1
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
2
|
Wen W, Cao Y, Chen P, Li J, Li W, Huang G, Zheng H, Zhu X, Zhang H, Chen Y, Huang X, Hu Y, Huang Y. A reliable strategy for establishment of an animal model of diabetic cardiomyopathy: Induction by a high-fat diet combined with single or multiple injections of low-dose streptozotocin. Life Sci 2024; 358:123161. [PMID: 39433084 DOI: 10.1016/j.lfs.2024.123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/04/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is one of the leading causes of death in patients with diabetes mellitus (DM). This study aimed to identify a reliable method for establishing an animal model of DCM for investigation of new targets and treatments. METHODS Eighty-four 4-week-old male Sprague-Dawley rats were randomly allocated to receive a normal diet or a high-fat diet (HFD) in an approximate ratio of 1:3. At 9 weeks of age, rats in the HFD group received streptozotocin (STZ) 30 mg/kg by intraperitoneal injection and rats in the control group received the same volume of buffer solution. The rodent model of DM was deemed to be successfully established when a random blood glucose measurement was >16.7 mmol/L on three consecutive occasions. If necessary, STZ was readministered. RESULTS Three of the 64 rats in the HFD group died after a second STZ injection. DM was induced in 14, 39, and 8 rats after one, two, and three injections, respectively, with cumulative success rates of 21.9 %, 82.8 %, and 95.3 %. Three months later, the rats with DM showed persistent hyperglycemia and insulin resistance and developed histopathological changes indicating cardiac hypertrophy, myocardial fibrosis, and diastolic dysfunction. The metabolic and cardiac histopathological changes were consistent regardless of whether DM was induced by one, two, or three injections of STZ. CONCLUSION An HFD combined with one or more intraperitoneal injections of low-dose STZ is a straightforward and reliable method for inducing DCM in rats. When a single dose of STZ fails to induce DM, repeated injections can be considered.
Collapse
Affiliation(s)
- Weixing Wen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde) NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Yue Cao
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde) NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Peng Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde) NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Jiahuan Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde) NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Weiwen Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde) NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Guolin Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde) NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Haoxiao Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde) NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Xiaolin Zhu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde) NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Hao Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yangxin Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde) NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde) NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation Research, Guangzhou, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde) NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| |
Collapse
|
3
|
Geng XF, Shang WY, Qi ZW, Zhang C, Li WX, Yan ZP, Fan XB, Zhang JP. The mechanism and promising therapeutic strategy of diabetic cardiomyopathy dysfunctions: Focus on pyroptosis. J Diabetes Complications 2024; 38:108848. [PMID: 39178624 DOI: 10.1016/j.jdiacomp.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, and myocardial damage caused by hyperglycemia is the main cause of heart failure. However, there is still a lack of systematic understanding of myocardial damage caused by diabetes. At present, we believe that the cellular inflammatory damage caused by hyperglycemia is one of the causes of diabetic cardiomyopathy. Pyroptosis, as a proinflammatory form of cell death, is closely related to the occurrence and development of diabetic cardiomyopathy. Therefore, this paper focuses on the important role of inflammation in the occurrence and development of diabetic cardiomyopathy. From the perspective of pyroptosis, we summarize the pyroptosis of different types of cells in diabetic cardiomyopathy and its related signaling pathways. It also summarizes the treatment of diabetic cardiomyopathy, hoping to provide methods for the prevention and treatment of diabetic cardiomyopathy by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Xiao-Fei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wen-Yu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhong-Wen Qi
- Postdoctoral Research Station of China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wen-Xiu Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhi-Peng Yan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xin-Biao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jun-Ping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
4
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
5
|
Zheng Y, Chen Z, Yang J, Zheng J, Shui X, Yan Y, Huang S, Liang Z, Lei W, He Y. The Role of Hyperuricemia in Cardiac Diseases: Evidence, Controversies, and Therapeutic Strategies. Biomolecules 2024; 14:753. [PMID: 39062467 PMCID: PMC11274514 DOI: 10.3390/biom14070753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Hyperuricemia (HUA) may lead to myocardial cell damage, thereby promoting the occurrence and adverse outcomes of heart diseases. In this review, we discuss the latest clinical research progress, and explore the impact of HUA on myocardial damage-related diseases such as myocardial infarction, arrhythmias, and heart failure. We also combined recent findings from basic research to analyze potential mechanisms linking HUA with myocardial injury. In different pathological models (such as direct action of high uric acid on myocardial cells or combined with myocardial ischemia-reperfusion model), HUA may cause damage by activating the NOD-like receptor protein 3 inflammasome-induced inflammatory response, interfering with cardiac cell energy metabolism, affecting antioxidant defense systems, and stimulating reactive oxygen species production to enhance the oxidative stress response, ultimately resulting in decreased cardiac function. Additionally, we discuss the impact of lowering uric acid intervention therapy and potential safety issues that may arise. However, as the mechanism underlying HUA-induced myocardial injury is poorly defined, further research is warranted to aid in the development novel therapeutic strategies for HUA-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yue Zheng
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Z.); (Z.C.); (J.Y.); (Y.Y.)
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhirui Chen
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Z.); (Z.C.); (J.Y.); (Y.Y.)
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jinya Yang
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Z.); (Z.C.); (J.Y.); (Y.Y.)
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, USA;
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
| | - Yiguang Yan
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Z.); (Z.C.); (J.Y.); (Y.Y.)
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (S.H.); (Z.L.)
| | - Shian Huang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (S.H.); (Z.L.)
| | - Zheng Liang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (S.H.); (Z.L.)
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Z.); (Z.C.); (J.Y.); (Y.Y.)
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Z.); (Z.C.); (J.Y.); (Y.Y.)
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
6
|
Guo W, Yang C, Zou J, Yu T, Li M, He R, Chen K, Hell RCR, Gross ER, Zou X, Lu Y. Interleukin-1β polarization in M1 macrophage mediates myocardial fibrosis in diabetes. Int Immunopharmacol 2024; 131:111858. [PMID: 38492336 PMCID: PMC11330059 DOI: 10.1016/j.intimp.2024.111858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Diabetes is a global health problem whose common complication is diabetic cardiomyopathy, characterized by chronic inflammation of the heart muscle. Macrophages are the main white blood cells found in the resting heart. Therefore, we investigated the underling mechanism of macrophage on myocardial fibrosis in diabetes. METHODS Here, echocardiography was utilized to evaluate cardiac function, and the degree of myocardial fibrosis was assessed using Masson's trichrome staining, followed by single-cell RNA sequencing (scRNA-seq) to analyze the phenotype, function, developmental trajectory, and interactions between immune cells, endothelial cells (ECs), and fibroblasts (FBs) in the hearts of db/db mice at different stages of diabetes. Macrophages and cardiac fibroblasts were also co-cultured in order to study the signaling between macrophages and fibroblasts. RESULTS We found that with the development of diabetes mellitus, myocardial hypertrophy and fibrosis occurred that was accompanied by cardiac dysfunction. A significant proportion of immune cells, endothelial cells, and fibroblasts were identified by RNA sequencing. The most significant changes observed were in macrophages, which undergo M1 polarization and are critical for oxidative stress and extracellular matrix (ECM) formation. We further found that M1 macrophages secreted interleukin-1β (IL-1β), which interacted with the receptor on the surface of fibroblasts, to cause myocardial fibrosis. In addition, crosstalk between M1 macrophages and endothelial cells also plays a key role in fibrosis and immune response regulation through IL-1β and corresponding receptors. CONCLUSIONS M1 macrophages mediate diabetic myocardial fibrosis through interleukin-1β interaction with fibroblasts.
Collapse
Affiliation(s)
- Wenli Guo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chen Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jiawei Zou
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tingting Yu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mingde Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ruilin He
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Keyang Chen
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Rafaela C R Hell
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, 94305 CA, United States
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, 94305 CA, United States
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China.
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Ambulatory Surgery Center, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
7
|
Santillán-Guaján SM, Shahi MH, Castresana JS. Mesenchymal-Stem-Cell-Based Therapy against Gliomas. Cells 2024; 13:617. [PMID: 38607056 PMCID: PMC11011546 DOI: 10.3390/cells13070617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma is the most aggressive, malignant, and lethal brain tumor of the central nervous system. Its poor prognosis lies in its inefficient response to currently available treatments that consist of surgical resection, radiotherapy, and chemotherapy. Recently, the use of mesenchymal stem cells (MSCs) as a possible kind of cell therapy against glioblastoma is gaining great interest due to their immunomodulatory properties, tumor tropism, and differentiation into other cell types. However, MSCs seem to present both antitumor and pro-tumor properties depending on the tissue from which they come. In this work, the possibility of using MSCs to deliver therapeutic genes, oncolytic viruses, and miRNA is presented, as well as strategies that can improve their therapeutic efficacy against glioblastoma, such as CAR-T cells, nanoparticles, and exosomes.
Collapse
Affiliation(s)
- Sisa M. Santillán-Guaján
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain;
| | - Mehdi H. Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, India;
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain;
| |
Collapse
|
8
|
Zhen J, Bai J, Liu J, Men H, Yu H. Ginsenoside RG1-induced mesenchymal stem cells alleviate diabetic cardiomyopathy through secreting exosomal circNOTCH1 to promote macrophage M2 polarization. Phytother Res 2024; 38:1745-1760. [PMID: 37740455 DOI: 10.1002/ptr.8018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac complication resulting from long-term uncontrolled diabetes, characterized by myocardial fibrosis and abnormal cardiac function. This study aimed at investigating the potential of ginsenoside RG1 (RG1)-induced mesenchymal stem cells (MSCs) in alleviating DCM. A DCM mouse model was constructed, and the effects of RG1-induced MSCs on myocardial function and fibrosis in diabetic mice were evaluated. RG1-induced MSCs were cocultured with high glucose-treated fibroblasts for subsequent functional and mechanism assays. It was discovered that RG1-induced MSCs secrete exosomes that induce macrophage M2 polarization. Mechanistically, exosomes derived from RG1-induced MSCs transferred circNOTCH1 into macrophages, activating the NOTCH signaling pathway. A competing endogenous RNA (ceRNA) regulatory axis consisting of circNOTCH1, miR-495-3p, and NOTCH1 was found to contribute to DCM alleviation.. This study unveiled that exosomal circNOTCH1 secreted by RG1-induced MSCs can alleviate DCM by activating the NOTCH signaling pathway to induce macrophage M2 polarization. This finding may contribute to the development of new therapeutic approaches for DCM.
