1
|
Jiang Y, Huang M, Zhao Y, Dai J, Yang Q, Tang X, Li X, Cui Y, Zhang J, Sun J, Fu L, Mao H, Peng XG. A [ 18F]FDG PET based nomogram to predict cancer-associated cachexia and survival outcome: A multi-center study. Nutrition 2025; 129:112593. [PMID: 39426212 DOI: 10.1016/j.nut.2024.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES Cancer patients with cachexia face poor prognosis and shortened survival. Early diagnosis and accurate prognosis prediction remain challenging. This multi-center study aims to develop and externally validate a nomogram integrating [18F]fluoro-2-deoxy-D-glucose ([18F]FDG) PET findings and routine clinical biochemistry tests for predicting cancer-associated cachexia, while also assessing its potential prognostic value. RESEARCH METHODS & PROCEDURES A retrospective analysis of 658 cancer patients (390 in the development cohort, 268 in the validation cohort) utilized [18F]FDG PET/CT data from two centers. Logistic regression identified organ-specific standardized uptake values (SUVs) and clinical variables associated with cancer-associated cachexia. Diagnostic accuracy, discriminative ability, and clinical effectiveness were assessed using area under the curve (AUC), calibration curve, and decision curve. Nomogram predictability for overall survival was evaluated through Cox regression and Kaplan-Meier curves. RESULTS The combined nomogram incorporating age (odds ratio [OR] = 1.893; P = 0.012), hemoglobin (OR = 2.591; P < 0.001), maximum SUV of the liver (OR = 3.646; P < 0.001), and minimum SUV of the subcutaneous fat (OR = 5.060; P < 0.001) achieved good performance in predicting cancer-associated cachexia (AUC = 0.807/0.726, development/validation). Calibration and decision curve analyses confirmed its clinical effectiveness. Kaplan-Meier curves analysis showed that overall survival can be categorized using the combined nomogram (P < 0.001). CONCLUSION Combining radiological information from clinical standard [18F]FDG PET data from cancer patients with biochemical results in their routine clinical blood tests through a well-constructed nomogram enables predicting cachexia and its effect on the prognosis of cancer patients.
Collapse
Affiliation(s)
- Yang Jiang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Mouqing Huang
- Department of Nuclear Medicine, Ganzhou People's Hospital, Ganzhou, China
| | - Yufei Zhao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jingyue Dai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qingwen Yang
- Department of Internal Medicine, Ulm University & Ulm University Hospital, Ulm, Germany
| | - Xingzhe Tang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xinxiang Li
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying Cui
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jingqi Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jialu Sun
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lin Fu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Xin-Gui Peng
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Department of Radiology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Costa FP, Wiedenmann B, Schöll E, Tuszynski J. Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1483401. [PMID: 39720338 PMCID: PMC11666389 DOI: 10.3389/fnetp.2024.1483401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology. Cancer cells exhibit autonomous oscillations, deviating from normal rhythms. In this context, a shift from a static view of cellular processes is required for a better understanding of the dynamic connections between cellular metabolism, gene expression, cell signaling and membrane polarization as states in constant flux in realistic human models. In oncology, radiofrequency electromagnetic fields have produced sustained responses and improved quality of life in cancer patients with minimal side effects. This review aims to show how non-thermal systemic radiofrequency electromagnetic fields leads to promising therapeutic responses at cellular and tissue levels in humans, supporting this newly emerging cancer treatment modality with early favorable clinical experience specifically in advanced cancer.
Collapse
Affiliation(s)
| | | | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
3
|
Berriel Diaz M, Rohm M, Herzig S. Cancer cachexia: multilevel metabolic dysfunction. Nat Metab 2024; 6:2222-2245. [PMID: 39578650 DOI: 10.1038/s42255-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or 'wasting' of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Compton SLE, Heymsfield SB, Brown JC. Nutritional Mechanisms of Cancer Cachexia. Annu Rev Nutr 2024; 44:77-98. [PMID: 39207878 DOI: 10.1146/annurev-nutr-062122-015646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer cachexia is a complex systemic wasting syndrome. Nutritional mechanisms that span energy intake, nutrient metabolism, body composition, and energy balance may be impacted by, and may contribute to, the development of cachexia. To date, clinical management of cachexia remains elusive. Leaning on discoveries and novel methodologies from other fields of research may bolster new breakthroughs that improve nutritional management and clinical outcomes. Characteristics that compare and contrast cachexia and obesity may reveal opportunities for cachexia research to adopt methodology from the well-established field of obesity research. This review outlines the known nutritional mechanisms and gaps in the knowledge surrounding cancer cachexia. In parallel, we present how obesity may be a different side of the same coin and how obesity research has tackled similar research questions. We present insights into how cachexia research may utilize nutritional methodology to expand our understanding of cachexia to improve definitions and clinical care in future directions for the field.
Collapse
Affiliation(s)
- Stephanie L E Compton
- Cancer Energetics Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Steven B Heymsfield
- Metabolism and Body Composition Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Justin C Brown
- Cancer Energetics Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| |
Collapse
|
5
|
Gao Y, Kim K, Vitrac H, Salazar RL, Gould BD, Soedkamp D, Spivia W, Raedschelders K, Dinh AQ, Guzman AG, Tan L, Azinas S, Taylor DJR, Schiffer W, McNavish D, Burks HB, Gottlieb RA, Lorenzi PL, Hanson BM, Van Eyk JE, Taegtmeyer H, Karlstaedt A. Autophagic signaling promotes systems-wide remodeling in skeletal muscle upon oncometabolic stress by D2-HG. Mol Metab 2024; 86:101969. [PMID: 38908793 PMCID: PMC11278897 DOI: 10.1016/j.molmet.2024.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
OBJECTIVES Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss. METHODS We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling. RESULTS D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. In vivo, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype in vivo. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle. CONCLUSIONS Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.
Collapse
Affiliation(s)
- Yaqi Gao
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kyoungmin Kim
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Heidi Vitrac
- Department of Biochemistry, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Bruker Daltonics, Billerica, MA, USA
| | - Rebecca L Salazar
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Benjamin D Gould
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Daniel Soedkamp
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Weston Spivia
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Koen Raedschelders
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - An Q Dinh
- Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anna G Guzman
- Center for Stem Cell and Regeneration, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Stavros Azinas
- Department of Biochemistry, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - David J R Taylor
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Walter Schiffer
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Daniel McNavish
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Helen B Burks
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Roberta A Gottlieb
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Blake M Hanson
- Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Heinrich Taegtmeyer
- Department of Biochemistry, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
6
|
Aires I, Duarte JA, Vitorino R, Moreira-Gonçalves D, Oliveira P, Ferreira R. Restoring Skeletal Muscle Health through Exercise in Breast Cancer Patients and after Receiving Chemotherapy. Int J Mol Sci 2024; 25:7533. [PMID: 39062775 PMCID: PMC11277416 DOI: 10.3390/ijms25147533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer (BC) stands out as the most commonly type of cancer diagnosed in women worldwide, and chemotherapy, a key component of treatment, exacerbates cancer-induced skeletal muscle wasting, contributing to adverse health outcomes. Notably, the impact of chemotherapy on skeletal muscle seems to surpass that of the cancer itself, with inflammation identified as a common trigger for muscle wasting in both contexts. In skeletal muscle, pro-inflammatory cytokines modulate pathways crucial for the delicate balance between protein synthesis and breakdown, as well as satellite cell activation and myonuclear accretion. Physical exercise consistently emerges as a crucial therapeutic strategy to counteract cancer and chemotherapy-induced muscle wasting, ultimately enhancing patients' quality of life. However, a "one size fits all" approach does not apply to the prescription of exercise for BC patients, with factors such as age, menopause and comorbidities influencing the response to exercise. Hence, tailored exercise regimens, considering factors such as duration, frequency, intensity, and type, are essential to maximize efficacy in mitigating muscle wasting and improving disease outcomes. Despite the well-established anti-inflammatory role of aerobic exercise, resistance exercise proves equally or more beneficial in terms of mass and strength gain, as well as enhancing quality of life. This review comprehensively explores the molecular pathways affected by distinct exercise regimens in the skeletal muscle of cancer patients during chemotherapy, providing critical insights for precise exercise implementation to prevent skeletal muscle wasting.
Collapse
Affiliation(s)
- Inês Aires
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (I.A.); (R.F.)
- CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - José Alberto Duarte
- CIAFEL, and Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal; (J.A.D.); (D.M.-G.)
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, and Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal; (J.A.D.); (D.M.-G.)
| | - Paula Oliveira
- CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (I.A.); (R.F.)
| |
Collapse
|
7
|
Filis P, Tzavellas NP, Stagikas D, Zachariou C, Lekkas P, Kosmas D, Dounousi E, Sarmas I, Ntzani E, Mauri D, Korompilias A, Simos YV, Tsamis KI, Peschos D. Longitudinal Muscle Biopsies Reveal Inter- and Intra-Subject Variability in Cancer Cachexia: Paving the Way for Biopsy-Guided Tailored Treatment. Cancers (Basel) 2024; 16:1075. [PMID: 38473431 DOI: 10.3390/cancers16051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
In the rapidly evolving landscape of cancer cachexia research, the development and refinement of diagnostic and predictive biomarkers constitute an ongoing challenge. This study aims to introduce longitudinal muscle biopsies as a potential framework for disease monitoring and treatment. The initial feasibility and safety assessment was performed for healthy mice and rats that received two consecutive muscle biopsies. The assessment was performed by utilizing three different tools. Subsequently, the protocol was also applied in leiomyosarcoma tumor-bearing rats. Longitudinal muscle biopsies proved to be a safe and feasible technique, especially in rat models. The application of this protocol to tumor-bearing rats further affirmed its tolerability and feasibility, while microscopic evaluation of the biopsies demonstrated varying levels of muscle atrophy with or without leukocyte infiltration. In this tumor model, sequential muscle biopsies confirmed the variability of the cancer cachexia evolution among subjects and at different time-points. Despite the abundance of promising cancer cachexia data during the past decade, the full potential of muscle biopsies is not being leveraged. Sequential muscle biopsies throughout the disease course represent a feasible and safe tool that can be utilized to guide precision treatment and monitor the response in cancer cachexia research.
