptional activity by a VDR-independent, nongenomic mechanism that involves inhibition of PI3K/Akt signaling pathway and suppression of HIF1A and EPAS1 mRNA translation.
Collapse
Affiliation(s)
- Ioanna-Maria Gkotinakou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Eleni Kechagia
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | | | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Andreas Tsakalof
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| |
Collapse
|
34
|
Aguzzi C, Marinelli O, Zeppa L, Santoni G, Maggi F, Nabissi M. Evaluation of anti-inflammatory and immunoregulatory activities of Stimunex® and Stimunex D3® in human monocytes/macrophages stimulated with LPS or IL-4/IL-13. Biomed Pharmacother 2020; 132:110845. [PMID: 33080469 DOI: 10.1016/j.biopha.2020.110845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022] Open
Abstract
Macrophages exert an important role in maintaining and/or ameliorating the inflammatory response. They are involved in the activation of an immune response to pathogens, with a balance between the immunomodulatory role and tissue integrity maintenance, however, excessive macrophage activity promotes tissue injury and chronic disease pathogenesis. There is a high interest in evaluating the anti-inflammatory properties of new botanical preparations. Stimunex® and Stimunex D3® are two food supplements formulated as syrups, containing the extract of elderflower (Sambucus nigra, Caprifoliaceae), standardized in polyphenol (6%) and anthocyanins (4%), associated with wellmune WGP® β-glucan, with the addiction of vitamin D3 (in Stimunex D3® formulation). The aim of the work was the evaluation of Stimunex® and Stimunex D3® activity in human polarized-macrophages, in order to support their use as supplement for preventing and reducing the inflammatory processes. In primary human stimulated macrophages, both syrups were able to revert LPS- and IL-4/IL-13-mediated response, reducing the release of several pro-inflammatory cytokines. Results support that these standardized botanical preparations fortified with β-glucan, may have a potential use in the prevention and coadjuvant management of inflammatory process as respiratory recurrent infections and other similar conditions. Moreover, the addition of vitamin D3 revealed to be an advantage in Stimunex D3® for its important role in maintaining and enhancing the innate immune response.
Collapse
Affiliation(s)
- Cristina Aguzzi
- School of Pharmacy, University of Camerino, Camerino, MC, Italy.
| | | | - Laura Zeppa
- School of Pharmacy, University of Camerino, Camerino, MC, Italy.
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, Camerino, MC, Italy.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino, MC, Italy.
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, Camerino, MC, Italy; Integrative Therapy Discovery Lab, School of Pharmacy, University of Camerino, Camerino, MC, Italy.
| |
Collapse
|
35
|
Renin Promotes STAT4 Phosphorylation to Induce IL-17 Production in Keratinocytes of Oral Lichen Planus. iScience 2020; 23:100983. [PMID: 32213463 PMCID: PMC7093809 DOI: 10.1016/j.isci.2020.100983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/18/2020] [Accepted: 03/08/2020] [Indexed: 01/01/2023] Open
Abstract
Interleukin-17 (IL-17) is highly expressed in the epithelial layer of oral lichen planus (OLP), but the underlying mechanism for IL-17 overexpression remains unknown. Here, we identify renin that is induced by NF-κB pathway contributes to the increase of IL-17 in human oral keratinocytes (HOKs). We describe that the release of cellular renin leads to the phosphorylation of Janus kinase 2 (JAK2) protein. The phosphorylated JAK2 recruits and activates the signal transducer and activator of transcription 4 (STAT4) by phosphorylating STAT4's tyrosine residue 693 (Tyr693). The now-activated STAT4 translocates into nucleus and binds to the promoter region of IL-17 gene in HOKs. Genetic interference of renin restores IL-17 levels in OLP cell models. Collectively, our results reveal that renin upregulates IL-17 expression by enhancing STAT4 phosphorylation. This discovery unveils an underpinning by which IL-17 is increased in oral keratinocytes and provides potential targeted therapies for OLP patients.
Collapse
|
36
|
Inflammation (IL-1β) Modifies the Effect of Vitamin D and Omega-3 Long Chain Polyunsaturated Fatty Acids on Core Symptoms of Autism Spectrum Disorder-An Exploratory Pilot Study ‡. Nutrients 2020; 12:nu12030661. [PMID: 32121236 PMCID: PMC7146497 DOI: 10.3390/nu12030661] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The role of vitamin D and omega-3 long chain polyunsaturated fatty acids (omega-3 LCPUFA) in improving core symptoms of autism spectrum disorder (ASD) in children has been investigated by a few randomised controlled trials and the results are mixed and inconclusive. The response to treatment with these nutrients is heterogenous and may be influenced by inflammatory state. As an exploratory analysis, we investigated whether inflammatory state would modulate the effect of these nutrients on core symptoms of ASD. Methods: Seventy-three New Zealand children with ASD (2.5-8.0 years) completed a 12-month randomised, double-blind, placebo-controlled trial of vitamin D (VID, 2000 IU/day), omega-3 LCPUFA; (OM, 722 mg/day docosahexaenoic acid), or both (VIDOM). Non-fasting baseline plasma interleukin-1β (IL-1β) was available for 67 children (VID = 15, OM = 21, VIDOM = 15, placebo = 16). Children were categorised as having undetectable/normal IL-1β (<3.2 pg/ml, n=15) or elevated IL-1β (≥3.2 pg/mL, n = 52). The Social Responsiveness Scale (SRS) questionnaire was used to assess core symptoms of ASD (baseline, 12-month). Mixed model repeated measure analyses (including all children or only children with elevated IL-1β) were used. RESULTS We found evidence for an interaction between baseline IL-1β and treatment response for SRS-total, SRS-social communicative functioning, SRS-awareness and SRS-communication (all Pinteraction < 0.10). When all children were included in the analysis, two outcome comparisons (treatments vs. placebo) showed greater improvements: VID, no effect (all P > 0.10); OM and VIDOM (P = 0.01) for SRS-awareness. When only children with elevated IL-1β were included, five outcomes showed greater improvements: OM (P = 0.01) for SRS-total; OM (P = 0.03) for SRS-social communicative functioning; VID (P = 0.01), OM (P = 0.003) and VIDOM (P = 0.01) for SRS-awareness. CONCLUSION Inflammatory state may have modulated responses to vitamin D and omega-3 LCPUFA intervention in children with ASD, suggesting children with elevated inflammation may benefit more from daily vitamin D and omega-3 LCPUFA supplementation.
