1
|
Pérez-Núñez R, González MF, Avalos AM, Leyton L. Impacts of PI3K/protein kinase B pathway activation in reactive astrocytes: from detrimental effects to protective functions. Neural Regen Res 2025; 20:1031-1041. [PMID: 38845231 PMCID: PMC11438337 DOI: 10.4103/nrr.nrr-d-23-01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 07/12/2024] Open
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system. Upon injury and inflammation, astrocytes become reactive and undergo morphological and functional changes. Depending on their phenotypic classification as A1 or A2, reactive astrocytes contribute to both neurotoxic and neuroprotective responses, respectively. However, this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries. Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles, which emphasizes the heterogeneous nature of their reactivity. Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types, releasing cytokines, and influencing the immune response. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior, as evidenced by in silico , in vitro , and in vivo results. In astrocytes, inflammatory cues trigger a cascade of molecular events, where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses. Here, we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation. We highlight the involvement of various signaling pathways that regulate astrocyte reactivity, including the PI3K/AKT/mammalian target of rapamycin (mTOR), α v β 3 integrin/PI3K/AKT/connexin 43, and Notch/PI3K/AKT pathways. While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage, evidence suggests that activating this pathway could also yield beneficial outcomes. This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation. The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior. The findings should then be validated using in vivo models to ensure real-life relevance. The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage, although further studies are required to fully comprehend its role due to varying factors such as different cell types, astrocyte responses to inflammation, and disease contexts. Specific strategies are clearly necessary to address these variables effectively.
Collapse
Affiliation(s)
- Ramón Pérez-Núñez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Fernanda González
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Estrella LD, Manganaro JE, Sheldon L, Roland N, Snyder AD, George JW, Emanuel K, Lamberty BG, Stauch KL. Chronic glial activation and behavioral alterations induced by acute/subacute pioglitazone treatment in a mouse model of traumatic brain injury. Brain Behav Immun 2025; 123:64-80. [PMID: 39242055 DOI: 10.1016/j.bbi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Traumatic brain injury (TBI) is a disabling neurotraumatic condition and the leading cause of injury-related deaths and disability in the United States. Attenuation of neuroinflammation early after TBI is considered an important treatment target; however, while these inflammatory responses can induce secondary brain injury, they are also involved in the repair of the nervous system. Pioglitazone, which activates peroxisome proliferator-activated receptor gamma, has been shown to decrease inflammation acutely after TBI, but the long-term consequences of its use remain unknown. For this reason, the impacts of treatment with pioglitazone during the acute/subacute phase (30 min after injury and each subsequent 24 h for 5 days) after TBI were interrogated during the chronic phase (30- and 274-days post-injury (DPI)) in mice using the controlled cortical impact model of experimental TBI. Acute/subacute pioglitazone treatment after TBI results in long-term deleterious consequences, including disruption of tau homeostasis, chronic glial cell activation, neuronal pathology, and worsened injury severity particularly at 274 DPI, with male mice being more susceptible than female mice. Further, male pioglitazone-treated TBI mice exhibited increased dominant and offensive-like behavior while having a decreased non-social exploring behavior at 274 DPI. After TBI, both sexes exhibited glial activation at 30 DPI when treated with pioglitazone; however, while injury severity was increased in females it was not impacted in male mice. This work reveals that although pioglitazone has been shown to lead to attenuated TBI outcomes acutely, sex-based differences, timing and long-term consequences of treatment with glitazones must be considered and further studied prior to their clinical use for TBI therapy.
Collapse
Affiliation(s)
- L Daniel Estrella
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Jane E Manganaro
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Lexi Sheldon
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Nashanthea Roland
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Austin D Snyder
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Joseph W George
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Katy Emanuel
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Benjamin G Lamberty
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Kelly L Stauch
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA.
| |
Collapse
|
3
|
Dill-Macky AS, Lee EN, Wertheim JA, Koss KM. Glia in tissue engineering: From biomaterial tools to transplantation. Acta Biomater 2024; 190:24-49. [PMID: 39396630 DOI: 10.1016/j.actbio.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells. Compared to glia, neuronal cells have limited mobility, lack the ability to divide and self-renew, and are generally more delicate. Glia have been candidates for therapeutic use in many successful grafting studies, which have been largely focused on restoring myelin with Schwann cells, olfactory ensheathing glia, and oligodendrocytes with support from astrocytes. However, few therapeutics of this class have succeeded past clinical trials. Several tools and materials are being developed to understand and re-engineer these grafting concepts for greater success, such as extra cellular matrix-based scaffolds, bioactive peptides, biomolecular delivery systems, biomolecular discovery for neuroinflammatory mediation, composite microstructures such as artificial channels for cell trafficking, and graft enhanced electrical stimulation. Furthermore, advances in stem cell-derived cortical/cerebral organoid differentiation protocols have allowed for the generation of patient-derived glia comparable to those acquired from tissues requiring highly invasive procedures or are otherwise inaccessible. However, research on bioengineered tools that manipulate glial cells is nowhere near as comprehensive as that for systems of neurons and neural stem cells. This article explores the therapeutic potential of glia in transplantation with an emphasis on novel bioengineered tools for enhancement of their reparative properties. STATEMENT OF SIGNIFICANCE: Neural glia are responsible for a host of developmental, homeostatic, and reparative roles in the central nervous system but are often a major cause of tissue damage and cellular loss in insults and degenerative pathologies. Most glial grafts have employed Schwann cells for remyelination, but other glial with novel biomaterials have been employed, emphasizing their diverse functionality. Promising strategies have emerged, including neuroimmune mediation of glial scar tissues and facilitated migration and differentiation of stem cells for neural replacement. Herein, a comprehensive review of biomaterial tools for glia in transplantation is presented, highlighting Schwann cells, astrocytes, olfactory ensheating glia, oligodendrocytes, microglia, and ependymal cells.
Collapse
Affiliation(s)
- A S Dill-Macky
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - E N Lee
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - J A Wertheim
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - K M Koss
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States.
| |
Collapse
|
4
|
González-Johnson L, Fariña A, Farías G, Zomosa G, Pinilla-González V, Rojas-Solé C. Exploring Neuroprotection against Radiation-Induced Brain Injury: A Review of Key Compounds. NEUROSCI 2024; 5:462-484. [PMID: 39484304 PMCID: PMC11503407 DOI: 10.3390/neurosci5040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
Brain radiation is a crucial tool in neuro-oncology for enhancing local tumor control, but it can lead to mild-to-profound and progressive impairments in cognitive function. Radiation-induced brain injury is a significant adverse effect of radiotherapy for cranioencephalic tumors, primarily caused by indirect cellular damage through the formation of free radicals. This results in late neurotoxicity manifesting as cognitive impairment due to free radical production. The aim of this review is to highlight the role of different substances, such as drugs used in the clinical setting and antioxidants such as ascorbate, in reducing the neurotoxicity associated with radiation-induced brain injury. Currently, there is mainly preclinical and clinical evidence supporting the benefit of these interventions, representing a cost-effective and straightforward neuroprotective strategy.
Collapse
Affiliation(s)
- Lucas González-Johnson
- Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile; (G.F.); (V.P.-G.); (C.R.-S.)
- University of Chile Clinical Hospital, Santiago 8380453, Chile;
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Ariel Fariña
- Fundación Arturo López Pérez, Santiago 7500921, Chile;
- Faculty of Medicine, Universidad de los Andes, Santiago 12455, Chile
| | - Gonzalo Farías
- Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile; (G.F.); (V.P.-G.); (C.R.-S.)
- University of Chile Clinical Hospital, Santiago 8380453, Chile;
| | - Gustavo Zomosa
- University of Chile Clinical Hospital, Santiago 8380453, Chile;
| | - Víctor Pinilla-González
- Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile; (G.F.); (V.P.-G.); (C.R.-S.)
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8330111, Chile
| | - Catalina Rojas-Solé
- Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile; (G.F.); (V.P.-G.); (C.R.-S.)
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8330111, Chile
| |
Collapse
|
5
|
Hatakeyama T, Kawai N, Maruo T, Norikane T, Yamamoto Y, Miyake K. Reactive Astrocytes Promote Axonal Remodeling of the Corticospinal Tract During Neuronal Recovery Revealed by 18F-THK5351 PET. Clin Nucl Med 2024; 49:1145-1147. [PMID: 39485873 DOI: 10.1097/rlu.0000000000005509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
ABSTRACT A teenager who suffered from left hemiparesis after traumatic brain injury underwent 18F-THK5351 PET 48, 286, and 810 days after the injury. The first scan showed slight uptake in the right corticospinal tract (CST), and the second scan showed intense uptake along the CST, which was significantly reduced in the third scan. The hemiparesis has improved between the first and second scans. 18F-THK5351 binds to monoamine oxidase B, which is expressed in reactive astrocytes (RAs). Recently, the beneficial role of RAs in plasticity and reconstruction after traumatic brain injury has been reported. 18F-THK5351 uptake may represent axonal remodeling accompanied with RAs in the CST.
Collapse
Affiliation(s)
- Tetsuhiro Hatakeyama
- From the Department of Neurological Surgery, Faculty of Medicine, Kagawa University
| | - Nobuyuki Kawai
- Department of Neurological Surgery, Kagawa Rehabilitation Hospital
| | - Tomoko Maruo
- Department of Neurological Surgery, Kagawa Rehabilitation Hospital
| | - Takashi Norikane
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Keisuke Miyake
- From the Department of Neurological Surgery, Faculty of Medicine, Kagawa University
| |
Collapse
|
6
|
He J, Zhang Y, Guo Y, Guo J, Chen X, Xu S, Xu X, Wu C, Liu C, Chen J, Ding Y, Fisher M, Jiang M, Liu G, Ji X, Wu D. Blood-derived factors to brain communication in brain diseases. Sci Bull (Beijing) 2024; 69:3618-3632. [PMID: 39353815 DOI: 10.1016/j.scib.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 10/04/2024]
Abstract
Brain diseases, mainly including acute brain injuries, neurodegenerative diseases, and mental disorders, have posed a significant threat to human health worldwide. Due to the limited regenerative capability and the existence of the blood-brain barrier, the brain was previously thought to be separated from the rest of the body. Currently, various cross-talks between the central nervous system and peripheral organs have been widely described, including the brain-gut axis, the brain-liver axis, the brain-skeletal muscle axis, and the brain-bone axis. Moreover, several lines of evidence indicate that leveraging systemic biology intervention approaches, including but not limited to lifestyle interventions, exercise, diet, blood administration, and peripheral immune responses, have demonstrated a significant influence on the progress and prognosis of brain diseases. The advancement of innovative proteomic and transcriptomic technologies has enriched our understanding of the nuanced interplay between peripheral organs and brain diseases. An array of novel or previously underappreciated blood-derived factors have been identified to play pivotal roles in mediating these communications. In this review, we provide a comprehensive summary of blood-to-brain communication following brain diseases. Special attention is given to the instrumental role of blood-derived signals, positing them as significant contributors to the complex process of brain diseases. The insights presented here aim to bridge the current knowledge gaps and inspire novel therapeutic strategies for brain diseases.
