1
|
Xu S, Jia J, Mao R, Cao X, Xu Y. Mitophagy in acute central nervous system injuries: regulatory mechanisms and therapeutic potentials. Neural Regen Res 2025; 20:2437-2453. [PMID: 39248161 DOI: 10.4103/nrr.nrr-d-24-00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Acute central nervous system injuries, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury, are a major global health challenge. Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities. Mitochondria are susceptible to damage after acute central nervous system injury, and this leads to the release of toxic levels of reactive oxygen species, which induce cell death. Mitophagy, a selective form of autophagy, is crucial in eliminating redundant or damaged mitochondria during these events. Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries. In this review, we provide a comprehensive overview of the process, classification, and related mechanisms of mitophagy. We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy. In the final section of this review, we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.
Collapse
Affiliation(s)
- Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
| | - Junqiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
| | - Rui Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Yu X, Chen Z, Ruan F, Jiang Y, Bao W, Wu D, Chao L, Wu R, Le K. Inhibition of PAD4-mediated neutrophil extracellular traps formation attenuates hypoxic-ischemic brain injury in neonatal mice. Exp Neurol 2025; 384:115065. [PMID: 39566838 DOI: 10.1016/j.expneurol.2024.115065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is the primary cause of neonatal mortality and severe neurological sequelae. The interaction of neuroinflammation with the immune system represents a significant pathological mechanism underlying the development of HIE. Neutrophil extracellular traps (NETs) are a recently identified antimicrobial mechanism utilized by neutrophils. NETs can act as damage-associated molecular patterns, thereby amplifying the immune response and exerting proinflammatory effects. However, further research is needed to elucidate their role in the pathogenesis of HIE. In this study, we investigated the role of NETs in a hypoxic-ischemic brain injury (HIBI) model. We first reported that a pharmacological intervention to inhibit peptidylarginine deiminase type IV (PAD4) may constitute an effective strategy for reducing HI insult-induced neuroinflammation, neuronal apoptosis, and brain tissue destruction while also enhancing long-term neurobehavioral function in mice. These results support a pathological role for NETs in HIBI, and targeting PAD4 is a potential direction for the treatment of HIE.
Collapse
Affiliation(s)
- Xiaoping Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang 330006, Jiangxi Province, China
| | - Zhaoyan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang 330006, Jiangxi Province, China
| | - Fei Ruan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang 330006, Jiangxi Province, China
| | - Yaqing Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang 330006, Jiangxi Province, China
| | - Wei Bao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang 330006, Jiangxi Province, China
| | - Di Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang 330006, Jiangxi Province, China
| | - Lishuo Chao
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), NO.36 Mingxing Road, Guangzhou, Guangdong Province 510370, China
| | - Rui Wu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang 330006, Jiangxi Province, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang 330006, Jiangxi Province, China; Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, China.
| |
Collapse
|
3
|
Tang J, Yue J, Tao Y, Zhao G, Yi X, Zhang M, Huang N, Cheng Y. Neutrophil Extracellular Traps Induce Brain Edema Around Intracerebral Hematoma via ERK-Mediated Regulation of MMP9 and AQP4. Transl Stroke Res 2024:10.1007/s12975-024-01318-w. [PMID: 39733198 DOI: 10.1007/s12975-024-01318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024]
Abstract
Perihematomal edema (PHE) significantly aggravates secondary brain injury in patients with intracerebral hemorrhage (ICH), yet its detailed mechanisms remain elusive. Neutrophil extracellular traps (NETs) are known to exacerbate neurological deficits and worsen outcomes after stroke. This study explores the potential role of NETs in the pathogenesis of brain edema following ICH. The rat ICH model was created, immunofluorescence and Western blot were used to examine neutrophil accumulation, NET markers citrullinated histone H3 (CitH3) and myeloperoxidase (MPO), tight junction proteins (ZO-1 and Occludin), Aquaporin-4 (AQP4), matrix metalloproteinase-9 (MMP-9), and ERK phosphorylation (p-ERK) in brain tissues surrounding the hematoma. TUNEL staining and behavioral tests were employed to evaluate neuronal apoptosis and neurological dysfunction, while blood-brain barrier (BBB) permeability and brain edema were also measured by Evans blue and brain water content. Furthermore, the molecular mechanisms related to NETs-induced PHE were investigated using NETs, ERK, MMP-9 and AQP4 regulators, respectively. Ly6G+ neutrophils surrounding the hematoma developed NETs within 3 days post-ICH. NETs decreased tight junction proteins, destroyed BBB integrity, promoted brain edema, increased neuronal apoptosis, and exacerbated neurological deficits. Conversely, inhibition of NETs mitigated PHE, reduced neuronal apoptosis, and improved neurological functions. Mechanistically, NET-induced PHE was originated from impairment of BBB tight junction via ERK/MMP9 pathway, coupled with ERK-mediated AQP4 downregulation in perihematomal regions. These findings elucidated the effects of NETs on PHE, which offered promising insights for targeting NETs to relieve brain edema and secondary brain injury post-ICH.