Collapse
Affiliation(s)
- Juan Zhen
- Department of Cadre Ward, the First Hospital of Jilin University, Changchun, China
| | - Jinping Bai
- Chronic Diseases Clinic, Jilin Province Faw General Hospital, Changchun, China
| | - Jia Liu
- Department of Cadre Ward, the First Hospital of Jilin University, Changchun, China
| | - Hongbo Men
- Department of Cardiology, the First Hospital of Jilin University, Changchun, China
| | - Haitao Yu
- Department of Cardiology, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Meechem MB, Jadli AS, Patel VB. Uncovering the link between diabetes and cardiovascular diseases: insights from adipose-derived stem cells. Can J Physiol Pharmacol 2024; 102:229-241. [PMID: 38198660 DOI: 10.1139/cjpp-2023-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality worldwide. The escalating global occurrence of obesity and diabetes mellitus (DM) has led to a significant upsurge in individuals afflicted with CVDs. As the prevalence of CVDs continues to rise, it is becoming increasingly important to identify the underlying cellular and molecular mechanisms that contribute to their development and progression, which will help discover novel therapeutic avenues. Adipose tissue (AT) is a connective tissue that plays a crucial role in maintaining lipid and glucose homeostasis. However, when AT is exposed to diseased conditions, such as DM, this tissue will alter its phenotype to become dysfunctional. AT is now recognized as a critical contributor to CVDs, especially in patients with DM. AT is comprised of a heterogeneous cellular population, which includes adipose-derived stem cells (ADSCs). ADSCs resident in AT are believed to regulate physiological cardiac function and have potential cardioprotective roles. However, recent studies have also shown that ADSCs from various adipose tissue depots become pro-apoptotic, pro-inflammatory, less angiogenic, and lose their ability to differentiate into various cell lineages upon exposure to diabetic conditions. This review aims to summarize the current understanding of the physiological roles of ADSCs, the impact of DM on ADSC phenotypic changes, and how these alterations may contribute to the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Megan B Meechem
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
11
|
Liu Y, Huo JL, Ren K, Pan S, Liu H, Zheng Y, Chen J, Qiao Y, Yang Y, Feng Q. Mitochondria-associated endoplasmic reticulum membrane (MAM): a dark horse for diabetic cardiomyopathy treatment. Cell Death Discov 2024; 10:148. [PMID: 38509100 PMCID: PMC10954771 DOI: 10.1038/s41420-024-01918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), an important complication of diabetes mellitus (DM), is one of the most serious chronic heart diseases and has become a major cause of heart failure worldwide. At present, the pathogenesis of DCM is unclear, and there is still a lack of effective therapeutics. Previous studies have shown that the homeostasis of mitochondria and the endoplasmic reticulum (ER) play a core role in maintaining cardiovascular function, and structural and functional abnormalities in these organelles seriously impact the occurrence and development of various cardiovascular diseases, including DCM. The interplay between mitochondria and the ER is mediated by the mitochondria-associated ER membrane (MAM), which participates in regulating energy metabolism, calcium homeostasis, mitochondrial dynamics, autophagy, ER stress, inflammation, and other cellular processes. Recent studies have proven that MAM is closely related to the initiation and progression of DCM. In this study, we aim to summarize the recent research progress on MAM, elaborate on the key role of MAM in DCM, and discuss the potential of MAM as an important therapeutic target for DCM, thereby providing a theoretical reference for basic and clinical studies of DCM treatment.
Collapse
Affiliation(s)
- Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Jin-Ling Huo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Yifeng Zheng
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Jingfang Chen
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
12
|
Huang QM, Long YL, Wang JN, Wu J, Tang WL, Wang XY, Zhang ZH, Zhuo YQ, Guan XH, Deng KY, Xin HB. Human amniotic MSCs-mediated anti-inflammation of CD206 hiIL-10 hi macrophages alleviates isoproterenol-induced ventricular remodeling in mice. Int Immunopharmacol 2024; 129:111660. [PMID: 38350357 DOI: 10.1016/j.intimp.2024.111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammation which makes them suitable for the treatment of various diseases. OBJECTIVE This study aimed to explore the therapeutic effect and molecular mechanism of hAMSCs in ventricular remodeling (VR). METHODS hAMSCs were characterized by a series of experiments such as flow cytometric analysis, immunofluorescence, differentiative induction and tumorigenicity. Mouse VR model was induced by isoproterenol (ISO) peritoneally, and the therapeutic effects and the potential mechanisms of hAMSCs transplantation were evaluated by echocardiography, carboxy fluorescein diacetate succinimidyl ester (CFSE) labeled cell tracing, histochemistry, qRT-PCR and western blot analysis. The co-culturing experiments were carried out for further exploring the mechanisms of hAMSCs-derived conditioned medium (CM) on macrophage polarization and fibroblast fibrosis in vitro. RESULTS hAMSCs transplantation significantly alleviated ISO-induced VR including cardiac hypertrophy and fibrosis with the improvements of cardiac functions. CFSE labeled hAMSCs kept an undifferentiated state in heart, indicating that hAMSCs-mediated the improvement of ISO-induced VR might be related to their paracrine effects. hAMSCs markedly inhibited ISO-induced inflammation and fibrosis, seen as the increase of M2 macrophage infiltration and the expressions of CD206 and IL-10, and the decreases of CD86, iNOS, COL3 and αSMA expressions in heart, suggesting that hAMSCs transplantation promoted the polarization of M2 macrophages and inhibited the polarization of M1 macrophages. Mechanically, hAMSCs-derived CM significantly increased the expressions of CD206, IL-10, Arg-1 and reduced the expressions of iNOS and IL-6 in RAW264.7 macrophages in vitro. Interestingly, RAW264.7-CM remarkably promoted the expressions of anti-inflammatory factors such as IL-10, IDO, and COX2 in hAMSCs. Furthermore, the CM derived from hAMSCs pretreated with RAW264.7-CM markedly inhibited the expressions of fibrogenesis genes such as αSMA and COL3 in 3T3 cells. CONCLUSION Our results demonstrated that hAMSCs effectively alleviated ISO-induced cardiac hypertrophy and fibrosis, and improved the cardiac functions in mice, and the underlying mechanisms might be related to inhibiting the inflammation and fibrosis during the ventricular remodeling through promoting the polarization of CD206hiIL-10hi macrophages in heart tissues. Our study strongly suggested that by taking the advantages of the potent immunosuppressive and anti-inflammatory effects, hAMSCs may provide an alternative therapeutic approach for prevention and treatment of VR clinically.
Collapse
Affiliation(s)
- Qi-Ming Huang
- College of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ying-Lin Long
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jia-Nan Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Wen-Long Tang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiao-Yu Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, Nanchang 330031, Jiangxi, China
| | - Zhou-Hang Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - You-Qiong Zhuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China; School of Food Science and Technology, Nanchang University, Nanchang 330052, Jiangxi, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China.
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China.
| | - Hong-Bo Xin
- College of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
13
|
Galera MR, Svalgaard J, Woetmann A. Therapeutic potential of adipose derived stromal cells for major skin inflammatory diseases. Front Med (Lausanne) 2024; 11:1298229. [PMID: 38463491 PMCID: PMC10921940 DOI: 10.3389/fmed.2024.1298229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
Inflammatory skin diseases like psoriasis and atopic dermatitis are chronic inflammatory skin conditions continuously under investigation due to increased prevalence and lack of cure. Moreover, long-term treatments available are often associated with adverse effects and drug resistance. Consequently, there is a clear unmet need for new therapeutic approaches. One promising and cutting-edge treatment option is the use of adipose-derived mesenchymal stromal cells (AD-MSCs) due to its immunomodulatory and anti-inflammatory properties. Therefore, this mini review aims to highlight why adipose-derived mesenchymal stromal cells are a potential new treatment for these diseases by summarizing the pre-clinical and clinical studies investigated up to date and addressing current limitations and unresolved clinical questions from a dermatological and immunomodulatory point of view.
Collapse
Affiliation(s)
- Marina Ramírez Galera
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Liu J, Yao X, Xu Z, Wu Y, Pei F, Zhang L, Li M, Shi M, Du X, Zhao H. Modified tibial cortex transverse transport for diabetic foot ulcers with Wagner grade ≥ II: a study of 98 patients. Front Endocrinol (Lausanne) 2024; 15:1334414. [PMID: 38318295 PMCID: PMC10841573 DOI: 10.3389/fendo.2024.1334414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background Diabetic foot ulcers constitute a substantial healthcare burden on a global scale and present challenges in achieving healing. Our objective was to assess the efficacy of modified tibial cortex transverse transport surgery in managing refractory diabetic foot ulcers. Methods We retrospectively analyzed clinical data from 98 patients suffering from diabetic foot ulcers classified as Wagner grade ≥II who were admitted to our medical facility between January 2020 and June 2022. All the patients were treated by modified tibial cortex transverse transport surgery, wherein the osteotomy scope was reduced to two rectangular bone windows measuring 1.5cm × 1.5cm each. Record the patient's general information and ulcer healing time; ulcer area, ankle-brachial index, WIFi classification, and visual analogue scale before and 3 months following the surgical intervention. Results The average duration of diabetes of 98 patients with diabetic foot ulcer was 20.22 ± 8.02 years, 52 patients had more than one toe gangrene on admission. The postoperative wound healing rate was 95.83% and the average healing time was 53.18 ± 20.18 days. The patients showed significant improvement in ankle-brachial index, WIFi classification, and visual analogue scale at 3 months postoperatively compared to preoperatively, with statistically significant differences (P< 0.05). Eight patients experienced complications, and the incidence of complications was 8.16%. Throughout the follow-up period, there were no instances of ulcer recurrence noted. Conclusion Modified tibial cortex transverse transport surgery demonstrates effectiveness in the management of diabetic foot ulcers by enhancing lower limb microcirculation and facilitating the process of wound healing.
Collapse
Affiliation(s)
- Junpeng Liu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xingchen Yao
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ziyu Xu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yue Wu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fuchun Pei
- Department of Orthopaedic Surgery, Beijing Chaoyang Integrative Medicine Rescue and First Aid Hospital, Beijing, China
| | - Lin Zhang
- Department of Orthopaedic Surgery, Beijing Chaoyang Integrative Medicine Rescue and First Aid Hospital, Beijing, China
| | - Meng Li
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ming Shi
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinru Du
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hui Zhao
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Cifuentes SJ, Domenech M. Heparin-collagen I bilayers stimulate FAK/ERK½ signaling via α2β1 integrin to support the growth and anti-inflammatory potency of mesenchymal stromal cells. J Biomed Mater Res A 2024; 112:65-81. [PMID: 37723658 DOI: 10.1002/jbm.a.37614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
Understanding mesenchymal stromal cells (MSCs) growth mechanisms in response to surface chemistries is essential to optimize culture methods for high-quality and robust cell yields in cell manufacturing applications. Heparin (HEP) and collagen 1 (COL) substrates have been reported to enhance cell adhesion, growth, viability, and secretory potential in MSCs. However, the biomolecular mechanisms underlying the benefits of combined HEP/COL substrates are unknown. This work used HEP/COL bilayered surfaces to investigate the role of integrin-HEP interactions in the advantages of MSC culture. The layer-by-layer approach (LbL) was used to create HEP/COL bilayers, which were made up of stacks of 8 and 9 layers that combined HEP and COL in an alternate arrangement. Surface spectroscopic investigations and laser scanning microscopy evaluations verified the biochemical fingerprint of each component and a total stacked bilayer thickness of roughly 150 nm. Cell growth and apoptosis in response to IC50 and IC75 levels of BTT-3033 and Cilengitide, α2β1 and αvβ3 integrin inhibitors respectively, were evaluated on HEP/COL coated surfaces using two bone marrow-derived MSC donors. While integrin activity did not affect cell growth rates, it significantly affected cell adhesion and apoptosis on HEP/COL surfaces. HEP-ending HEP/COL surfaces significantly increased FAK-ERK½ phosphorylation and endogenous cell COL deposition compared to COL, COL-ending HEP/COL and uncoated surfaces. BTT-3033 but not Cilengitide treatment markedly affected FAK-ERK½ activity levels on HEP-ending HEP/COL surfaces supporting a major role for α2β1 activity. BTT-3033 treatment on HEP-ending bilayers reduced MSC-mediated macrophage inhibitory activity and altered the cytokine profile of co-cultures. Overall, this study supports a novel role for HEP in regulating the survival and potency of MSCs via enhancing the α2β1-FAK-ERK½ signaling mechanism.