Collapse
Affiliation(s)
- Jiachen He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin 150081, China
| | - Yanming Zhang
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaohan Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chengeng Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02115, USA
| | - Miaowen Jiang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China; Brain Hospital, Shengli Oilfield Central Hospital, Dongying 257034, China.
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
7
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
8
|
Higuchi K, Uyeda A, Quan L, Tanabe S, Kato Y, Kawahara Y, Muramatsu R. Synaptotagmin 4 Supports Spontaneous Axon Sprouting after Spinal Cord Injury. J Neurosci 2024; 44:e1593232024. [PMID: 39266302 PMCID: PMC11502230 DOI: 10.1523/jneurosci.1593-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Injuries to the central nervous system (CNS) can cause severe neurological deficits. Axonal regrowth is a fundamental process for the reconstruction of compensatory neuronal networks after injury; however, it is extremely limited in the adult mammalian CNS. In this study, we conducted a loss-of-function genetic screen in cortical neurons, combined with a Web resource-based phenotypic screen, and identified synaptotagmin 4 (Syt4) as a novel regulator of axon elongation. Silencing Syt4 in primary cultured cortical neurons inhibits neurite elongation, with changes in gene expression involved in signaling pathways related to neuronal development. In a spinal cord injury model, inhibition of Syt4 expression in cortical neurons prevented axonal sprouting of the corticospinal tract, as well as neurological recovery after injury. These results provide a novel therapeutic approach to CNS injury by modulating Syt4 function.
Collapse
Affiliation(s)
- Kyoka Higuchi
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
- Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Lili Quan
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Shogo Tanabe
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
9
|
Kang JY, Lee JS, Wang JH, Son CG. Sleep deprivation in adolescent mice impairs long-term memory till early adulthood via suppression of hippocampal astrocytes. Sleep 2024; 47:zsae143. [PMID: 38934552 PMCID: PMC11467059 DOI: 10.1093/sleep/zsae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Sleep deficiency is a rampant issue in modern society, serving as a pathogenic element contributing to learning and memory impairment, with heightened sensitivity observed in children. Clinical observations suggest that learning disabilities associated with insufficient sleep during adolescence can persist through adulthood, but experimental evidence for this is lacking. In this study, we examined the impact of early-life sleep deprivation (SD) on both short-term and long-term memory, tracking the effects sequentially into adulthood. We employed a modified multiple-platform method mouse model to investigate these outcomes. SD induced over a 14-day period, beginning on postnatal day 28 (PND28) in mice, led to significant impairment in long-term memory (while short-term memory remained unaffected) at PND42. Notably, this dysfunction persisted into adulthood at PND85. The specific impairment observed in long-term memory was elucidated through histopathological alterations in hippocampal neurogenesis, as evidenced by bromodeoxyuridine (BrdU) signals, observed both at PND42 and PND85. Furthermore, the hippocampal region exhibited significantly diminished protein expressions of astrocytes, characterized by lowered levels of aquaporin 4 (AQP4), a representative molecule involved in brain clearance processes, and reduced protein expressions of brain-derived neurotrophic factors. In conclusion, we have presented experimental evidence indicating that sleep deficiency-related impairment of long-term memory in adolescence can endure into adulthood. The corresponding mechanisms may indicate that the modification of astrocyte-related molecules has led to changes in hippocampal neurogenesis.
Collapse
Affiliation(s)
- Ji-Yun Kang
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, South Korea
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, South Korea
- Research Center for CFS/ME, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, South Korea
- Research Center for CFS/ME, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, South Korea
- Research Center for CFS/ME, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Butkova TV, Malsagova KA, Nakhod VI, Petrovskiy DV, Izotov AA, Balakin EI, Yurku KA, Umnikov AS, Pustovoyt VI, Kaysheva AL. Candidate Molecular Biomarkers of Traumatic Brain Injury: A Systematic Review. Biomolecules 2024; 14:1283. [PMID: 39456216 PMCID: PMC11506336 DOI: 10.3390/biom14101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and disability among young and middle-aged individuals. Adequate and timely diagnosis of primary brain injuries, as well as the prompt prevention and treatment of secondary injury mechanisms, significantly determine the potential for reducing mortality and severe disabling consequences. Therefore, it is crucial to have objective markers that indicate the severity of the injury. A number of molecular factors-proteins and metabolites-detected in the blood immediately after trauma and associated with the development and severity of TBI can serve in this role. TBI is a heterogeneous condition with respect to its etiology, clinical form, and genesis, being accompanied by brain cell damage and disruption of blood-brain barrier permeability. Two oppositely directed flows of substances and signals are observed: one is the flow of metabolites, proteins, and nucleic acids from damaged brain cells into the bloodstream through the damaged blood-brain barrier; the other is the infiltration of immune cells (neutrophils and macrophages) and serological proteins. Both flows aggravate brain tissue damage after TBI. Therefore, it is extremely important to study the key signaling events that regulate these flows and repair the damaged tissues, as well as to enhance the effectiveness of treatments for patients after TBI.
Collapse
Affiliation(s)
- Tatiana V. Butkova
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Kristina A. Malsagova
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Valeriya I. Nakhod
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Denis V. Petrovskiy
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Alexander A. Izotov
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Evgenii I. Balakin
- State Research Center—Burnasyan Federal Medical Biophysical Center, 123098 Moscow, Russia (K.A.Y.); (A.S.U.); (V.I.P.)
| | - Ksenia A. Yurku
- State Research Center—Burnasyan Federal Medical Biophysical Center, 123098 Moscow, Russia (K.A.Y.); (A.S.U.); (V.I.P.)
| | - Alexey S. Umnikov
- State Research Center—Burnasyan Federal Medical Biophysical Center, 123098 Moscow, Russia (K.A.Y.); (A.S.U.); (V.I.P.)
| | - Vasiliy I. Pustovoyt
- State Research Center—Burnasyan Federal Medical Biophysical Center, 123098 Moscow, Russia (K.A.Y.); (A.S.U.); (V.I.P.)
| | - Anna L. Kaysheva
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| |
Collapse
|
11
|
Liu HC, Huang CH, Chiang MR, Hsu RS, Chou TC, Lu TT, Lee IC, Liao LD, Chiou SH, Lin ZH, Hu SH. Sustained Release of Nitric Oxide-Mediated Angiogenesis and Nerve Repair by Mussel-Inspired Adaptable Microreservoirs for Brain Traumatic Injury Therapy. Adv Healthc Mater 2024; 13:e2302315. [PMID: 37713592 DOI: 10.1002/adhm.202302315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Traumatic brain injury (TBI) triggers inflammatory response and glial scarring, thus substantially hindering brain tissue repair. This process is exacerbated by the accumulation of activated immunocytes at the injury site, which contributes to scar formation and impedes tissue repair. In this study, a mussel-inspired nitric oxide-release microreservoir (MINOR) that combines the features of reactive oxygen species (ROS) scavengers and sustained NO release to promote angiogenesis and neurogenesis is developed for TBI therapy. The injectable MINOR fabricated using a microfluidic device exhibits excellent monodispersity and gel-like self-healing properties, thus allowing the maintenance of its structural integrity and functionality upon injection. Furthermore, polydopamine in the MINOR enhances cell adhesion, significantly reduces ROS levels, and suppresses inflammation. Moreover, a nitric oxide (NO) donor embedded into the MINOR enables the sustained release of NO, thus facilitating angiogenesis and mitigating inflammatory responses. By harnessing these synergistic effects, the biocompatible MINOR demonstrates remarkable efficacy in enhancing recovery in mice. These findings benefit future therapeutic interventions for patients with TBI.
Collapse
Affiliation(s)
- Hsiu-Ching Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Chu-Han Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Min-Ren Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Ru-Siou Hsu
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Tsu-Chin Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, 300044, Hsinchu, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, National Yang Ming Chiao Tung University, Taipei Veterans General Hospital, 112304, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Zhong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, 10617, Taipei, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| |
Collapse
|
12
|
Zhang SH, Yin J, Jing LJ, Cheng Y, Miao YL, Fan B, Zhang HF, Yang CH, Wang SS, Li Y, Jiao XY, Fan YY. Targeting astrocytic TDAG8 with delayed CO 2 postconditioning improves functional outcomes after controlled cortical impact injury in mice. Exp Neurol 2024; 380:114892. [PMID: 39047809 DOI: 10.1016/j.expneurol.2024.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
T-cell death-associated gene 8 (TDAG8), a G-protein-coupled receptor sensing physiological or weak acids, regulates inflammatory responses. However, its role in traumatic brain injury (TBI) remains unknown. Our recent study showed that delayed CO2 postconditioning (DCPC) has neuroreparative effects after TBI. We hypothesized that activating astrocytic TDAG8 is a key mechanism for DCPC. WT and TDAG8-/- mice received DCPC daily by transiently inhaling 10% CO2 after controlled cortical impact (CCI). HBAAV2/9-GFAP-m-TDAG8-3xflag-EGFP was used to overexpress TDAG8 in astrocytes. The beam walking test, mNSS, immunofluorescence and Golgi-Cox staining were used to evaluate motor function, glial activation and dendritic plasticity. DCPC significantly improved motor function; increased total dendritic length, neuronal complexity and spine density; inhibited overactivation of astrocytes and microglia; and promoted the expression of astrocytic brain-derived neurotrophic factor in WT but not TDAG8-/- mice. Overexpressing TDAG8 in astrocytes surrounding the lesion in TDAG8-/- mice restored the beneficial effects of DCPC. Although the effects of DCPC on Days 14-28 were much weaker than those of DCPC on Days 3-28 in WT mice, these effects were further enhanced by overexpressing astrocytic TDAG8. Astrocytic TDAG8 is a key target of DCPC for TBI rehabilitation. Its overexpression is a strategy that broadens the therapeutic window and enhances the effects of DCPC.
Collapse
Affiliation(s)
- Shu-Han Zhang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jing Yin
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Lian-Ju Jing
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yao Cheng
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yu-Lu Miao
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Bo Fan
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Hui-Feng Zhang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Cai-Hong Yang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Shao-Shuai Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yan Li
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiang-Ying Jiao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yan-Ying Fan
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
13
|
Dougan CE, Roberts BL, Crosby AJ, Karatsoreos IN, Peyton SR. Short-term neural and glial response to mild traumatic brain injury in the hippocampus. Biophys J 2024; 123:3346-3354. [PMID: 39091025 PMCID: PMC11480756 DOI: 10.1016/j.bpj.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Traumatic brain injury (TBI) is an established risk factor for developing neurodegenerative disease. However, how TBI leads from acute injury to chronic neurodegeneration is limited to postmortem models. There is a lack of connections between in vitro and in vivo TBI models that can relate injury forces to both macroscale tissue damage and brain function at the cellular level. Needle-induced cavitation (NIC) is a technique that can produce small cavitation bubbles in soft tissues, which allows us to relate small strains and strain rates in living tissue to ensuing acute cell death, tissue damage, and tissue remodeling. Here, we applied NIC to mouse brain slices to create a new model of TBI with high spatial and temporal resolution. We specifically targeted the hippocampus, which is a brain region critical for learning and memory and an area in which injury causes cognitive pathologies in humans and rodent models. By combining NIC with patch-clamp electrophysiology, we demonstrate that NIC in the cornu ammonis 3 region of the hippocampus dynamically alters synaptic release onto cornu ammonis 1 pyramidal neurons in a cannabinoid 1 receptor-dependent manner. Further, we show that NIC induces an increase in extracellular matrix protein GFAP associated with neural repair that is mitigated by cannabinoid 1 receptor antagonism. Together, these data lay the groundwork for advanced approaches in understanding how TBI impacts neural function at the cellular level and the development of treatments that promote neural repair in response to brain injury.