Collapse
Affiliation(s)
- Jun Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Jianhe Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Guanjian Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Xiaoyao Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Maoxin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.
| |
Collapse
|
4
|
Xia L, Yan X, Zhang H. Mitochondrial DNA-activated cGAS-STING pathway in cancer: Mechanisms and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1880:189249. [PMID: 39701325 DOI: 10.1016/j.bbcan.2024.189249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Mitochondrial DNA (mtDNA), a circular double-stranded DNA located within mitochondria, plays a pivotal role in mitochondrial-induced innate immunity, particularly via the cyclic GMP-AMP synthase (cGAS)-STING pathway, which recognizes double-stranded DNA and is crucial for pathogen resistance. Recent studies elucidate the interplay among mtDNA, the cGAS-STING pathway, and neutrophil extracellular traps (NETs) in the context of cancer. mtDNA uptake by recipient cells activates the cGAS-STING pathway, while mtDNA leakage reciprocally regulates NET release, amplifying inflammation and promoting NETosis, a mechanism of tumor cell death. Autophagy modulates these processes by clearing damaged mitochondria and degrading cGAS, thus preventing mtDNA recognition. Tumor microenvironmental factors, such as metabolic reprogramming and lipid accumulation, induce mitochondrial stress, ROS production, and further mtDNA leakage. This review explores strategies in cancer drug development that leverage mtDNA leakage to activate the cGAS-STING pathway, potentially converting 'cold tumors' into 'hot tumors,' while discussing advancements in targeted therapies and proposing new research methodologies.
Collapse
Affiliation(s)
- Lintao Xia
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuli Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Sajjad S, Hewera M, Rana M, Gliem M, Fischer I, Khan D. Neutrophils extracellular traps myeloperoxidase and elastase predict cerebral vasospasms after aneurysmal subarachnoid hemorrhage. Heliyon 2024; 10:e40562. [PMID: 39654759 PMCID: PMC11625263 DOI: 10.1016/j.heliyon.2024.e40562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a highly fatal and morbid disease. Despite successful coiling or clipping of a ruptured aneurysm, the patients suffer post-aSAH complications, including early brain injury, cerebral vasospasm (CVS), delayed cerebral ischemia (DCI), and systemic infections that mainly determine the clinical outcomes. Diagnostic biomarkers to predict accurately post-aSAH complications are needed. In this prospective exploratory study, we investigated the predictive value of neutrophil extracellular traps (NETs) components for CVS after aSAH. In the study, 62 patients with aSAH, 17 patients with unruptured cerebral aneurysms, and 12 healthy controls were included. The serum levels of myeloperoxidase (MPO), elastase (ELA), and citrullinated histone H3 (cH3) on day 1 and day 4 of hospital admission were measured with ELISA. Data were scaled using the Yeo-Johnson transformation. Values in two groups were compared using a t-test and in multiple groups using ANOVA. Logistic regression was used to model the outcome probability, including CVS, as the function of ELISA values. Among the patients with aneurysms, those who suffered aSAH had significantly higher levels of MPO (113.9 ± 294.4 vs. 422.3 ± 319.0 ng/ml, p < 0.05), ELA (84.8 ± 221.0 vs. 199.2 ± 218.9 ng/ml, p < 0.05), and cH3 (0.0 ± 0.0 vs. 2.8 ± 1.5, ng/ml, p < 0.05) on day one after aSAH, suggesting the involvement of NETs components in pathophysiology of aSAH and the events following aSAH. Individually, MPO and ELA levels taken on day 1 after SAH did not differ between patients with CVS and patients without CVS. However, when taken together into a logistic model, they allowed for predicting CVS with high sensitivity (91 %) and specificity (79 %). MPO and ELA, along with other clinical parameters, can be used as early predictors of CVS in aSAH patients and can serve as guidance during treatment decisions in the management of aSAH.
Collapse
Affiliation(s)
- Saba Sajjad
- Department of Oral, Maxillofacial and Facial Plastic Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michael Hewera
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Majeed Rana
- Department of Oral, Maxillofacial and Facial Plastic Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michael Gliem
- Department of Neurology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Igor Fischer
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
6
|
Huang Z, Huang R, Zhu J, Zhou Y, Shi J. PRKDC regulates cGAMP to enhance immune response in lung cancer treatment. Front Immunol 2024; 15:1497570. [PMID: 39660143 PMCID: PMC11628376 DOI: 10.3389/fimmu.2024.1497570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Background Despite its involvement in nucleotide metabolism, tumor immune landscape, and immunotherapy response, the role of 2'-3'-cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP) in lung adenocarcinoma (LUAD) remails unelucidated. This study aimed to investigate the antitumor effects of 2',3'-cGAMP in LUAD. Method Herein, patients with LUAD were screened for prognostic biomarkers, which were then assessed for sensitivity to immunotherapy and chemotherapy utilizing the "TIDE" algorithm and CellMiner database. The results were validated using a mouse xenograft model. Additionally, macrophages and lung cancer cells were co-cultured, and macrophage polarization and apoptosis levels in the lung cancer cells were detected through flow cytometry. Protein levels were analyzed through western blotting and immunofluorescence. Finally, drug-encapsulated nanoparticles were designed to systematically examine the antitumor efficacy of the treatment against LUAD. Result Notably, 2',3'-cGAMP-mediated protein kinase, DNA-activated, catalytic subunit (PRKDC) inhibition induced macrophage polarization toward the M1 phenotype, thereby triggering apoptosis in LUAD cells. Furthermore, in vivo experiments showed that M1 macrophage infiltration enhancement and apoptosis induction in lung cancer cells were achieved by suppressing PRKDC expression via 2',3'-cGAMP, which inhibited lung cancer growth. The machine-learning approaches revealed SB505124 to be an effective antitumor agent in LUAD cells with high PRKDC levels owing to its ability to promote 2',3'-cGAMP-mediated apoptosis. Encapsulation of 2',3'-cGAMP, and SB505124 within a nano-delivery system markedly reduced tumor volumes in murine lung cancer tissues compared with that by individual agents. Conclusion The findings of this study reveal that PRKDC can predict poor survival of patients with LUAD. Additionally, SB505124 enhances the efficacy of 2',3'-cGAMP-based immunotherapy in patients exhibiting a high PRKDC expression.