Collapse
Affiliation(s)
- Said J Cifuentes
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
| | - Maribella Domenech
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
| |
Collapse
|
16
|
Liu B, Zhang J, Zhou Z, Feng B, He J, Yan W, Zhou X, Amponsah AE, Guo R, Du X, Liu X, Cui H, O'Brien T, Ma J. Preclinical Evidence for the Effectiveness of Mesenchymal Stromal Cells for Diabetic Cardiomyopathy: A Systematic Review and Meta-analysis. Curr Stem Cell Res Ther 2024; 19:220-233. [PMID: 37165495 DOI: 10.2174/1574888x18666230510111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus that endangers human health. DCM results in cardiac dysfunction, which eventually progresses to heart failure. Mesenchymal stromal cells (MSCs), a type of multipotent stem cell, have shown promising therapeutic effects in various cardiovascular diseases and diabetic complications in preclinical studies due to their immunomodulatory and regenerative abilities. However, there is still a lack of evidence to summarize the effectiveness of MSCs in the treatment of DCM. Therefore, a meta-analysis and systematic review are warranted to evaluate the therapeutic potential of MSCs for DCM in preclinical studies. METHODS A comprehensive literature search in English or Chinese was conducted in PubMed, EMBASE, web of Science, Cochrane Library, and China National Knowledge Internet from inception to June 30, 2022. The summarized outcomes included echocardiography, morphology, and pathology. Data were independently extracted and analyzed by two authors. The software we adopted was Review Manager5.4.1. This systematic review was written in compliance with PRISMA 2020 and the review protocol was registered on PROSPERO, registration no. CRD42022350032. RESULTS We included 20 studies in our meta-analysis to examine the efficacy of MSCs in the treatment of DCM. The MSC-treated group showed a statistically significant effect on left ventricular ejection fraction (WMD=12.61, 95% CI 4.32 to 20.90, P=0.003) and short axis fractional shortening (WMD=6.84, 95% CI 4.09 to 9.59, P < 0.00001). The overall effects on the ratio of early to late diastolic mitral annular velocity, left ventricular end-diastolic pressure, maximum positive pressure development, maximum negative pressure development, left ventricular relaxation time constant, heart weight to body weight ratio, fibrosis area, and arteriole density were analyzed, suggesting that MSCs represent an effective therapy for the treatment of DCM. CONCLUSION Our results suggest a therapeutic role for MSCs in the treatment of DCM, and these results provide support for the use of MSCs in clinical trials of patients with DCM.
Collapse
Affiliation(s)
- Boxin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Zijing Zhou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Wei Yan
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xinghong Zhou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaofeng Du
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province
| | - Timothy O'Brien
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province
| |
Collapse
|
17
|
Huang W, Xia D, Bi W, Lai X, Yu B, Chen W. Advances in stem cell therapy for peritoneal fibrosis: from mechanisms to therapeutics. Stem Cell Res Ther 2023; 14:293. [PMID: 37817212 PMCID: PMC10566108 DOI: 10.1186/s13287-023-03520-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Peritoneal fibrosis (PF) is a pathophysiological condition caused by a variety of pathogenic factors. The most important features of PF are mesothelial-mesenchymal transition and accumulation of activated (myo-)fibroblasts, which hinder effective treatment; thus, it is critical to identify other practical approaches. Recently, stem cell (SC) therapy has been indicated to be a potential strategy for this disease. Increasing evidence suggests that many kinds of SCs alleviate PF mainly by differentiating into mesothelial cells; secreting cytokines and extracellular vesicles; or modulating immune cells, particularly macrophages. However, there are relatively few articles summarizing research in this direction. In this review, we summarize the risk factors for PF and discuss the therapeutic roles of SCs from different sources. In addition, we outline effective approaches and potential mechanisms of SC therapy for PF. We hope that our review of articles in this area will provide further inspiration for research on the use of SCs in PF treatment.
Collapse
Affiliation(s)
- Weiyan Huang
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Demeng Xia
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendi Bi
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xueli Lai
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
18
|
Fan S, Sun X, Su C, Xue Y, Song X, Deng R. Macrophages-bone marrow mesenchymal stem cells crosstalk in bone healing. Front Cell Dev Biol 2023; 11:1193765. [PMID: 37427382 PMCID: PMC10327485 DOI: 10.3389/fcell.2023.1193765] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Bone healing is associated with many orthopedic conditions, including fractures and osteonecrosis, arthritis, metabolic bone disease, tumors and periprosthetic particle-associated osteolysis. How to effectively promote bone healing has become a keen topic for researchers. The role of macrophages and bone marrow mesenchymal stem cells (BMSCs) in bone healing has gradually come to light with the development of the concept of osteoimmunity. Their interaction regulates the balance between inflammation and regeneration, and when the inflammatory response is over-excited, attenuated, or disturbed, it results in the failure of bone healing. Therefore, an in-depth understanding of the function of macrophages and bone marrow mesenchymal stem cells in bone regeneration and the relationship between the two could provide new directions to promote bone healing. This paper reviews the role of macrophages and bone marrow mesenchymal stem cells in bone healing and the mechanism and significance of their interaction. Several new therapeutic ideas for regulating the inflammatory response in bone healing by targeting macrophages and bone marrow mesenchymal stem cells crosstalk are also discussed.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chuanchao Su
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiwen Xue
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiao Song
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Runzhi Deng
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
The Role of COX-2 and PGE2 in the Regulation of Immunomodulation and Other Functions of Mesenchymal Stromal Cells. Biomedicines 2023; 11:biomedicines11020445. [PMID: 36830980 PMCID: PMC9952951 DOI: 10.3390/biomedicines11020445] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The ability of MSCs to modulate the inflammatory environment is well recognized, but understanding the molecular mechanisms responsible for these properties is still far from complete. Prostaglandin E2 (PGE2), a product of the cyclooxygenase 2 (COX-2) pathway, is indicated as one of the key mediators in the immunomodulatory effect of MSCs. Due to the pleiotropic effect of this molecule, determining its role in particular intercellular interactions and aspects of cell functioning is very difficult. In this article, the authors attempt to summarize the previous observations regarding the role of PGE2 and COX-2 in the immunomodulatory properties and other vital functions of MSCs. So far, the most consistent results relate to the inhibitory effect of MSC-derived PGE2 on the early maturation of dendritic cells, suppressive effect on the proliferation of activated lymphocytes, and stimulatory effect on the differentiation of macrophages into M2 phenotype. Additionally, COX-2/PGE2 plays an important role in maintaining the basic life functions of MSCs, such as the ability to proliferate, migrate and differentiate, and it also positively affects the formation of niches that are conducive to both hematopoiesis and carcinogenesis.
Collapse
|
20
|
Zhang J, Zheng Y, Huang L, He J. Research Progress on Mesenchymal Stem Cells for the Treatment of Diabetes and Its Complications. Int J Endocrinol 2023; 2023:9324270. [PMID: 37143697 PMCID: PMC10151724 DOI: 10.1155/2023/9324270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/22/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic disease that threatens human health. Although many drugs are available to treat DM, various complications caused by DM are unavoidable. As an emerging treatment for DM, mesenchymal stem cells (MSCs) have shown many advantages and are gradually gaining public attention. This review summarizes the clinical studies on the use of MSCs to treat DM and the potential mechanisms of complications such as pancreatic dysfunction, cardiovascular lesions, renal lesions, neurological lesions, and trauma repair. This review focuses on the research progress on MSC-mediated secretion of cytokines, improvements in the microenvironment, repair of tissue morphology, and related signaling pathways. At present, the sample sizes in clinical studies of MSCs in treating DM are small, and there is a lack of standardized quality control systems in the preparation, transportation, and infusion methods, so we need to conduct more in-depth studies. In conclusion, MSCs have shown superior potential for use in the treatment of DM and its complications and will hopefully become a novel therapeutic approach in the future.