Collapse
Affiliation(s)
- Panagiotis Filis
- Department of Medical Oncology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos P Tzavellas
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Stagikas
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Christianna Zachariou
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Lekkas
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Kosmas
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis Sarmas
- Department of Neurology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Center for Evidence-Based Medicine, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI 02912, USA
| | - Davide Mauri
- Department of Medical Oncology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasios Korompilias
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos I Tsamis
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
8
|
Van Soom T, Tjalma W, Papadimitriou K, Gebruers N, van Breda E. The effects of chemotherapy on resting energy expenditure, body composition, and cancer-related fatigue in women with breast cancer: a prospective cohort study. Cancer Metab 2023; 11:21. [PMID: 37946297 PMCID: PMC10636951 DOI: 10.1186/s40170-023-00322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent tumor in women. Improvements in treatment led to declined mortality, resulting in more survivors living with cancer- or therapy-induced comorbidities. In this study, we investigated the impact of neoplasia and chemotherapy on resting energy expenditure (REE) and body composition, in relation to cancer-related fatigue. Inflammatory parameters were checked as possible explanation for changes in REE. METHODS Fifty-six women participated: 20 women with BC and 36 healthy controls. Patients were assessed at baseline (T0) and follow-up (T1) after 12 weeks of chemotherapy. Controls were measured once. REE was assessed with indirect calorimetry: body composition (body weight, fat mass, fat-free mass) by air plethysmography. The multidimensional fatigue index (MFI-20) was used to analyze fatigue. Baseline measurements of patients were compared to results of the healthy controls with the independent-samples T-test. The paired-samples T-test investigated the effects of chemotherapy from T0 to T1. A Pearson correlation analysis was conducted between REE, body composition, and fatigue and between REE, body composition, and inflammatory parameters. A linear regression analysis was fitted to estimate the contribution of the significantly correlated parameters. The measured REE at T0 and T1 was compared to the predicted REE to analyze the clinical use of the latter. RESULTS At baseline, patients with BC had significantly higher REE in the absence of differences in body composition. From baseline to T1, REE and body weight did not change. In contrast, fat-free mass declined significantly with concordant increase in fat mass. Fatigue deteriorated significantly. C-reactive protein at baseline predicted the change in energy expenditure. Predicted REE significantly underestimated measured REE. CONCLUSIONS Women with BC have higher REE in the tumor-bearing state compared to healthy controls. Chemotherapy does not affect REE but alters body composition. Predictive equations are invalid in the BC population. Results of our study can be used to implement personalized nutritional interventions to support energy expenditure and body composition and minimize long-term comorbidities.
Collapse
Affiliation(s)
- Timia Van Soom
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, Multi-Disciplinary Metabolic Research Unit (M2RUN), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Wiebren Tjalma
- Multidisciplinary Breast Clinic, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
- Multidisciplinary Edema Clinic, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Konstantinos Papadimitriou
- Multidisciplinary Breast Clinic, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- General Hospital Rivierenland, Kasteelstraat 23, 2880, Bornem, Belgium
| | - Nick Gebruers
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, Multi-Disciplinary Metabolic Research Unit (M2RUN), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium.
- Multidisciplinary Edema Clinic, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium.
| | - Eric van Breda
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, Multi-Disciplinary Metabolic Research Unit (M2RUN), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium.
| |
Collapse
|
9
|
Hanna L, Porter J, Bauer J, Nguo K. Energy Expenditure in Upper Gastrointestinal Cancers: a Scoping Review. Adv Nutr 2023; 14:1307-1325. [PMID: 37562709 PMCID: PMC10721480 DOI: 10.1016/j.advnut.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
Malnutrition is prevalent in people with upper gastrointestinal (GI) cancers and is associated with shorter survival and poor quality of life. In order to effectively prevent or treat malnutrition, nutrition interventions must ensure appropriate energy provision to meet daily metabolic demands. In practice, the energy needs of people with cancer are frequently estimated from predictive equations which are not cancer-specific and are demonstrated to be inaccurate in this population. The purpose of this scoping review was to synthesize the existing evidence regarding energy expenditure in people with upper GI cancer. Three databases (Ovid MEDLINE, Embase via Ovid, CINAHL plus) were systematically searched to identify studies reporting on resting energy expenditure using indirect calorimetry and total energy expenditure using doubly labeled water (DLW) in adults with any stage of upper GI cancer at any point from diagnosis. A total of 57 original research studies involving 2,125 individuals with cancer of the esophagus, stomach, pancreas, biliary tract, or liver were eligible for inclusion. All studies used indirect calorimetry, and one study used DLW to measure energy expenditure, which was reported unadjusted in 42 studies, adjusted for body weight in 32 studies, and adjusted for fat-free mass in 13 studies. Energy expenditure in upper GI cancer was compared with noncancer controls in 19 studies and measured compared with predicted energy expenditure reported in 31 studies. There was heterogeneity in study design and in reporting of important clinical characteristics between studies. There was also substantial variation in energy expenditure between studies and within and between cancer types. Given this heterogeneity and known inaccuracies of predictive equations in patients with cancer, energy expenditure should be measured in practice wherever feasible. Additional research in cohorts defined by cancer type, stage, and treatment is needed to further characterize energy expenditure in upper GI cancer.
Collapse
Affiliation(s)
- Lauren Hanna
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Victoria, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia.
| | - Judi Porter
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Victoria, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Judy Bauer
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Victoria, Australia
| | - Kay Nguo
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Liu Y, Dantas E, Ferrer M, Liu Y, Comjean A, Davidson EE, Hu Y, Goncalves MD, Janowitz T, Perrimon N. Tumor Cytokine-Induced Hepatic Gluconeogenesis Contributes to Cancer Cachexia: Insights from Full Body Single Nuclei Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540823. [PMID: 37292804 PMCID: PMC10245574 DOI: 10.1101/2023.05.15.540823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A primary cause of death in cancer patients is cachexia, a wasting syndrome attributed to tumor-induced metabolic dysregulation. Despite the major impact of cachexia on the treatment, quality of life, and survival of cancer patients, relatively little is known about the underlying pathogenic mechanisms. Hyperglycemia detected in glucose tolerance test is one of the earliest metabolic abnormalities observed in cancer patients; however, the pathogenesis by which tumors influence blood sugar levels remains poorly understood. Here, utilizing a Drosophila model, we demonstrate that the tumor secreted interleukin-like cytokine Upd3 induces fat body expression of Pepck1 and Pdk, two key regulatory enzymes of gluconeogenesis, contributing to hyperglycemia. Our data further indicate a conserved regulation of these genes by IL-6/JAK-STAT signaling in mouse models. Importantly, in both fly and mouse cancer cachexia models, elevated gluconeogenesis gene levels are associated with poor prognosis. Altogether, our study uncovers a conserved role of Upd3/IL-6/JAK-STAT signaling in inducing tumor-associated hyperglycemia, which provides insights into the pathogenesis of IL-6 signaling in cancer cachexia.
Collapse
Affiliation(s)
- Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724 USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Emma E. Davidson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724 USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Marcus D. Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724 USA
- Northwell Health Cancer Institute, Northwell Health, New Hyde Park, New York, NY 11042 USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
11
|
Abnormal [ 18F]FDG uptake in liver and adipose tissue: a potential imaging biomarker for cancer-associated cachexia. Eur Radiol 2023; 33:2561-2573. [PMID: 36350393 DOI: 10.1007/s00330-022-09226-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/24/2022] [Accepted: 10/09/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES This study aims to investigate and develop imaging biomarkers for the diagnosis of cancer-associated cachexia based on the organ and tissue-specific abnormal metabolisms measured by fluorine-18-fluorodeoxyglucose (18F-FDG) PET/CT. METHODS FDG PET/CT data from 390 cancer patients were analyzed retrospectively. Patients were divided into a development cohort and a validation cohort. Cachexia was defined as weight loss > 5% in 6 months or BMI < 20 and weight loss > 2%. According to the above definitions, patients were divided into cachexia and non-cachexia groups. Results of the clinical laboratory tests for metabolic levels and organ and tissue-specific FDG uptake obtained from the cachexia and non-cachexia groups were compared statistically. Logistic regression analysis was performed to identify independent variables associated with cachexia in the development cohort for generating the regression model. The performance of the model was tested using the data from a validation cohort and evaluated by area under the receiver operating characteristic curve (AUC). RESULTS Based on the data from the development cohort of 286 patients and a validation cohort of 104 patients, it is found that age, white blood cell count, peak standardized uptake value (SUV) of the liver, and minimum SUV of lean body mass of visceral fat and subcutaneous fat were independently associated with cachexia. The model incorporating these variables reached an AUC of 0.777 (95% confidence interval (CI): 0.721, 0.833) in the development cohort and an AUC of 0.729 (95% CI: 0.629, 0.829) in the validation cohort. CONCLUSION Organ and tissue-specific abnormal glucose metabolism as measured by PET/CT can be used as a biomarker for cancer-associated cachexia. KEY POINTS • Patients with cancer-associated cachexia have reduced FDG uptake in the liver and increased FDG uptake in visceral fat and subcutaneous fat. • FDG uptake of the liver, visceral fat, and subcutaneous fat can be independent risk factors for identifying cancer-associated cachexia. • Cancer-associated cachexia can be classified using the model that incorporates age, white blood cell count, FDG uptake of the liver, and visceral and subcutaneous fat can diagnose with an AUC of 0.729.
Collapse
|
12
|
Deciphering the Molecular Mechanism of Yifei-Sanjie Pill in Cancer-Related Fatigue. JOURNAL OF ONCOLOGY 2023; 2023:5486017. [PMID: 36814560 PMCID: PMC9940949 DOI: 10.1155/2023/5486017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/24/2022] [Indexed: 02/15/2023]
Abstract
Background The incidence of cancer-related fatigue (CRF) is increasing, but its lack of clear pathogenesis makes its prevention and treatment difficult. Therefore, it is of great significance to clarify the pathogenesis of CRF and find effective methods to treat it. Methods The CRF model was established by intraperitoneal injection of LLC cells in ICR mice to explore the pathogenesis of CRF and verify the therapeutic effect of the Yifei-Sanjie pill (YFSJ). The active components of YFSJ were found by LC/MS, the in vitro inflammatory infiltration model of skeletal muscle was constructed by TNF-α and C2C12 myoblasts, and the results of in vivo experiments were verified by this model. Results Behavioral analysis results showed that YFSJ alleviated CRF; histological examination results showed that YFSJ could reverse the tumor microenvironment leading to skeletal muscle injury; ELISA and RNA-seq results showed that the occurrence of CRF and the therapeutic effect of YFSJ were closely related to the tumor inflammatory microenvironment; IHC and WB results showed that the occurrence of CRF and the therapeutic effect of YFSJ were closely related to the Stat3-related signaling pathway and autophagy. Conclusions YFSJ can reduce the level of inflammation in the tumor microenvironment in vivo, inhibit the abnormal activation of the Stat3/HIF-1α/BNIP3 signaling pathway induced by tumor-related inflammation, thereby inhibiting the overactivation of mitophagy in skeletal muscle, and finally alleviate CRF. Quercetin, one of the components of YFSJ, plays an important role in inhibiting the phosphorylation activation of Stat3.