Collapse
Affiliation(s)
- Zhanghao Huang
- Medical School of Nantong University, Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Runqi Huang
- Medical School of Nantong University, Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Jun Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Youlang Zhou
- Medical School of Nantong University, Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
7
|
Wang YG, Liu AQ, Khan Y, Zhang Y, Wang CC, Song YL, Du JH, Sima YH, Qiu JF, Xu SQ. The JNK signalling pathway gene BmJun is involved in the regulation of egg quality and production in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39539200 DOI: 10.1111/imb.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
The Jun N-terminal kinase (JNK) signalling pathway has a key role in tissue remodelling during insect metamorphosis by regulating programmed cell death. However, multiple members of the JNK pathway in Lepidoptera remain uncharacterized. In this study, two key genes of the JNK pathway, BmJun and BmFos, were cloned from the silkworm Bombyx mori, a lepidopteran model insect, and their effects on reproductive development were investigated. BmJun and BmFos encode 239 and 380 amino acids, respectively. Both proteins have typical basic leucine zipper domains and form a BmJUN-BmFOS dimer activator protein to exert transcriptional regulation. During the wandering stage of silkworm development, interference in BmJun expression had no effect on pupation, whereas B. mori vitellogenin (BmVg) expression, which is essential for egg development, was suppressed in the fat body and egg laying was significantly reduced. Additionally, numerous eggs appeared shrivelled and deformed, suggesting that they were nutritionally stunted. Inhibition of the JNK pathway caused abnormal pupal metamorphosis, an increase in shrivelled, unfertilized eggs, a decrease in fat body synthesis, and accumulation of BmVg in the ovaries of female B. mori. The results indicated that BmJUN and BmFOS can form an AP-1 dimer. Interfering with BmJun or inhibiting the phosphorylation of BmJUN leads to a reduction in the synthesis of BmVg in the fat body and its accumulation in the ovaries, thereby affecting the quality and production of the progeny eggs. These findings suggest that regulating Jun in the JNK pathway could be a potential way to inhibit female reproduction in Lepidoptera.
Collapse
Affiliation(s)
- Yu-Guo Wang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - An-Qi Liu
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yasir Khan
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yi Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Chen-Chen Wang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yao-Le Song
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jiang-Han Du
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yang-Hu Sima
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jian-Feng Qiu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Shi-Qing Xu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| |
Collapse
|
8
|
Chen S, You J, Zhou X, Li Y, Liu F, Teng Y, Teng H, Li Y, Liang D, Li Z, Wu L. PIGK defects induce apoptosis in Purkinje cells and acceleration of neuroectodermal differentiation. Cell Death Dis 2024; 15:808. [PMID: 39521780 PMCID: PMC11550446 DOI: 10.1038/s41419-024-07201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Biallelic mutations in PIGK cause GPI biosynthesis defect 22 (GPIBD22), characterized with developmental delay, hypotonia, and cerebellar atrophy. The understanding of the underlying causes is limited due to the lack of suitable disease models. To address this gap, we generated a mouse model with PIGK deficits, specifically in Purkinje cells (Pcp2-cko) and an induced pluripotent stem cell (iPSC) model using the c.87dupT mutant (KI) found in GPIBD22 patients. Pcp2-cko mice demonstrated cerebellar atrophy, ataxia and progressive Purkinje cells loss which were accompanied by increased apoptosis and neuroinflammation. Similarly, KI iPSCs exhibited increased apoptosis and accelerated neural rosette formation, indicating that PIGK defects could impact early neural differentiation that confirmed by the RNA-Seq results of neural progenitor cells (NPCs). The increased apoptosis and accelerated NPC differentiation in KI iPSCs are associated with excessive unfolded protein response (UPR) pathway activation, and can be rescued by UPR pathway inhibitor. Our study reveals potential pathogenic mechanism of GPIBD22 and providing new insights into the therapeutic strategy for GPIBD.
Collapse
Affiliation(s)
- Siyi Chen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Jiali You
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Xiaowei Zhou
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yan Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Fang Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, China
| | - Hua Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, China
| | - Yunlong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China.
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, China.
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China.
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China.