Collapse
Affiliation(s)
- Jiarui Zhang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650000, Yunnan, China
| | - Yongqin Zheng
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jingbi Road, Kunming 650000, Yunnan, China
| | - Lichenlu Huang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650000, Yunnan, China
| | - Jundong He
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650000, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jingbi Road, Kunming 650000, Yunnan, China
| |
Collapse
|
21
|
Shanbhag S, Rana N, Suliman S, Idris SB, Mustafa K, Stavropoulos A. Influence of Bone Substitutes on Mesenchymal Stromal Cells in an Inflammatory Microenvironment. Int J Mol Sci 2022; 24:ijms24010438. [PMID: 36613880 PMCID: PMC9820717 DOI: 10.3390/ijms24010438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Bone regeneration is driven by mesenchymal stromal cells (MSCs) via their interactions with immune cells, such as macrophages (MPs). Bone substitutes, e.g., bi-calcium phosphates (BCPs), are commonly used to treat bone defects. However, little research has focused on MSC responses to BCPs in the context of inflammation. The objective of this study was to investigate whether BCPs influence MSC responses and MSC-MP interactions, at the gene and protein levels, in an inflammatory microenvironment. In setup A, human bone marrow MSCs combined with two different BCP granules (BCP 60/40 or BCP 20/80) were cultured with or without cytokine stimulation (IL1β + TNFα) to mimic acute inflammation. In setup B, U937 cell-line-derived MPs were introduced via transwell cocultures to setup A. Monolayer MSCs with and without cytokine stimulation served as controls. After 72 h, the expressions of genes related to osteogenesis, healing, inflammation and remodeling were assessed in the MSCs via quantitative polymerase chain reactions. Additionally, MSC-secreted cytokines related to healing, inflammation and chemotaxis were assessed via multiplex immunoassays. Overall, the results indicate that, under both inflammatory and non-inflammatory conditions, the BCP granules significantly regulated the MSC gene expressions towards a pro-healing genotype but had relatively little effect on the MSC secretory profiles. In the presence of the MPs (coculture), the BCPs positively regulated both the gene expression and cytokine secretion of the MSCs. Overall, similar trends in MSC responses were observed with BCP 60/40 and BCP 20/80. In summary, within the limits of in vitro models, these findings suggest that the presence of BCP granules at a surgical site may not necessarily have a detrimental effect on MSC-mediated wound healing, even in the event of inflammation.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Neha Rana
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Salwa Suliman
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | | | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Andreas Stavropoulos
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Department of Periodontology, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden
- Correspondence: ; Tel.: +46-040-6658066
| |
Collapse
|
22
|
PPAR β/ δ-Interfering Peptide Enhanced Mesenchymal Stromal Cell Immunoregulatory Properties. Stem Cells Int 2022; 2022:5494749. [PMID: 36561277 PMCID: PMC9767714 DOI: 10.1155/2022/5494749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) have been widely used for their therapeutic properties in many clinical applications including osteoarthritis. Despite promising preclinical results showing the ability of MSC to reduce the clinical severity of osteoarthritis (OA) in experimental animal models, the benefits of intra-articular injection of MSC in OA patients are limited to the short term. In this regard, it is anticipated that improving the properties of MSC may collectively enhance their long-term beneficial effects on OA. Methods and Results Recently, we have shown that PPARβ/δ inhibition using a commercially available antagonist in murine MSC increases their immunoregulatory potential in vitro as well as their therapeutic potential in an experimental murine arthritis model. Here, we relied on an innovative strategy to inhibit PPARβ/δ:NF-κB TF65 subunit interaction in human MSC by designing and synthesizing an interfering peptide, referred to PP11. Through RT-qPCR experiments, we evidenced that the newly synthesized PP11 peptide reduced the expression level of PDK4, a PPARβ/δ target gene, but did not modify the expression levels of ACOX1 and CPT1A, PPARα target genes, and FABP4, a PPARγ target gene compared with untreated human MSC. Moreover, we showed that human MSCs pretreated with PP11 exhibit a significantly higher capacity to inhibit the proliferation of activated PBMC and to decrease the frequency of M1-like macrophages. Conclusions We designed and synthesized an interfering peptide that potently and specifically blocks PPARβ/δ activity with concomitant enhancement of MSC immunoregulatory properties.
Collapse
|
23
|
Zhu N, Huang B, Zhu L. Bibliometric analysis of the inflammation in diabetic cardiomyopathy. Front Cardiovasc Med 2022; 9:1006213. [PMID: 36582738 PMCID: PMC9792483 DOI: 10.3389/fcvm.2022.1006213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Maladaptive inflammation is implicated in the development of diabetic cardiomyopathy (DCM). This study aimed to visually analyze the global scientific output over the past two decades regarding research on inflammation associated with DCM. Methods All relevant articles and reviews were retrieved in the Web of Science (WOS) Core Collection (limited to SCIE) using "inflammation" and "diabetic cardiomyopathy" as search terms. Articles and reviews published from 1 January 2001 to 28 February 2021 were collected. Visualization analysis and statistical analysis were conducted by Microsoft 365 Excel and VOSviewer 1.6.18. Results A total of 578 documents were finally selected for further analysis. The publications regarding inflammation and DCM increased gradually over approximately 20 years. The most prolific country was China, with 296 documents and the most citations (9,366). The most influential author groups were Lu Cai and Yihui Tan who were from the United States. The bibliometric analysis of co-occurrence keywords showed that inflammation in DCM is composed of numerous molecules (NF-κB, NLRP3 inflammasome, Nrf-2, TNF-α, protein kinase C, PPARα, TLR4, p38 mitogen-activated protein kinase, TGF-β, Sirt1, and AKT), a variety of cardiac cell types (stem cell, fibroblast, and cardiomyocyte), physiological processes (apoptosis, oxidative stress, autophagy, endoplasmic reticulum stress, hypertrophy, mitochondrion dysfunction, and proliferation), and drugs (sulforaphane, metformin, empagliflozin, and rosuvastatin). Conclusion Our bibliometric analysis presents the characteristics and trends of inflammation in DCM and shows that research on inflammation in DCM will continue to be a hotspot.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University, Wenzhou People’s Hospital, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China,*Correspondence: Ning Zhu,
| | - Bingwu Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuyan Zhu
- Department of General Practice, The Third Affiliated Hospital of Shanghai University, Wenzhou People’s Hospital, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Xu J, Li S, Sun Y, Bao B, Zhu T, Kang Q, Zheng X, Wen G. Triplanar osteotomy combined with proximal tibial transverse transport to accelerate healing of recalcitrant diabetic foot ulcers. J Orthop Surg Res 2022; 17:528. [PMID: 36482382 PMCID: PMC9733084 DOI: 10.1186/s13018-022-03410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Management of recalcitrant diabetic foot ulcers remains challenging. Tibial transverse transport (TTT) is an effective method for enhancing the healing of foot ulcers. This retrospective study reports a novel triplanar osteotomy in the tibia and assesses the clinical outcomes of TTT for diabetic foot ulcers. METHODS Fifty-nine patients with recalcitrant diabetic foot ulcers were divided into the TTT (32 patients) and control (27 patients) groups. In the TTT group, the patients underwent triplanar osteotomy of the proximal tibia, followed by 2 weeks of medial distraction and 2 weeks of lateral distraction. In the control group, the patients received conventional management, including debridement, revascularization, and reconstruction. Ulcer healing and healing time, amputation, recurrence, and complications were assessed at an 18-month follow-up visit. Computed tomography angiography (CTA) was used to evaluate vessel changes in the lower limbs of patients in the TTT group. RESULTS The TTT group was superior to the control group in the healing rate (90.6% [29/32] vs. 66.7% [18/27]) and the healing time (4.6 ± 1.7 months vs. 7.4 ± 2.5 months), respectively. The proportions of amputation and recurrence in the TTT group were lower than that in the control group, without statistical difference. After triplanar osteotomy and transverse distraction, CTA demonstrated an increase in small vessels in the wound and ipsilateral limb. All patients achieved satisfactory union of the osteotomized bone fragment after removal of the external fixator. CONCLUSIONS Triplanar osteotomy combined with proximal tibial transverse distraction accelerates wound healing and limb salvage caused by severe and recalcitrant diabetic foot ulcers. Triplanar osteotomy not only increases the bone contact area, which is beneficial for rapid bone reconstruction, but also preserves the vascularization of the bone fragment and substantially facilitates capillary angiogenesis during distraction. These results suggest that triplanar osteotomy followed by tibial transverse distraction is an effective method for treating diabetic foot ulcers.
Collapse
Affiliation(s)
- Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Shanyu Li
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yunchu Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Tianhao Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, 200233, China.
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, 200233, China.
| |
Collapse
|
25
|
Hua C, Chen S, Cheng H. Therapeutic potential of mesenchymal stem cells for refractory inflammatory and immune skin diseases. Hum Vaccin Immunother 2022; 18:2144667. [PMID: 36382475 PMCID: PMC9746473 DOI: 10.1080/21645515.2022.2144667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inflammatory and immunological skin diseases such as psoriasis, systemic sclerosis, dermatomyositis and atopic dermatitis, whose abnormal skin manifestations not only affected life quality but also caused social discrimination, have been wildly concerned. Complex variables such as hereditary predisposition, racial differences, age and gender can influence the prevalence and therapeutic options. The population of patients with unsatisfactory curative effects under current therapies is growing, it's advisable to seek novel and advanced therapies that are less likely to cause systemic damage. Mesenchymal stem cells (MSCs) have been proven with therapeutic benefits in tissue regeneration, self-renewal and differentiation abilities when treating refractory skin disorders in preclinical and clinical studies. Here we highlighted the immune modulation and inflammation suppression of MSCs in skin diseases, summarized current studies, research progress and related clinical trials, hoping to strengthen the confidence of promising MSCs therapy in future clinical application.
Collapse
Affiliation(s)
- Chunting Hua
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siji Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Kuppa SS, Kim HK, Kang JY, Lee SC, Seon JK. Role of Mesenchymal Stem Cells and Their Paracrine Mediators in Macrophage Polarization: An Approach to Reduce Inflammation in Osteoarthritis. Int J Mol Sci 2022; 23:13016. [PMID: 36361805 PMCID: PMC9658630 DOI: 10.3390/ijms232113016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is a low-grade inflammatory disorder of the joints that causes deterioration of the cartilage, bone remodeling, formation of osteophytes, meniscal damage, and synovial inflammation (synovitis). The synovium is the primary site of inflammation in OA and is frequently characterized by hyperplasia of the synovial lining and infiltration of inflammatory cells, primarily macrophages. Macrophages play a crucial role in the early inflammatory response through the production of several inflammatory cytokines, chemokines, growth factors, and proteinases. These pro-inflammatory mediators are activators of numerous signaling pathways that trigger other cytokines to further recruit more macrophages to the joint, ultimately leading to pain and disease progression. Very few therapeutic alternatives are available for treating inflammation in OA due to the condition's low self-healing capacity and the lack of clear diagnostic biomarkers. In this review, we opted to explore the immunomodulatory properties of mesenchymal stem cells (MSCs) and their paracrine mediators-dependent as a therapeutic intervention for OA, with a primary focus on the practicality of polarizing macrophages as suppression of M1 macrophages and enhancement of M2 macrophages can significantly reduce OA symptoms.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hyung Keun Kim
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Ju Yeon Kang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Seok Cheol Lee
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| |
Collapse
|
27
|
Zhang C, Huang L, Wang X, Zhou X, Zhang X, Li L, Wu J, Kou M, Cai C, Lian Q, Zhou X. Topical and intravenous administration of human umbilical cord mesenchymal stem cells in patients with diabetic foot ulcer and peripheral arterial disease: a phase I pilot study with a 3-year follow-up. Stem Cell Res Ther 2022; 13:451. [PMID: 36064461 PMCID: PMC9446755 DOI: 10.1186/s13287-022-03143-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022] Open
Abstract
Background Diabetic foot ulcer (DFU) is a serious chronic complication of diabetes mellitus that contributes to 85% of nontraumatic lower extremity amputations in diabetic patients. Preliminary clinical benefits have been shown in treatments based on mesenchymal stem cells for patients with DFU or peripheral arterial disease (PAD). However, the long-term safety and benefits are unclear for patients with both DFU and PAD who are not amenable to surgical revascularization. Methods In this phase I pilot study, 14 patients with PAD and incurable DFU were enrolled to assess the safety and efficacy of human umbilical cord mesenchymal stem cell (hUC-MSC) administration based on conservative treatments. All patients received topical and intravenous administrations of hUC-MSCs at a dosage of 2 × 105 cells/kg with an upper limit of 1 × 107 cells for each dose. The adverse events during treatment and follow-up were documented for safety assessments. The therapeutic efficacy was assessed by ulcer healing status, recurrence rate, and 3-year amputation-free rate in the follow-up phase. Results The safety profiles were favorable. Only 2 cases of transient fever were observed within 3 days after transfusion and considered possibly related to hUC-MSC administration intravenously. Ulcer disclosure was achieved for more than 95% of the lesion area for all patients within 1.5 months after treatment. The symptoms of chronic limb ischaemia were alleviated along with a decrease in Wagner scores, Rutherford grades, and visual analogue scale scores. No direct evidence was observed to indicate the alleviation of the obstruction in the main vessels of target limbs based on computed tomography angiography. The duration of rehospitalization for DFU was 2.0 ± 0.6 years. All of the patients survived without amputation due to the recurrence of DFU within 3 years after treatments. Conclusions Based on the current pilot study, the preliminary clinical benefits of hUC-MSCs on DFU healing were shown, including good tolerance, a shortened healing time to 1.5 months and a favorable 3-year amputation-free survival rate. The clinical evidence in the current study suggested a further phase I/II study with a larger patient population and a more rigorous design to explore the efficacy and mechanism of hUC-MSCs on DFU healing. Trial registration: The current study was registered retrospectively on 22 Jan 2022 with the Chinese Clinical Trial Registry (ChiCTR2200055885), http://www.chictr.org.cn/showproj.aspx?proj=135888 Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03143-0.