Collapse
|
13
|
Hagen MW, Louey S, Alaniz SM, Brown L, Lindner JR, Jonker SS. Coronary conductance in the normal development of sheep during the perinatal period. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 2022; 10:e15523. [PMID: 36461657 PMCID: PMC9718948 DOI: 10.14814/phy2.15523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 12/04/2022]
Abstract
Birth is associated with substantial shifts in cardiovascular physiology. Little is known about coronary vascular adaptations during this period. We used fetal and neonatal lambs to measure coronary function at late gestation (92% of term) and shortly after birth (5-6 days postnatal age). In each animal we measured unanesthetized myocardial perfusion and oxygen delivery using a circumflex artery flow probe. We used inflatable occluders and adenosine to determine coronary conductance and flow reserve. In a subset of animals, we used myocardial contrast echocardiography (MCE, anesthetized) to assess its utility as a tool for studying changes in regional myocardial perfusion in normal development. Separate age-matched animals were instrumented with aortic and coronary sinus sampling catheters to determine myocardial oxygen extraction (unanesthetized). With an average of 17 days of developmental time separating our neonatal and fetal cohorts we found that heart-to-body weight ratio was significantly greater in neonates than fetuses. In resting animals, we found significant decreases in weight-normalized perfusion of, and oxygen delivery to, neonatal relative to fetal myocardium. Similar results were seen when measuring baseline MCE-derived perfusion. Pressure-flow relationship studies revealed lower baseline and maximal coronary conductance in neonates than fetuses, with similar coronary flow reserve between groups. There was greater oxygen extraction in neonates than fetuses. Combined analysis of oxygen extraction with coronary flow suggested greater oxygen consumption by the fetal than neonatal myocardium. We conclude that, during the immediate perinatal period, cardiac growth outpaces coronary microvascular growth resulting in lower capacity for microvascular perfusion in the early neonate.
Collapse
Affiliation(s)
- Matthew W. Hagen
- Center for Developmental HealthOregon Health & Science UniversityPortlandOregonUSA,Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandOregonUSA
| | - Samantha Louey
- Center for Developmental HealthOregon Health & Science UniversityPortlandOregonUSA,Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandOregonUSA
| | - Sarah M. Alaniz
- Center for Developmental HealthOregon Health & Science UniversityPortlandOregonUSA
| | - Laura Brown
- Department of PediatricsPerinatal Research CenterUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Jonathan R. Lindner
- Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandOregonUSA
| | - Sonnet S. Jonker
- Center for Developmental HealthOregon Health & Science UniversityPortlandOregonUSA,Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
14
|
Di Girolamo D, Tajbakhsh S. Pathological features of tissues and cell populations during cancer cachexia. CELL REGENERATION 2022; 11:15. [PMID: 35441960 PMCID: PMC9021355 DOI: 10.1186/s13619-022-00108-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022]
Abstract
Cancers remain among the most devastating diseases in the human population in spite of considerable advances in limiting their impact on lifespan and healthspan. The multifactorial nature of cancers, as well as the number of tissues and organs that are affected, have exposed a considerable diversity in mechanistic features that are reflected in the wide array of therapeutic strategies that have been adopted. Cachexia is manifested in a number of diseases ranging from cancers to diabetes and ageing. In the context of cancers, a majority of patients experience cachexia and succumb to death due to the indirect effects of tumorigenesis that drain the energy reserves of different organs. Considerable information is available on the pathophysiological features of cancer cachexia, however limited knowledge has been acquired on the resident stem cell populations, and their function in the context of these diseases. Here we review current knowledge on cancer cachexia and focus on how tissues and their resident stem and progenitor cell populations are individually affected.
Collapse
|
15
|
Law ML. Cancer cachexia: Pathophysiology and association with cancer-related pain. FRONTIERS IN PAIN RESEARCH 2022; 3:971295. [PMID: 36072367 PMCID: PMC9441771 DOI: 10.3389/fpain.2022.971295] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Cachexia is a syndrome of unintentional body weight loss and muscle wasting occurring in 30% of all cancer patients. Patients with cancers most commonly leading to brain metastases have a risk for cachexia development between 20 and 80%. Cachexia causes severe weakness and fatigue and negatively impacts quality and length of life. The negative energy balance in cachectic patients is most often caused by a combination of increased energy expenditure and decreased energy intake. Basal metabolic rate may be elevated due to tumor secreted factors and a systemic inflammatory response leading to inefficiency in energy production pathways and increased energy demand by the tumor and host tissues. A growing body of research explores physiological and molecular mechanisms of metabolic dysregulation in cachexia. However, decreased energy intake and physical functioning also remain important contributors to cachexia pathogenesis. Pain associated with metastatic malignancy is significantly associated with inflammation, thus making inflammation a common link between cancer pain and cachexia. Pain may also influence appetite and food intake and exacerbate fatigue and functional decline, potentially contributing to cachexia severity. Cancer pain and cachexia often occur simultaneously; however, causal relationships remain to be established. Appropriate assessment and treatment of pain in advanced cancer patients may positively impact nutrition status and physical functioning, slowing the progression of cachexia and improving quality and length of life for patients.
Collapse
|
16
|
Utilizing Computed Tomography to Analyze the Morphomic Change between Patients with Localized and Metastatic Renal Cell Carcinoma: Body Composition Varies According to Cancer Stage. J Clin Med 2022; 11:jcm11154444. [PMID: 35956059 PMCID: PMC9369886 DOI: 10.3390/jcm11154444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background: This study aimed to elucidate the change of body composition in different clinical stages of renal cell carcinoma (RCC) by analyzing computed tomography (CT) images. Methods: We enrolled patients diagnosed with RCC in a tertiary medical center who did not mention body weight loss or symptoms of cachexia. We grouped patients into those with localized RCC and those with metastatic RCC. Analyses of the volume of skeletal muscles tissue (SMT), subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) calculated based on CT images were performed and included subgroup analyses by sex and age. The correlation between tumor size and body composition in localized RCC was also examined. Results: A total of 188 patients were enrolled in this study. There was significantly lower VAT (p = 0.015) in the metastatic group than in the localized group. SAT, body weight, and body mass index (BMI) were not significantly different between these two groups. In the subgroup analysis, a significant difference in SMT and VAT was noted in the male and younger subgroups but not in the female and older subgroups. Regarding primary tumor size in localized RCC, VAT was significantly higher in patients with larger tumors (p = 0.003). Conclusions: In localized RCC, VAT volume was significantly larger in those with large primary tumor size. However, the VAT was significantly lower in those with metastatic status comparing to those with localized disease. The clinical course of cancers closely correlates with body composition.
Collapse
|
17
|
Beaudry AG, Law ML. Leucine Supplementation in Cancer Cachexia: Mechanisms and a Review of the Pre-Clinical Literature. Nutrients 2022; 14:nu14142824. [PMID: 35889781 PMCID: PMC9323748 DOI: 10.3390/nu14142824] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer cachexia (CC) is a complex syndrome of bodily wasting and progressive functional decline. Unlike starvation, cachexia cannot be reversed by increased energy intake alone. Nonetheless, targeted nutritional support is a necessary component in multimodal syndrome management. Due to the highly catabolic nature of cancer cachexia, amino acid supplementation has been proposed. Interestingly, leucine has been found to increase protein synthesis and decrease protein degradation via mTORC1 pathway activation. Multiple pre-clinical studies have explored the impact of leucine supplementation in cachectic tumor-bearing hosts. Here, we provide an overview of leucine’s proposed modes of action to preserve lean mass in cachexia and review the current pre-clinical literature related to leucine supplementation during CC. Current research indicates that a leucine-rich diet may attenuate CC symptomology; however, these works are difficult to compare due to methodological differences. There is need for further pre-clinical work exploring leucine’s potential ability to modulate protein turnover and immune response during CC, as well as the impact of additive leucine on tumor growth.
Collapse
Affiliation(s)
- Anna G. Beaudry
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA
- Correspondence:
| | - Michelle L. Law
- Department of Human Sciences and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA;
| |
Collapse
|
18
|
Wiggs MP, Beaudry AG, Law ML. Cardiac Remodeling in Cancer-Induced Cachexia: Functional, Structural, and Metabolic Contributors. Cells 2022; 11:cells11121931. [PMID: 35741060 PMCID: PMC9221803 DOI: 10.3390/cells11121931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer cachexia is a syndrome of progressive weight loss and muscle wasting occurring in many advanced cancer patients. Cachexia significantly impairs quality of life and increases mortality. Cardiac atrophy and dysfunction have been observed in patients with cachexia, which may contribute to cachexia pathophysiology. However, relative to skeletal muscle, little research has been carried out to understand the mechanisms of cardiomyopathy in cachexia. Here, we review what is known clinically about the cardiac changes occurring in cachexia, followed by further discussion of underlying physiological and molecular mechanisms contributing to cachexia-induced cardiomyopathy. Impaired cardiac contractility and relaxation may be explained by a complex interplay of significant heart muscle atrophy and metabolic remodeling, including mitochondrial dysfunction. Because cardiac muscle has fundamental differences compared to skeletal muscle, understanding cardiac-specific effects of cachexia may bring light to unique therapeutic targets and ultimately improve clinical management for patients with cancer cachexia.
Collapse
Affiliation(s)
- Michael P. Wiggs
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (M.P.W.); (A.G.B.)
| | - Anna G. Beaudry
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (M.P.W.); (A.G.B.)
| | - Michelle L. Law
- Department of Human Sciences and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA
- Correspondence: ; Tel.: +1-(254)-710-6003
| |
Collapse
|
19
|
Hegde M, Daimary UD, Girisa S, Kumar A, Kunnumakkara AB. Tumor cell anabolism and host tissue catabolism-energetic inefficiency during cancer cachexia. Exp Biol Med (Maywood) 2022; 247:713-733. [PMID: 35521962 DOI: 10.1177/15353702221087962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated cachexia (CC) is a pathological condition characterized by sarcopenia, adipose tissue depletion, and progressive weight loss. CC is driven by multiple factors such as anorexia, excessive catabolism, elevated energy expenditure by growing tumor mass, and inflammatory mediators released by cancer cells and surrounding tissues. In addition, endocrine system, systemic metabolism, and central nervous system (CNS) perturbations in combination with cachexia mediators elicit exponential elevation in catabolism and reduced anabolism in skeletal muscle, adipose tissue, and cardiac muscle. At the molecular level, mechanisms of CC include inflammation, reduced protein synthesis, and lipogenesis, elevated proteolysis and lipolysis along with aggravated toxicity and complications of chemotherapy. Furthermore, CC is remarkably associated with intolerance to anti-neoplastic therapy, poor prognosis, and increased mortality with no established standard therapy. In this context, we discuss the spatio-temporal changes occurring in the various stages of CC and highlight the imbalance of host metabolism. We provide how multiple factors such as proteasomal pathways, inflammatory mediators, lipid and protein catabolism, glucocorticoids, and in-depth mechanisms of interplay between inflammatory molecules and CNS can trigger and amplify the cachectic processes. Finally, we highlight current diagnostic approaches and promising therapeutic interventions for CC.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
20
|
Li XR, Zhang Q, Zhang KP, Zhang X, Ruan GT, Song MM, Ge YZ, Zhang XW, Song CH, Shi HP. Associations of serum total bilirubin with survival outcomes in patients with cancer cachexia: A prospective, multicenter cohort study. Nutrition 2022; 102:111711. [DOI: 10.1016/j.nut.2022.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/26/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022]
|
21
|
Agate L, Minaldi E, Basolo A, Angeli V, Jaccheri R, Santini F, Elisei R. Nutrition in Advanced Thyroid Cancer Patients. Nutrients 2022; 14:nu14061298. [PMID: 35334955 PMCID: PMC8951395 DOI: 10.3390/nu14061298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/02/2023] Open
Abstract
In the last decade, multikinase inhibitors (MKIs) have changed the paradigm of treatment of advanced and progressive thyroid cancer. Compared with the traditional treatment with chemotherapy and radiotherapy, these new drugs have shown a good efficacy in controlling the neoplastic disease, and also a different toxicity profile compared to traditional chemotherapy, milder but still present and involving mainly the nutritional profile. Weight loss, nausea, anorexia, stomatitis, diarrhea may be associated with malnutrition and cancer-related cachexia. The latter is characteristic of the advanced cancer stage and may be present before starting MKIs, or may develop afterwards. Adverse events with nutritional impact may cause a significant impairment of quality of life, often requiring dose reduction and sometimes drug discontinuation, but with a lower efficacy on the neoplastic disease. The aim of this paper was to discuss the role of nutritional therapy in advanced thyroid cancer and the importance of prevention, early recognition and careful management of malnutrition and cachexia during systemic therapy with MKIs.