Collapse
Affiliation(s)
- Carey E Dougan
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Chemistry and Department of Engineering, Smith College, Northampton, Massachusetts
| | - Brandon L Roberts
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Zoology & Physiology, University of Wyoming, Laramie, Wyoming; Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Ilia N Karatsoreos
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts.
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.
| |
Collapse
|
14
|
Nesbit M, Ko CKL, Mamo JCL, Lam V, Landwehr KR, Larcombe AN, Takechi R. Exposure to biodiesel exhaust is less harmful than exposure to mineral diesel exhaust on blood-brain barrier integrity in a murine model. Front Neurosci 2024; 18:1440118. [PMID: 39347532 PMCID: PMC11427429 DOI: 10.3389/fnins.2024.1440118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Emerging data suggest that air pollution is a persistent source of neuroinflammation, reactive oxygen species (ROS), and neuropathology that contributes to central nervous system (CNS) disorders. Previous research using animal models has shown that exposure to diesel exhaust causes considerable disruption of the blood-brain barrier (BBB), leading to marked neuroinflammation. However, the effects of biodiesel exhaust on cerebrovascular integrity and neuroinflammation have not been explored previously. Therefore, in this study, 8-week-old BALB/c mice were exposed to biodiesel exhaust (derived from canola biodiesel or tallow biodiesel) and compared with control mice that were exposed to air or mineral diesel exhaust. Consistently with previous findings, the integrity of the BBB was significantly disrupted by exposure to mineral diesel exhaust. Tallow and canola biodiesel exhaust exposure resulted in no BBB disruption. Moreover, both tallow and canola biodiesels significantly attenuated oxidative stress in the brain. The data collectively suggest that biodiesel exhaust may exert significantly less detrimental effects on brain function, compared to mineral diesel.
Collapse
Affiliation(s)
- Michael Nesbit
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Colleen Kah Ling Ko
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - John C. L. Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Katherine R. Landwehr
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children’s Hospital, Perth, WA, Australia
| | - Alexander N. Larcombe
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children’s Hospital, Perth, WA, Australia
| | - Ryu Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
15
|
Navabi SP, Badreh F, Khombi Shooshtari M, Hajipour S, Moradi Vastegani S, Khoshnam SE. Microglia-induced neuroinflammation in hippocampal neurogenesis following traumatic brain injury. Heliyon 2024; 10:e35869. [PMID: 39220913 PMCID: PMC11365414 DOI: 10.1016/j.heliyon.2024.e35869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the most causes of death and disability among people, leading to a wide range of neurological deficits. The important process of neurogenesis in the hippocampus, which includes the production, maturation and integration of new neurons, is affected by TBI due to microglia activation and the inflammatory response. During brain development, microglia are involved in forming or removing synapses, regulating the number of neurons, and repairing damage. However, in response to injury, activated microglia release a variety of pro-inflammatory cytokines, chemokines and other neurotoxic mediators that exacerbate post-TBI injury. These microglia-related changes can negatively affect hippocampal neurogenesis and disrupt learning and memory processes. To date, the intracellular signaling pathways that trigger microglia activation following TBI, as well as the effects of microglia on hippocampal neurogenesis, are poorly understood. In this review article, we discuss the effects of microglia-induced neuroinflammation on hippocampal neurogenesis following TBI, as well as the intracellular signaling pathways of microglia activation.
Collapse
Affiliation(s)
- Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maryam Khombi Shooshtari
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Clay AM, Carr RL, DuBien JL, To F. Short-term behavioral and histological findings following a single concussive and repeated subconcussive brain injury in a rodent model. Brain Inj 2024; 38:827-834. [PMID: 38704844 DOI: 10.1080/02699052.2024.2349144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
PRIMARY OBJECTIVE It is unclear of the correlation between a mild traumatic brain injury (mTBI) and repeated subconcussive (RSC) impacts with respect to injury biomechanics. Thus, the present study was designed to determine the behavioral and histological differences between a single mTBI impact and RSC impacts with subdivided cumulative kinetic energies of the single mTBI impact. RESEARCH DESIGN Adult male Sprague-Dawley rats were randomly assigned to a single mTBI impact, RSC impact, sham, or repeated sham groups. METHODS AND PROCEDURES Following a weight drop injury, anxiety-like behavior and general locomotive activity and were assessed using the open field test, while motor coordination was evaluated using a rotarod unit. Neuronal loss, astrogliosis, and microgliosis were assessed using NeuN, GFAP and Iba-1 immunohistochemistry. All assessments were undertaken at 3- and 7-days post impact. MAIN OUTCOMES AND RESULTS No behavioral disturbances were observed in injury groups, however, both injury groups did lead to microgliosis following 3-days post-impact. CONCLUSIONS No pathophysiological differences were observed between a single mTBI impact and RSC impacts of the same energy input. Even though a cumulative injury threshold for RSC impacts was not determined, a threshold still may exist where no pathodynamic shift occurs.
Collapse
Affiliation(s)
- Anna Marie Clay
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi, USA
| | - Russell L Carr
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi University, Mississippi, USA
| | - Janice L DuBien
- Department of Statistics, Mississippi University, Mississippi, USA
| | - Filip To
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi, USA
| |
Collapse
|
17
|
Banderwal R, Kadian M, Garg S, Kumar A. 'Comprehensive review of emerging drug targets in traumatic brain injury (TBI): challenges and future scope. Inflammopharmacology 2024:10.1007/s10787-024-01524-w. [PMID: 39023681 DOI: 10.1007/s10787-024-01524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/12/2024] [Indexed: 07/20/2024]
Abstract
Traumatic brain injury (TBI) is a complex brain problem that causes significant morbidity and mortality among people of all age groups. The complex pathophysiology, varied symptoms, and inadequate treatment further precipitate the problem. Further, TBI produces several psychiatric problems and other related complications in post-TBI survival patients, which are often treated symptomatically or inadequately. Several approaches, including neuroprotective agents targeting several pathways of oxidative stress, neuroinflammation, cytokines, immune system GABA, glutamatergic, microglia, and astrocytes, are being tried by researchers to develop effective treatments or magic bullets to manage the condition effectively. The problem of TBI is therefore treated as a challenge among pharmaceutical scientists or researchers to develop drugs for the effective management of this problem. The goal of the present comprehensive review is to provide an overview of the several pharmacological targets, processes, and cellular pathways that researchers are focusing on, along with an update on their current state.
Collapse
Affiliation(s)
- Rittu Banderwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Monika Kadian
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sukant Garg
- Department of General Pathology, Dr HS Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
18
|
Lee KS, Yoon SH, Hwang I, Ma JH, Yang E, Kim RH, Kim E, Yu JW. Hyperglycemia enhances brain susceptibility to lipopolysaccharide-induced neuroinflammation via astrocyte reprogramming. J Neuroinflammation 2024; 21:137. [PMID: 38802820 PMCID: PMC11131277 DOI: 10.1186/s12974-024-03136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Hyperglycemia has been shown to modulate the immune response of peripheral immune cells and organs, but the impact of hyperglycemia on neuroinflammation within the brain remains elusive. In the present study, we provide evidences that streptozotocin (STZ)-induced hyperglycemic condition in mice drives a phenotypic switch of brain astrocytes to a proinflammatory state, and increases brain vulnerability to mild peripheral inflammation. In particular, we found that hyperglycemia led to a significant increase in the astrocyte proliferation as determined by flow cytometric and immunohistochemical analyses of mouse brain. The increased astrocyte proliferation by hyperglycemia was reduced by Glut1 inhibitor BAY-876. Transcriptomic analysis of isolated astrocytes from Aldh1l1CreERT2;tdTomato mice revealed that peripheral STZ injection induced astrocyte reprogramming into proliferative, and proinflammatory phenotype. Additionally, STZ-induced hyperglycemic condition significantly enhanced the infiltration of circulating myeloid cells into the brain and the disruption of blood-brain barrier in response to mild lipopolysaccharide (LPS) administration. Systemic hyperglycemia did not alter the intensity and sensitivity of peripheral inflammation in mice to LPS challenge, but increased the inflammatory potential of brain microglia. In line with findings from mouse experiments, a high-glucose environment intensified the LPS-triggered production of proinflammatory molecules in primary astrocyte cultures. Furthermore, hyperglycemic mice exhibited a significant impairment in cognitive function after mild LPS administration compared to normoglycemic mice as determined by novel object recognition and Y-maze tasks. Taken together, these results demonstrate that hyperglycemia directly induces astrocyte reprogramming towards a proliferative and proinflammatory phenotype, which potentiates mild LPS-triggered inflammation within brain parenchymal regions.
Collapse
Affiliation(s)
- Kyung-Seo Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Hyun Yoon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Hwa Ma
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Euimo Yang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Rebekah Hyeyoon Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eosu Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
Galindo AN, Frey Rubio DA, Hettiaratchi MH. Biomaterial strategies for regulating the neuroinflammatory response. MATERIALS ADVANCES 2024; 5:4025-4054. [PMID: 38774837 PMCID: PMC11103561 DOI: 10.1039/d3ma00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/07/2024] [Indexed: 05/24/2024]
Abstract
Injury and disease in the central nervous system (CNS) can result in a dysregulated inflammatory environment that inhibits the repair of functional tissue. Biomaterials present a promising approach to tackle this complex inhibitory environment and modulate the mechanisms involved in neuroinflammation to halt the progression of secondary injury and promote the repair of functional tissue. In this review, we will cover recent advances in biomaterial strategies, including nanoparticles, hydrogels, implantable scaffolds, and neural probe coatings, that have been used to modulate the innate immune response to injury and disease within the CNS. The stages of inflammation following CNS injury and the main inflammatory contributors involved in common neurodegenerative diseases will be discussed, as understanding the inflammatory response to injury and disease is critical for identifying therapeutic targets and designing effective biomaterial-based treatment strategies. Biomaterials and novel composites will then be discussed with an emphasis on strategies that deliver immunomodulatory agents or utilize cell-material interactions to modulate inflammation and promote functional tissue repair. We will explore the application of these biomaterial-based strategies in the context of nanoparticle- and hydrogel-mediated delivery of small molecule drugs and therapeutic proteins to inflamed nervous tissue, implantation of hydrogels and scaffolds to modulate immune cell behavior and guide axon elongation, and neural probe coatings to mitigate glial scarring and enhance signaling at the tissue-device interface. Finally, we will present a future outlook on the growing role of biomaterial-based strategies for immunomodulation in regenerative medicine and neuroengineering applications in the CNS.