Collapse
Affiliation(s)
- Che Zhang
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.,Clinical Research Centre, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Li Huang
- Clinical Research Centre, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China.,Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaofen Wang
- Department of Endocrinology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Xiaoya Zhou
- Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoxian Zhang
- Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ling Li
- Clinical Data Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jieying Wu
- Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Meng Kou
- Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Cheguo Cai
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Qizhou Lian
- Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Xihui Zhou
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
28
|
Shrestha KR, Lee DH, Chung W, Lee SW, Lee BY, Yoo SY. Biomimetic virus-based soft niche for ischemic diseases. Biomaterials 2022; 288:121747. [PMID: 36041939 DOI: 10.1016/j.biomaterials.2022.121747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
Abstract
The essential therapeutic cues provided by a nanofibrous arginine-glycine-aspartic acid-engineered M13 phage were exploited as extracellular matrix (ECM)-mimicking niches, contributing to de novo soft tissue niche engineering. The interplay of biomimetic phage cues with surrounding organ tissues was identified, and cells were implanted between tissues to achieve an appropriate soft tissue niche that enables the proper functioning of the implanted stem cells at the injured site. With the polyacrylamide (PA) hydrogel mimicking the soft tissue organ stiffness ranges, it was found that biochemical and topological cues in conjunction with the ∼1-2 kPa elastic and mechanical cues of engineered phage nanofibers in soft tissues efficiently enhance the desired response of implanted stem cells. This phage cue with angiogenic and antioxidant functions overcomes the pathological environment to support implanted cells and surrounding soft tissues at the ischemic site, thereby successfully decreasing myogenic degeneration, minimizing fibrosis, and enhancing blood vessel regeneration with M2 macrophage polarization by improving the survival of the implanted endothelial progenitor cells (EPC) in an ischemic mouse model. These biomimetic phage nanofiber cues are considerably supportive of cell therapy, as they establish promising therapeutic extracellular de novo soft tissue niches for curing ischemic diseases.
Collapse
Affiliation(s)
- Kshitiz Raj Shrestha
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Do Hoon Lee
- Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Wuk Lee
- Bioengineering, University of California, Berkeley, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Byung Yang Lee
- Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
29
|
Wang Y, Zhang Y, Chen K, Liu J, Wu D, Cheng Y, Wang H, Li Y. Insufficient S-adenosylhomocysteine hydrolase compromises the beneficial effect of diabetic BMSCs on diabetic cardiomyopathy. Stem Cell Res Ther 2022; 13:418. [PMID: 35964109 PMCID: PMC9375418 DOI: 10.1186/s13287-022-03099-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Autologous stem cell therapy is a promising strategy for cardiovascular diseases including diabetic cardiomyopathy (DCM), but conclusions from clinical trials were compromised. We assumed that diabetes might induce the dysfunction of stem cells and thus limit its therapeutic effect. This study aimed to compare the effect of diabetes and nondiabetes-derived bone marrow mesenchymal stem cells (BMSCs) transplantation on DCM and explored the potential mechanism. Methods Rats with diabetes were induced using high-fat diets and streptozotocin (STZ) injection. BMSCs harvested from diabetic and nondiabetic rats were infused into DCM rats, and the effects on the heart were identified by echocardiography and histopathology. The inhibition or overexpression of SAHH in nondiabetic and diabetic BMSCs was used to confirm its key role in stem cell activity and cardiac therapy. Results Compared with normal BMSCs, the therapeutic effects of diabetic rat-derived stem cells on improving cardiac function and adverse remodeling were significantly attenuated. In vitro, diabetic BMSCs had lower cell viability and paracrine function than nondiabetic BMSCs. It was further found that diabetic BMSCs had obvious mitochondrial oxidative stress damage and S-adenosylhomocysteine (SAH) accumulation due to S-adenosylhomocysteine hydrolase (SAHH) deficiency. SAHH inhibition by adenosine dialdehyde (ADA) or shSAHH plasmid in normal BMSCs significantly reduced the favorable effects on endothelial cell proliferation and tube-forming capacity. In contrast, SAHH overexpression in diabetic BMSCs significantly improved cellular activity and paracrine function. Transplantation of BMSCs with SAHH overexpression improved cardiac adverse remodeling and angiogenesis. Activation of the Nrf2 signaling pathway may be one of the key mechanisms of SAHH-mediated improvement of stem cell viability and cardiac repair. Conclusions Diabetes leads to compromised bioactivity and repair capacity of BMSCs. Our study suggests that SAHH activation may improve the cardioprotective effect of autologous transplantation of diabetes-derived BMSCs on patients with DCM. Graphical abstract Diabetes induced the inhibition of S-adenosylhomocysteine (SAH) expression and aging phenotype in BMSCs and thus decreased the cell viability and paracrine function. Compared with normal BMSCs, the therapeutic effects of diabetic rat-derived BMSCs on improving cardiac function and adverse remodeling were significantly attenuated. SAHH overexpression in diabetic BMSCs significantly rescued cellular function partly via activating Nrf2/HO-1 signal. Transplantation of diabetic BMSCs with SAHH overexpression improved angiogenesis and cardiac adverse remodeling in rats.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03099-1.
Collapse
Affiliation(s)
- Ying Wang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Endocrinology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Yuying Zhang
- Department of Pathology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Kegong Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jie Liu
- Department of Endocrinology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Donghong Wu
- Department of Endocrinology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Yao Cheng
- Department of Endocrinology, First Hospital of Harbin, Harbin, People's Republic of China
| | - Hongjie Wang
- Department of Endocrinology, Forth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yanbo Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China. .,Department of Endocrinology, South China Hospital of Shenzhen University, No. 1 Fuxin Road, Longgang District, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
30
|
Mesenchymal stem cells exert renoprotection via extracellular vesicle-mediated modulation of M2 macrophages and spleen-kidney network. Commun Biol 2022; 5:753. [PMID: 35902687 PMCID: PMC9334610 DOI: 10.1038/s42003-022-03712-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) have shown therapeutic potentials against refractory diseases. However, the detailed therapeutic mechanisms remain unclear. Here, we report the therapeutic actions of human ASCs in nephritis, focusing on cellular dynamics and multi-organ networks. Intravenously-administered ASCs accumulated in spleen but not kidneys. Nevertheless, ASCs increased M2 macrophages and Tregs in kidneys and drove strong renoprotection. Splenectomy abolished these therapeutic effects. ASC-derived extracellular vesicles (EVs) were transferred to M2 macrophages, which entered the bloodstream from spleen. EVs induced the transcriptomic signatures of hyperpolarization and PGE2 stimulation in M2 macrophages and ameliorated glomerulonephritis. ASCs, ASC-derived EVs, and EV-transferred M2 macrophages enhanced Treg induction. These findings suggest that EV transfer from spleen-accumulated ASCs to M2 macrophages and subsequent modulation of renal immune-environment underlie the renoprotective effects of ASCs. Our results provide insights into the therapeutic actions of ASCs, focusing on EV-mediated modulation of macrophages and the spleen-kidney immune network. The renoprotective effects of adipose-derived mesenchymal stem cells (ASCs) are enhanced through the transfer of EVs predominantly to M2 macrophages in the spleen, providing insights into therapeutic avenues for ASCs.
Collapse
|
31
|
Abstract
Diabetes has become one of the most prevalent endocrine and metabolic diseases that threaten human health, and it is accompanied by serious complications. Therefore, it is vital and pressing to develop novel strategies or tools for prewarning and therapy of diabetes and its complications. Fluorescent probes have been widely applied in the detection of diabetes due to the fact of their attractive advantages. In this report, we comprehensively summarize the recent progress and development of fluorescent probes in detecting the changes in the various biomolecules in diabetes and its complications. We also discuss the design of fluorescent probes for monitoring diabetes in detail. We expect this review will provide new ideas for the development of fluorescent probes suitable for the prewarning and therapy of diabetes in future clinical transformation and application.
Collapse
|
32
|
Li YE, Ajoolabady A, Dhanasekaran M, Ren J. Tissue repair strategies: What we have learned from COVID-19 in the application of MSCs therapy. Pharmacol Res 2022; 182:106334. [PMID: 35779816 PMCID: PMC9242686 DOI: 10.1016/j.phrs.2022.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) infection evokes severe proinflammatory storm and pulmonary infection with the number of confirmed cases (more than 200 million) and mortality (5 million) continue to surge globally. A number of vaccines (e.g., Moderna, Pfizer, Johnson/Janssen and AstraZeneca vaccines) have been developed over the past two years to restrain the rapid spread of COVID-19. However, without much of effective drug therapies, COVID-19 continues to cause multiple irreversible organ injuries and is drawing intensive attention for cell therapy in the management of organ damage in this devastating COVID-19 pandemic. For example, mesenchymal stem cells (MSCs) have exhibited promising results in COVID-19 patients. Preclinical and clinical findings have favored the utility of stem cells in the management of COVID-19-induced adverse outcomes via inhibition of cytokine storm and hyperinflammatory syndrome with coinstantaneous tissue regeneration capacity. In this review, we will discuss the existing data with regards to application of stem cells for COVID-19.