Collapse
Affiliation(s)
- Laura Agate
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56124 Pisa, Italy; (L.A.); (E.M.); (A.B.); (R.J.); (F.S.)
| | - Elisa Minaldi
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56124 Pisa, Italy; (L.A.); (E.M.); (A.B.); (R.J.); (F.S.)
| | - Alessio Basolo
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56124 Pisa, Italy; (L.A.); (E.M.); (A.B.); (R.J.); (F.S.)
| | - Valentina Angeli
- Dietary Service, University Hospital of Pisa, 56124 Pisa, Italy;
| | - Roberta Jaccheri
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56124 Pisa, Italy; (L.A.); (E.M.); (A.B.); (R.J.); (F.S.)
| | - Ferruccio Santini
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56124 Pisa, Italy; (L.A.); (E.M.); (A.B.); (R.J.); (F.S.)
| | - Rossella Elisei
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56124 Pisa, Italy; (L.A.); (E.M.); (A.B.); (R.J.); (F.S.)
- Correspondence: ; Tel.: +39-050-995120
| |
Collapse
|
22
|
Allan J, Buss LA, Draper N, Currie MJ. Exercise in People With Cancer: A Spotlight on Energy Regulation and Cachexia. Front Physiol 2022; 13:836804. [PMID: 35283780 PMCID: PMC8914107 DOI: 10.3389/fphys.2022.836804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 12/26/2022] Open
Abstract
Exercise is increasingly becoming a standard of cancer care, with well-documented benefits for patients including improved mental wellbeing and reduced treatment-related side effects. However, important gaps in knowledge remain about how to optimise exercise prescription for people with cancer. Importantly, it remains unclear how exercise affects the progression of cancer cachexia (a wasting disease stemming from energy imbalance, and a common manifestation of advanced malignant disease), particularly once the condition has already developed. It was recently suggested that the anti-tumour effect of exercise might come from improved energetic capacity. Here, we highlight the possible effect of exercise on energetic capacity and energy regulation in the context of cancer, and how this might affect the progression of cancer cachexia. We suggest that due to the additional energy demand caused by the tumour and associated systemic inflammation, overreaching may occur more easily in people with cancer. Importantly, this could result in impaired anti-tumour immunity and/or the exacerbation of cancer cachexia. This highlights the importance of individualised exercise programs for people with cancer, with special consideration for the regulation of energy balance, ongoing monitoring and possible nutritional supplementation to support the increased energy demand caused by exercise.
Collapse
Affiliation(s)
- Jessica Allan
- School of Health Sciences, Health and Human Development, University of Canterbury, Christchurch, New Zealand
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Linda A. Buss
- Department of Medicine, Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
- *Correspondence: Linda A. Buss,
| | - Nick Draper
- School of Health Sciences, Health and Human Development, University of Canterbury, Christchurch, New Zealand
| | - Margaret J. Currie
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
23
|
Bordignon C, dos Santos BS, Rosa DD. Impact of Cancer Cachexia on Cardiac and Skeletal Muscle: Role of Exercise Training. Cancers (Basel) 2022; 14:cancers14020342. [PMID: 35053505 PMCID: PMC8773522 DOI: 10.3390/cancers14020342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cachexia is a syndrome that can be present in many patients diagnosed with cancer, especially in those with metastatic or very advanced tumors. The patient may present with weight loss, loss of muscle mass, and even cardiac dysfunction as a result of it. The aim of this review is to understand how cachexia manifests and whether physical exercise has any role in trying to prevent or reverse this syndrome in cancer patients. Abstract Cachexia is a multifactorial syndrome that presents with, among other characteristics, progressive loss of muscle mass and anti-cardiac remodeling effect that may lead to heart failure. This condition affects about 80% of patients with advanced cancer and contributes to worsening patients’ tolerance to anticancer treatments and to their premature death. Its pathogenesis involves an imbalance in metabolic homeostasis, with increased catabolism and inflammatory cytokines levels, leading to proteolysis and lipolysis, with insufficient food intake. A multimodal approach is indicated for patients with cachexia, with the aim of reducing the speed of muscle wasting and improving their quality of life, which may include nutritional, physical, pharmacologic, and psychological support. This review aims to outline the mechanisms of muscle loss, as well as to evaluate the current clinical evidence of the use of physical exercise in patients with cachexia.
Collapse
Affiliation(s)
- Cláudia Bordignon
- Oncology Center, Hospital Moinhos de Vento, Porto Alegre 90560-030, Brazil;
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-070, Brazil
| | - Bethânia S. dos Santos
- Department of Clinical Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20560-121, Brazil;
- Rede D’Or São Luiz, Rio de Janeiro 22271-110, Brazil
| | - Daniela D. Rosa
- Oncology Center, Hospital Moinhos de Vento, Porto Alegre 90560-030, Brazil;
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-070, Brazil
- Brazilian Breast Cancer Study Group (GBECAM), Porto Alegre 90619-900, Brazil
- Correspondence:
| |
Collapse
|
24
|
Bulmuş Tüccar T, Acar Tek N. Determining the factors affecting energy metabolism and energy requirement in cancer patients. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:124. [PMID: 35126587 PMCID: PMC8772515 DOI: 10.4103/jrms.jrms_844_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/26/2020] [Accepted: 07/15/2021] [Indexed: 11/04/2022]
Abstract
Cancer is the second most common cause of death worldwide. It is a generic name for a large group of diseases that can affect any part of the body. Cancer affects both energy intake through the diet and the total energy expenditure (TEE) through the changes in energy metabolism, resulting in negative or positive energy balance. Determining daily energy requirement is very important in the regulation of the nutrition therapy in a cancer patients. Due to the difficulty in directly measuring the TEE, resting energy expenditure, which is the largest component of the TEE, is often used in the determination of the energy requirement. In this study, the effects of disease-specific factors such as tumor burden, inflammation, weight loss and cachexia on energy metabolism in cancer patients were investigated.
Collapse
Affiliation(s)
- Tuğçe Bulmuş Tüccar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Yüksek İhtisas University, Ankara, Turkey
| | - Nilüfer Acar Tek
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| |
Collapse
|
25
|
Dujon AM, Vittecoq M, Bramwell G, Thomas F, Ujvari B. Machine learning is a powerful tool to study the effect of cancer on species and ecosystems. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antoine M. Dujon
- Geelong School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
| | - Marion Vittecoq
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- MIVEGECUniversity of MontpellierCNRSIRD Montpellier France
- Tour du Valat Research Institute for the Conservation of Mediterranean Wetlands Arles France
| | - Georgina Bramwell
- Geelong School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
| | - Frédéric Thomas
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
- MIVEGECUniversity of MontpellierCNRSIRD Montpellier France
| | - Beata Ujvari
- Geelong School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
| |
Collapse
|
26
|
Araf Y, Galib M, Naser IB, Promon SK. Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2021. [DOI: 10.29333/jcei/11289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Olson B, Norgard MA, Levasseur PR, Zhu X, Marks DL. Physiologic and molecular characterization of a novel murine model of metastatic head and neck cancer cachexia. J Cachexia Sarcopenia Muscle 2021; 12:1312-1332. [PMID: 34231343 PMCID: PMC8517353 DOI: 10.1002/jcsm.12745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer cachexia is a metabolic disorder characterized by the progressive loss of fat and lean mass that results in significant wasting, ultimately leading to reduced quality of life and increased mortality. Effective therapies for cachexia are lacking, potentially owing to the mismatch in clinically relevant models of cachexia. Specifically, cachexia observed in a clinical setting is commonly associated with advanced or late-stage cancers that are metastatic, yet pre-clinical metastatic models of cachexia are limited. Furthermore, the prevalence of cachexia in head and neck cancer patients is high, yet few pre-clinical models of head and neck cancer cachexia exist. In addition to these shortcomings, cachexia is also heterogeneous among any given cancer, whereas patients with similar disease burden may experience significantly different degrees of cachexia symptoms. In order to address these issues, we characterize a metastatic model of human papilloma virus (HPV) positive head and neck squamous cell carcinoma that recapitulates the cardinal clinical and molecular features of cancer cachexia. METHODS Male and female C57BL/6 mice were implanted subcutaneously with oropharyngeal squamous cell carcinoma cells stably transformed with HPV16 E6 and E7 together with hRas and luciferase (mEERL) that metastasizes to the lungs (MLM). We then robustly characterize the physiologic, behavioural, and molecular signatures during tumour development in two MLM subclones. RESULTS Mice injected with MLM tumour cells rapidly developed primary tumours and eventual metastatic lesions to the lungs. MLM3, but not MLM5, engrafted mice progressively lost fat and lean mass during tumour development despite the absence of anorexia (P < 0.05). Behaviourally, MLM3-implanted mice displayed decreased locomotor behaviours and impaired nest building (P < 0.05). Muscle catabolism programmes associated with cachexia, including E3 ubiquitin ligase and autophagy up-regulation, along with progressive adipose wasting and accompanying browning gene signatures, were observed. Tumour progression also corresponded with hypothalamic and peripheral organ inflammation, as well as an elevation in neutrophil-to-lymphocyte ratio (P < 0.05). Finally, we characterize the fat and lean mass sparing effects of voluntary wheel running on MLM3 cachexia (P < 0.05). CONCLUSIONS This syngeneic MLM3 allograft model of metastatic cancer cachexia is reliable, consistent, and readily recapitulates key clinical and molecular features and heterogeneity of cancer cachexia. Because few metastatic models of cachexia exist-even though cachexia often accompanies metastatic progression-we believe this model more accurately captures cancer cachexia observed in a clinical setting and thus is well suited for future mechanistic studies and pre-clinical therapy development for this crippling metabolic disorder.