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, China.
| |
Collapse
|
9
|
Hu JW, Xiao JJ, Cai S, Zhong Y, Wang S, Liu S, Wu X, Cai Y, Zhang BF. Inhibition of mitochondrial over-division by (+)-14,15-Dehydrovincamine attenuates cisplatin-induced acute kidney injury via the JNK/Mff pathway. Free Radic Biol Med 2024; 224:190-203. [PMID: 39197599 DOI: 10.1016/j.freeradbiomed.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
Cisplatin-induced acute kidney injury (AKI) is characterized by mitochondrial damage and apoptosis, and safe and effective therapeutic agents are urgently needed. Renal tubular epithelial cells, the main site of AKI, are enriched with a large number of mitochondria, which are crucial for the progression of AKI with an impaired energy supply. Vincamine has anti-inflammatory and antioxidant effects in mouse AKI models. As a natural compound derived from Tabernaemontana pandacaqui, (+)-14, 15-Dehydrovincamine and Vincamine differ in structure by only one double bond, and the role and exact mechanism of (+)-14, 15-Dehydrovincamine remains to be elucidated in AKI. The present study demonstrated that (+)-14,15-Dehydrovincamine significantly ameliorated mitochondrial dysfunction and maintained mitochondrial homeostasis in a cisplatin-induced AKI model. Furthermore, (+)-14,15-Dehydrovincamine ameliorates cytochrome C-dependent apoptosis in renal tubular epithelial cells. c-Jun NH2-terminal kinase (JNK) was identified as a potential target protein of (+)-14,15-Dehydrovincamine attenuating AKI by network pharmacological analysis. (+)-14,15-Dehydrovincamine inhibited cisplatin-induced JNK activation, mitochondrial fission factor (Mff) phosphorylation, and dynamin-related protein 1 (Drp1) translocation to the mitochondria in renal tubular epithelial cells. Meanwhile, the JNK activator anisomycin restored Mff phosphorylation and Drp1 translocation, counteracting the protective effect of (+)-14,15-Dehydrovincamine on mitochondrial dysfunction in cisplatin-induced TECs injury. In conclusion, (+)-14,15-Dehydrovincamine reduced mitochondrial fission, maintained mitochondrial homeostasis, and attenuated apoptosis by inhibiting the JNK/Mff/Drp1 pathway, which in turn ameliorated cisplatin-induced AKI.
Collapse
Affiliation(s)
- Jun-Wei Hu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Jing-Jie Xiao
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China
| | - ShiQi Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - YuTing Zhong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - ShenTao Wang
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - ShuYe Liu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - XiaoYan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - YouSheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Bai-Fang Zhang
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
| |
Collapse
|
10
|
Campbell A, Lai T, Wahba AE, Boison D, Gebril HM. Enhancing neurogenesis after traumatic brain injury: The role of adenosine kinase inhibition in promoting neuronal survival and differentiation. Exp Neurol 2024; 381:114930. [PMID: 39173898 DOI: 10.1016/j.expneurol.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Traumatic brain injury (TBI) presents a significant public health challenge, necessitating innovative interventions for effective treatment. Recent studies have challenged conventional perspectives on neurogenesis, unveiling endogenous repair mechanisms within the adult brain following injury. However, the intricate mechanisms governing post-TBI neurogenesis remain unclear. The microenvironment of an injured brain, characterized by astrogliosis, neuroinflammation, and excessive cell death, significantly influences the fate of newly generated neurons. Adenosine kinase (ADK), the key metabolic regulator of adenosine, emerges as a crucial factor in brain development and cell proliferation after TBI. This study investigates the hypothesis that targeting ADK could enhance brain repair, promote neuronal survival, and facilitate differentiation. In a TBI model induced by controlled cortical impact, C57BL/6 male mice received intraperitoneal injections of the small molecule ADK inhibitor 5-iodotubercidin (ITU) for three days following TBI. To trace the fate of TBI-associated proliferative cells, animals received intraperitoneal injections of BrdU for seven days, beginning immediately after TBI. Our results show that ADK inhibition by ITU improved brain repair 14 days after injury as evidenced by a diminished injury size. Additionally, the number of mature neurons generated after TBI was increased in ITU-treated mice. Remarkably, the TBI-associated pathological events including astrogliosis, neuroinflammation, and cell death were arrested in ITU-treated mice. Finally, ADK inhibition modulated cell death by regulating the PERK signaling pathway. Together, these findings demonstrate a novel therapeutic approach to target multiple pathological mechanisms involved in TBI. This research contributes valuable insights into the intricate molecular mechanisms underlying neurogenesis and gliosis after TBT.