Collapse
Affiliation(s)
- Yiran E Li
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Li Q, Li Y, Huang W, Wang X, Liu Z, Chen J, Fan Y, Peng T, Sadayappan S, Wang Y, Fan GC. Loss of Lipocalin 10 Exacerbates Diabetes-Induced Cardiomyopathy via Disruption of Nr4a1-Mediated Anti-Inflammatory Response in Macrophages. Front Immunol 2022; 13:930397. [PMID: 35757735 PMCID: PMC9226549 DOI: 10.3389/fimmu.2022.930397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic disorders (i.e., hyperglycemia, hyperlipidemia, and hyperinsulinemia) cause increased secretion of inflammatory cytokines/chemokines, leading to gradual loss of cardiac resident macrophage population and increased accumulation of inflammatory monocytes/macrophages in the heart. Such self-perpetuating effect may contribute to the development of cardiomyopathy during diabetes. Recent meta-analysis data reveal that lipocalin 10 (Lcn10) is significantly downregulated in cardiac tissue of patients with heart failure but is increased in the blood of septic patients. However, the functional role of Lcn10 in cardiac inflammation triggered by metabolic disorders has never been investigated. In this study, we demonstrate that the expression of Lcn10 in macrophages was significantly decreased under multiple metabolic stress conditions. Furthermore, Lcn10-null macrophages exhibited pro-inflammatory phenotype in response to inflammation stimuli. Next, using a global Lcn10-knockout (KO) mouse model to induce type-2 diabetes (T2D), we observed that loss of Lcn10 promoted more pro-inflammatory macrophage infiltration into the heart, compared to controls, leading to aggravated insulin resistance and impaired cardiac function. Similarly, adoptive transfer of Lcn10-KO bone marrow cells into X-ray irradiated mice displayed higher ratio of pro-/anti-inflammatory macrophages in the heart and worsened cardiac function than those mice received wild-type (WT) bone marrows upon T2D conditions. Mechanistically, RNA-sequencing analysis showed that Nr4a1, a nuclear receptor known to have potent anti-inflammatory effects, is involved in Lcn10-mediated macrophage activation. Indeed, we found that nuclear translocation of Nr4a1 was disrupted in Lcn10-KO macrophages upon stimulation with LPS + IFNγ. Accordingly, treatment with Cytosporone B (CsnB), an agonist of Nr4a1, attenuated the pro-inflammatory response in Lcn10-null macrophages and partially improved cardiac function in Lcn10-KO diabetic mice. Together, these findings indicate that loss of Lcn10 skews macrophage polarization to pro-inflammatory phenotype and aggravates cardiac dysfunction during type-2 diabetes through the disruption of Nr4a1-mediated anti-inflammatory signaling pathway in macrophages. Therefore, reduction of Lcn10 expression observed in diabetic macrophages may be responsible for the pathogenesis of diabetes-induced cardiac dysfunction. It suggests that Lcn10 might be a potential therapeutic factor for diabetic heart failure.
Collapse
Affiliation(s)
- Qianqian Li
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yutian Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Zhenling Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Tianqing Peng
- The Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
34
|
Connection between Mesenchymal Stem Cells Therapy and Osteoclasts in Osteoarthritis. Int J Mol Sci 2022; 23:ijms23094693. [PMID: 35563083 PMCID: PMC9102843 DOI: 10.3390/ijms23094693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
The use of mesenchymal stem cells constitutes a promising therapeutic approach, as it has shown beneficial effects in different pathologies. Numerous in vitro, pre-clinical, and, to a lesser extent, clinical trials have been published for osteoarthritis. Osteoarthritis is a type of arthritis that affects diarthritic joints in which the most common and studied effect is cartilage degradation. Nowadays, it is known that osteoarthritis is a disease with a very powerful inflammatory component that affects the subchondral bone and the rest of the tissues that make up the joint. This inflammatory component may induce the differentiation of osteoclasts, the bone-resorbing cells. Subchondral bone degradation has been suggested as a key process in the pathogenesis of osteoarthritis. However, very few published studies directly focus on the activity of mesenchymal stem cells on osteoclasts, contrary to what happens with other cell types of the joint, such as chondrocytes, synoviocytes, and osteoblasts. In this review, we try to gather the published bibliography in relation to the effects of mesenchymal stem cells on osteoclastogenesis. Although we find promising results, we point out the need for further studies that can support mesenchymal stem cells as a therapeutic tool for osteoclasts and their consequences on the osteoarthritic joint.
Collapse
|
35
|
Zou C, Xu F, Shen J, Xu S. Identification of a Ferroptosis-Related Prognostic Gene PTGS2 Based on Risk Modeling and Immune Microenvironment of Early-Stage Cervical Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3997562. [PMID: 35432535 PMCID: PMC9012634 DOI: 10.1155/2022/3997562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Background Cervical cancer (CC) has long been a concern, as a gynecological cancer type of high-risk. At present, there are few studies on the early detection of CC at the genetic level. The breakthrough is to recognize CC patients tending to have a worse prognosis by checking the expression pattern of ferroptosis-related genes, which enjoy a great potential of being applied to cancer treatment. Methods Data used in this study was obtained from a series of public online databases, integrated with ferroptosis-related gene collection stored from the FerrDb database and GeneCards database. The least absolute shrinkage and selection operator- (LASSO-) penalized analysis was taken for modeling, and before, univariate Cox regression analysis got done to shrink the candidates' range. Several analyses were made for the evaluation of the efficacy of the new model, based on CC patients' overall survival (OS). Tumor microenvironment- (TME-) related analyses were conducted by various algorithms on different populations, comprising CIBERSORT, ssGSEA, XCELL, etc. Nonnegative matrix factorization (NMF) clustering got applied to find that ferroptosis-marker genes affect prognosis more than "driver" and "suppressor". Hub-gene PTGS2 was screened out by protein-protein interaction analysis and real-time qPCR after ferroptosis induction, and ELISA was conducted for further verification on the correlation between ferroptosis and M1 polarization. Results The twenty-five ferroptosis-related genes model can estimate the prognosis of patients independently of other clinical factors, and the low-risk score group shows higher expression of immune-enhancing cells, noteworthily for M1 macrophages. It is experimentally validated that the M1 marker TNF-α significantly increased after coculturing M1 macrophages and SiHa cells processed with ferroptosis inductor before. The key gene to the model, PTGS2, presented to be a risk factor in cervical cancer, and its low-expression group has stronger immune activity and higher tumor mutation burden, with the significantly highly mutated gene TENM2 in it showing high drug sensitivity and neoantigen for patients with its mutant-type. Meanwhile, it influences macrophage polarization. Conclusion Prognosis of early-stage cervical cancer patients can be exactly predicted on ferroptosis-related genes. Among model genes, PTGS2 may have a major impact by affecting macrophage polarization and mutation effects.
Collapse
Affiliation(s)
- Chang Zou
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fangfang Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiacheng Shen
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
36
|
Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res 2022; 119:668-690. [PMID: 35388880 PMCID: PMC10153440 DOI: 10.1093/cvr/cvac049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic cardiomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis and diastolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treatments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression, as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including fibroblasts, vascular cells, autonomic neurons and immune cells. These cardiac non-myocytes play important roles in cardiac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types are often overlooked in preclinical models of diabetic cardiomyopathy. The advent of human induced pluripotent stem cells provides a new paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart. This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the discovery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ren Jie Phang
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca H Ritchie
- School of Biosciences, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Holthaus M, Santhakumar N, Wahlers T, Paunel-Görgülü A. The Secretome of Preconditioned Mesenchymal Stem Cells Drives Polarization and Reprogramming of M2a Macrophages toward an IL-10-Producing Phenotype. Int J Mol Sci 2022; 23:ijms23084104. [PMID: 35456922 PMCID: PMC9024470 DOI: 10.3390/ijms23084104] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The preconditioning of mesenchymal stem cells (MSCs) has been recognized as an attractive tool to improve their regenerative and immunomodulatory capacities based on their paracrine effects. In this study, we examined the potential of an MSC-conditioned medium (MSC-CM) to alter the phenotype of murine macrophages and to drive reprogramming toward an anti-inflammatory, M2-like state in vitro. We further explored the impact of MSC cytokine preconditioning on the immunosuppressive properties of the MSC secretome. The MSC-CM suppressed the expression of proinflammatory genes in murine M1 macrophages, but only the CM from preconditioned MSCs (preMSC-CM) downregulated their expression during M1 polarization. Remarkably, only the preMSC-CM significantly increased the expression of M2a-, M2b- and M2c-specific genes and proteins during M2a polarization. Further, macrophages were found to secrete high levels of anti-inflammatory IL-10. Similarly, M2a macrophages cultured in the presence of the preMSC-CM displayed an enhanced expression of M2b/M2c-specific markers, suggesting that the secretome of preMSC promotes the repolarization of M2a-like macrophages to M2b/M2c subtypes. The preMSC-CM was found to be enriched in molecules involved in M2 polarization. Additionally, a unique downregulation of extracellular matrix components was observed. Altogether, the preMSC-CM may provide an attractive strategy to dampen inflammation by suppressing the expression of proinflammatory mediators and promoting the polarization and phenotype switch of M2a cells to IL-10-secreting M2b/M2c-like macrophages.
Collapse
Affiliation(s)
- Michelle Holthaus
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, 50937 Cologne, Germany
| | - Nivethiha Santhakumar
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, 50937 Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, 50937 Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
38
|
Yang Y, Li Y, Pan Q, Bai S, Wang H, Pan XH, Ling KK, Li G. Tibial cortex transverse transport accelerates wound healing via enhanced angiogenesis and immunomodulation. Bone Joint Res 2022; 11:189-199. [PMID: 35358393 PMCID: PMC9057526 DOI: 10.1302/2046-3758.114.bjr-2021-0364.r1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named 'tibial cortex transverse transport' (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. METHODS A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes. RESULTS Gross and histological examinations showed that TTT technique accelerated wound closure and enhanced the quality of the newly formed skin tissues. In the TTT group, haematoxylin and eosin (H&E) staining demonstrated a better epidermis and dermis recovery, while immunohistochemical staining showed that TTT technique promoted local collagen deposition. The TTT technique also benefited to angiogenesis and immunomodulation. In the TTT group, blood flow in the wound area was higher than that of other groups according to laser speckle imaging with more blood vessels observed. Enhanced neovascularization was seen in the TTT group with double immune-labelling of CD31 and α-Smooth Muscle Actin (α-SMA). The number of M2 macrophages at the wound site in the TTT group was also increased. CONCLUSION The TTT technique accelerated wound healing through enhanced angiogenesis and immunomodulation. Cite this article: Bone Joint Res 2022;11(4):189-199.