Collapse
Affiliation(s)
- Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - David A Frey Rubio
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
20
|
Boulton M, Al-Rubaie A. Neuroinflammation and neurodegeneration following traumatic brain injuries. Anat Sci Int 2024:10.1007/s12565-024-00778-2. [PMID: 38739360 DOI: 10.1007/s12565-024-00778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Traumatic brain injuries (TBI) commonly occur following head trauma. TBI may result in short- and long-term complications which may lead to neurodegenerative consequences, including cognitive impairment post-TBI. When investigating the neurodegeneration following TBI, studies have highlighted the role reactive astrocytes have in the neuroinflammation and degeneration process. This review showcases a variety of markers that show reactive astrocyte presence under pathological conditions, including glial fibrillary acidic protein (GFAP), Crystallin Alpha-B (CRYA-B), Complement Component 3 (C3) and S100A10. Astrocyte activation may lead to white-matter inflammation, expressed as white-matter hyperintensities. Other white-matter changes in the brain following TBI include increased cortical thickness in the white matter. This review addresses the gaps in the literature regarding post-mortem human studies focussing on reactive astrocytes, alongside the potential uses of these proteins as markers in the future studies that investigate the proportions of astrocytes in the post-TBI brain has been discussed. This research may benefit future studies that focus on the role reactive astrocytes play in the post-TBI brain and may assist clinicians in managing patients who have suffered TBI.
Collapse
Affiliation(s)
- Matthew Boulton
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Ali Al-Rubaie
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
21
|
El Baassiri MG, Raouf Z, Badin S, Escobosa A, Sodhi CP, Nasr IW. Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies. J Neuroinflammation 2024; 21:124. [PMID: 38730498 PMCID: PMC11083845 DOI: 10.1186/s12974-024-03118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zachariah Raouf
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sarah Badin
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alejandro Escobosa
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chhinder P Sodhi
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
22
|
Li J, Haj Ebrahimi A, Ali AB. Advances in Therapeutics to Alleviate Cognitive Decline and Neuropsychiatric Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:5169. [PMID: 38791206 PMCID: PMC11121252 DOI: 10.3390/ijms25105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Dementia exists as a 'progressive clinical syndrome of deteriorating mental function significant enough to interfere with activities of daily living', with the most prevalent type of dementia being Alzheimer's disease (AD), accounting for about 80% of diagnosed cases. AD is associated with an increased risk of comorbidity with other clinical conditions such as hypertension, diabetes, and neuropsychiatric symptoms (NPS) including, agitation, anxiety, and depression as well as increased mortality in late life. For example, up to 70% of patients diagnosed with AD are affected by anxiety. As aging is the major risk factor for AD, this represents a huge global burden in ageing populations. Over the last 10 years, significant efforts have been made to recognize the complexity of AD and understand the aetiology and pathophysiology of the disease as well as biomarkers for early detection. Yet, earlier treatment options, including acetylcholinesterase inhibitors and glutamate receptor regulators, have been limited as they work by targeting the symptoms, with only the more recent FDA-approved drugs being designed to target amyloid-β protein with the aim of slowing down the progression of the disease. However, these drugs may only help temporarily, cannot stop or reverse the disease, and do not act by reducing NPS associated with AD. The first-line treatment options for the management of NPS are selective serotonin reuptake inhibitors/selective noradrenaline reuptake inhibitors (SSRIs/SNRIs) targeting the monoaminergic system; however, they are not rational drug choices for the management of anxiety disorders since the GABAergic system has a prominent role in their development. Considering the overall treatment failures and side effects of currently available medication, there is an unmet clinical need for rationally designed therapies for anxiety disorders associated with AD. In this review, we summarize the current status of the therapy of AD and aim to highlight novel angles for future drug therapy in our ongoing efforts to alleviate the cognitive deficits and NPS associated with this devastating disease.
Collapse
Affiliation(s)
| | | | - Afia B. Ali
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (A.H.E.)
| |
Collapse
|
23
|
Orr TJ, Lesha E, Kramer AH, Cecia A, Dugan JE, Schwartz B, Einhaus SL. Traumatic Brain Injury: A Comprehensive Review of Biomechanics and Molecular Pathophysiology. World Neurosurg 2024; 185:74-88. [PMID: 38272305 DOI: 10.1016/j.wneu.2024.01.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Traumatic brain injury (TBI) is a critical public health concern with profound consequences for affected individuals. This comprehensive literature review delves into TBI intricacies, encompassing primary injury biomechanics and the molecular pathophysiology of the secondary injury cascade. Primary TBI involves a complex interplay of forces, including impact loading, blast overpressure, and impulsive loading, leading to diverse injury patterns. These forces can be categorized into inertial (e.g., rotational acceleration causing focal and diffuse injuries) and contact forces (primarily causing focal injuries like skull fractures). Understanding their interactions is crucial for effective injury management. The secondary injury cascade in TBI comprises multifaceted molecular and cellular responses, including altered ion concentrations, dysfunctional neurotransmitter networks, oxidative stress, and cellular energy disturbances. These disruptions impair synaptic function, neurotransmission, and neuroplasticity, resulting in cognitive and behavioral deficits. Moreover, neuroinflammatory responses play a pivotal role in exacerbating damage. As we endeavor to bridge the knowledge gap between biomechanics and molecular pathophysiology, further research is imperative to unravel the nuanced interplay between mechanical forces and their consequences at the molecular and cellular levels, ultimately guiding the development of targeted therapeutic strategies to mitigate the debilitating effects of TBI. In this study, we aim to provide a concise review of the bridge between biomechanical processes causing primary injury and the ensuing molecular pathophysiology of secondary injury, while detailing the subsequent clinical course for this patient population. This knowledge is crucial for advancing our understanding of TBI and developing effective interventions to improve outcomes for those affected.
Collapse
Affiliation(s)
- Taylor J Orr
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Emal Lesha
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, Tennessee; Semmes Murphey Clinic, Memphis, Tennessee
| | - Alexandra H Kramer
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Arba Cecia
- School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - John E Dugan
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Barrett Schwartz
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, Tennessee; Semmes Murphey Clinic, Memphis, Tennessee
| | - Stephanie L Einhaus
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, Tennessee; Semmes Murphey Clinic, Memphis, Tennessee
| |
Collapse
|
24
|
Yakovlev EV, Simkin IV, Shirokova AA, Kolotieva NA, Novikova SV, Nasyrov AD, Denisenko IR, Gursky KD, Shishkov IN, Narzaeva DE, Salmina AB, Yurchenko SO, Kryuchkov NP. Machine learning approach for recognition and morphological analysis of isolated astrocytes in phase contrast microscopy. Sci Rep 2024; 14:9846. [PMID: 38684715 PMCID: PMC11059356 DOI: 10.1038/s41598-024-59773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Astrocytes are glycolytically active cells in the central nervous system playing a crucial role in various brain processes from homeostasis to neurotransmission. Astrocytes possess a complex branched morphology, frequently examined by fluorescent microscopy. However, staining and fixation may impact the properties of astrocytes, thereby affecting the accuracy of the experimental data of astrocytes dynamics and morphology. On the other hand, phase contrast microscopy can be used to study astrocytes morphology without affecting them, but the post-processing of the resulting low-contrast images is challenging. The main result of this work is a novel approach for recognition and morphological analysis of unstained astrocytes based on machine-learning recognition of microscopic images. We conducted a series of experiments involving the cultivation of isolated astrocytes from the rat brain cortex followed by microscopy. Using the proposed approach, we tracked the temporal evolution of the average total length of branches, branching, and area per astrocyte in our experiments. We believe that the proposed approach and the obtained experimental data will be of interest and benefit to the scientific communities in cell biology, biophysics, and machine learning.
Collapse
Affiliation(s)
- Egor V Yakovlev
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia.
| | - Ivan V Simkin
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Anastasiya A Shirokova
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Nataliya A Kolotieva
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| | - Svetlana V Novikova
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| | - Artur D Nasyrov
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Ilya R Denisenko
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Konstantin D Gursky
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Ivan N Shishkov
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Diana E Narzaeva
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| | - Alla B Salmina
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| | - Stanislav O Yurchenko
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Nikita P Kryuchkov
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia.
| |
Collapse
|
25
|
Hou SJ, Huang YR, Zhu J, Jia YB, Niu XY, Yang JJ, Yu XL, Du XY, Liang SY, Cui F, Li LJ, Tian C, Liu RT. Mouse serum albumin induces neuronal apoptosis and tauopathies. Acta Neuropathol Commun 2024; 12:66. [PMID: 38654316 PMCID: PMC11040793 DOI: 10.1186/s40478-024-01771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
The elderly frequently present impaired blood-brain barrier which is closely associated with various neurodegenerative diseases. However, how the albumin, the most abundant protein in the plasma, leaking through the disrupted BBB, contributes to the neuropathology remains poorly understood. We here demonstrated that mouse serum albumin-activated microglia induced astrocytes to A1 phenotype to remarkably increase levels of Elovl1, an astrocytic synthase for very long-chain saturated fatty acids, significantly promoting VLSFAs secretion and causing neuronal lippoapoptosis through endoplasmic reticulum stress response pathway. Moreover, MSA-activated microglia triggered remarkable tau phosphorylation at multiple sites through NLRP3 inflammasome pathway. Intracerebroventricular injection of MSA into the brains of C57BL/6J mice to a similar concentration as in patient brains induced neuronal apoptosis, neuroinflammation, increased tau phosphorylation, and decreased the spatial learning and memory abilities, while Elovl1 knockdown significantly prevented the deleterious effect of MSA. Overall, our study here revealed that MSA induced tau phosphorylation and neuron apoptosis based on MSA-activated microglia and astrocytes, respectively, showing the critical roles of MSA in initiating the occurrence of tauopathies and cognitive decline, and providing potential therapeutic targets for MSA-induced neuropathology in multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Sheng-Jie Hou
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Ru Huang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Jie Zhu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Bo Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Xiao-Yun Niu
- Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jin-Ju Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Xiao-Lin Yu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Xiao-Yu Du
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Yu Liang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Cui
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling-Jie Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Tian
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui-Tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| |
Collapse
|
26
|
Yu Z, Ding R, Yan Q, Cheng M, Li T, Zheng F, Zhu L, Wang Y, Tang T, Hu E. A Novel Network Pharmacology Strategy Based on the Universal Effectiveness-Common Mechanism of Medical Herbs Uncovers Therapeutic Targets in Traumatic Brain Injury. Drug Des Devel Ther 2024; 18:1175-1188. [PMID: 38645986 PMCID: PMC11032138 DOI: 10.2147/dddt.s450895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose Many herbs can promote neurological recovery following traumatic brain injury (TBI). There must lie a shared mechanism behind the common effectiveness. We aimed to explore the key therapeutic targets for TBI based on the common effectiveness of the medicinal plants. Material and methods The TBI-effective herbs were retrieved from the literature as imputes of network pharmacology. Then, the active ingredients in at least two herbs were screened out as common components. The hub targets of all active compounds were identified through Cytohubba. Next, AutoDock vina was used to rank the common compound-hub target interactions by molecular docking. A highly scored compound-target pair was selected for in vivo validation. Results We enrolled sixteen TBI-effective medicinal herbs and screened out twenty-one common compounds, such as luteolin. Ten hub targets were recognized according to the topology of the protein-protein interaction network of targets, including epidermal growth factor receptor (EGFR). Molecular docking analysis suggested that luteolin could bind strongly to the active pocket of EGFR. Administration of luteolin or the selective EGFR inhibitor AZD3759 to TBI mice promoted the recovery of body weight and neurological function, reduced astrocyte activation and EGFR expression, decreased chondroitin sulfate proteoglycans deposition, and upregulated GAP43 levels in the cortex. The effects were similar to those when treated with the selective EGFR inhibitor. Conclusion The common effectiveness-based, common target screening strategy suggests that inhibition of EGFR can be an effective therapy for TBI. This strategy can be applied to discover core targets and therapeutic compounds in other diseases.