Collapse
Affiliation(s)
- Andrea Campbell
- Departement of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14620, USA; Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Tho Lai
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Amir E Wahba
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Chemistry Department, Faculty of Science, Damietta University, New Damietta City 34518, Egypt
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Hoda M Gebril
- Departement of Biomedical Engineering, School of Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
11
|
Mercer A, Sancandi M, Maclatchy A, Lange S. Brain-Region-Specific Differences in Protein Citrullination/Deimination in a Pre-Motor Parkinson's Disease Rat Model. Int J Mol Sci 2024; 25:11168. [PMID: 39456949 PMCID: PMC11509057 DOI: 10.3390/ijms252011168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The detection of early molecular mechanisms and potential biomarkers in Parkinson's disease (PD) remains a challenge. Recent research has pointed to novel roles for post-translational citrullination/deimination caused by peptidylarginine deiminases (PADs), a family of calcium-activated enzymes, in the early stages of the disease. The current study assessed brain-region-specific citrullinated protein targets and their associated protein-protein interaction networks alongside PAD isozymes in the 6-hydroxydopamine (6-OHDA) induced rat model of pre-motor PD. Six brain regions (cortex, hippocampus, striatum, midbrain, cerebellum and olfactory bulb) were compared between controls/shams and the pre-motor PD model. For all brain regions, there was a significant difference in citrullinated protein IDs between the PD model and the controls. Citrullinated protein hits were most abundant in cortex and hippocampus, followed by cerebellum, midbrain, olfactory bulb and striatum. Citrullinome-associated pathway enrichment analysis showed correspondingly considerable differences between the six brain regions; some were overlapping for controls and PD, some were identified for the PD model only, and some were identified in control brains only. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways identified in PD brains only were associated with neurological, metabolic, immune and hormonal functions and included the following: "Axon guidance"; "Spinocerebellar ataxia"; "Hippo signalling pathway"; "NOD-like receptor signalling pathway"; "Phosphatidylinositol signalling system"; "Rap1 signalling pathway"; "Platelet activation"; "Yersinia infection"; "Fc gamma R-mediated phagocytosis"; "Human cytomegalovirus infection"; "Inositol phosphate metabolism"; "Thyroid hormone signalling pathway"; "Progesterone-mediated oocyte maturation"; "Oocyte meiosis"; and "Choline metabolism in cancer". Some brain-region-specific differences were furthermore observed for the five PAD isozymes (PADs 1, 2, 3, 4 and 6), with most changes in PAD 2, 3 and 4 when comparing control and PD brain regions. Our findings indicate that PAD-mediated protein citrullination plays roles in metabolic, immune, cell signalling and neurodegenerative disease-related pathways across brain regions in early pre-motor stages of PD, highlighting PADs as targets for future therapeutic avenues.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Marco Sancandi
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Amy Maclatchy
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Sigrun Lange
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| |
Collapse
|
12
|
Kumari D, Kaur S, Dandekar MP. Intricate Role of the Cyclic Guanosine Monophosphate Adenosine Monophosphate Synthase-Stimulator of Interferon Genes (cGAS-STING) Pathway in Traumatic Brain Injury-Generated Neuroinflammation and Neuronal Death. ACS Pharmacol Transl Sci 2024; 7:2936-2950. [PMID: 39416963 PMCID: PMC11475349 DOI: 10.1021/acsptsci.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
The secondary insult in the aftermath of traumatic brain injury (TBI) causes detrimental and self-perpetuating alteration in cells, resulting in aberrant function and the death of neuronal cells. The secondary insult is mainly driven by activation of the neuroinflammatory pathway. Among several classical pathways, the cGAS-STING pathway, a primary neuroinflammatory route, encompasses the cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptor. Recently, the cGAS-STING research domain has gained exponential attention. The aberrant stimulation of cGAS-STING machinery and corresponding neuroinflammation have also been reported after TBI. In addition to the critical contribution to neuroinflammation, the cGAS-STING signaling also provokes neuronal cell death through various cell death mechanisms. This review highlights the structural and molecular mechanisms of the cGAS-STING machinery associated with TBI. We also focus on the intricate relationship and framework between cGAS-STING signaling and cell death mechanisms (autophagy, apoptosis, pyroptosis, ferroptosis, and necroptosis) in the aftermath of TBI. We suggest that the targeting of cGAS-STING signaling may open new therapeutic strategies to combat neuroinflammation and neurodegeneration in TBI.