Collapse
Affiliation(s)
- Yongkang Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Qi Pan
- Department of Pediatric Orthopaedics, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Shanshan Bai
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xiao-Hua Pan
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University (Shenzhen Bao'an People's Hospital), Shenzhen, China
| | - Ka-Kin Ling
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
39
|
Mallis P, Chatzistamatiou T, Dimou Z, Sarri EF, Georgiou E, Salagianni M, Triantafyllia V, Andreakos E, Stavropoulos-Giokas C, Michalopoulos E. Mesenchymal stromal cell delivery as a potential therapeutic strategy against COVID-19: Promising evidence from in vitro results. World J Biol Chem 2022; 13:47-65. [PMID: 35432769 PMCID: PMC8966500 DOI: 10.4331/wjbc.v13.i2.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic, which was initiated in December 2019. COVID-19 is characterized by a low mortality rate (< 6%); however, this percentage is higher in elderly people and patients with underlying disorders. COVID-19 is characterized by mild to severe outcomes. Currently, several therapeutic strategies are evaluated, such as the use of anti-viral drugs, prophylactic treatment, monoclonal antibodies, and vaccination. Advanced cellular therapies are also investigated, thus representing an additional therapeutic tool for clinicians. Mesenchymal stromal cells (MSCs), which are known for their immunoregulatory properties, may halt the induced cytokine release syndrome mediated by SARS-CoV-2, and can be considered as a potential stem cell therapy.
AIM To evaluate the immunoregulatory properties of MSCs, upon stimulation with COVID-19 patient serum.
METHODS MSCs derived from the human Wharton’s Jelly (WJ) tissue and bone marrow (BM) were isolated, cryopreserved, expanded, and defined according to the criteria outlined by the International Society for Cellular Therapies. Then, WJ and BM-MSCs were stimulated with a culture medium containing 15% COVID-19 patient serum, 1% penicillin-streptomycin, and 1% L-glutamine for 48 h. The quantification of interleukin (IL)-1 receptor a (Ra), IL-6, IL-10, IL-13, transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF)-a, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and indoleamine-2,3-dioxygenase (IDO) was performed using commercial ELISA kits. The expression of HLA-G1, G5, and G7 was evaluated in unstimulated and stimulated WJ and BM-MSCs. Finally, the interactions between MSCs and patients’ macrophages were established using co-culture experiments.
RESULTS Thawed WJ and BM-MSCs exhibited a spindle-shaped morphology, successfully differentiated to “osteocytes”, “adipocytes”, and “chondrocytes”, and in flow cytometric analysis were characterized by positivity for CD73, CD90, and CD105 (> 95%) and negativity for CD34, CD45, and HLA-DR (< 2%). Moreover, stimulated WJ and BM-MSCs were characterized by increased cytoplasmic granulation, in comparison to unstimulated cells. The HLA-G isoforms (G1, G5, and G7) were successfully expressed by the unstimulated and stimulated WJ-MSCs. On the other hand, only weak expression of HLA-G1 was identified in BM-MSCs. Stimulated MSCs secreted high levels of IL-1Ra, IL-6, IL-10, IL-13, TGF-β1, FGF, VEGF, PDGF, and IDO in comparison to unstimulated cells (P < 0.05) after 12 and 24 h. Finally, macrophages derived from COVID-19 patients successfully adapted the M2 phenotype after co-culturing with stimulated WJ and BM-MSCs.
CONCLUSION WJ and BM-MSCs successfully produced high levels of immunoregulatory agents, which may efficiently modulate the over-activated immune responses of critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | | | - Zetta Dimou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Eirini-Faidra Sarri
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Eleni Georgiou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Maria Salagianni
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | | | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| |
Collapse
|
40
|
Liu J, Lai X, Bao Y, Xie W, Li Z, Chen J, Li G, Wang T, Huang W, Ma Y, Shi J, Zhao E, Xiang AP, Liu Q, Chen X. Intraperitoneally Delivered Mesenchymal Stem Cells Alleviate Experimental Colitis Through THBS1-Mediated Induction of IL-10-Competent Regulatory B Cells. Front Immunol 2022; 13:853894. [PMID: 35371051 PMCID: PMC8971528 DOI: 10.3389/fimmu.2022.853894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show promising therapeutic potential in treating inflammatory bowel disease (IBD), and intraperitoneal delivery of MSCs have become a more effective route for IBD treatment. However, the underlying mechanisms are still poorly understood. Here, we found that intraperitoneally delivered MSCs significantly alleviated experimental colitis. Depletion of peritoneal B cells, but not macrophages, clearly impaired the therapeutic effects of MSCs. Intraperitoneally delivered MSCs improved IBD likely by boosting the IL-10-producing B cells in the peritoneal cavity, and a single intraperitoneal injection of MSCs could significantly prevent disease severity in a recurrent mouse colitis model, with lower proinflammation cytokines and high level of IL-10. The gene expression profile revealed that thrombospondin-1 (THBS1) was dramatically upregulated in MSCs after coculture with peritoneal lavage fluid from colitis mice. Knockout of THBS1 expression in MSCs abolished their therapeutic effects in colitis and the induction of IL-10-producing B cells. Mechanistically, THBS1 modulates the activation of transforming growth factor-β (TGF-β), which combines with TGF-β receptors on B cells and contributes to IL-10 production. Blocking the interaction between THBS1 and latent TGF-β or inhibiting TGF-β receptors (TGF-βR) significantly reversed the THBS1-mediated induction of IL-10-producing B cells and the therapeutic effects on colitis. Collectively, our study revealed that intraperitoneally delivered MSCs secreted THBS1 to boost IL-10+Bregs and control the progression and recurrence of colitis, providing new insight for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Jialing Liu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xingqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingying Bao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Wenfeng Xie
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhishan Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jieying Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiahao Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Erming Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaoyong Chen, ; Qiuli Liu, ; Andy Peng Xiang,
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaoyong Chen, ; Qiuli Liu, ; Andy Peng Xiang,
| | - Xiaoyong Chen
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaoyong Chen, ; Qiuli Liu, ; Andy Peng Xiang,
| |
Collapse
|
41
|
Wang Y, Qi Z, Yan Z, Ji N, Yang X, Gao D, Hu L, Lv H, Zhang J, Li M. Mesenchymal Stem Cell Immunomodulation: A Novel Intervention Mechanism in Cardiovascular Disease. Front Cell Dev Biol 2022; 9:742088. [PMID: 35096808 PMCID: PMC8790228 DOI: 10.3389/fcell.2021.742088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are the member of multipotency stem cells, which possess the capacity for self-renewal and multi-directional differentiation, and have several characteristics, including multi-lineage differentiation potential and immune regulation, which make them a promising source for cell therapy in inflammation, immune diseases, and organ transplantation. In recent years, MSCs have been described as a novel therapeutic strategy for the treatment of cardiovascular diseases because they are potent modulators of immune system with the ability to modulating immune cell subsets, coordinating local and systemic innate and adaptive immune responses, thereby enabling the formation of a stable inflammatory microenvironment in damaged cardiac tissues. In this review, the immunoregulatory characteristics and potential mechanisms of MSCs are sorted out, the effect of these MSCs on immune cells is emphasized, and finally the application of this mechanism in the treatment of cardiovascular diseases is described to provide help for clinical application.
Collapse
Affiliation(s)
- Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
42
|
Rana N, Suliman S, Al-Sharabi N, Mustafa K. Extracellular Vesicles Derived from Primed Mesenchymal Stromal Cells Loaded on Biphasic Calcium Phosphate Biomaterial Exhibit Enhanced Macrophage Polarization. Cells 2022; 11:470. [PMID: 35159282 PMCID: PMC8834243 DOI: 10.3390/cells11030470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stromal cells (MSC) loaded on biphasic calcium phosphate biomaterial (MSC + BCP) have been used as an advanced therapy medicinal product to treat complex maxillofacial bone defects in patients. Further, MSC-derived extracellular vesicles (EVs) are established vehicles of paracrine factors, supporting inter-cellular communication between MSC and other interacting cell types, such as monocytes/macrophages. However, the information about the immunomodulatory potential of EVs derived from MSC and biomaterial constructs (MSC + BCP:EV) and inflammatory primed constructs (MSCp + BCP:EV) are scarce. Hence, we isolated and characterized EVs from these different systems, and compared their cytokine contents with plastic-adherent MSC-derived EVs (MSC:EV). When EVs from all three MSC systems were added to the primary blood-derived macrophages in vitro, significantly higher numbers of M0 (naive) macrophages shifted to M2-like (anti-inflammatory) by MSCp + BCP:EV treatment. Further, this treatment led to enhanced switching of M1 polarized macrophages to M2 polarized, and conversely, M2 to M1, as evaluated by determining the M1/M2 ratios after treatment. The enhanced macrophage modulation by MSCp + BCP:EV was attributed to their higher immunomodulatory (TNFα, IL1β, IL5), angiogenic (VEGF), and chemokine-rich (RANTES, MCP1, MIP1β) cytokine cargo. In conclusion, we successfully isolated and characterized EVs from MSC + BCP constructs and demonstrated that, depending upon the tissue microenvironment, these EVs contribute towards modulating the macrophage-mediated inflammation and healing responses. The study offers new insights into the use of biomaterial-induced EVs for MSC secretome delivery, as a step towards future 'cell-free' bone regenerative therapies.
Collapse
Affiliation(s)
| | | | | | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.R.); (S.S.); (N.A.-S.)
| |
Collapse
|
43
|
da Silva JS, Gonçalves RGJ, Vasques JF, Rocha BS, Nascimento-Carlos B, Montagnoli TL, Mendez-Otero R, de Sá MPL, Zapata-Sudo G. Mesenchymal Stem Cell Therapy in Diabetic Cardiomyopathy. Cells 2022; 11:cells11020240. [PMID: 35053356 PMCID: PMC8773977 DOI: 10.3390/cells11020240] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The incidence and prevalence of diabetes mellitus (DM) are increasing worldwide, and the resulting cardiac complications are the leading cause of death. Among these complications is diabetes-induced cardiomyopathy (DCM), which is the consequence of a pro-inflammatory condition, oxidative stress and fibrosis caused by hyperglycemia. Cardiac remodeling will lead to an imbalance in cell survival and death, which can promote cardiac dysfunction. Since the conventional treatment of DM generally does not address the prevention of cardiac remodeling, it is important to develop new alternatives for the treatment of cardiovascular complications induced by DM. Thus, therapy with mesenchymal stem cells has been shown to be a promising approach for the prevention of DCM because of their anti-apoptotic, anti-fibrotic and anti-inflammatory effects, which could improve cardiac function in patients with DM.
Collapse
Affiliation(s)
- Jaqueline S. da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
| | - Renata G. J. Gonçalves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-170, RJ, Brazil; (R.G.J.G.); (R.M.-O.)
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-170, RJ, Brazil;
| | - Bruna S. Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
| | - Bianca Nascimento-Carlos
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
| | - Tadeu L. Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
| | - Rosália Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-170, RJ, Brazil; (R.G.J.G.); (R.M.-O.)