Collapse
Affiliation(s)
- Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Ruoqi Ding
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Qiuju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410008, People’s Republic of China
| | - Lin Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
27
|
Gržeta Krpan N, Harej Hrkać A, Janković T, Dolenec P, Bekyarova E, Parpura V, Pilipović K. Chemically Functionalized Single-Walled Carbon Nanotubes Prevent the Reduction in Plasmalemmal Glutamate Transporter EAAT1 Expression in, and Increase the Release of Selected Cytokines from, Stretch-Injured Astrocytes in Vitro. Cells 2024; 13:225. [PMID: 38334617 PMCID: PMC10854924 DOI: 10.3390/cells13030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
We tested the effects of water-soluble single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), on primary mouse astrocytes exposed to a severe in vitro simulated traumatic brain injury (TBI). The application of SWCNT-PEG in the culture media of injured astrocytes did not affect cell damage levels, when compared to those obtained from injured, functionalization agent (PEG)-treated cells. Furthermore, SWCNT-PEG did not change the levels of oxidatively damaged proteins in astrocytes. However, this nanomaterial prevented the reduction in plasmalemmal glutamate transporter EAAT1 expression caused by the injury, rendering the level of EAAT1 on par with that of control, uninjured PEG-treated astrocytes; in parallel, there was no significant change in the levels of GFAP. Additionally, SWCNT-PEG increased the release of selected cytokines that are generally considered to be involved in recovery processes following injuries. As a loss of EAATs has been implicated as a culprit in the suffering of human patients from TBI, the application of SWCNT-PEG could have valuable effects at the injury site, by preventing the loss of astrocytic EAAT1 and consequently allowing for a much-needed uptake of glutamate from the extracellular space, the accumulation of which leads to unwanted excitotoxicity. Additional potential therapeutic benefits could be reaped from the fact that SWCNT-PEG stimulated the release of selected cytokines from injured astrocytes, which would promote recovery after injury and thus counteract the excess of proinflammatory cytokines present in TBI.
Collapse
Affiliation(s)
- Nika Gržeta Krpan
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Elena Bekyarova
- Department of Chemistry, University of California, Riverside, CA 92521, USA;
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| |
Collapse
|
28
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
29
|
Dwyer MKR, Amelinez-Robles N, Polsfuss I, Herbert K, Kim C, Varghese N, Parry TJ, Buller B, Verdoorn TA, Billing CB, Morrison B. NTS-105 decreased cell death and preserved long-term potentiation in an in vitro model of moderate traumatic brain injury. Exp Neurol 2024; 371:114608. [PMID: 37949202 DOI: 10.1016/j.expneurol.2023.114608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of hospitalization and death. To mitigate these human costs, the search for effective drugs to treat TBI continues. In the current study, we evaluated the efficacy of the novel neurosteroid, NTS-105, to reduce post-traumatic pathobiology in an in vitro model of moderate TBI that utilizes an organotypic hippocampal slice culture. NTS-105 inhibited activation of the androgen receptor and the mineralocorticoid receptor, partially activated the progesterone B receptor and was not active at the glucocorticoid receptor. Treatment with NTS-105 starting one hour after injury decreased post-traumatic cell death in a dose-dependent manner, with 10 nM NTS-105 being most effective. Post-traumatic administration of 10 nM NTS-105 also prevented deficits in long-term potentiation (LTP) without adversely affecting neuronal activity in naïve cultures. We propose that the high potency pleiotropic action of NTS-105 beneficial effects at multiple receptors (e.g. androgen, mineralocorticoid and progesterone) provides significant mechanistic advantages over native neurosteroids such as progesterone, which lacked clinical success for the treatment of TBI. Our results suggest that this pleiotropic pharmacology may be a promising strategy for the effective treatment of TBI, and future studies should test its efficacy in pre-clinical animal models of TBI.
Collapse
Affiliation(s)
- Mary Kate R Dwyer
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Nicolas Amelinez-Robles
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Isabella Polsfuss
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Keondre Herbert
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Carolyn Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Nevin Varghese
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Benjamin Buller
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Todd A Verdoorn
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Clare B Billing
- BioPharmaWorks, LLC, Groton, CT 06340, United States of America
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
30
|
Wardhana DW, Yudhanto HS, Riawan W, Khotimah H, Permatasari HK, Nazwar TA, Nurdiana N. Modification of the height of a weight drop traumatic brain injury model that causes the formation of glial scar and cognitive impairment in rats. BMC Neurol 2023; 23:439. [PMID: 38102565 PMCID: PMC10722700 DOI: 10.1186/s12883-023-03494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a chronic, progressive condition associated with permanent disabilities, particularly cognitive impairments. Glial scar formation following TBI is considered a contributing factor to these persistent disabilities. Currently, limited research exists on pharmacological interventions targeting glial scar prevention that require a standard weight drop TBI model for glial scar formation. Since there is no established standard TBI model for glial scar formation, this study aims to validate and modify the height of the weight drop model to identify glial scar formation and cognitive impairments. METHODS Fifteen male Sprague Dawley rats were randomly divided into sham, WD1, and WD2 groups. The weight drop model with a 10 g load was applied to the right exposed brain of the rats from a height of 5 cm (WD1) and 10 cm (WD2) using a modified Feeney's weight drop device. Cognitive impairments were confirmed using the novel object recognition (NOR) test with ethovision software on day 15. Subsequently, the rats were decapitated on day 16, and GFAP immunohistochemical staining was performed to confirm the presence of glial scarring. RESULTS The WD1 and WD2 groups exhibited a significant increase in glial scar formation compared to the sham group, with the WD2 group resulting in even more pronounced glial scar formation. Only the WD2 model caused statistically significant cognitive damage. The negative correlation coefficient indicates that an increase in GFAP + cells will decrease the cognitive function. CONCLUSION Modification of the height of the weight drop model, by dropping a weight of 10 g from a height of 10 cm (WD2 group) onto the right brain exposed of the rat has been proven to induce the formation of a glial scar and cognitive impairment.
Collapse
Affiliation(s)
- Donny Wisnu Wardhana
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.
- Department of Surgery, Faculty of Medicine, Universitas Brawijaya/Saiful Anwar General Hospital, Malang, Indonesia.
| | - Hendy Setyo Yudhanto
- Department of Anatomy Pathology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Wibi Riawan
- Department of Biomolecular Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Husnul Khotimah
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Happy Kurnia Permatasari
- Department of Biomolecular Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Tommy Alfandy Nazwar
- Department of Surgery, Faculty of Medicine, Universitas Brawijaya/Saiful Anwar General Hospital, Malang, Indonesia
| | - Nurdiana Nurdiana
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
31
|
Zhang Q, Chen J, Lin J, Liang R, He M, Wang Y, Tan H. Porous Three-Dimensional Polyurethane Scaffolds Promote Scar-Free Endogenous Regeneration After Acute Brain Hemorrhage. Transl Stroke Res 2023:10.1007/s12975-023-01212-x. [PMID: 37995088 DOI: 10.1007/s12975-023-01212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023]
Abstract
Intracerebral hemorrhage (ICH) is the most lethal subtype of stroke and is associated with significant morbidity and mortality. Despite advances in the clinical treatment of ICH, limited progress has been made regarding endogenous brain regeneration after ICH. Failure of brain regeneration is mainly attributed to the inhibitive regenerative microenvironment caused by secondary injury after ICH. In this study, we investigated a three-dimensional biodegradable waterborne polyurethane (BWPU) scaffold as a tool to promote brain regeneration after ICH. After implantation into the cavity following hematoma evacuation, these implanted scaffolds could act as a reservoir; store a series of necrotic debris, cytokines, and chemokines; and attract microglia/macrophages to their pores. Subsequently, these microglia/macrophages were polarized into the M1-like subtype to eliminate these substances. This process disperses M1-like immune cells and prevents the formation of dense glial scar-free structures after ICH. Inflammatory cells in scaffolds include scar-free secreted growth factors and extracellular matrix (ECM) proteins, and further induce a M2-like immune cells enriched regeneration-predominant microenvironment to promote endogenous brain regeneration with functional recovery. In summary, in this work, we have revealed the potential and mechanism of the BWPU scaffold as a tool to promote endogenous brain tissue regeneration after ICH.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
| | - Jinlin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jingjing Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
| | - Min He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
32
|
Oujamaa L, Delon-Martin C, Jaroszynski C, Termenon M, Silva S, Payen JF, Achard S. Functional hub disruption emphasizes consciousness recovery in severe traumatic brain injury. Brain Commun 2023; 5:fcad319. [PMID: 38757093 PMCID: PMC11098044 DOI: 10.1093/braincomms/fcad319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/20/2023] [Accepted: 11/21/2023] [Indexed: 05/18/2024] Open
Abstract
Severe traumatic brain injury can lead to transient or even chronic disorder of consciousness. To increase diagnosis and prognosis accuracy of disorder of consciousness, functional neuroimaging is recommended 1 month post-injury. Here, we investigated brain networks remodelling on longitudinal data between 1 and 3 months post severe traumatic brain injury related to change of consciousness. Thirty-four severe traumatic brain-injured patients were included in a cross-sectional and longitudinal clinical study, and their MRI data were compared to those of 20 healthy subjects. Long duration resting-state functional MRI were acquired in minimally conscious and conscious patients at two time points after their brain injury. The first time corresponds to the exit from intensive care unit and the second one to the discharge from post-intensive care rehabilitation ward. Brain networks data were extracted using graph analysis and metrics at each node quantifying local (clustering) and global (degree) connectivity characteristics. Comparison with brain networks of healthy subjects revealed patterns of hyper- and hypo-connectivity that characterize brain networks reorganization through the hub disruption index, a value quantifying the functional disruption in each individual severe traumatic brain injury graph. At discharge from intensive care unit, 24 patients' graphs (9 minimally conscious and 15 conscious) were fully analysed and demonstrated significant network disruption. Clustering and degree nodal metrics, respectively, related to segregation and integration properties of the network, were relevant to distinguish minimally conscious and conscious groups. At discharge from post-intensive care rehabilitation unit, 15 patients' graphs (2 minimally conscious, 13 conscious) were fully analysed. The conscious group still presented a significant difference with healthy subjects. Using mixed effects models, we showed that consciousness state, rather than time, explained the hub disruption index differences between minimally conscious and conscious groups. While severe traumatic brain-injured patients recovered full consciousness, regional functional connectivity evolved towards a healthy pattern. More specifically, the restoration of a healthy brain functional segregation could be necessary for consciousness recovery after severe traumatic brain injury. For the first time, extracting the hub disruption index directly from each patient's graph, we were able to track the clinical alteration and subsequent recovery of consciousness during the first 3 months following a severe traumatic brain injury.