Collapse
Affiliation(s)
- Deepali Kumari
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Simranjit Kaur
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Manoj P. Dandekar
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| |
Collapse
|
13
|
Wang LL, Wang H, Lin SJ, Xu XY, Hu WJ, Liu J, Zhang HY. ABBV-744 alleviates LPS-induced neuroinflammation via regulation of BATF2-IRF4-STAT1/3/5 axis. Acta Pharmacol Sin 2024; 45:2077-2091. [PMID: 38862817 PMCID: PMC11420366 DOI: 10.1038/s41401-024-01318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Suppression of neuroinflammation using small molecule compounds targeting the key pathways in microglial inflammation has attracted great interest. Recently, increasing attention has been gained to the role of the second bromodomain (BD2) of the bromodomain and extra-terminal (BET) proteins, while its effect and molecular mechanism on microglial inflammation has not yet been explored. In this study, we evaluated the therapeutic effects of ABBV-744, a BD2 high selective BET inhibitor, on lipopolysaccharide (LPS)-induced microglial inflammation in vitro and in vivo, and explored the key pathways by which ABBV-744 regulated microglia-mediated neuroinflammation. We found that pretreatment of ABBV-744 concentration-dependently inhibited the expression of LPS-induced inflammatory mediators/enzymes including NO, TNF-α, IL-1β, IL-6, iNOS, and COX-2 in BV-2 microglial cells. These effects were validated in LPS-treated primary microglial cells. Furthermore, we observed that administration of ABBV-744 significantly alleviated LPS-induced activation of microglia and transcriptional levels of pro-inflammatory factors TNF-α and IL-1β in mouse hippocampus and cortex. RNA-Sequencing (RNA-seq) analysis revealed that ABBV-744 induced 508 differentially expressed genes (DEGs) in LPS-stimulated BV-2 cells, and gene enrichment and gene expression network analysis verified its regulation on activated microglial genes and inflammatory pathways. We demonstrated that pretreatment of ABBV-744 significantly reduced the expression levels of basic leucine zipper ATF-like transcription factor 2 (BATF2) and interferon regulatory factor 4 (IRF4), and suppressed JAK-STAT signaling pathway in LPS-stimulated BV-2 cells and mice, suggesting that the anti-neuroinflammatory effect of ABBV-744 might be associated with regulation of BATF2-IRF4-STAT1/3/5 pathway, which was confirmed by gene knockdown experiments. This study demonstrates the effect of a BD2 high selective BET inhibitor, ABBV-744, against microglial inflammation, and reveals a BATF2-IRF4-STAT1/3/5 pathway in regulation of microglial inflammation, which might provide new clues for discovery of effective therapeutic strategy against neuroinflammation.
Collapse
Affiliation(s)
- Le-le Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Si-Jin Lin
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing-Yu Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Juan Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hai-Yan Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
14
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
15
|
Zou M, Chen W, Li J, Qi X, Wang X, Liu F, Hu J, Zhang Q. Apoptosis Signal-Regulated Kinase-1 Promotes Nucleus Pulposus Cell Senescence and Apoptosis to Regulate Intervertebral Disc Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1737-1751. [PMID: 38879082 DOI: 10.1016/j.ajpath.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024]
Abstract
This study investigated the role of apoptosis signal-regulated kinase-1 (ASK1) in intervertebral disc degeneration (IDD). The nucleus pulposus (NP) tissues of non-IDD and IDD patients were subjected to hematoxylin and eosin, Safranin O-fast green, and immunohistochemical staining. Quantitative real-time PCR was used to assess the ASK1 mRNA level within NP tissue samples and cells. The Cell Counting Kit-8 assay, senescence-associated β-galactosidase staining, and flow cytometry were conducted to assess the viability, senescence, and apoptosis of NP cells, respectively. Extracellular matrix-related factors were detected using Western blot analysis. Furthermore, the effect of ASK1 on the IDD rat model was evaluated. Finally, c-Jun N-terminal kinase (JNK) inhibitors were used to verify the effect of the JNK/p38 signaling on IDD. ASK1 mRNA and protein were up-regulated within NP tissue samples from the IDD group, IL-1β-stimulated NP cells, and IDD rats. ASK1 inhibition promoted cell viability and repressed the senescence and apoptosis of NP cells, promoted collagen II and aggrecan, inhibited matrix metalloproteinase 3/9 and a disintegrin and metalloproteinase with thrombospondin motifs 4/5 protein levels, and increased NP cells in rat intervertebral disc tissues. ASK1 overexpression exerted the opposite effects of ASK1 inhibition on NP cells. Additionally, JNK/p38 signaling suppression could reverse the ASK1 up-regulation-induced dysfunction. In conclusion, ASK1 facilitated the senescence and apoptosis of NP cells in promoting IDD progression via the JNK/p38 pathway.
Collapse
Affiliation(s)
- Mingxiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenkang Chen
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Qi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaobin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fubing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiarui Hu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianshi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Tan R, Sui C, Diao Y, Shi G, Hu X, Hao Z, Li C, Hao M, Xie M, Zhu T. Activation of the sigma-1 receptor ameliorates neuronal ferroptosis via IRE1α after spinal cord injury. Brain Res 2024; 1838:149011. [PMID: 38763502 DOI: 10.1016/j.brainres.2024.149011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Spinal Cord Injury (SCI) is a debilitating disease associated with a significant economic burden owing to its high level of disability; however, current treatment options have only limited efficacy. Past research has shown that iron-dependent programmed cell death, also known as ferroptosis, plays a critical role in the pathogenesis of SCI. The sigma-1 receptor (Sig-1R) is widely distributed in the central nervous system, and has been implicated in the pathophysiology of several neurological and psychiatric disorders. Several in vivo and ex vivo studies have shown that Sig-1R activation exerts unique neuroprotective effects. However, the underlying mechanisms remain unclear. To date, no study has yet demonstrated the association between Sig-1R activation and ferroptosis in patients with SCI. However, the present study found that Sig-1R activation effectively promoted the recovery of motor function in mice after spinal cord injury, attenuated neuronal apoptosis, reduced the production of pro-inflammatory cytokines and iron accumulation, and inhibited ferroptosis in spinal cord tissues following SCI in mice. Ferroptosis and IRE1α were significantly upregulated after spinal cord injury, while sigma-1 receptor agonists were able to facilitate this result through the elimination of inositol-requiring enzyme-1 alpha (IRE1α)-mediated neuronal ferroptosis. Therefore, sigma-1 receptor activation could attenuate ferroptosis after SCI by reducing IRE1α and improving functional recovery after SCI, potentially representing a new therapeutic strategy for treating SCI.