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Mauro P. L. de Sá
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
- Correspondence: or ; Tel.: +55-21-39386505
| |
Collapse
|
44
|
da Silva FS, Aquino de Souza NCS, de Moraes MV, Abreu BJ, de Oliveira MF. CmyoSize: An ImageJ macro for automated analysis of cardiomyocyte size in images of routine histology staining. Ann Anat 2022; 241:151892. [DOI: 10.1016/j.aanat.2022.151892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
|
45
|
Sant'Ana AN, Araújo AB, Gonçalves FDC, Paz AH. Effects of living and metabolically inactive mesenchymal stromal cells and their derivatives on monocytes and macrophages. World J Stem Cells 2021; 13:1160-1176. [PMID: 34630856 PMCID: PMC8474715 DOI: 10.4252/wjsc.v13.i9.1160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent and self-renewing stem cells that have great potential as cell therapy for autoimmune and inflammatory disorders, as well as for other clinical conditions, due to their immunoregulatory and regenerative properties. MSCs modulate the inflammatory milieu by releasing soluble factors and acting through cell-to-cell mechanisms. MSCs switch the classical inflammatory status of monocytes and macrophages towards a non-classical and anti-inflammatory phenotype. This is characterized by an increased secretion of anti-inflammatory cytokines, a decreased release of pro-inflammatory cytokines, and changes in the expression of cell membrane molecules and in metabolic pathways. The MSC modulation of monocyte and macrophage phenotypes seems to be critical for therapy effectiveness in several disease models, since when these cells are depleted, no immunoregulatory effects are observed. Here, we review the effects of living MSCs (metabolically active cells) and metabolically inactive MSCs (dead cells that lost metabolic activity by induced inactivation) and their derivatives (extracellular vesicles, soluble factors, extracts, and microparticles) on the profile of macrophages and monocytes and the implications for immunoregulatory and reparative processes. This review includes mechanisms of action exhibited in these different therapeutic approaches, which induce the anti-inflammatory properties of monocytes and macrophages. Finally, we overview several possibilities of therapeutic applications of these cells and their derivatives, with results regarding monocytes and macrophages in animal model studies and some clinical trials.
Collapse
Affiliation(s)
- Alexia Nedel Sant'Ana
- Laboratório de Células Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Anelise Bergmann Araújo
- Centro de Processamento Celular, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil.
| | | | - Ana Helena Paz
- Laboratório de Células Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| |
Collapse
|
46
|
Saitoh S, Van Wijk K, Nakajima O. Crosstalk between Metabolic Disorders and Immune Cells. Int J Mol Sci 2021; 22:ijms221810017. [PMID: 34576181 PMCID: PMC8469678 DOI: 10.3390/ijms221810017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022] Open
Abstract
Metabolic syndrome results from multiple risk factors that arise from insulin resistance induced by abnormal fat deposition. Chronic inflammation owing to obesity primarily results from the recruitment of pro-inflammatory M1 macrophages into the adipose tissue stroma, as the adipocytes within become hypertrophied. During obesity-induced inflammation in adipose tissue, pro-inflammatory cytokines are produced by macrophages and recruit further pro-inflammatory immune cells into the adipose tissue to boost the immune response. Here, we provide an overview of the biology of macrophages in adipose tissue and the relationship between other immune cells, such as CD4+ T cells, natural killer cells, and innate lymphoid cells, and obesity and type 2 diabetes. Finally, we discuss the link between the human pathology and immune response and metabolism and further highlight potential therapeutic targets for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Shinichi Saitoh
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan;
| | - Koen Van Wijk
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan;
| | - Osamu Nakajima
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan;
- Correspondence:
| |
Collapse
|
47
|
Zhu XY, Klomjit N, Conley SM, Ostlie MM, Jordan KL, Lerman A, Lerman LO. Impaired immunomodulatory capacity in adipose tissue-derived mesenchymal stem/stromal cells isolated from obese patients. J Cell Mol Med 2021; 25:9051-9059. [PMID: 34418300 PMCID: PMC8435432 DOI: 10.1111/jcmm.16869] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022] Open
Abstract
Immune‐modulatory properties of adipose tissue‐derived mesenchymal stem/stromal cells (MSCs) might be susceptible to metabolic disturbances. We hypothesized that the immune‐modulatory function of MSCs might be blunted in obese human subjects. MSCs were collected from abdominal subcutaneous fat of obese and lean subjects during bariatric or kidney donation surgeries, respectively. MSCs were co‐cultured in vitro for 24 h with M1 macrophages, which were determined as M1or M2 phenotypes by flow cytometry, and cytokines measured in conditioned media. In vivo, lean or obese MSCs (5 × 105), or PBS, were injected into mice two weeks after unilateral renal artery stenosis (RAS) or sham surgeries (n = 6 each). Fourteen days later, kidneys were harvested and stained with M1 or M2 markers. Lean MSCs decreased macrophages M1 marker intensity, which remained elevated in macrophages co‐cultured with obese MSCs. TNF‐α levels were four‐fold higher in conditioned media collected from obese than from lean MSCs. RAS mouse kidneys were shrunk and showed increased M1 macrophage numbers and inflammatory cytokine expression compared with normal kidneys. Lean MSCs decreased M1 macrophages, M1/M2 ratio and inflammation in RAS kidneys, whereas obese MSCs did not. MSCs isolated from lean human subjects decrease inflammatory M1 macrophages both in vivo and in vitro, an immune‐modulatory function which is blunted in MSCs isolated from obese subjects.
Collapse
Affiliation(s)
- Xiang-Yang Zhu
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Nattawat Klomjit
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sabena M Conley
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Megan M Ostlie
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Kyra L Jordan
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
48
|
Fields L, Ito T, Kobayashi K, Ichihara Y, Podaru MN, Hussain M, Yamashita K, Machado V, Lewis-McDougall F, Suzuki K. Epicardial placement of human MSC-loaded fibrin sealant films for heart failure: Preclinical efficacy and mechanistic data. Mol Ther 2021; 29:2554-2570. [PMID: 33887461 PMCID: PMC8353205 DOI: 10.1016/j.ymthe.2021.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stromal cell (MSC) transplantation has been investigated as an advanced treatment of heart failure; however, further improvement of the therapeutic efficacy and mechanistic understanding are needed. Our previous study has reported that epicardial placement of fibrin sealant films incorporating rat amniotic membrane-derived (AM)-MSCs (MSC-dressings) could address limitations of traditional transplantation methods. To progress this finding toward clinical translation, this current study aimed to examine the efficacy of MSC-dressings using human AM-MSCs (hAM-MSCs) and the underpinning mechanism for myocardial repair. Echocardiography demonstrated that cardiac function and structure were improved in a rat ischemic cardiomyopathy model after hAM-MSC-dressing therapy. hAM-MSCs survived well in the rat heart, enhanced myocardial expression of reparative genes, and attenuated adverse remodeling. Copy number analysis by qPCR revealed that upregulated reparative genes originated from endogenous rat cells rather than hAM-MSCs. These results suggest hAM-MSC-dressing therapy stimulates a secondary release of paracrine factors from endogenous cells improving myocardial repair ("secondary paracrine effect"), and cardiac M2-like macrophages were identified as a potential cell source of repair. We demonstrated hAM-MSCs increased M2-like macrophages through not only enhancing M2 polarization but also augmenting their proliferation and migration capabilities via PGE2, CCL2, and TGF-β1, resulting in enhanced cardiac function after injury.
Collapse
Affiliation(s)
- Laura Fields
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tomoya Ito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kazuya Kobayashi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yuki Ichihara
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mihai-Nicolae Podaru
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mohsin Hussain
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kizuku Yamashita
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Vanessa Machado
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fiona Lewis-McDougall
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ken Suzuki
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
49
|
Park SM, An JH, Lee JH, Kim KB, Chae HK, Oh YI, Song WJ, Youn HY. Extracellular vesicles derived from DFO-preconditioned canine AT-MSCs reprogram macrophages into M2 phase. PLoS One 2021; 16:e0254657. [PMID: 34310627 PMCID: PMC8312919 DOI: 10.1371/journal.pone.0254657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) are effective therapeutic agents that ameliorate inflammation through paracrine effect; in this regard, extracellular vesicles (EVs) have been frequently studied. To improve the secretion of anti-inflammatory factors from MSCs, preconditioning with hypoxia or hypoxia-mimetic agents has been attempted and the molecular changes in preconditioned MSC-derived EVs explored. In this study, we aimed to investigate the increase of hypoxia-inducible factor 1-alpha (HIF-1α)/cyclooxygenase-2 (COX-2) in deferoxamine (DFO)-preconditioned canine MSC (MSCDFO) and whether these molecular changes were reflected on EVs. Furthermore, we focused on MSCDFO derived EVs (EVDFO) could affect macrophage polarization via the transfer function of EVs. Results In MSCDFO, accumulation of HIF-1α were increased and production of COX-2 were activated. Also, Inside of EVDFO were enriched with COX-2 protein. To evaluate the transferring effect of EVs to macrophage, the canine macrophage cell line, DH82, was treated with EVs after lipopolysaccharide (LPS) stimulation. Polarization changes of DH82 were evaluated with quantitative real-time PCR and immunofluorescence analyses. When LPS-induced DH82 was treated with EVDFO, phosphorylation of signal transducer and transcription3 (p-STAT3), which is one of key factor of inducing M2 phase, expression was increased in DH82. Furthermore, treated with EVDFO in LPS-induced DH82, the expression of M1 markers were reduced, otherwise, M2 surface markers were enhanced. Comparing with EVDFO and EVnon. Conclusion DFO preconditioning in MSCs activated the HIF-1α/COX-2 signaling pathway; Transferring COX-2 through EVDFO could effectively reprogram macrophage into M2 phase by promoting the phosphorylation of STAT3.
Collapse
Affiliation(s)
- Su-Min Park
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Bo Kim
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Kyu Chae
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ye-In Oh
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jin Song
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- * E-mail: (WJS); (HYY)
| | - Hwa-Young Youn
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail: (WJS); (HYY)
| |
Collapse
|
50
|
Mesenchymal Stem Cells Therapies on Fibrotic Heart Diseases. Int J Mol Sci 2021; 22:ijms22147447. [PMID: 34299066 PMCID: PMC8307175 DOI: 10.3390/ijms22147447] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy is a promising alternative approach to heart diseases. The most prevalent source of multipotent stem cells, usually called somatic or adult stem cells (mesenchymal stromal/stem cells, MSCs) used in clinical trials is bone marrow (BM-MSCs), adipose tissue (AT-MSCs), umbilical cord (UC-MSCs) and placenta. Therapeutic use of MSCs in cardiovascular diseases is based on the benefits in reducing cardiac fibrosis and inflammation that compose the cardiac remodeling responsible for the maintenance of normal function, something which may end up causing progressive and irreversible dysfunction. Many factors lead to cardiac fibrosis and failure, and an effective therapy is lacking to reverse or attenuate this condition. Different approaches have been shown to be promising in surpassing the poor survival of transplanted cells in cardiac tissue to provide cardioprotection and prevent cardiac remodeling. This review includes the description of pre-clinical and clinical investigation of the therapeutic potential of MSCs in improving ventricular dysfunction consequent to diverse cardiac diseases.
Collapse
|