Collapse
Affiliation(s)
- Brennan Olson
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Medical Scientist Training ProgramOregon Health & Science UniversityPortlandORUSA
| | - Mason A. Norgard
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Peter R. Levasseur
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Xinxia Zhu
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Daniel L. Marks
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Brenden‐Colson Center for Pancreatic CareOregon Health and & Science University PortlandORUSA
- Knight Cancer InstituteOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
28
|
Han J, Harrison L, Patzelt L, Wu M, Junker D, Herzig S, Berriel Diaz M, Karampinos DC. Imaging modalities for diagnosis and monitoring of cancer cachexia. EJNMMI Res 2021; 11:94. [PMID: 34557972 PMCID: PMC8460705 DOI: 10.1186/s13550-021-00834-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Cachexia, a multifactorial wasting syndrome, is highly prevalent among advanced-stage cancer patients. Unlike weight loss in healthy humans, the progressive loss of body weight in cancer cachexia primarily implicates lean body mass, caused by an aberrant metabolism and systemic inflammation. This may lead to disease aggravation, poorer quality of life, and increased mortality. Timely detection is, therefore, crucial, as is the careful monitoring of cancer progression, in an effort to improve management, facilitate individual treatment and minimize disease complications. A detailed analysis of body composition and tissue changes using imaging modalities—that is, computed tomography, magnetic resonance imaging, (18F) fluoro-2-deoxy-d-glucose (18FDG) PET and dual-energy X-ray absorptiometry—shows great premise for charting the course of cachexia. Quantitative and qualitative changes to adipose tissue, organs, and muscle compartments, particularly of the trunk and extremities, could present important biomarkers for phenotyping cachexia and determining its onset in patients. In this review, we present and compare the imaging techniques that have been used in the setting of cancer cachexia. Their individual limitations, drawbacks in the face of clinical routine care, and relevance in oncology are also discussed.
Collapse
Affiliation(s)
- Jessie Han
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Luke Harrison
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Lisa Patzelt
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Chair of Molecular Metabolic Control, Technical University of Munich, Munich, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
29
|
Williams GR, Dunne RF, Giri S, Shachar SS, Caan BJ. Sarcopenia in the Older Adult With Cancer. J Clin Oncol 2021; 39:2068-2078. [PMID: 34043430 PMCID: PMC8260902 DOI: 10.1200/jco.21.00102] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Grant R. Williams
- Institute for Cancer Outcomes & Survivorship, University of Alabama at Birmingham, Birmingham, AL
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Richard F. Dunne
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Smith Giri
- Institute for Cancer Outcomes & Survivorship, University of Alabama at Birmingham, Birmingham, AL
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Shlomit S. Shachar
- Department of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bette J. Caan
- Division of Research, Kaiser Permanente, Oakland, CA
| |
Collapse
|
30
|
Madeddu C, Neri M, Sanna E, Oppi S, Macciò A. Experimental Drugs for Chemotherapy- and Cancer-Related Anemia. J Exp Pharmacol 2021; 13:593-611. [PMID: 34194245 PMCID: PMC8238072 DOI: 10.2147/jep.s262349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/21/2021] [Indexed: 01/03/2023] Open
Abstract
Anemia in cancer patients is a relevant condition complicating the course of the neoplastic disease. Overall, we distinguish the anemia which arises under chemotherapy as pure adverse event of the toxic effects of the drugs used, and the anemia induced by the tumour-associated inflammation, oxidative stress, and systemic metabolic changes, which can be worsened by the concomitant anticancer treatments. This more properly cancer-related anemia depends on several overlapping mechanism, including impaired erythropoiesis and functional iron deficiency, which make its treatment more difficult. Standard therapies approved and recommended for cancer anemia, as erythropoiesis-stimulating agents and intravenous iron administration, are limited to the treatment of chemotherapy-induced anemia, preferably in patients with advanced disease, in view of the still unclear effect of erythropoiesis-stimulating agents on tumour progression and survival. Outside the use of chemotherapy, there are no recommendations for the treatment of cancer-related anemia. For a more complete approach, it is fundamentally a careful evaluation of the type of anemia and iron homeostasis, markers of inflammation and changes in energy metabolism. In this way, anemia management in cancer patient would permit a tailored approach that could give major benefits. Experimental drugs targeting hepcidin and activin II receptor pathways are raising great expectations, and future clinical trials will confirm their role as remedies for cancer-related anemia. Recent evidence on the effect of integrated managements, including nutritional support, antioxidants and anti-inflammatory substances, for the treatment of cancer anemia are emerging. In this review article, we show standard, innovative, and experimental treatment used as remedy for anemia in cancer patients.
Collapse
Affiliation(s)
- Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Manuela Neri
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| | - Elisabetta Sanna
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| | - Sara Oppi
- Hematology and Transplant Center, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| | - Antonio Macciò
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| |
Collapse
|
31
|
Siff T, Parajuli P, Razzaque MS, Atfi A. Cancer-Mediated Muscle Cachexia: Etiology and Clinical Management. Trends Endocrinol Metab 2021; 32:382-402. [PMID: 33888422 PMCID: PMC8102392 DOI: 10.1016/j.tem.2021.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
Muscle cachexia has a major detrimental impact on cancer patients, being responsible for 30% of all cancer deaths. It is characterized by a debilitating loss in muscle mass and function, which ultimately deteriorates patients' quality of life and dampens therapeutic treatment efficacy. Muscle cachexia stems from widespread alterations in whole-body metabolism as well as immunity and neuroendocrine functions and these global defects often culminate in aberrant signaling within skeletal muscle, causing muscle protein breakdown and attendant muscle atrophy. This review summarizes recent landmark discoveries that significantly enhance our understanding of the molecular etiology of cancer-driven muscle cachexia and further discuss emerging therapeutic approaches seeking to simultaneously target those newly discovered mechanisms to efficiently curb this lethal syndrome.
Collapse
Affiliation(s)
- Thomas Siff
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Parash Parajuli
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Azeddine Atfi
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; Sorbonne Universités, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France.
| |
Collapse
|
32
|
Cachexia as Evidence of the Mechanisms of Resistance and Tolerance during the Evolution of Cancer Disease. Int J Mol Sci 2021; 22:ijms22062890. [PMID: 33809200 PMCID: PMC8001015 DOI: 10.3390/ijms22062890] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
During its evolution, cancer induces changes in patients’ energy metabolism that strongly affect the overall clinical state and are responsible for cancer-related cachexia syndrome. To better understand the mechanisms underlying cachexia and its metabolic derangements, research efforts should focus on the events that are driven by the immune system activation during the evolution of neoplastic disease and on the phenomena of “resistance” and “tolerance” typically involved in the human body response against stress, pathogens, or cancer. Indeed, in the case where resistance is not able to eliminate the cancer, tolerance mechanisms can utilize the symptoms of cachexia (anemia, anorexia, and fatigue) to counteract unregulated cancer growth. These notions are also sustained by the evidence that cancer cachexia may be reversible if the resistance and tolerance phases are supported by appropriate antineoplastic treatments. Accordingly, there is no doubt that anticachectic therapies have an irreplaceable role in cases of reversible cancer cachexia where, if harmoniously associated with effective antineoplastic therapies, they can contribute to preserve the quality of life and improve prognosis. Such anticachectic treatments should be based on targeting the complex immunological, inflammatory, and metabolic pathways involved in the complex pathogenesis of cachexia. Meanwhile, the role of the anticachectic therapies is very different in the stage of irreversible cachexia when the available antineoplastic treatments are not able to control the disease and the resistance mechanisms fail with the prevalence of the tolerance phenomena. At this stage, they can be useful only to improve the quality of life, allowing the patient and their family to get a better awareness of the final phases of life, thereby opening to the best spiritual remodulation of the final event, death.
Collapse
|
33
|
Thibaut MM, Sboarina M, Roumain M, Pötgens SA, Neyrinck AM, Destrée F, Gillard J, Leclercq IA, Dachy G, Demoulin JB, Tailleux A, Lestavel S, Rastelli M, Everard A, Cani PD, Porporato PE, Loumaye A, Thissen JP, Muccioli GG, Delzenne NM, Bindels LB. Inflammation-induced cholestasis in cancer cachexia. J Cachexia Sarcopenia Muscle 2021; 12:70-90. [PMID: 33350058 PMCID: PMC7890151 DOI: 10.1002/jcsm.12652] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer cachexia is a debilitating metabolic syndrome contributing to cancer death. Organs other than the muscle may contribute to the pathogenesis of cancer cachexia. This work explores new mechanisms underlying hepatic alterations in cancer cachexia. METHODS We used transcriptomics to reveal the hepatic gene expression profile in the colon carcinoma 26 cachectic mouse model. We performed bile acid, tissue mRNA, histological, biochemical, and western blot analyses. Two interventional studies were performed using a neutralizing interleukin 6 antibody and a bile acid sequestrant, cholestyramine. Our findings were evaluated in a cohort of 94 colorectal cancer patients with or without cachexia (43/51). RESULTS In colon carcinoma 26 cachectic mice, we discovered alterations in five inflammatory pathways as well as in other pathways, including bile acid metabolism, fatty acid metabolism, and xenobiotic metabolism (normalized enrichment scores of -1.97, -2.16, and -1.34, respectively; all Padj < 0.05). The hepatobiliary transport system was deeply impaired in cachectic mice, leading to increased systemic and hepatic bile acid levels (+1512 ± 511.6 pmol/mg, P = 0.01) and increased hepatic inflammatory cytokines and neutrophil recruitment to the liver of cachectic mice (+43.36 ± 16.01 neutrophils per square millimetre, P = 0.001). Adaptive mechanisms were set up to counteract this bile acid accumulation by repressing bile acid synthesis and by enhancing alternative routes of basolateral bile acid efflux. Targeting bile acids using cholestyramine reduced hepatic inflammation, without affecting the hepatobiliary transporters (e.g. tumour necrosis factor α signalling via NFκB and inflammatory response pathways, normalized enrichment scores of -1.44 and -1.36, all Padj < 0.05). Reducing interleukin 6 levels counteracted the change in expression of genes involved in the hepatobiliary transport, bile acid synthesis, and inflammation. Serum bile acid levels were increased in cachectic vs. non-cachectic cancer patients (e.g. total bile acids, +5.409 ± 1.834 μM, P = 0.026) and were strongly correlated to systemic inflammation (taurochenodeoxycholic acid and C-reactive protein: ρ = 0.36, Padj = 0.017). CONCLUSIONS We show alterations in bile acid metabolism and hepatobiliary secretion in cancer cachexia. In this context, we demonstrate the contribution of systemic inflammation to the impairment of the hepatobiliary transport system and the role played by bile acids in the hepatic inflammation. This work paves the way to a better understanding of the role of the liver in cancer cachexia.