Collapse
Affiliation(s)
- Lydia Oujamaa
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Chantal Delon-Martin
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Chloé Jaroszynski
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Maite Termenon
- Faculty of Engineering, Biomedical Engineering Department, Mondragon Unibertsitatea (MU-ENG), 20500 Mondragon, Spain
| | - Stein Silva
- Toulouse NeuroImaging Center, Toulouse III Paul Sabatier University, Inserm, 31062 Toulouse, France
- Critical Care Unit, University Teaching Hospital of Purpan, 31059 Toulouse, France
| | - Jean-François Payen
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Sophie Achard
- University Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France
| |
Collapse
|
33
|
Van der Meeren L, Efimova I, Demuynck R, Parakhonskiy B, Krysko DV, Skirtach AG. Mechanobiology of Ferroptotic Cancer Cells as a Novel "Eat-Me" Signal: Regulating Efferocytosis through Layer-by-Layer Coating. Adv Healthc Mater 2023; 12:e2301025. [PMID: 37273241 DOI: 10.1002/adhm.202301025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/31/2023] [Indexed: 06/06/2023]
Abstract
The importance of the clearance of dead cells is shown to have a regulatory role for normal tissue homeostasis and for the modulation of immune responses. However, how mechanobiological properties of dead cells affect efferocytosis remains largely unknown. Here, it is reported that the Young's modulus of cancer cells undergoing ferroptosis is reduced. To modulate their Young's modulus a layer-by-layer (LbL) nanocoating is developed. Scanning electron and fluorescence microscopy confirm coating efficiency of ferroptotic cells while atomic force microscopy reveals encapsulation of the dead cells increases their Young's modulus dependent on the number of applied LbL layers which increases their efferocytosis by primary macrophages. This work demonstrates the crucial role of mechanobiology of dead cells in regulating their efferocytosis by macrophages which can be exploited for the development of novel therapeutic strategies for diseases where modulation of efferocytosis can be potentially beneficial and for the design of drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Louis Van der Meeren
- Nano-BioTechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Iuliia Efimova
- Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| | - Robin Demuynck
- Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| | - Bogdan Parakhonskiy
- Nano-BioTechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Dmitri V Krysko
- Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| | - Andre G Skirtach
- Nano-BioTechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| |
Collapse
|
34
|
Qiu X, Guo Y, Liu M, Zhang B, Li J, Wei J, Li M. Single-cell RNA-sequencing analysis reveals enhanced non-canonical neurotrophic factor signaling in the subacute phase of traumatic brain injury. CNS Neurosci Ther 2023; 29:3446-3459. [PMID: 37269057 PMCID: PMC10580338 DOI: 10.1111/cns.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of long-term disability in young adults and induces complex neuropathological processes. Cellular autonomous and intercellular changes during the subacute phase contribute substantially to the neuropathology of TBI. However, the underlying mechanisms remain elusive. In this study, we explored the dysregulated cellular signaling during the subacute phase of TBI. METHODS Single-cell RNA-sequencing data (GSE160763) of TBI were analyzed to explore the cell-cell communication in the subacute phase of TBI. Upregulated neurotrophic factor signaling was validated in a mouse model of TBI. Primary cell cultures and cell lines were used as in vitro models to examine the potential mechanisms affecting signaling. RESULTS Single-cell RNA-sequencing analysis revealed that microglia and astrocytes were the most affected cells during the subacute phase of TBI. Cell-cell communication analysis demonstrated that signaling mediated by the non-canonical neurotrophic factors midkine (MDK), pleiotrophin (PTN), and prosaposin (PSAP) in the microglia/astrocytes was upregulated in the subacute phase of TBI. Time-course profiling showed that MDK, PTN, and PSAP expression was primarily upregulated in the subacute phase of TBI, and astrocytes were the major source of MDK and PTN after TBI. In vitro studies revealed that the expression of MDK, PTN, and PSAP in astrocytes was enhanced by activated microglia. Moreover, MDK and PTN promoted the proliferation of neural progenitors derived from human-induced pluripotent stem cells (iPSCs) and neurite growth in iPSC-derived neurons, whereas PSAP exclusively stimulated neurite growth. CONCLUSION The non-canonical neurotrophic factors MDK, PTN, and PSAP were upregulated in the subacute phase of TBI and played a crucial role in neuroregeneration.
Collapse
Affiliation(s)
- Xuecheng Qiu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yaling Guo
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Ming‐Feng Liu
- Department of NeurosurgeryXuzhou Hospital of Traditional Chinese MedicineXuzhouJiangsuChina
| | - Bingge Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jingzhen Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jian‐Feng Wei
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Department of Histology and EmbryologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Meng Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
35
|
Anaya-Martínez V, Anacleto-Santos J, Mondragón-Flores R, Zepeda-Rodríguez A, Casarrubias-Tabarez B, de Jesús López-Pérez T, de Alba-Alvarado MC, Martínez-Ortiz-de-Montellano C, Carrasco-Ramírez E, Rivera-Fernández N. Changes in the Proliferation of the Neural Progenitor Cells of Adult Mice Chronically Infected with Toxoplasma gondii. Microorganisms 2023; 11:2671. [PMID: 38004683 PMCID: PMC10673519 DOI: 10.3390/microorganisms11112671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
During Toxoplasma gondii chronic infection, certain internal factors that trigger the proliferation of neural progenitor cells (NPCs), such as brain inflammation, cell death, and changes in cytokine levels, are observed. NPCs give rise to neuronal cell types in the adult brain of some mammals. NPCs are capable of dividing and differentiating into a restricted repertoire of neuronal and glial cell types. In this study, the proliferation of NPCs was evaluated in CD-1 adult male mice chronically infected with the T. gondii ME49 strain. Histological brain sections from the infected mice were evaluated in order to observe T. gondii tissue cysts. Sagittal and coronal sections from the subventricular zone of the lateral ventricles and from the subgranular zone of the hippocampal dentate gyrus, as well as sagittal sections from the rostral migratory stream, were obtained from infected and non-infected mice previously injected with bromodeoxyuridine (BrdU). A flotation immunofluorescence technique was used to identify BrdU+ NPC. The scanning of BrdU+ cells was conducted using a confocal microscope, and the counting was performed with ImageJ® software (version 1.48q). In all the evaluated zones from the infected mice, a significant proliferation of the NPCs was observed when compared with that of the control group. We concluded that chronic infection with T. gondii increased the proliferation of NPCs in the three evaluated zones. Regardless of the role these cells are playing, our results could be useful to better understand the pathogenesis of chronic toxoplasmosis.
Collapse
Affiliation(s)
- Verónica Anaya-Martínez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac, Lomas Anáhuac, Naucalpan de Juárez 52786, Estado de México, Mexico;
| | - Jhony Anacleto-Santos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| | | | - Armando Zepeda-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (A.Z.-R.); (B.C.-T.)
| | - Brenda Casarrubias-Tabarez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (A.Z.-R.); (B.C.-T.)
| | - Teresa de Jesús López-Pérez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| | - Mariana Citlalli de Alba-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| | - Cintli Martínez-Ortiz-de-Montellano
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico;
| | - Elba Carrasco-Ramírez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| |
Collapse
|
36
|
Hendler RM, Weiss OE, Morad T, Sion G, Kirby M, Dubinsky Z, Barbora A, Minnes R, Baranes D. A Poly-D-lysine-Coated Coralline Matrix Promotes Hippocampal Neural Precursor Cells' Differentiation into GFAP-Positive Astrocytes. Polymers (Basel) 2023; 15:4054. [PMID: 37896298 PMCID: PMC10610048 DOI: 10.3390/polym15204054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
A major goal of regenerative medicine of the central nervous system is to accelerate the regeneration of nerve tissue, where astrocytes, despite their positive and negative roles, play a critical role. Thus, scaffolds capable of producing astrocytes from neural precursor cells (NPCs) are most desirable. Our study shows that NPCs are converted into reactive astrocytes upon cultivation on coralline-derived calcium carbonate coated with poly-D-lysine (PDL-CS). As shown via nuclei staining, the adhesion of neurospheres containing hundreds of hippocampal neural cells to PDL-CS resulted in disaggregation of the cell cluster as well as the radial migration of dozens of cells away from the neurosphere core. Migrating cells per neurosphere averaged 100 on PDL-CS, significantly higher than on uncoated CS (28), PDL-coated glass (65), or uncoated glass (20). After 3 days of culture on PDL-CS, cell migration plateaued and remained stable for four more days. In addition, NPCs expressing nestin underwent continuous morphological changes from round to spiky, extending and elongating their processes, resembling activated astrocytes. The extension of the process increased continuously during the maturation of the culture and doubled after 7 days compared to day 1, whereas bifurcation increased by twofold during the first 3 days before plateauing. In addition, nestin positive cells' shape, measured through the opposite circularity level correlation, decreased approximately twofold after three days, indicating spiky transformation. Moreover, nestin-positive cells co-expressing GFAP increased by 2.2 from day 1 to 7, reaching 40% of the NPC population on day 7. In this way, PDL-CS promotes NPC differentiation into reactive astrocytes, which could accelerate the repair of neural tissue.