Collapse
Affiliation(s)
- Rui Tan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China
| | - Yuhang Diao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Guihong Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Xiaojun Hu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Zhenghao Hao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Chenyang Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Mingyu Hao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Minghao Xie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Tao Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China.
| |
Collapse
|
17
|
Yan B, Liao P, Cheng F, Wang C, Zhang J, Han Z, Liu Y, Zhang L, Zhang W, Li M, Li D, Chen F, Lei P. Identification of toll-like receptor 2 as a key regulator of neuronal apoptosis in vascular dementia by bioinformatics analysis and experimental validation. Exp Gerontol 2024; 193:112464. [PMID: 38797288 DOI: 10.1016/j.exger.2024.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Vascular dementia (VaD), the second most prevalent type of dementia, lacks a well-defined cause and effective treatment. Our objective was to utilize bioinformatics analysis to discover the fundamental disease-causing genes and pathological mechanisms in individuals diagnosed with VaD. METHODS To identify potential pathogenic genes associated with VaD, we conducted weighted gene co-expression network analysis (WGCNA), differential expression analysis, and protein-protein interaction (PPI) analysis. The exploration of potential biological mechanisms involved the utilization of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. Moreover, a bilateral common carotid artery stenosis (BCAS) mouse model of VaD was established, and the expression of the hub gene, its relationship with cognitive function and its potential pathogenic mechanism were verified by cognitive behavior tests, cerebral blood flow measurement, Western blotting, and immunofluorescence experiments. RESULTS This study identified 293 DEGs from the brain cortex of VaD patients and healthy controls, among these genes, the Toll-like receptor 2 (TLR2) gene was identified as hub gene, and it was associated with the apoptosis-related pathway PI3K/AKT.The BCAS model demonstrated that the use of TLR2 inhibitors greatly enhanced the cognitive function of the mice (p < 0.05). Additionally, there was a notable decrease in the number of apoptotic cells in the brain cortex of the mice (p < 0.01). Moreover, significant alterations in the levels of proteins related to the PI3K/AKT pathway and cleaved-caspase3 proteins were detected (p < 0.05). CONCLUSIONS TLR2 plays a role in the pathophysiology of VaD by enhancing the neuronal apoptotic pathway, suggesting it could be a promising therapeutic target.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Jieying Zhang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Center for Cardiovascular Diseases, Tianjin Medical University, 300052, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Yaru Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Lan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Wei Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Meimei Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Fanglian Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China..
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China.
| |
Collapse
|
18
|
Wang S, Tan J, Zhang Q. Cytosolic Escape of Mitochondrial DNA Triggers cGAS-STING Pathway-Dependent Neuronal PANoptosis in Response to Intermittent Hypoxia. Neurochem Res 2024; 49:2228-2248. [PMID: 38833090 DOI: 10.1007/s11064-024-04151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), characterized by neuronal cell death and neurocognitive impairment. We focus on the accumulated mitochondrial DNA (mtDNA) in the cytosol, which acts as a damage-associated molecular pattern (DAMP) and activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, a known trigger for immune responses and neuronal death in degenerative diseases. However, the specific role and mechanism of the mtDNA-cGAS-STING axis in IH-induced neural damage remain largely unexplored. Here, we investigated the involvement of PANoptosis, a novel type of programmed cell death linked to cytosolic mtDNA accumulation and the cGAS-STING pathway activation, in neuronal cell death induced by IH. Our study found that PANoptosis occurred in primary cultures of hippocampal neurons and HT22 cell lines exposed to IH. In addition, we discovered that during IH, mtDNA released into the cytoplasm via the mitochondrial permeability transition pore (mPTP) activates the cGAS-STING pathway, exacerbating PANoptosis-associated neuronal death. Pharmacologically inhibiting mPTP opening or depleting mtDNA significantly reduced cGAS-STING pathway activation and PANoptosis in HT22 cells under IH. Moreover, our findings indicated that the cGAS-STING pathway primarily promotes PANoptosis by modulating endoplasmic reticulum (ER) stress. Inhibiting or silencing the cGAS-STING pathway substantially reduced ER stress-mediated neuronal death and PANoptosis, while lentivirus-mediated STING overexpression exacerbated these effects. In summary, our study elucidates that cytosolic escape of mtDNA triggers cGAS-STING pathway-dependent neuronal PANoptosis in response to IH, mainly through regulating ER stress. The discovery of the novel mechanism provides theoretical support for the prevention and treatment of neuronal damage and cognitive impairment in patients with OSA.