Collapse
Affiliation(s)
- Morgane M Thibaut
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Martina Sboarina
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Sarah A Pötgens
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Florence Destrée
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Justine Gillard
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Guillaume Dachy
- Experimental Medicine Unit, de Duve Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- Experimental Medicine Unit, de Duve Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Anne Tailleux
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sophie Lestavel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Marialetizia Rastelli
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Audrey Loumaye
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
34
|
Masi T, Patel BM. Altered glucose metabolism and insulin resistance in cancer-induced cachexia: a sweet poison. Pharmacol Rep 2020; 73:17-30. [PMID: 33141425 DOI: 10.1007/s43440-020-00179-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a wasting disorder characterised by specific skeletal muscle and adipose tissue loss. Cancer cachexia is also driven by inflammation, altered metabolic changes such as increased energy expenditure, elevated plasma glucose, insulin resistance and excess catabolism. In cachexia, host-tumor interaction causes release of the lactate and inflammatory cytokines. Lactate released by tumor cells takes part in hepatic glucose production with the help of gluconeogenic enzymes. Thus, Cori cycle between organs and cancerous cells contributes to increased glucose production and energy expenditure. A high amount of blood glucose leads to increased production of insulin. Overproduction of insulin causes inactivation of PI3K/Akt/m-TOR pathway and finally results in insulin resistance. Insulin is involved in maintaining the vitality of organs and regulate the metabolism of glucose, protein and lipids. Insulin insensitivity decreases the uptake of glucose in the organs and results in loss of skeletal muscles and adipose tissues. However, looking into the complexity of this metabolic syndrome, it is impossible to rely on a single variable to treat patients having cancer cachexia. Hence, it becomes greater a challenge to produce a clinically effective treatment for this metabolic syndrome. Thus, the present paper aims to provide an understanding of pathogenesis and mechanism underlining the altered glucose metabolism and insulin resistance and its contribution to the progression of skeletal muscle wasting and lipolysis, providing future direction of research to develop new pharmacological treatment in cancer cachexia.
Collapse
Affiliation(s)
- Tamhida Masi
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
35
|
Impact of musculoskeletal degradation on cancer outcomes and strategies for management in clinical practice. Proc Nutr Soc 2020; 80:73-91. [PMID: 32981540 DOI: 10.1017/s0029665120007855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The prevalence of malnutrition in patients with cancer is one of the highest of all patient groups. Weight loss (WL) is a frequent manifestation of malnutrition in cancer and several large-scale studies have reported that involuntary WL affects 50-80% of patients with cancer, with the degree of WL dependent on tumour site, type and stage of disease. The study of body composition in oncology using computed tomography has unearthed the importance of both low muscle mass (sarcopenia) and low muscle attenuation as important prognostic indications of unfavourable outcomes including poorer tolerance to chemotherapy; significant deterioration in performance status and quality of life (QoL), poorer post-operative outcomes and shortened survival. While often hidden by excess fat and high BMI, muscle abnormalities are highly prevalent in patients with cancer (ranging from 10 to 90%). Early screening to identify individuals with sarcopenia and decreased muscle quality would allow for earlier multimodal interventions to attenuate adverse body compositional changes. Multimodal therapies (combining nutritional counselling, exercise and anti-inflammatory drugs) are currently the focus of randomised trials to examine if this approach can provide a sufficient stimulus to prevent or slow the cascade of tissue wasting and if this then impacts on outcomes in a positive manner. This review will focus on the aetiology of musculoskeletal degradation in cancer; the impact of sarcopenia on chemotherapy tolerance, post-operative complications, QoL and survival; and outline current strategies for attenuation of muscle loss in clinical practice.
Collapse
|
36
|
Molocea CE, Tsokanos FF, Herzig S. Exploiting common aspects of obesity and cancer cachexia for future therapeutic strategies. Curr Opin Pharmacol 2020; 53:101-116. [PMID: 32871469 DOI: 10.1016/j.coph.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
Obesity and cancer cachexia are diseases at opposite ends of the BMI. However, despite the apparent dichotomy, these pathologies share some common underlying mechanisms that lead to profound metabolic perturbations. Insulin resistance, adipose tissue lipolysis, skeletal muscle atrophy and systemic inflammation are key players in both diseases. Several strategies for pharmacological treatments have been employed in obesity and cancer cachexia but demonstrated only limited effects. Therefore, there is still a need to develop novel, more effective strategies. In this review we summarize existing therapies and discuss potential novel strategies that could arise by bridging common aspects between obesity and cachexia. We discuss the potential role of macrophage manipulation and the modulation of inflammation by targeting Nuclear Receptors (NRs) as potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Claudia-Eveline Molocea
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Foivos-Filippos Tsokanos
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany; Chair Molecular Metabolic Control, Technical University, Munich, Germany.
| |
Collapse
|
37
|
Farhang-Sardroodi S, Wilkie KP. Mathematical Model of Muscle Wasting in Cancer Cachexia. J Clin Med 2020; 9:jcm9072029. [PMID: 32605273 PMCID: PMC7409297 DOI: 10.3390/jcm9072029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia is a debilitating condition characterized by an extreme loss of skeletal muscle mass, which negatively impacts patients' quality of life, reduces their ability to sustain anti-cancer therapies, and increases the risk of mortality. Recent discoveries have identified the myostatin/activin A/ActRIIB pathway as critical to muscle wasting by inducing satellite cell quiescence and increasing muscle-specific ubiquitin ligases responsible for atrophy. Remarkably, pharmacological blockade of the ActRIIB pathway has been shown to reverse muscle wasting and prolong the survival time of tumor-bearing animals. To explore the implications of this signaling pathway and potential therapeutic targets in cachexia, we construct a novel mathematical model of muscle tissue subjected to tumor-derived cachectic factors. The model formulation tracks the intercellular interactions between cancer cell, satellite cell, and muscle cell populations. The model is parameterized by fitting to colon-26 mouse model data, and the analysis provides insight into tissue growth in healthy, cancerous, and post-cachexia treatment conditions. Model predictions suggest that cachexia fundamentally alters muscle tissue health, as measured by the stem cell ratio, and this is only partially recovered by anti-cachexia treatment. Our mathematical findings suggest that after blocking the myostatin/activin A pathway, partial recovery of cancer-induced muscle loss requires the activation and proliferation of the satellite cell compartment with a functional differentiation program.
Collapse
|
38
|
Abstract
Tumours reprogram host physiology, metabolism and immune responses during cancer progression. The release of soluble factors, exosomes and metabolites from tumours leads to systemic changes in distant organs, where cancer cells metastasize and grow. These tumour-derived circulating factors also profoundly impact tissues that are rarely inhabited by metastatic cancer cells such as skeletal muscle and adipose tissue. In fact, the majority of patients with metastatic cancer develop a debilitating muscle-wasting syndrome, known as cachexia, that is associated with decreased tolerance to antineoplastic therapy, poor prognosis and accelerated death, with no approved treatments. In this Perspective, we discuss the development of cachexia in the context of metastatic progression. We briefly discuss how circulating factors either directly or indirectly promote cachexia development and examine how signals from the metastatic process can trigger and amplify this process. Finally, we highlight promising therapeutic opportunities for targeting cachexia in the context of metastatic cancers.
Collapse
Affiliation(s)
- Anup K Biswas
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| |
Collapse
|
39
|
Abstract
During nearly 100 years of research on cancer cachexia (CC), science has been reciting the same mantra: it is a multifactorial syndrome. The aim of this paper is to show that the symptoms are many, but they have a single cause: anoxia. CC is a complex and devastating condition that affects a high proportion of advanced cancer patients. Unfortunately, it cannot be reversed by traditional nutritional support and it generally reduces survival time. It is characterized by significant weight loss, mainly from fat deposits and skeletal muscles. The occurrence of cachexia in cancer patients is usually a late phenomenon. The conundrum is why do similar patients with similar tumors, develop cachexia and others do not? Even if cachexia is mainly a metabolic dysfunction, there are other issues involved such as the activation of inflammatory responses and crosstalk between different cell types. The exact mechanism leading to a wasting syndrome is not known, however there are some factors that are surely involved, such as anorexia with lower calorie intake, increased glycolytic flux, gluconeogenesis, increased lipolysis and severe tumor hypoxia. Based on this incomplete knowledge we put together a scheme explaining the molecular mechanisms behind cancer cachexia, and surprisingly, there is one cause that explains all of its characteristics: anoxia. With this different view of CC we propose a treatment based on the physiopathology that leads from anoxia to the symptoms of CC. The fundamentals of this hypothesis are based on the idea that CC is the result of anoxia causing intracellular lactic acidosis. This is a dangerous situation for cell survival which can be solved by activating energy consuming gluconeogenesis. The process is conducted by the hypoxia inducible factor-1α. This hypothesis was built by putting together pieces of evidence produced by authors working on related topics.
Collapse
|
40
|
da Fonseca GWP, Farkas J, Dora E, von Haehling S, Lainscak M. Cancer Cachexia and Related Metabolic Dysfunction. Int J Mol Sci 2020; 21:ijms21072321. [PMID: 32230855 PMCID: PMC7177950 DOI: 10.3390/ijms21072321] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is a complex multifactorial syndrome marked by a continuous depletion of skeletal muscle mass associated, in some cases, with a reduction in fat mass. It is irreversible by nutritional support alone and affects up to 74% of patients with cancer-dependent on the underlying type of cancer-and is associated with physical function impairment, reduced response to cancer-related therapy, and higher mortality. Organs, like muscle, adipose tissue, and liver, play an important role in the progression of cancer cachexia by exacerbating the pro- and anti-inflammatory response initially activated by the tumor and the immune system of the host. Moreover, this metabolic dysfunction is produced by alterations in glucose, lipids, and protein metabolism that, when maintained chronically, may lead to the loss of skeletal muscle and adipose tissue. Although a couple of drugs have yielded positive results in increasing lean body mass with limited impact on physical function, a single therapy has not lead to effective treatment of this condition. Therefore, a multimodal intervention, including pharmacological agents, nutritional support, and physical exercise, may be a reasonable approach for future studies to better understand and prevent the wasting of body compartments in patients with cancer cachexia.