Collapse
Affiliation(s)
- Roni Mina Hendler
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Orly Eva Weiss
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Tzachy Morad
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Guy Sion
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| | - Michael Kirby
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
- Adelson School of Medicine, Ariel University, Ariel 4070000, Israel
| | - Zvy Dubinsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ayan Barbora
- Department of Physics, Ariel University, Ariel 4070000, Israel
| | - Refael Minnes
- Department of Physics, Ariel University, Ariel 4070000, Israel
| | - Danny Baranes
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
- Adelson School of Medicine, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
37
|
You J, Youssef MMM, Santos JR, Lee J, Park J. Microglia and Astrocytes in Amyotrophic Lateral Sclerosis: Disease-Associated States, Pathological Roles, and Therapeutic Potential. BIOLOGY 2023; 12:1307. [PMID: 37887017 PMCID: PMC10603852 DOI: 10.3390/biology12101307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Microglial and astrocytic reactivity is a prominent feature of amyotrophic lateral sclerosis (ALS). Microglia and astrocytes have been increasingly appreciated to play pivotal roles in disease pathogenesis. These cells can adopt distinct states characterized by a specific molecular profile or function depending on the different contexts of development, health, aging, and disease. Accumulating evidence from ALS rodent and cell models has demonstrated neuroprotective and neurotoxic functions from microglia and astrocytes. In this review, we focused on the recent advancements of knowledge in microglial and astrocytic states and nomenclature, the landmark discoveries demonstrating a clear contribution of microglia and astrocytes to ALS pathogenesis, and novel therapeutic candidates leveraging these cells that are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Mohieldin M. M. Youssef
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Jhune Rizsan Santos
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jooyun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
38
|
Wu X, Li JR, Fu Y, Chen DY, Nie H, Tang ZP. From static to dynamic: live observation of the support system after ischemic stroke by two photon-excited fluorescence laser-scanning microscopy. Neural Regen Res 2023; 18:2093-2107. [PMID: 37056116 PMCID: PMC10328295 DOI: 10.4103/1673-5374.369099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
Ischemic stroke is one of the most common causes of mortality and disability worldwide. However, treatment efficacy and the progress of research remain unsatisfactory. As the critical support system and essential components in neurovascular units, glial cells and blood vessels (including the blood-brain barrier) together maintain an optimal microenvironment for neuronal function. They provide nutrients, regulate neuronal excitability, and prevent harmful substances from entering brain tissue. The highly dynamic networks of this support system play an essential role in ischemic stroke through processes including brain homeostasis, supporting neuronal function, and reacting to injuries. However, most studies have focused on postmortem animals, which inevitably lack critical information about the dynamic changes that occur after ischemic stroke. Therefore, a high-precision technique for research in living animals is urgently needed. Two-photon fluorescence laser-scanning microscopy is a powerful imaging technique that can facilitate live imaging at high spatiotemporal resolutions. Two-photon fluorescence laser-scanning microscopy can provide images of the whole-cortex vascular 3D structure, information on multicellular component interactions, and provide images of structure and function in the cranial window. This technique shifts the existing research paradigm from static to dynamic, from flat to stereoscopic, and from single-cell function to multicellular intercommunication, thus providing direct and reliable evidence to identify the pathophysiological mechanisms following ischemic stroke in an intact brain. In this review, we discuss exciting findings from research on the support system after ischemic stroke using two-photon fluorescence laser-scanning microscopy, highlighting the importance of dynamic observations of cellular behavior and interactions in the networks of the brain's support systems. We show the excellent application prospects and advantages of two-photon fluorescence laser-scanning microscopy and predict future research developments and directions in the study of ischemic stroke.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Rui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yu Fu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan-Yang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhou-Ping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
39
|
Ugidos IF, González-Rodríguez P, Santos-Galdiano M, Font-Belmonte E, Anuncibay-Soto B, Pérez-Rodríguez D, Gonzalo-Orden JM, Fernández-López A. Neuroprotective effects of meloxicam on transient brain ischemia in rats: the two faces of anti-inflammatory treatments. Neural Regen Res 2023; 18:1961-1967. [PMID: 36926720 PMCID: PMC10233777 DOI: 10.4103/1673-5374.367846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 01/22/2023] Open
Abstract
The inflammatory response plays an important role in neuroprotection and regeneration after ischemic insult. The use of non-steroidal anti-inflammatory drugs has been a matter of debate as to whether they have beneficial or detrimental effects. In this context, the effects of the anti-inflammatory agent meloxicam have been scarcely documented after stroke, but its ability to inhibit both cyclooxygenase isoforms (1 and 2) could be a promising strategy to modulate post-ischemic inflammation. This study analyzed the effect of meloxicam in a transient focal cerebral ischemia model in rats, measuring its neuroprotective effect after 48 hours and 7 days of reperfusion and the effects of the treatment on the glial scar and regenerative events such as the generation of new progenitors in the subventricular zone and axonal sprouting at the edge of the damaged area. We show that meloxicam's neuroprotective effects remained after 7 days of reperfusion even if its administration was restricted to the two first days after ischemia. Moreover, meloxicam treatment modulated glial scar reactivity, which matched with an increase in axonal sprouting. However, this treatment decreased the formation of neuronal progenitor cells. This study discusses the dual role of anti-inflammatory treatments after stroke and encourages the careful analysis of both the neuroprotective and the regenerative effects in preclinical studies.
Collapse
Affiliation(s)
- Irene Fernández Ugidos
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Paloma González-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - María Santos-Galdiano
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Neural Therapies SL. Edif. Institutos de Investigación. Planta baja. Local B43. Campus de Vegazana s/n. León. Spain
| | - Enrique Font-Belmonte
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Berta Anuncibay-Soto
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Diego Pérez-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - José Manuel Gonzalo-Orden
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Department of Medicina, Cirugía y Anatomía Veterinaria, University of León, León, Spain
| | - Arsenio Fernández-López
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| |
Collapse
|
40
|
Janković T, Pilipović K. Single Versus Repetitive Traumatic Brain Injury: Current Knowledge on the Chronic Outcomes, Neuropathology and the Role of TDP-43 Proteinopathy. Exp Neurobiol 2023; 32:195-215. [PMID: 37749924 PMCID: PMC10569144 DOI: 10.5607/en23008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most important causes of death and disability in adults and thus an important public health problem. Following TBI, secondary pathophysiological processes develop over time and condition the development of different neurodegenerative entities. Previous studies suggest that neurobehavioral changes occurring after a single TBI are the basis for the development of Alzheimer's disease, while repetitive TBI is considered to be a contributing factor for chronic traumatic encephalopathy development. However, pathophysiological processes that determine the evolvement of a particular chronic entity are still unclear. Human post-mortem studies have found combinations of amyloid, tau, Lewi bodies, and TAR DNA-binding protein 43 (TDP-43) pathologies after both single and repetitive TBI. This review focuses on the pathological changes of TDP-43 after single and repetitive brain traumas. Numerous studies have shown that TDP-43 proteinopathy noticeably occurs after repetitive head trauma. A relatively small number of available preclinical research on single brain injury are not in complete agreement with the results from the human samples, which makes it difficult to draw specific conclusions. Also, as TBI is considered a heterogeneous type of injury, different experimental trauma models and injury intensities may cause differences in the cascade of secondary injury, which should be considered in future studies. Experimental and post-mortem studies of TDP-43 pathobiology should be carried out, preferably in the same laboratories, to determine its involvement in the development of neurodegenerative conditions after one and repetitive TBI, especially in the context of the development of new therapeutic options.
Collapse
Affiliation(s)
- Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| |
Collapse
|
41
|
Liaudanskaya V, Fiore NJ, Zhang Y, Milton Y, Kelly MF, Coe M, Barreiro A, Rose VK, Shapiro MR, Mullis AS, Shevzov-Zebrun A, Blurton-Jones M, Whalen MJ, Symes AJ, Georgakoudi I, Nieland TJF, Kaplan DL. Mitochondria dysregulation contributes to secondary neurodegeneration progression post-contusion injury in human 3D in vitro triculture brain tissue model. Cell Death Dis 2023; 14:496. [PMID: 37537168 PMCID: PMC10400598 DOI: 10.1038/s41419-023-05980-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
Traumatic Brain injury-induced disturbances in mitochondrial fission-and-fusion dynamics have been linked to the onset and propagation of neuroinflammation and neurodegeneration. However, cell-type-specific contributions and crosstalk between neurons, microglia, and astrocytes in mitochondria-driven neurodegeneration after brain injury remain undefined. We developed a human three-dimensional in vitro triculture tissue model of a contusion injury composed of neurons, microglia, and astrocytes and examined the contributions of mitochondrial dysregulation to neuroinflammation and progression of injury-induced neurodegeneration. Pharmacological studies presented here suggest that fragmented mitochondria released by microglia are a key contributor to secondary neuronal damage progression after contusion injury, a pathway that requires astrocyte-microglia crosstalk. Controlling mitochondrial dysfunction thus offers an exciting option for developing therapies for TBI patients.
Collapse
Affiliation(s)
- Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Nicholas J Fiore
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Yuka Milton
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Marilyn F Kelly
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Marly Coe
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Ariana Barreiro
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Victoria K Rose
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Matthew R Shapiro
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Adam S Mullis
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Michael J Whalen
- Department of Pediatrics, Massachusetts General Hospital, Charlestown, MA, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
42
|
Datta S, Lin F, Jones LD, Pingle SC, Kesari S, Ashili S. Traumatic brain injury and immunological outcomes: the double-edged killer. Future Sci OA 2023; 9:FSO864. [PMID: 37228857 PMCID: PMC10203904 DOI: 10.2144/fsoa-2023-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of mortality and morbidity worldwide resulting from falls, car accidents, sports, and blast injuries. TBI is characterized by severe, life-threatening consequences due to neuroinflammation in the brain. Contact and collision sports lead to higher disability and death rates among young adults. Unfortunately, no therapy or drug protocol currently addresses the complex pathophysiology of TBI, leading to the long-term chronic neuroinflammatory assaults. However, the immune response plays a crucial role in tissue-level injury repair. This review aims to provide a better understanding of TBI's immunobiology and management protocols from an immunopathological perspective. It further elaborates on the risk factors, disease outcomes, and preclinical studies to design precisely targeted interventions for enhancing TBI outcomes.
Collapse
Affiliation(s)
- Souvik Datta
- Rhenix Lifesciences, 237 Arsha Apartments, Kalyan Nagar, Hyderabad, TG 500038, India
| | - Feng Lin
- CureScience, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | | | | | - Santosh Kesari
- Saint John's Cancer Institute, Santa Monica, CA 90404, USA
| | | |
Collapse
|
43
|
Zaghloul N, Cohen NS, Ayasolla KR, Li HL, Kurepa D, Ahmed MN. Galantamine ameliorates hyperoxia-induced brain injury in neonatal mice. Front Neurosci 2023; 17:890015. [PMID: 37424990 PMCID: PMC10323435 DOI: 10.3389/fnins.2023.890015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Prolonged oxygen therapy in preterm infants often leads to cognitive impairment. Hyperoxia leads to excess free radical production with subsequent neuroinflammation, astrogliosis, microgliosis and apoptosis. We hypothesized that Galantamine, an acetyl choline esterase inhibitor and an FDA approved treatment of Alzheimer's disease, will reduce hyperoxic brain injury in neonatal mice and will improve learning and memory. Methods Mouse pups at postnatal day 1 (P1) were placed in a hyperoxia chamber (FiO2 95%) for 7 days. Pups were injected IP daily with Galantamine (5 mg/kg/dose) or saline for 7 days. Results Hyperoxia caused significant neurodegeneration in cholinergic nuclei of the basal forebrain cholinergic system (BFCS), laterodorsal tegmental (LDT) nucleus and nucleus ambiguus (NA). Galantamine ameliorated this neuronal loss. Treated hyperoxic group showed a significant increase of choline acetyl transferase (ChAT) expression and a decrease of acetyl choline esterase activity, thus increasing acetyl choline levels in hyperoxia environment. Hyperoxia increased pro-inflammatory cytokines namely IL -1β, IL-6 and TNF α, HMGB1, NF-κB activation. Galantamine showed its potent anti- inflammatory effect, by blunting cytokines surges among treated group. Treatment with Galantamine increased myelination while reducing apoptosis, microgliosis, astrogliosis and ROS production. Long term neurobehavioral outcomes at P60 showed improved locomotor activity, coordination, learning and memory, along with increased hippocampal volumes on MRI with Galantamine treated versus non treated hyperoxia group. Conclusion Together our findings suggest a potential therapeutic role for Galantamine in attenuating hyperoxia-induced brain injury.