Collapse
|
37
|
Vitamin D/VDR signaling induces miR-27a/b expression in oral lichen planus. Sci Rep 2020; 10:301. [PMID: 31942011 PMCID: PMC6962379 DOI: 10.1038/s41598-019-57288-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNA-27a/b are small non-coding RNAs which are reported to regulate inflammatory response and cell proliferation. Although some studies have demonstrated that miR-27b is down-regulated in the oral specimens of patients suffering with oral lichen planus (OLP), the molecular mechanism of miR-27b decrease remains a large mystery, and the expression of miR-27a in OLP is not well explored. Here, we demonstrated both miR-27a and miR-27b, compared with healthy controls, were reduced in the oral biopsies, serum and saliva samples derived from OLP patients. The reductions of miR-27a/b were also confirmed in the lipopolysaccharide (LPS)- or activated CD4+ T cell-treated human oral keratinocytes (HOKs). Furthermore, we found vitamin D receptor (VDR) binding sites in the promoters of miR-27a/b genes and verified this finding. We also tested miR-27a/b levels in the oral epithelium from paricalcitol-treated, vitamin D deficient or VDR knockout mice. In the rescue experiments, we confirmed vitamin D and VDR inhibited LPS- or activated CD4+ T cell-induced miR-27a/b reductions in HOKs. In sum, our results show that vitamin D/VDR signaling induces miR-27a/b in oral lichen planus.
Collapse
|
38
|
Effects of cholecalciferol supplementation on serum angiogenic biomarkers in breast cancer patients treated with tamoxifen: A controlled randomized clinical trial. Nutrition 2019; 72:110656. [PMID: 31901710 DOI: 10.1016/j.nut.2019.110656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of cholecalciferol supplementation on serum levels of angiogenic parameters in patients with breast cancer (BC) who were treated with tamoxifen. METHODS This was a pilot-based, randomized, triple-blind, placebo-controlled clinical trial with 52 patients with BC randomly assigned to either an intervention group receiving weekly 50 000 IU cholecalciferol or a placebo group for 8 wk. At baseline and at end of study, serum levels of angiogenic growth factors such as vascular endothelial growth factor (VEGF)-A, angiopoietin (Ang)-2, hypoxia-inducible factor (Hif)-1, and high-sensitivity C-reactive protein were measured by enzyme-linked immunosorbent assay. Every 4 wk, a completed 3-d, 24-h dietary record and daily sunlight exposure checklist were collected and anthropometric variables were measured. RESULTS The ultimate number of participants in each arm was 22 for analyses. For premenopausal women, cholecalciferol supplementation resulted in a significant decrease in serum levels of Ang-2 and VEGF-A after 8 wk of treatment (P < 0.05). In the absence of vascular invasion, supplementation led to a significant decrease in Ang-2 levels compared with the placebo group (P < 0.05). Supplementation caused significant increases in Hif-1 in patients diagnosed with the infiltration of tumors into vascular or lymphatic vessels (P < 0.05). CONCLUSION Cholecalciferol supplementation achieved sufficient efficacy among patients with BC taking tamoxifen and could be effective in the reduction of angiogenic biomarkers particularly dependent on the infiltration status of the tumor to vessels. Further studies with larger subgroups should be investigated.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This review addresses recent developments in studies of lipid regulation of calcific disease of arteries and cardiac valves, including the role of nuclear receptors. The role of lipid-soluble signals and their receptors is timely given the recent evidence and concerns that lipid-lowering treatment may increase the rate of progression of coronary artery calcification, which has been long associated with increased cardiovascular risk. Understanding the mechanisms will be important for interpreting such clinical information. RECENT FINDINGS New findings support regulation of calcific vascular and valvular disease by nuclear receptors, including the vitamin D receptor, glucocorticoid receptor, nutrient-sensing nuclear receptors (liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors), and sex hormone (estrogen and androgen) receptors. There were two major unexpected findings: first, vitamin D supplementation, which was previously believed to prevent or reduce vascular calcification, showed no cardiovascular benefit in large randomized, controlled trials. Second, both epidemiological studies and coronary intravascular ultrasound studies suggest that treatment with HMG-CoA reductase inhibitors increases progression of coronary artery calcification, raising a question of whether there are mechanically stable and unstable forms of coronary calcification. SUMMARY For clinical practice and research, these new findings offer new fundamental mechanisms for vascular calcification and provide new cautionary insights for therapeutic avenues.
Collapse
Affiliation(s)
- Tamer Sallam
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1679
| | - Yin Tintut
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA 90095-1679
| | - Linda L. Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095-1679
| |
Collapse
|