Collapse
Affiliation(s)
- Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo SP 05403-900, Brazil or
- Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), DE-37075 Goettingen, Germany
| | - Jerneja Farkas
- Research Unit, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia;
- National Institute of Public Health, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Eva Dora
- Division of Cardiology, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia;
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), DE-37075 Goettingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Goettingen, DE-37099 Goettingen, Germany
- Correspondence: (S.v.H.); (M.L.); Tel.: +49-551-3920-911 (S.v.H.); +386-251-23-733 (M.L.); Fax: +49-551-3920-918 (S.v.H.); Fax: +386-252-11-007 (M.L.)
| | - Mitja Lainscak
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Division of Cardiology, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia;
- Correspondence: (S.v.H.); (M.L.); Tel.: +49-551-3920-911 (S.v.H.); +386-251-23-733 (M.L.); Fax: +49-551-3920-918 (S.v.H.); Fax: +386-252-11-007 (M.L.)
| |
Collapse
|
41
|
Siddiqui JA, Pothuraju R, Jain M, Batra SK, Nasser MW. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions. Biochim Biophys Acta Rev Cancer 2020; 1873:188359. [PMID: 32222610 DOI: 10.1016/j.bbcan.2020.188359] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Advanced cancer patients exhibit cachexia, a condition characterized by a significant reduction in the body weight predominantly from loss of skeletal muscle and adipose tissue. Cachexia is one of the major causes of morbidity and mortality in cancer patients. Decreased food intake and multi-organ energy imbalance in cancer patients worsen the cachexia syndrome. Cachectic cancer patients have a low tolerance for chemo- and radiation therapies and also have a reduced quality of life. The presence of tumors and the current treatment options for cancer further exacerbate the cachexia condition, which remains an unmet medical need. The onset of cachexia involves crosstalk between different organs leading to muscle wasting. Recent advancements in understanding the molecular mechanisms of skeletal muscle atrophy/hypertrophy and adipose tissue wasting/browning provide a platform for the development of new targeted therapies. Therefore, a better understanding of this multifactorial disorder will help to improve the quality of life of cachectic patients. In this review, we summarize the metabolic mediators of cachexia, their molecular functions, affected organs especially with respect to muscle atrophy and adipose browning and then discuss advanced therapeutic approaches to cancer cachexia.
Collapse
Affiliation(s)
- Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
42
|
Khamoui AV, Tokmina-Roszyk D, Rossiter HB, Fields GB, Visavadiya NP. Hepatic proteome analysis reveals altered mitochondrial metabolism and suppressed acyl-CoA synthetase-1 in colon-26 tumor-induced cachexia. Physiol Genomics 2020; 52:203-216. [PMID: 32146873 DOI: 10.1152/physiolgenomics.00124.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cachexia is a life-threatening complication of cancer traditionally characterized by weight loss and muscle dysfunction. Cachexia, however, is a systemic disease that also involves remodeling of nonmuscle organs. The liver exerts major control over systemic metabolism, yet its role in cancer cachexia is not well understood. To advance the understanding of how the liver contributes to cancer cachexia, we used quantitative proteomics and bioinformatics to identify hepatic pathways and cellular processes dysregulated in mice with moderate and severe colon-26 tumor-induced cachexia; ~300 differentially expressed proteins identified during the induction of moderate cachexia were also differentially regulated in the transition to severe cachexia. KEGG pathway enrichment revealed representation by oxidative phosphorylation, indicating altered hepatic mitochondrial function as a common feature across cachexia severity. Glycogen catabolism was also observed in cachexic livers along with decreased pyruvate dehydrogenase protein X component (Pdhx), increased lactate dehydrogenase A chain (Ldha), and increased lactate transporter Mct1. Together this suggests altered lactate metabolism and transport in cachexic livers, which may contribute to energetically inefficient interorgan lactate cycling. Acyl-CoA synthetase-1 (ACSL1), known for activating long-chain fatty acids, was decreased in moderate and severe cachexia based on LC-MS/MS analysis and immunoblotting. ACSL1 showed strong linear relationships with percent body weight change and muscle fiber size (R2 = 0.73-0.76, P < 0.01). Mitochondrial coupling efficiency, which is compromised in cachexic livers to potentially increase energy expenditure and weight loss, also showed a linear relationship with ACSL1. Findings suggest altered mitochondrial and substrate metabolism of the liver in cancer cachexia, and possible hepatic targets for intervention.
Collapse
Affiliation(s)
- Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, Florida.,Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida
| | - Dorota Tokmina-Roszyk
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, Florida
| | - Harry B Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, Department of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.,Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Gregg B Fields
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, Florida.,Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | - Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, Florida
| |
Collapse
|
43
|
Cachexia Anorexia Syndrome and Associated Metabolic Dysfunction in Peritoneal Metastasis. Int J Mol Sci 2019; 20:ijms20215444. [PMID: 31683709 PMCID: PMC6862625 DOI: 10.3390/ijms20215444] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
Patients with peritoneal metastasis (PM) of gastrointestinal and gynecological origin present with a nutritional deficit characterized by increased resting energy expenditure (REE), loss of muscle mass, and protein catabolism. Progression of peritoneal metastasis, as with other advanced malignancies, is associated with cancer cachexia anorexia syndrome (CAS), involving poor appetite (anorexia), involuntary weight loss, and chronic inflammation. Eventual causes of mortality include dysfunctional metabolism and energy store exhaustion. Etiology of CAS in PM patients is multifactorial including tumor growth, host response, cytokine release, systemic inflammation, proteolysis, lipolysis, malignant small bowel obstruction, ascites, and gastrointestinal side effects of drug therapy (chemotherapy, opioids). Metabolic changes of CAS in PM relate more to a systemic inflammatory response than an adaptation to starvation. Metabolic reprogramming is required for cancer cells shed into the peritoneal cavity to resist anoikis (i.e., programmed cell death). Profound changes in hexokinase metabolism are needed to compensate ineffective oxidative phosphorylation in mitochondria. During the development of PM, hypoxia inducible factor-1α (HIF-1α) plays a key role in activating both aerobic and anaerobic glycolysis, increasing the uptake of glucose, lipid, and glutamine into cancer cells. HIF-1α upregulates hexokinase II, phosphoglycerate kinase 1 (PGK1), pyruvate dehydrogenase kinase (PDK), pyruvate kinase muscle isoenzyme 2 (PKM2), lactate dehydrogenase (LDH) and glucose transporters (GLUT) and promotes cytoplasmic glycolysis. HIF-1α also stimulates the utilization of glutamine and fatty acids as alternative energy substrates. Cancer cells in the peritoneal cavity interact with cancer-associated fibroblasts and adipocytes to meet metabolic demands and incorporate autophagy products for growth. Therapy of CAS in PM is challenging. Optimal nutritional intake alone including total parenteral nutrition is unable to reverse CAS. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) stabilized nutritional status in a significant proportion of PM patients. Agents targeting the mechanisms of CAS are under development.
Collapse
|
44
|
Jouinot A, Ulmann G, Vazeille C, Durand JP, Boudou-Rouquette P, Arrondeau J, Tlemsani C, Fournel L, Alifano M, Wislez M, Chapron J, Le Bris C, Mansuet-Lupo A, Damotte D, Neveux N, De Bandt JP, Alexandre J, Cynober L, Goldwasser F. Hypermetabolism is an independent prognostic factor of survival in metastatic non-small cell lung cancer patients. Clin Nutr 2019; 39:1893-1899. [PMID: 31443979 DOI: 10.1016/j.clnu.2019.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Metastatic non-small cell lung cancer (NSCLC) is the first cause of cancer death worldwide. Increased resting energy expenditure (REE) is frequent among cancer patients and may contribute to cancer cachexia. The aim of this study was to examine the prognostic value of increased REE in metastatic NSCLC patients. METHODS This observational study was conducted between June 2012 and November 2017 in the outpatient unit of the oncology department of Cochin hospital, Paris. Consecutive patients with newly diagnosed stage IV NSCLC underwent measurement of REE by indirect calorimetry before treatment initiation. Uni- and multivariate analysis of overall survival (OS, Cox models) included age, sex, smoking habit, histological subtype, performance status, body mass index, weight loss, albumin and CRP levels and the ratio of measured REE to the REE predicted by the Harris Benedict formula (mREE/pREE). RESULTS 144 patients were enrolled: mean age 64 years, 63% male, 90% non-squamous carcinoma, including 17% with ALK/EGFR alteration. In univariate analysis, tobacco consumption (p = 0.007), histo-molecular subtype (p < 10-3), performance status (p = 0.04), weight loss (p < 10-4), albumin (p < 10-4), CRP (p = 0.001) and mREE/pREE ratio (>vs ≤ 120%: HR = 2.16, p < 10-3) were significant prognostic factors of OS. Median OS were 6.1 and 17.3 months in patients with mREE/pREE ratio > and ≤120%, respectively. In multivariate analysis, histo-molecular subtype (non-squamous ALK/EGFR mutated vs squamous carcinoma: HR = 0.25, p = 0.006), weight loss (>vs ≤ 5%: HR = 1.98, p = 0.004), albumin (≥vs < 35 g/L: HR = 0.56, p = 0.02) and mREE/pREE ratio (> vs ≤120%: HR = 1.90, p = 0.004) were identified as independent prognostic factors. CONCLUSIONS Elevated resting energy expenditure emerges as an independent prognostic factor in metastatic NSCLC.
Collapse
Affiliation(s)
- Anne Jouinot
- Medical Oncology Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Paris Descartes University, USPC, Paris, France; Institut Cochin, INSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, France.
| | - Guillaume Ulmann
- Clinical Chemistry, Paris Centre Teaching Hospitals, AP-HP, Paris Descartes University, USPC, Paris, France; EA 4466 PRETRAM, Pharmacy Faculty, Paris Descartes University, USPC, Paris, France
| | - Clara Vazeille
- Medical Oncology Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Paris Descartes University, USPC, Paris, France
| | - Jean-Philippe Durand
- Medical Oncology Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Paris Descartes University, USPC, Paris, France; EA 4466 PRETRAM, Pharmacy Faculty, Paris Descartes University, USPC, Paris, France
| | - Pascaline Boudou-Rouquette
- Medical Oncology Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Paris Descartes University, USPC, Paris, France
| | - Jennifer Arrondeau
- Medical Oncology Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Paris Descartes University, USPC, Paris, France
| | - Camille Tlemsani
- Medical Oncology Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Paris Descartes University, USPC, Paris, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Paris Descartes University, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Paris Descartes University, Paris, France
| | - Marie Wislez
- Pneumology Department, Paris Centre Teaching Hospitals, AP-HP, Paris Descartes University, USPC, Paris, France
| | - Jeanne Chapron
- Pneumology Department, Paris Centre Teaching Hospitals, AP-HP, Paris Descartes University, USPC, Paris, France
| | - Camille Le Bris
- Medical Oncology Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Paris Descartes University, USPC, Paris, France
| | - Audrey Mansuet-Lupo
- Pathology Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Centre de recherche des Cordeliers, INSERM U1138, Paris Descartes University, USPC, Paris, France
| | - Diane Damotte
- Pathology Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Centre de recherche des Cordeliers, INSERM U1138, Paris Descartes University, USPC, Paris, France
| | - Nathalie Neveux
- Clinical Chemistry, Paris Centre Teaching Hospitals, AP-HP, Paris Descartes University, USPC, Paris, France; EA 4466 PRETRAM, Pharmacy Faculty, Paris Descartes University, USPC, Paris, France
| | - Jean-Pascal De Bandt
- Clinical Chemistry, Paris Centre Teaching Hospitals, AP-HP, Paris Descartes University, USPC, Paris, France; EA 4466 PRETRAM, Pharmacy Faculty, Paris Descartes University, USPC, Paris, France
| | - Jérôme Alexandre
- Medical Oncology Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Paris Descartes University, USPC, Paris, France
| | - Luc Cynober
- Clinical Chemistry, Paris Centre Teaching Hospitals, AP-HP, Paris Descartes University, USPC, Paris, France; EA 4466 PRETRAM, Pharmacy Faculty, Paris Descartes University, USPC, Paris, France
| | - François Goldwasser
- Medical Oncology Department, Paris Centre Teaching Hospitals, AP-HP, Paris, France; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Paris Descartes University, USPC, Paris, France; EA 4466 PRETRAM, Pharmacy Faculty, Paris Descartes University, USPC, Paris, France
| |
Collapse
|
45
|
Purcell SA, Baracos VE, Chu QSC, Sawyer MB, Severin D, Mourtzakis M, Lieffers JR, Prado CM. Profiling Determinants of Resting Energy Expenditure in Colorectal Cancer. Nutr Cancer 2019; 72:431-438. [PMID: 31282744 DOI: 10.1080/01635581.2019.1635172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: Understanding resting energy expenditure (REE) is important for determining energy requirements; REE might be altered in individuals with cancer. The objective of this study was to characterize determinants of REE in patients with stages II-IV colorectal cancer (CRC).Methods: REE was measured via indirect calorimetry in patients with newly diagnosed CRC. Computerized tomography images from medical records ascertained skeletal muscle and total adipose tissue cross-sectional areas, which were then transformed to lean soft tissue (LST) and fat mass (FM) values (in kg). Linear regression assessed determinants of REE.Results: 86 patients were included (n = 55, 64.0% male; 60 ± 12 years old; median body mass index: 27.6, interquartile range: 24.3-31.2 kg/m2), with most (n = 40) having stage III disease. Age, sex, and weight were significant predictors of REE [R2 = 0.829, standard error of the estimate (SEE): 128 kcal/day, P < 0.001]. Replacing weight with LST and FM yielded a similar model, with age, sex, LST, and FM predictive of REE (R2 = 0.820, SEE: 129 kcal/day, p < 0.001).Conclusion: Age, sex, weight, LST, and FM were the main contributors to REE. Further investigation of REE changes over time and its relationship to total energy expenditure, dietary intake, and clinical outcomes should be explored.