Collapse
Affiliation(s)
- Shuying Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China.
| |
Collapse
|
19
|
Fritsch LE, Kelly C, Leonard J, de Jager C, Wei X, Brindley S, Harris EA, Kaloss AM, DeFoor N, Paul S, O'Malley H, Ju J, Olsen ML, Theus MH, Pickrell AM. STING-Dependent Signaling in Microglia or Peripheral Immune Cells Orchestrates the Early Inflammatory Response and Influences Brain Injury Outcome. J Neurosci 2024; 44:e0191232024. [PMID: 38360749 PMCID: PMC10957216 DOI: 10.1523/jneurosci.0191-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
While originally identified as an antiviral pathway, recent work has implicated that cyclic GMP-AMP-synthase-Stimulator of Interferon Genes (cGAS-STING) signaling is playing a critical role in the neuroinflammatory response to traumatic brain injury (TBI). STING activation results in a robust inflammatory response characterized by the production of inflammatory cytokines called interferons, as well as hundreds of interferon stimulated genes (ISGs). Global knock-out (KO) mice inhibiting this pathway display neuroprotection with evidence that this pathway is active days after injury; yet, the early neuroinflammatory events stimulated by STING signaling remain understudied. Furthermore, the source of STING signaling during brain injury is unknown. Using a murine controlled cortical impact (CCI) model of TBI, we investigated the peripheral immune and microglial response to injury utilizing male chimeric and conditional STING KO animals, respectively. We demonstrate that peripheral and microglial STING signaling contribute to negative outcomes in cortical lesion volume, cell death, and functional outcomes postinjury. A reduction in overall peripheral immune cell and neutrophil infiltration at the injury site is STING dependent in these models at 24 h. Transcriptomic analysis at 2 h, when STING is active, reveals that microglia drive an early, distinct transcriptional program to elicit proinflammatory genes including interleukin 1-β (IL-1β), which is lost in conditional knock-out mice. The upregulation of alternative innate immune pathways also occurs after injury in these animals, which supports a complex relationship between brain-resident and peripheral immune cells to coordinate the proinflammatory response and immune cell influx to damaged tissue after injury.
Collapse
Affiliation(s)
- Lauren E Fritsch
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia 24016
| | - Colin Kelly
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia 24016
| | - John Leonard
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Caroline de Jager
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia 24016
| | - Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Samantha Brindley
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Elizabeth A Harris
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Alexandra M Kaloss
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Nicole DeFoor
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Swagatika Paul
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Hannah O'Malley
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Jing Ju
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
20
|
Theus MH. Neuroinflammation and acquired traumatic CNS injury: a mini review. Front Neurol 2024; 15:1334847. [PMID: 38450073 PMCID: PMC10915049 DOI: 10.3389/fneur.2024.1334847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Acquired traumatic central nervous system (CNS) injuries, including traumatic brain injury (TBI) and spinal cord injury (SCI), are devastating conditions with limited treatment options. Neuroinflammation plays a pivotal role in secondary damage, making it a prime target for therapeutic intervention. Emerging therapeutic strategies are designed to modulate the inflammatory response, ultimately promoting neuroprotection and neuroregeneration. The use of anti-inflammatory agents has yielded limited support in improving outcomes in patients, creating a critical need to re-envision novel approaches to both quell deleterious inflammatory processes and upend the progressive cycle of neurotoxic inflammation. This demands a comprehensive exploration of individual, age, and sex differences, including the use of advanced imaging techniques, multi-omic profiling, and the expansion of translational studies from rodents to humans. Moreover, a holistic approach that combines pharmacological intervention with multidisciplinary neurorehabilitation is crucial and must include both acute and long-term care for the physical, cognitive, and emotional aspects of recovery. Ongoing research into neuroinflammatory biomarkers could revolutionize our ability to predict, diagnose, and monitor the inflammatory response in real time, allowing for timely adjustments in treatment regimens and facilitating a more precise evaluation of therapeutic efficacy. The management of neuroinflammation in acquired traumatic CNS injuries necessitates a paradigm shift in our approach that includes combining multiple therapeutic modalities and fostering a more comprehensive understanding of the intricate neuroinflammatory processes at play.
Collapse
Affiliation(s)
- Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
- Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
21
|
Liu Y, Wang R, Song C, Ding S, Zuo Y, Yi K, Li N, Wang B, Geng Q. Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury. Front Immunol 2023; 14:1324021. [PMID: 38162674 PMCID: PMC10755469 DOI: 10.3389/fimmu.2023.1324021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-associated death, occurring during or within 6 hours after transfusion. Reports indicate that TRALI can be categorized as having or lacking acute respiratory distress syndrome (ARDS) risk factors. There are two types of TRALI in terms of its pathogenesis: antibody-mediated and non-antibody-mediated. The key initiation steps involve the priming and activation of neutrophils, with neutrophil extracellular traps (NETs) being established as effector molecules formed by activated neutrophils in response to various stimuli. These NETs contribute to the production and release of reactive oxygen species (ROS) and participate in the destruction of pulmonary vascular endothelial cells. The significant role of NETs in TRALI is well recognized, offering a potential pathway for TRALI treatment. Moreover, platelets, macrophages, endothelial cells, and complements have been identified as promoters of NET formation. Concurrently, studies have demonstrated that the storage of platelets and concentrated red blood cells (RBC) can induce TRALI through bioactive lipids. In this article, recent clinical and pre-clinical studies on the pathophysiology and pathogenesis of TRALI are reviewed to further illuminate the mechanism through which NETs induce TRALI. This review aims to propose new therapeutic strategies for TRALI, with the hope of effectively improving its poor prognosis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|