Collapse
Affiliation(s)
- Nahla Zaghloul
- Steele Children's Research Center, Division of Neonatology, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Naomi S. Cohen
- Neonatology Research Laboratory, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Hsiu-Ling Li
- Department of Physiology and Pharmacology, SUNY-Downstate Medical Center, New York, NY, United States
| | - Dalibor Kurepa
- Neonatology Research Laboratory, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Mohamed N. Ahmed
- Steele Children's Research Center, Division of Neonatology, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
44
|
Woo AM, Sontheimer H. Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1198021. [PMID: 39086689 PMCID: PMC11285605 DOI: 10.3389/fmmed.2023.1198021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2024]
Abstract
Often considered the "housekeeping" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.
Collapse
Affiliation(s)
- AnnaLin M. Woo
- Neuroscience Graduate Program, Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| | - Harald Sontheimer
- Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
45
|
Tyrtyshnaia A, Manzhulo O, Manzhulo I. Synaptamide Ameliorates Hippocampal Neurodegeneration and Glial Activation in Mice with Traumatic Brain Injury. Int J Mol Sci 2023; 24:10014. [PMID: 37373162 DOI: 10.3390/ijms241210014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major concern for public health worldwide, affecting 55 million people and being the leading cause of death and disability. To improve the outcomes and effectiveness of treatment for these patients, we conducted a study on the potential therapeutic use of N-docosahexaenoylethanolamine (synaptamide) in mice using the weight-drop injury (WDI) TBI model. Our study focused on exploring synaptamide's effects on neurodegeneration processes and changes in neuronal and glial plasticity. Our findings showed that synaptamide could prevent TBI-associated working memory decline and neurodegenerative changes in the hippocampus, and it could alleviate decreased adult hippocampal neurogenesis. Furthermore, synaptamide regulated the production of astro- and microglial markers during TBI, promoting the anti-inflammatory transformation of the microglial phenotype. Additional effects of synaptamide in TBI include stimulating antioxidant and antiapoptotic defense, leading to the downregulation of the Bad pro-apoptotic marker. Our data suggest that synaptamide has promising potential as a therapeutic agent to prevent the long-term neurodegenerative consequences of TBI and improve the quality of life.
Collapse
Affiliation(s)
- Anna Tyrtyshnaia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, Vladivostok 690041, Russia
| | - Olga Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, Vladivostok 690041, Russia
| | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, Vladivostok 690041, Russia
| |
Collapse
|
46
|
Tochon L, Vouimba RM, Corio M, Henkous N, Béracochéa D, Guillou JL, David V. Chronic alcohol consumption shifts learning strategies and synaptic plasticity from hippocampus to striatum-dependent pathways. Front Psychiatry 2023; 14:1129030. [PMID: 37304443 PMCID: PMC10250670 DOI: 10.3389/fpsyt.2023.1129030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The hippocampus and striatum have dissociable roles in memory and are necessary for spatial and procedural/cued learning, respectively. Emotionally charged, stressful events promote the use of striatal- over hippocampus-dependent learning through the activation of the amygdala. An emerging hypothesis suggests that chronic consumption of addictive drugs similarly disrupt spatial/declarative memory while facilitating striatum-dependent associative learning. This cognitive imbalance could contribute to maintain addictive behaviors and increase the risk of relapse. Methods We first examined, in C57BL/6 J male mice, whether chronic alcohol consumption (CAC) and alcohol withdrawal (AW) might modulate the respective use of spatial vs. single cue-based learning strategies, using a competition protocol in the Barnes maze task. We then performed in vivo electrophysiological studies in freely moving mice to assess learning-induced synaptic plasticity in both the basolateral amygdala (BLA) to dorsal hippocampus (dCA1) and BLA to dorsolateral striatum (DLS) pathways. Results We found that both CAC and early AW promote the use of cue-dependent learning strategies, and potentiate plasticity in the BLA → DLS pathway while reducing the use of spatial memory and depressing BLA → dCA1 neurotransmission. Discussion These results support the view that CAC disrupt normal hippocampo-striatal interactions, and suggest that targeting this cognitive imbalance through spatial/declarative task training could be of great help to maintain protracted abstinence in alcoholic patients.
Collapse
Affiliation(s)
- Léa Tochon
- *Correspondence: Léa Tochon, ; Vincent David,
| | | | | | | | | | | | | |
Collapse
|
47
|
Chen H, Peng H, Wang PC, Zou T, Feng XM, Wan BW. Role of regulatory T cells in spinal cord injury. Eur J Med Res 2023; 28:163. [PMID: 37161548 PMCID: PMC10169350 DOI: 10.1186/s40001-023-01122-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Spinal cord injury is an intricate process involving a series of multi-temporal and multi-component pathological events, among which inflammatory response is the core. Thus, it is crucial to find a way to prevent the damaging effects of the inflammatory response. The research has found that Treg cells can suppress the activation, proliferation, and effector functions of many parenchymal cells by multiple mechanisms. This review discusses how Treg cells regulate the inflammatory cells to promote spinal cord recovery. These parenchymal cells include macrophages/microglia, oligodendrocytes, astrocytes, and others. In addition, we discuss the adverse role of Treg cells, the status of treatment, and the prospects of cell-based therapies after spinal cord injury. In conclusion, this review provides an overview of the regulatory role of Treg cells in spinal cord injury. We hope to offer new insights into the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Hao Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Hao Peng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Ping-Chuan Wang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Tao Zou
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Xin-Min Feng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Bo-Wen Wan
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
48
|
Xiong J, Lv Y, Ma X, Peng G, Wu C, Hou J, Zhang Y, Wu C, Chen-Yi Liu T, Yang L. Neuroprotective Effect of Sub-lethal Hyperthermia Preconditioning in a Rat Model of Repeated Closed Head Injury. Neuroscience 2023; 522:57-68. [PMID: 37164305 DOI: 10.1016/j.neuroscience.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Repeated mild traumatic brain injury (rTBI), one of the most common forms of traumatic brain injury, is a worldwide severe public health concern. rTBI induces cumulative neuronal injury, neurological dysfunction, and cognitive deficits. Although there are clinical treatment methods, there is still an urgent need to develop preventive approaches for susceptible populations. Using a repeated closed head injury (rCHI) rat model, we interrogate the effect of sub-lethal hyperthermia preconditioning (SHP) on rCHI-induced neuronal injury and behavioral changes. Our study applied the repeated weight-drop model to induce the rCHI. According to the changes of heat shock protein 70 (HSP 70) in the cortex and hippocampus following a single SHP treatment in normal rats, the SHP was delivered to the rats 18 hours before rCHI. We found that HSP significantly alleviated rCHI-induced anxiety-like behaviors and impairments in motor abilities and spatial memory. SHP exerts significant neuroprotection against rCHI-induced neuronal damage, apoptosis, and neuroinflammation. Our findings support the potential use of SHP as a preventative approach for alleviating rCHI-induced brain damage.
Collapse
Affiliation(s)
- Jing Xiong
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China; Guangzhou Cadre Health Management Center, Guangzhou, China 510006, China
| | - Ying Lv
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China
| | - Xu Ma
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China
| | - Guangcong Peng
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China
| | - Chunyi Wu
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China
| | - Jun Hou
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China
| | - Yulan Zhang
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China
| | - Chongyun Wu
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China.
| | - Timon Chen-Yi Liu
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China.
| | - Luodan Yang
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China.
| |
Collapse
|
49
|
Wadie CM, Ali RH, Mohamed AEHA, Labib JMW, Sabaa AR, Awad HEA, Abou-Bakr DA. A comparative study of acetyl-l-carnitine and caloric restriction impact on hippocampal autophagy, apoptosis, neurogenesis, and astroglial function in AlCl 3-induced Alzheimer's in rats. Can J Physiol Pharmacol 2023; 101:244-257. [PMID: 36988119 DOI: 10.1139/cjpp-2022-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD) is a worldwide chronic progressive neurodegenerative disease. We aimed to investigate and compare the neuroprotective impact of acetyl-l-carnitine and caloric restriction (CR) on AlCl3-induced AD to explore the pathogenesis and therapeutic strategies of AD. Sixty-seven adult male Wistar rats were allocated into Control, AlCl3, AlCl3-acetyl-l-carnitine, and AlCl3-CR groups. Each of AlCl3 and acetyl-l-carnitine were given by gavage in a daily dose of 100 mg/kg and CR was conducted by giving 70% of the daily average caloric intake of the control group. Rats were subjected to behavioral assessment using open field test, Y maze, novel object recognition test and passive avoidance test, biochemical assay of serum phosphorylated tau (pTau), hippocampal homogenate phosphorylated adenosine monophosphate-activated protein kinase, Beclin-1, Bcl-2-associated X protein, and B cell lymphoma 2 (Bcl2) as well as hippocampal Ki-67 and glial fibrillary acidic protein immunohistochemistry. AlCl3-induced cognitive and behavioral deficits coincident with impaired autophagy and enhanced apoptosis associated with defective neurogenesis and defective astrocyte activation. Acetyl-l-carnitine and CR partially protect against AlCl3-induced behavioral, cognitive, biochemical, and histological changes, with more ameliorative effect of acetyl-l-carnitine on hippocampal apoptotic markers, and more obvious behavioral and histological improvement with CR.
Collapse
Affiliation(s)
- Christina Magdy Wadie
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU), Cairo, Egypt
| | - Radwa Hassan Ali
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU) & Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | | | - Jolly M W Labib
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University (ASU), Cairo, Egypt
| | - Abdel Rhman Sabaa
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU) & Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Hossam Eldin Ahmed Awad
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU) & Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Doaa Ahmed Abou-Bakr
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU) & Armed Forces College of Medicine (AFCM), Cairo, Egypt
| |
Collapse
|
50
|
Kang YJ, Xue Y, Shin JH, Cho H. Human mini-brains for reconstituting central nervous system disorders. LAB ON A CHIP 2023; 23:964-981. [PMID: 36644973 DOI: 10.1039/d2lc00897a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neurological disorders in the central nervous system (CNS) are progressive and irreversible diseases leading to devastating impacts on patients' life as they cause cognitive impairment, dementia, and even loss of essential body functions. The development of effective medicines curing CNS disorders is, however, one of the most ambitious challenges due to the extremely complex functions and structures of the human brain. In this regard, there are unmet needs to develop simplified but physiopathologically-relevant brain models. Recent advances in the microfluidic techniques allow multicellular culture forming miniaturized 3D human brains by aligning parts of brain regions with specific cells serving suitable functions. In this review, we overview designs and strategies of microfluidics-based human mini-brains for reconstituting CNS disorders, particularly Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), vascular dementia (VD), and environmental risk factor-driven dementia (ERFD). Afterward, the applications of the mini-brains in the area of medical science are introduced in terms of the clarification of pathogenic mechanisms and identification of promising biomarkers. We also present expanded model systems ranging from the CNS to CNS-connecting organ axes to study the entry pathways of pathological risk factors into the brain. Lastly, the advantages and potential challenges of current model systems are addressed with future perspectives.
Collapse
Affiliation(s)
- You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yingqi Xue
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hee Shin
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|