Collapse
Affiliation(s)
- Sarah A Purcell
- Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, Canada
| | - Vickie E Baracos
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Quincy S C Chu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Michael B Sawyer
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Diane Severin
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Marina Mourtzakis
- Department of Kinesiology, Applied Health Sciences, University of Waterloo, Waterloo, Canada
| | - Jessica R Lieffers
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Carla M Prado
- Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
46
|
Frasson-Uemura IG, Biazi GR, Miksza DR, Moreira CCL, Cassolla P, Bertolini GL, Bazotte RB, de Souza HM. Infusion of high concentration of lactate in perfused liver, simulating in vivo hyperlactatemia, prevents the reduction of gluconeogenesis in Walker-256 tumor-bearing rats. J Cell Biochem 2019; 120:11068-11080. [PMID: 30719751 DOI: 10.1002/jcb.28384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Gluconeogenesis (GN) is increased in patients with cancer cachexia, but is reduced in liver perfusion of Walker-256 tumor-bearing cachectic rats (TB rats). The causes of these differences are unknown. We investigated the influence of circulating concentrations of lactate (NADH generator) and NADH on GN in perfused livers of TB rats. Lactate, at concentrations similar to those found on days 5 (3.0 mM), 8 (5.5 mM), and 12 (8.0 mM) of the tumor, prevented the reduction of GN from 2.0 mM lactate (lactatemia of healthy rat) in TB rats. NADH, 50 or 75 μM, but not 25 μM, increased GN from 2.0 mM lactate in TB rats to higher values than healthy rats. High concentrations of pyruvate (no NADH generator, 5.0 and 8.0 mM) did not prevent the reduction of GN from 2.0 mM pyruvate in TB rats. However, 50 or 75 μM NADH, but not 25 μM, increased GN from 2.0 mM pyruvate in TB rats to similar or higher values than healthy rats. High concentration of glutamine (NADH generator, 2.5 mM) or 50 μM NADH prevented the reduction of GN from 1 mM glutamine in TB rats. Intraperitoneal administration of pyruvate (1.0 mg/kg) or glutamine (0.5 mg/kg) similarly increased the glycemia of healthy and TB rats. In conclusion, high lactate concentration, similar to hyperlactatemia, prevented the reduction of GN in perfused livers of TB rats, an effect probably caused by the increased redox potential (NADH/NAD+ ). Thus, the decreased GN in livers from TB rats is due, at least in part, to the absence of simulation of in vivo hyperlactatemia in liver perfusion studies.
Collapse
Affiliation(s)
| | - Giuliana Regina Biazi
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Daniele Romani Miksza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Priscila Cassolla
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Gisele Lopes Bertolini
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Helenir Medri de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
47
|
Purcell SA, Wallengren O, Baracos VE, Lundholm K, Iresjö BM, Chu QSC, Ghosh SS, Prado CM. Determinants of change in resting energy expenditure in patients with stage III/IV colorectal cancer. Clin Nutr 2019; 39:134-140. [PMID: 30975554 DOI: 10.1016/j.clnu.2018.12.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/13/2018] [Accepted: 12/26/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Resting energy expenditure (REE) is variable in cancer and might be influenced by changes in tumor burden, systemic inflammation, and body composition. The objective of this study was to assess REE change and the predictors of such in patients with stage III or IV colorectal cancer. METHODS REE was measured via indirect calorimetry and fat mass and fat-free mass (FFM) were assessed using dual X-ray absorptiometry as part of a unique analysis of two studies. C-reactive protein (CRP) was measured as an inflammatory marker. Linear regression was used to assess the determinants of REE at baseline and REE change, with days between baseline and follow-up measures included as a covariate. RESULTS One-hundred and nine patients were included at baseline (59.6% male; 67 ± 12 years; body mass index 24.1 ± 4.3 kg/m2); 49 had follow-up data (61.2% male; 65 ± 12 years; body mass index 25.4 ± 4.3 kg/m2), with median follow-up of 119 days (interquartile range: 113-127 days). At baseline, age, FFM, and CRP explained 68.9% of the variability in REE. A wide variability in REE change over time was observed, ranging from -156 to 370 kcal/day, or -13.0 to 15.7%/100 days. CRP change (1.7 ± 0.4 mg/L, p < 0.001) and stage (81.3 ± 38.7, p = 0.042) predicted REE change in multivariate analysis, controlling for age, FFM change, and days between visits (R2: 0.417 ± 88.2, p < 0.001). CONCLUSIONS Age, FFM, and CRP predicted REE at a single time point. REE change was highly variable and explained by inflammation and stage. Future research should investigate the validity and feasibility of incorporating these measures into energy needs recommendations.
Collapse
Affiliation(s)
- Sarah A Purcell
- Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Canada
| | - Ola Wallengren
- Clinical Nutrition Unit, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Vickie E Baracos
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Kent Lundholm
- Surgical Metabolic Research Lab, Department of Surgery, Institute of Clinical Science and Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - Britt-Marie Iresjö
- Surgical Metabolic Research Lab, Department of Surgery, Institute of Clinical Science and Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - Quincy S C Chu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Sunita S Ghosh
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Carla M Prado
- Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Canada.
| |
Collapse
|
48
|
Rohm M, Zeigerer A, Machado J, Herzig S. Energy metabolism in cachexia. EMBO Rep 2019; 20:embr.201847258. [PMID: 30890538 DOI: 10.15252/embr.201847258] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/11/2019] [Accepted: 02/05/2019] [Indexed: 12/26/2022] Open
Abstract
Cachexia is a wasting disorder that accompanies many chronic diseases including cancer and results from an imbalance of energy requirements and energy uptake. In cancer cachexia, tumor-secreted factors and/or tumor-host interactions cause this imbalance, leading to loss of adipose tissue and skeletal and cardiac muscle, which weakens the body. In this review, we discuss how energy enters the body and is utilized by the different organs, including the gut, liver, adipose tissue, and muscle, and how these organs contribute to the energy wasting observed in cachexia. We also discuss futile cycles both between the organs and within the cells, which are often used to fine-tune energy supply under physiologic conditions. Ultimately, understanding the complex interplay of pathologic energy-wasting circuits in cachexia can bring us closer to identifying effective treatment strategies for this devastating wasting disease.
Collapse
Affiliation(s)
- Maria Rohm
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliano Machado
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany .,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| |
Collapse
|
49
|
Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V, Martin DC. Heterogeneity of endometriosis lesions requires individualisation of diagnosis and treatment and a different approach to research and evidence based medicine. Facts Views Vis Obgyn 2019; 11:57-61. [PMID: 31695858 PMCID: PMC6822957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Statistical significance is used to analyse research findings and is together with biased free trials the cornerstone of evidence based medicine. However traditional statistics are based on the assumption that the population investigated is homogeneous without smaller hidden subgroups. The clinical, inflammatory, immunological, biochemical, histochemical and genetic-epigenetic heterogeneity of similar looking endometriosis lesions is a challenge for research and for diagnosis and treatment of endometriosis. The conclusions obtained by statistical testing of the entire group are not necessarily valid for subgroups. The importance is illustrated by the fact that a treatment with a beneficial effect in 80% of women but with exactly the same but opposite effect, worsening the disease in 20%, remains statistically highly significant. Since traditional statistics are unable to detect hidden subgroups, new approaches are mandatory. For diagnosis and treatment it is suggested to visualise individual data and to pay specific attention to the extremes of an analysis. For research it is important to integrate clinical, biochemical and histochemical data with molecular biological pathways and genetic-epigenetic analysis of the lesions.
Collapse
Affiliation(s)
- PR Koninckx
- Latifa Hospital, Dubai, United Arab Emirates;,Professor emeritus OBGYN, KULeuven Belgium, University of Oxford-Hon Consultant, UK, University Cattolica, Roma, Moscow State Univ.;,Gruppo Italo Belga, Villa Del Rosario Rome Italy
| | - A Ussia
- Professor emeritus OBGYN, KULeuven Belgium, University of Oxford-Hon Consultant, UK, University Cattolica, Roma, Moscow State Univ.;,Consultant Università Cattolica, Roma Italy
| | - L Adamyan
- Department of Operative Gynecology, Federal State Budget Institution V. I. Kulakov Research Centre for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia; and e Department of Reproductive Medicine and Surgery, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - A Wattiez
- Latifa Hospital, Dubai, United Arab Emirates;,Professor Department of obstetrics and gynaecology, University of Strasbourg
| | - V Gomel
- Professor emeritus Department of Obstetrics and Gynecology, University of British Columbia and Women’s Hospital, Vancouver, BC, Canada
| | - DC Martin
- Professor emeritus School of Medicine, University of Tennessee Health Science Centre, Memphis Tennessee, USA; Institutional Review Board, Virginia Commonwealth University, Richmond, Virginia. USA
| |
Collapse
|
50
|
Schmidt SF, Rohm M, Herzig S, Berriel Diaz M. Cancer Cachexia: More Than Skeletal Muscle Wasting. Trends Cancer 2018; 4:849-860. [DOI: 10.1016/j.trecan.2018.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
|